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Abstract. We state large deviations for small time of a pinned n-conditional Gaus-
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points at n fixed past instants, by letting all the past monitoring instants to de-
pend on the small parameter going to 0. Differently from what already developed
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on the past observations. We apply the results to numerical experiments that in-
volve the fractional Brownian motion, for the computation of the hitting probability
through Monte Carlo methods.
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1 Introduction

The paper deals with the large deviation asymptotic behavior for small time of a
pinned Gaussian n-fold conditional process. This can be considered as a further
analysis of what developed in [9]. Here, a modification of the meaning of “small time
behavior” is considered.
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The problem is motivated to set up improvements for simulation-based numerical
computation of the hitting probability, by introducing a “correction” relied on large
deviation estimates for the level crossing probability of the bridge process. This
approach was firstly introduced in [2] in the case of a Brownian motion and applied
to problems in finance in [4] and [7]. General results for diffusion processes are
provided in [3]. The error from the standard and the corrected schemes for killed
processes is not widely studied. Results in this direction are given in [12] for diffusion
processes (see also [13] for a further study), but these are not suitable for our context
because the required support conditions are not satisfied in the case of the exit
probability. As for the Brownian motion, a comparison between the errors from the
standard and the corrected approximation of the exit probability are given in [8],
where it is theoretically proved what is really seen in practice: the correction makes
the convergence much faster. Let us finally recall that one could also consider a
deterministic correction consisting in a suitable shift of the barrier, as done in [6] in
a financial context.
As for non Markovian processes, the literature is not as provided in results, although
the problem of the computation of the level crossing probability remains an interest-
ing one. In this paper, we deal with the special class of Gaussian processes. As an
example, we consider the fractional Brownian motion, used in risk theory modeling
(see e.g. [5]), or its integral, the integrated fractional Brownian motion, linked to
properties of the Burgers equation (see [15], where the law of the maximum is taken
into account).

In order to describe our problem, let us start by briefly recalling what is done in
[9]. Let X denote the (continuous) Gaussian process of interest. Let ε > 0 be small
enough and let x1, . . . , xn, xn+1 denote observations for X at times 0 < T1 < · · · <
Tn < Tn+1 = Tn + ε respectively. Consider the n-fold conditional process X̄n, which
is the one having the conditional law of X given the (past) observations x1, . . . , xn

at times T1, . . . , Tn. In mathematical terms, one has

X̄n
Tn+·

L
=

[
XTn+·

∣∣XT1 = x1, . . . , XTn = xn

]
,

the symbol
L
= denoting from now on equality in law. Set now Ȳ n,ε as the bridge of

X̄n, also called the pinned process, which gives the conditional behavior of X̄n given
the (future) observation xn+1 at time Tn+1 = Tn + ε, that is

Ȳ n,ε
Tn+·

L
=

[
X̄n

Tn+·
∣∣ X̄n

Tn+ε = xn+1

]
L
=

[
XTn+·

∣∣XT1 = x1, . . . , XTn = xn, XTn+ε = xn+1

]
.
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In [9], a functional large deviation principle is stated for {Ȳ n,ε
Tn+ε·}ε and the resulting

estimates for the hitting probability are used to correct the standard simulation
scheme for the numerical computation of the probability that X reaches a boundary
up to a fixed time. The numerical results refer to the fractional Brownian motion
and are very satisfactory.

But, from the mathematical point of view, an odd phenomenon appears: the large
deviation estimates turn out to depend on xn and xn+1 only, and the past observa-
tions are lost. This local independence property is not really surprising, as already
noted for example in [14], and can have a consequence on the numerical use of these
estimates. In fact from the point of view of the local process, in the current interval
(of length ε) the distance of the past grows unboundedly as ε approaches zero but in
the simulation application, the time-distance of two conditional points is the same ε,
and thus the length of the bridge (again ε) is not in a region where the independence
holds with high accuracy. This led us to set up an alternative procedure allowing to
get rid of this fact: all the past instants T1, T2, . . . , Tn are not fixed anymore and de-
pend now on ε, that is T1 = ε, · · · , Tn = nε. Then, in this paper we study functional
large deviations for the pinned n-conditional process {Y n,ε

nε+ε·}ε, where

Y n,ε
nε+ε·

L
=

[
Xnε+ε·

∣∣Xε = x1, . . . , Xnε = xn, X(n+1)ε = xn+1

]
.

In particular, we give large deviation estimates for the hitting probability, that we
use to correct the usual Monte Carlo scheme for the computation of the hitting
probability. The introduction of such a dependance on ε is actually able to catch the
dependence on the past.
We give explicit applications to the simulation of a fractional Brownian motion and
in particular, we numerically compute the cumulative distribution function of its
maximum over [0, 1]. The results definitively say that the approach in [9] works
efficiently when H < 1/2 (short memory property case), while for H > 1/2 (long
memory) the estimates in this paper yields more accurate results.
The paper is organized as follows. We first recall some basic facts in Section 2.
Section 3 refers to the study of the theoretical problem and in particular to the large
deviation asymptotic behavior of the hitting probability of the pinned n-fold process.
We then apply the results to the numerical computation of the exit probability in
Section 4, where the simulation algorithm is stated and the correction method is
described in details.
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2 Some basic facts and results

Before stating our problem and our results, we first introduce some concepts and
facts that will be used throughout this paper.
Let T stand for the time interval of interest. We assume T is a closed (possibly
unbounded) interval contained in [0,+∞) (for example, T = [0, 1] or [0,+∞) itself).
We recall that a function Υ : T× T → R is a covariance function if it is symmetric
and non negative definite, that is

• Υ(t, s) = Υ(s, t), t, s ∈ T;

• for every K ∈ N, t1, . . . , tK ∈ T, ξ ∈ RK \ {0} one has
K∑

i,j=1

Υ(ti, tj)ξiξj ≥ 0.

We will be interested in continuous covariance function, so we add the requirement
that Υ is continuous.
We first study what happens if a further requirement is asked for a continuous

covariance function Υ. By setting
◦
T as the interior of T, we recall that Υ is said to

be (strictly) positive definite on
◦
T ×

◦
T if

for every K ∈ N, t1, . . . , tK ∈
◦
T, ξ ∈ RK \ {0} one has

K∑
i,j=1

Υ(ti, tj)ξiξj > 0. (1)

The following consequence of (1) will be particularly useful in the sequel.

Proposition 1 Let (1) holds. Let v ∈
◦
T and set

Υv
f (t, s) = Υ(t, s)− Υ(t, v)Υ(s, v)

Υ(v, v)
, t, s ∈ Tv

f := T ∩ [v,+∞),

Υv
p(t, s) = Υ(t, s)− Υ(t, v)Υ(s, v)

Υ(v, v)
, t, s ∈ Tv

p := T ∩ [0, v].

Then, Υv
f and Υv

p are both continuous covariance functions on Tv
f ×Tv

f and Tv
p ×Tv

p

respectively and moreover, they are positive definite functions on
◦
Tv

f ×
◦
Tv

f and
◦
Tv

p

×
◦
Tv

p respectively.
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The proof of Proposition 1 is straightforward, see e.g. Anderson [1].
Let us stress that the covariance functions Υv

f and Υv
p have an important meaning,

that we will strongly use in the sequel. First, it is clear that Υv
f and Υv

p actually
come from the same formula. What changes is the set where the common function
is seen to act: Υv

f refers to times larger than v (future times) whereas Υv
p is set from

times smaller than v (past times). And in fact, the functions Υv
f and Υv

p turn out
to be the covariance function of a Gaussian process defined through the conditional
law of the Gaussian process U having Υ as its covariance function: Υv

f is linked to
the conditional law of the future behavior given an observed position at time v; Υv

p

gives the conditional law of the past behavior given an observed position at time v
(the “bridge”). This is a well-known fact (see e.g. Gasbarra, Sottinen and Valkeila
[11]).

Let us finally recall the concept of “reproducing kernel Hilbert space”. This is a
crucial instrument associated to a continuous covariance function Υ, and then to a
Gaussian process having a continuous covariance function, and is usually denoted as
HΥ. In particular, this is a space that turns out to be fundamental when dealing
with large deviations for Gaussian processes. We refer e.g. to Deuschel and Stroock
[10] (see also [9]) for precise definitions and for general results on large deviations,
even if we will recall the main definition at the end of this section. In this paper
we consider reproducing kernel Hilbert spaces associated to continuous covariance
functions on [0, 1]× [0, 1]. So, we set now T = [0, 1] and we briefly recall what such
spaces are.
Let C([0, 1]) and M ([0, 1]) denote the set of continuous functions and of signed
measures on [0, 1] respectively. Consider the set of barycenter paths

LΥ =
{
h ∈ C([0, 1]) : ht =

∫ 1

0

Υ(t, s)λ(ds), with λ ∈ M ([0, 1])
}
.

LΥ is a subspace of C([0, 1]). For h, h1, h2 ∈ LΥ, represented through λ, λ1, λ2 ∈
M ([0, 1]) respectively, one defines the inner product and the norm as

⟨h1, h2⟩Υ =

∫ 1

0

∫ 1

0

Υ(t, s)λ1(dt)λ2(ds) and ∥h∥2Υ = ⟨h, h⟩Υ

respectively. The reproducing kernel Hilbert space HΥ associated to Υ is given by

HΥ = LΥ
∥·∥Υ

.

HΥ turns out to be a Hilbert space, with an inner product which is the natural
extension of ⟨·, ·⟩Υ. As usually done, we use the notation ⟨·, ·⟩HΥ

and ∥ · ∥HΥ
to
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denote, respectively, the inner product and the associated norm on HΥ. Finally, it
is possible to prove that the functional I : C([0, 1]) → [0,+∞] defined as

I(x) = 1
2
∥x∥2HΥ

if x ∈ HΥ and I(x) = +∞ otherwise (2)

is a lower semicontinuous function (that is the level sets {I ≤ α}, α ≥ 0, are closed
subsets of C([0, 1])) and in addition, it is a “good” lower semicontinuous function
(that is the level sets {I ≤ α}, α ≥ 0, are compact subsets of C([0, 1])).

As we will refer in the results of next section, reproducing kernel Hilbert spaces
are strongly linked to large deviations for Gaussian processes. So, we conclude this
section by recalling the definition of “large deviation principles”. Let the following
ingredients be given:

• a family {U ε}ε of continuous processes on the time interval [0, 1], i.e. taking
values in C([0, 1]);

• an infinitesimal function γε (that is, limε→0 γε = 0);

• a functional I : C([0, 1]) → [0,+∞] which is lower semicontinuous.

Then the family {U ε}ε is said to satisfy a large deviation principle on C([0, 1]) with
inverse speed γ2

ε and rate function I if the following statements hold:

• for every open subset A in C([0, 1]) then

lim inf
ε→0

γ2
ε lnP(U ε ∈ A) ≥ − inf

x∈A
I(x);

• for every closed subset C in C([0, 1]) then

lim sup
ε→0

γ2
ε lnP(U ε ∈ C) ≤ − inf

x∈C
I(x).

If in addition the level sets {I ≤ α}, α ≥ 0, are compact subsets in C([0, 1]), then I
is said to be a “good” rate function. Roughly speaking, a large deviation principle
gives

P(U ε ∈ B) ≃ exp
(
− 1

γ2
ε

inf
x∈B

I(x)
)

as ε ≃ 0,

and this justifies the denomination “inverse speed” given to γ2
ε . In practice, the

“good” rate function I in the large deviations for a family of Gaussian processes {U ε}ε
is given by the functional I defined in (2), in which Υ is a covariance function given
by the asymptotic behavior, as ε → 0, of the covariance functions Υε’s associated to
the Gaussian processes U ε’s.
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3 Large deviations

We study here the large deviations both for the conditional Gaussian process given
the past observations and for its bridge, that is given the future position also.
Let X = (Xt)t≥0 denote hereafter a continuous (in the sense that it is almost surely
continuous) Gaussian process, with (continuous) covariance function

k(t, s) = Cov(Xt, Xs), t, s ≥ 0. (3)

Without loss of generality, we assume that X is centered: E(Xt) = 0 for every
t ≥ 0. In particular, we set X0 = 0. We also assume that k is positive definite on
(0,+∞)× (0,+∞), that is (1) holds with T = [0,+∞) and Υ = k.

3.1 The conditional process

For a fixed n ∈ N, n ≥ 1, let Xn,ε = (Xn,ε
t )t≥0 stand for the process giving the

conditional behavior of X given that it assumes the values x1, . . . , xn at the n times
T ε
1 = ε, . . . , T ε

n = nε respectively, that is

Xn,ε
·

L
=

[
X·

∣∣Xε = x1, . . . , Xnε = xn

]
, n ≥ 1.

Since the original process X is Gaussian, the process Xn,ε = (Xn,ε
t )t≥nε can be

iteratively defined as follows:

Xn,ε
t = Xn−1,ε

t −
kε
n−1(t, nε)

kε
n−1(nε, nε)

(
Xn−1,ε

nε − xn

)
, (4)

where kε
n denotes the covariance function associated to Xn,ε, which is recursively

given by

kε
n(t, s) = Cov(Xn,ε

t , Xn,ε
s ) = kε

n−1(t, s)−
kε
n−1(t, nε)k

ε
n−1(s, nε)

kε
n−1(nε, nε)

, t, s ≥ nε. (5)

Obviously, the case n = 0 relates to the original process and its covariance function,
that is X0,ε ≡ X and kε

0 ≡ k.

Remark 2 We notice that that the above functions kε
n are all well defined and pos-

itive definite in (nε,+∞)× (nε,+∞). In fact for n = 1, we have

kε
1(t, s) = k(t, s)− k(t, ε)k(s, ε)

k(ε, ε)
, t, s ≥ ε,

and the statement follows from Proposition 1. By iteration, one gets the statement
for n ≥ 1.
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Following [9], the first aim is to impose conditions in order to get a functional large
deviation principle for the n-fold conditional process Xn,ε for small time, that is for
{Xn,ε

nε+ε·}ε as ε → 0. To this purpose, let γε denote an infinitesimal function (γε → 0
as ε → 0). γε will be related to the inverse speed of the large deviation principles we
are going to study.

Assumption 3 There exist a function ρ and an infinitesimal function γε such that

ρ(t, s) = lim
ε→0

1

γ2
ε

k(tε, sε), t, s ≥ 0 (6)

uniformly on the compact sets in [0,+∞)× [0,+∞). Moreover, ρ is positive definite
on (0,+∞)× (0,+∞).

Remark 4 Since the limit in (6) is asked to be uniform, one immediately gets that
ρ is a continuous, symmetric and non negative definite function, that is a covariance
function. So, the additional request actually reduces to a strictly non degenerate
property for ρ, in the sense that one requires it is strictly positive definite (0,+∞)×
(0,+∞).

We first investigate how Assumption 3 influences the asymptotic behavior of the
functions kε

n, defined through (5).

Lemma 5 Suppose that Assumption 3 holds and set

for n = 0 : ρ0(t, s) = ρ(t, s), t, s ≥ 0,

for n ≥ 1 : ρn(t, s) = ρn−1(t, s)−
ρn−1(n, t)ρn−1(n, s)

ρn−1(n, n)
, t, s ≥ n.

(7)

Then, for every n ≥ 0 the function ρn is well posed and it is a continuous covariance
function on [n,+∞) × [n,+∞), being also positive definite on (n,+∞) × (n,+∞).
Moreover, for n ≥ 0 one has

lim
ε→0

1

γ2
ε

kε
n(tε, sε) = ρn(t, s), t, s > n,

uniformly on the compact sets in [n,+∞)× [n,+∞).
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Proof. Since ρ0 ≡ ρ, the case n = 0 is just Assumption 3 (see also Remark 4). For
n = 1, by Proposition 1 one immediately gets that that ρ1 is a continuous covariance
function, which is positive definite on (1,+∞)× (1,+∞). Moreover,

lim
ε→0

1

γ2
ε

kε
1(uε, vε) = lim

ε→0

1

γ2
ε

(
kε
0(uε, vε)−

kε
0(uε, ε)k

ε
0(ε, vε)

kε
0(ε, ε)

)
= lim

ε→0

( 1

γ2
ε

kε
0(uε, vε)−

1
γ2
ε
kε
0(uε, ε)

1
γ2
ε
kε
0(ε, vε)

1
γ2
ε
kε
0(ε, ε)

)
= ρ0(u, v)−

ρ0(u, 1) ρ0(v, 1)

ρ0(1, 1)
,

and the limit is uniform on the compact sets in [1,+∞) × [1,+∞). For n > 1 the
statement follows by iteration. �

In order to state our large deviation result, we need to define the following functions:
as n ≥ 0, we set

ρ̄Xn (t, s) = ρn(n+ t, n+ s), t, s ∈ [0, 1] (8)

the functions ρn being defined in (7), and as t ∈ [0, 1],

for n = 0 : φ̄X
0 (t) = 0,

for n ≥ 1 : φ̄X
n (t) = φ̄X

n−1(1 + t)−
ρ̄Xn−1(1 + t, 1)

ρ̄Xn−1(1, 1)

(
φ̄X
n−1(1)− xn

)
.

(9)

We notice that ρ̄Xn and φ̄X
n stand for a covariance function and a suitable path

respectively.

Remark 6 Although in (8) the restriction [0, 1] is taken into account, one has that
ρ̄Xn (t, s) = ρn(n + t, n + s) is actually a continuous covariance function for (t, s) ∈
[0,+∞)× [0,+∞), and by Lemma 5 it is positive definite on (0,+∞)× (0,+∞).

Theorem 7 Under Assumption 3, for every fixed n the family of random processes
{(Xn,ε

nε+εt)t∈[0,1]}ε satisfies a large deviation principle on C([0, 1]), with inverse speed
γ2
ε and good rate function

JX
n (h) =

{ 1

2
∥h− φ̄X

n ∥2H
ρ̄Xn

if h− φ̄X
n ∈ Hρ̄Xn

+∞ otherwise,
(10)

in which Hρ̄Xn
denotes the reproducing kernel Hilbert space associated to the covari-

ance function ρ̄Xn , where ρ̄Xn and φ̄X
n are defined through (8) and (9) respectively.
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Proof. We set ξn,εt = Xn,ε
nε+εt − E(Xn,ε

nε+εt) and µn,ε
t = E(Xn,ε

nε+εt), so that Xn,ε
nε+εt =

ξn,εt +µn,ε
t . For the family of continuous centered Gaussian process {(ξn,εt )t∈[0,1]}ε, by

Lemma 5 one has

lim
ε→0

1

γ2
ε

Cov(ξn,εt , ξn,εs ) = ρ̄Xn (t, s) (11)

uniformly on the compact sets in [0,+∞)× [0,+∞). This implies that {(ξn,εt )t∈[0,1]}ε
satisfies a large deviation principle on C([0, 1]), with inverse speed γ2

ε and good rate
function

In(h) =

{ 1

2
∥h∥2H̄ X

n
if h ∈ Hρ̄Xn

+∞ otherwise,
(12)

Hρ̄Xn
being the reproducing kernel Hilbert space associated to the covariance function

ρ̄Xn (for details, we refer to Theorem 2.2 in [9]).
Furthermore, on has limε→0 µ

n,ε
t = φ̄X

n (t) uniformly on the compact sets in [0,+∞),
so that the required large deviation principle for Xn,ε

nε+ε· = ξnεnε+·+µn,ε
· follows by using

classical transfer results in large deviation theory, such as standard generalizations
of the contraction principle. �

Remark 8 The rate function (10) actually depends on all the observations x1, . . . , xn

through the path φ̄X
n and this gives a real difference with respect to the local indepen-

dence property observed in [9]. In fact, in [9] the n-fold conditional process is defined
through fixed past instants T1, . . . , Tn and the resulting asymptotic behavior on the
time interval [Tn, Tn + ε] depends on xn only, so that in some sense the past is felt
“too far” and does not influence the large deviation behavior.

Before to continue with the asymptotic behavior of the n-fold conditional bridge
process, let us give two examples of applications of Theorem 7.

Example 9 (Fractional Brownian motion) Let us recall that a fractional Brow-
nian motion X = XH with Hurst index H ∈ (0, 1) is a continuous, non-Markovian
unless H = 1/2 (which is the case of a standard Brownian motion), centered, Gaus-
sian process whose covariance function is

kH(t, s) =
t2H + s2H − |t− s|2H

2
.

Thanks to the self-similarity property, Assumption 3 is trivially verified with γ2
ε = ε2H

and ρ(t, s) = kH(t, s), so that Theorem 7 holds. Moreover, it immediately follows that

Xn,ε
nε+ε·

L
= ε2HZn

n+·, where Zn
n+·

L
=

[
Xn+·

∣∣X1 = x1, . . . , Xn = xn

]
.
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The unpleasant point is that it is not possible to write down explicitly both the asymp-
totic covariance function ρ̄Xn and asymptotic expected path φ̄X

n , unless H = 1/2. In
fact, in this case the Markov property gives that Zn

n+· is actually a Brownian motion
starting at xn, so that ρ̄Xn (t, s) = t ∧ s and φX

n (t) = xn, t, s ∈ [0, 1].

Example 10 (Integrated Gaussian processes) Let Z denote a Gaussian pro-
cess with covariance function κ(t, s) and let Xt =

∫ t

0
Zudu, t ≥ 0, be its integrated

process. X is a continuous, centered Gaussian process whose covariance function k
is given by

k(t, s) =

∫ t

0

∫ s

0

κ(u, v)dudv. (13)

The equality

k(tε, sε) = ε2
∫ t

0

∫ s

0

κ(uε, vε)dudv,

suggests possible requirements for κ in order that Assumption 3 holds. For example,
it suffices that for some γε → 0, one has limε→0 ε

2κ(uε, vε)/γ2
ε , uniformly on the

compact sets in [0,+∞) × [0,+∞). When Z is a fractional Brownian motion, it
holds

ε2

γ2
ε

κ(uε, vε) =
ε2+2H

γ2
ε

kH(u, v),

and Assumption 3 is verified with γ2
ε = ε2+2H and

ρ(t, s) =

∫ t

0

∫ s

0

kH(u, v)dudv.

3.2 The pinned process and the exit probability

Let Y n,ε denote the bridge of the process Xn,ε, i.e, the process Xn,ε conditioned to
be in a fixed position, say xn+1, at the future time T ε

n+1 = (n+1)ε. In mathematical
words, on the time interval [0, 1] one has

Y n,ε
nε+ε·

L
=

[
Xn,ε

nε+ε·
∣∣Xn,ε

nε+ε = xn+1

]
L
=

[
Xnε+ε·

∣∣X0 = x0, Xε = x1, . . . , Xnε = xn, X(n+1)ε = xn+1

]
and therefore we can write

Y n,ε
nε+εt = Xn,ε

nε+εt −
kε
n(nε+ εt, nε+ ε)

kε
n(nε+ ε, nε+ ε)

(Xn,ε
nε+ε − xn+1), t ∈ [0, 1]. (14)
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Notice that

Cov(Y n,ε
nε+εt, Y

n,ε
nε+εs) = kε

n(nε+ εt, nε+ εs)− kε
n(nε+ εt, nε+ ε)kε

n(nε+ εs, nε+ ε)

kε
n(nε+ ε, nε+ ε)

as t, s ∈ [0, 1]. We recall (see Remark 2) that kε
n(nε + ε, nε + ε) > 0, so that the

above ratio is well-posed.
As for the large deviations, we define (the asymptotic covariance function) ρ̄Yn and
(the asymptotic expected path) φ̄Y

n as

ρ̄Yn (t, s) = ρ̄Xn (t, s)−
ρ̄Xn (t, 1)ρ̄

X
n (s, 1)

ρ̄Xn (1, 1)
, t, s ∈ [0, 1] (15)

φ̄Y
n (t) = φ̄X

n (t)−
ρ̄Xn (t, 1)

ρ̄Xn (1, 1)
(φ̄X

n (1)− xn+1) t ∈ [0, 1] (16)

respectively. By Remark 6, one has ρ̄Xn (1, 1) > 0, so that ρ̄Yn and φ̄Y
n are actually

well defined. Then, one has

Theorem 11 Under Assumption 3, for any fixed n the family {(Y n
nε+εt)t∈[0,1]}ε sat-

isfies a large deviation principle on C([0, 1]), with inverse speed γ2
ε and good rate

function

JY
n (h) =

{ 1

2
∥h− φ̄Y

n ∥2H
ρ̄Yn

if h0 = xn, h1 = xn+1, h− φY
n ∈ Hρ̄Yn

+∞ otherwise,
(17)

in which Hρ̄Yn
is the reproducing kernel Hilbert space associated to the covariance

function ρ̄Yn , where ρ̄Yn and φ̄Y
n are defined in (15) and (16) respectively.

The proof can be developed following arguments identical to the ones used to demon-
strate Theorem 7, so we omit it.

Remark 12 In [9], the large deviations for the pinned process may be degenerate,
that is the associated rate function may assume the values 0 or +∞ only. This is
the case of integrated Gaussian processes and, more generally, of Gaussian processes
having a smooth covariance function. So, in [9] some refinements allowing to get non
degenerate results are discussed. By contrast, the developments here studied do not
show such a phenomenon. In mathematical terms, this can be explained by observing
that Assumption 3 gives that the ρn’s are all definite positive (see Lemma 5) and,
as a consequence, the asymptotic covariance function ρ̄Xn of the n-conditional process
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is positive definite as well. So, the asymptotic covariance function ρ̄Yn of the bridge
process has the same property, and this gives that the rate function of the bridge
cannot be degenerate. On the contrary, in [9] one only needs that the covariance
function of the Gaussian law given by the conditional (future) behavior of X given
that XT1 = x1, . . . , XTn−1 = xn−1 is positive in the pair of times (Tn, Tn) (a fact
which is implicitly required, even if it is not well stressed in [9] - we know from
Proposition 1 that this holds whenever the original covariance function is positive
definite on (0,+∞) × (0,+∞), and in fact all examples in [9] fulfill this property).
This weaker requirement implies that the asymptotic covariance function of the n-
conditional process in [9] is not necessarily positive definite, and this brings to large
deviations for the bridge process that may be degenerate.

We now apply Theorem 11 in order to state the large deviation asymptotic behavior
of the hitting probability.

Let U be a constant standing for an upper barrier, and consider the probability that
Y n
nε+ε· reaches the barrier U up to the final time 1, that is

P(τUε ≤ 1), with τUε = inf{t > 0 : Y n
nε+εt ≥ U}

Now, if xn, xn+1 < U , one has

γ2
ε logP(τUε ≤ 1) ∼= −IUY ,

as ε ∼= 0, with IUY > 0. Let us investigate IUY . Under the hypothesis of Theorem
11, by contraction it immediately follows that {(Y n,ε

nε+εt − U)t∈[0,1]}ε satisfies a large
deviation principle as well, with the same inverse speed and rate function

JY
n (h+ U), h ∈ C([0, 1]).

Then, one has

lim
ε→0

γ2
ε logP(τUε ≤ 1) = − inf

γ∈ΓU

JY
n (γ + U) = −IUY ,

being ΓU = {γ : supt∈[0,1] γt ≥ 0}. If a constant lower barrier L were considered, the
same arguments would apply, giving

lim
ε→0

γ2
ε logP(τLε ≤ 1) = − inf

γ∈ΓL

JY
n (γ + L) = −ILY ,

13



where τLε = inf{t > 0 : Y n
nε+εt ≤ L} and ΓL = {γ : inft∈[0,1] γt ≤ 0}, and this is

interesting when xn, xn+1 > L. Finally, in the double barrier case, with L < U , then
the hitting probability behaves as follows:

lim
ε→0

γ2
ε logP(τL,Uε ≤ 1) = −IL,UY ,

where τL,Uε = τLε ∧ τUε is the first time at which Y n,ε
nε+ε· reaches at least one barrier

and IL,UY is strictly positive if xn, xn+1 ∈ (L,U).
The quantities IUY , I

L
Y and IL,UY are computed in next

Proposition 13 Suppose that L,U ∈ R, with L < U . Under the hypothesis of
Theorem 11 one has

IUY =
1

2
inf

t∈[0,1]

(U − φ̄Y
n (t))

2

ρ̄Yn (t, t)
if xn, xn+1 < U

ILY =
1

2
inf

t∈[0,1]

(φ̄Y
n (t)− L)2

ρ̄Yn (t, t)
if xn, xn+1 > L

IL,UY = min(ILY , I
U
Y ) if xn, xn+1 ∈ (L,U)

Proof. It is enough to show that

inf
γ∈Γ̂t,U

∥γ + U − φ̄Y
n ∥2H

ρ̄Yn

=
(U − φ̄Y

n (t))
2

ρ̄Yn (t, t)
for any t ∈ (0, 1),

where Γ̂t,U = {γ : γ +U − φ̄Y
n ∈ Hρ̄Yn

, γt = 0}. Since the barycenter paths are dense
in H̄ Y

n , we look for a minimizing one among these: we consider γ’s of the form

γu + U − φ̄Y
n (u) =

∫ 1

0

ρ̄Yn (u, v)λ(dv)

and for a fixed t ∈ (0, 1), we add the constraint γt = 0, that is φ̄Y
n (t) − U +∫ 1

0
ρ̄Yn (t, v)λ(dv) = 0. Let us recall that for such γ’s one has

∥γ + U − φ̄Y
n ∥2H̄ Y

n
=

∫ 1

0

∫ 1

0

ρ̄Yn (u, v)λ(du)λ(dv).

By using Lagrange multipliers, the signed measure λ on [0, 1] must satisfy∫ 1

0

ρ̄Yn (u, v)λ(dv)− αρ̄Yn (t, u) = 0 for any u ∈ [0, 1],
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for some α ∈ R. Taking care of the constraint one gets

α =
U − φ̄Y

n (t)

ρ̄Yn (t, t)
, λ(dv) =

U − φ̄Y
n (t)

ρ̄Yn (t, t)
δ{t}(dv),

δ{t} standing for the Dirac mass in t, and the desired equality follows. The formula

for ILY comes similarly. As for IL,UY , it is standard in large deviation theory that
IL,UY = min(IUY , I

L
Y ) (see e.g. the discussion in the proof of Theorem 2.2 in Baldi and

Caramellino [3]). �

Remark 14 It is interesting to observe that in Proposition 13 the quantities IUY ,
ILY and IL,UY are no more written in terms of the reproducing kernel Hilbert space,
even if they can be represented not exactly but only in a variational form. In our
numerical experiments, described in next Section 4, we need to use IUY in the case of
the fractional Brownian motion. For H = 1/2, that is for the Brownian motion, IUY
can be exactly computed and one has

IUY = 2(U − xn)(U − xn+1)

(this is well known, see e.g. [3]). But unless H = 1/2, IUY cannot be written in a
closed form, as it happens also in the case studied in [9], see Proposition 5.1 therein.
So, in practice we compute such minimum by evaluating the minimum over 100 fixed
equispaced times in [0, 1]. The efficiency from this choice has been set up by an
empirical study: no sensible improvements can be achieved by taking a larger number
of points in [0, 1].

Remark 15 One could think to work with non equispaced times, that is to replace
the conditioning instants ε, 2ε, . . . , nε with u1ε, u2ε, . . . , unε, 0 < u1, . . . < un. This
means that the covariance functions kε

n in (5) are iteratively defined as follows: k0 = k
and for n ≥ 1,

kε
n(t, s) = kε

n−1(t, s)−
kε
n−1(t, unε)k

ε
n−1(s, unε)

kε
n−1(unε, unε)

, t, s ≥ unε.

So, under Assumption 3, it is straightforward to show that the asymptotic behavior
of the above covariance functions is given by ρ0(t, s) = ρ(t, s) for t, s ≥ 0, and for
n ≥ 1

ρn(t, s) = ρn−1(t, s)−
ρn−1(un, t)ρn−1(un, s)

ρn−1(un, un)
, t, s ≥ un. (18)
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Therefore, everything works also in this case. In particular, the large deviation be-
havior of the hitting probability in Proposition 13 continues to hold provided that
the functions ρ̄Yn , φ̄

Y
n and the time interval [0, 1] there involved are suitably rewrit-

ten. For the sake of completeness, we precise the new formulas: setting u0 = 0 and
∆un = un − un−1, n ≥ 1, the infimum must be taken for t ∈ [0,∆un+1] and the
asymptotic covariance ρ̄Yn and the expected path φ̄Y

n are given by

ρ̄Yn (t, s) = ρ̄Xn (t, s)−
ρ̄Xn (t,∆un+1)ρ̄

X
n (s,∆un+1)

ρ̄Xn (∆un+1,∆un+1)
, t, s ∈ [0,∆un+1]

φ̄Y
n (t) = φ̄X

n (t)−
ρ̄Xn (t,∆un+1)

ρ̄Xn (∆un+1,∆un+1)
(φ̄X

n (∆un+1)− xn+1) t ∈ [0,∆un+1],

where

ρ̄Xn (t, s) = ρn(un + t, un + s), t, s ∈ [0,∆un]

φ̄X
n (t) = φ̄X

n−1(∆un + t)−
ρ̄Xn−1(∆un + t,∆un)

ρ̄Xn−1(∆un,∆un)

(
φ̄X
n−1(∆un)− xn

)
, t ∈ [0,∆un],

ρn being given now by (18).

4 Numerical tests

In this section, we study the use of the large deviation equivalent of the exit probabil-
ity for small time in order to numerically compute the exit probability of a fractional
Brownian motion XH (see Example 9) up to a fixed time, say 1, and we give compar-
isons with the use of the the large deviation estimates already proved and discussed
in [9]. We test two cases: we let the Hurst index H to be equal either to 0.3 and
0.7. Let us recall that when H < 1/2 a short memory property holds for XH , while
the case H > 1/2 is related to a long range memory property. We also recall that
the sample paths of XH are nowhere differentiable, being Hölder continuous of order
H − δ, for each δ > 0 close to 0. So, as H increases, the paths become in some sense
more regular.
The case H = 1/2 is really of no great interest to our purposes (it is well known that
the use of the large deviation estimate for the hitting probability works at the best,
see e.g. [3]). However, for the sake of a comparison with what happens as H ̸= 1/2,
we propose a numerical test also for H = 1/2.
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4.1 The simulation procedure for the fractional Brownian
motion

Our numerical Monte Carlo approximations for the exit probability are based on
an exact simulation scheme for the fractional Brownian motion on [0, 1]. Other
approximations for the generation of the fractional Brownian motion are available
in the literature (see e.g. [16]), but since we have a fixed time horizon, we consider
the following standard and exact procedure. We split the time interval [0, 1] in N
sub-intervals of uniform length ε and we (exactly) generate XH at the times Ti = εi,
i = 1, . . . , N , by simulating an N -dimensional centered Gaussian random variable
with covariance matrix

Γij = Cov(XH
iε , X

H
jε) = kH(iε, jε), i, j = 1, . . . , N.

This is done by using the associated square root matrix, computed by the standard
Choleski decomposition. This gives rise to a simulation of the path at the N fixed
instants iε, i = 1, . . . , N , and we call this a “discretized path”.

4.2 The “crude” and “corrected” schemes

We propose here three different Monte Carlo methods to approximate the exit prob-
ability. First, a “crude scheme” is taken into account, consisting in approximating
the exit probability up to time 1 with the percentage of the observed discretized
paths going over the boundary. Secondly, the crude procedure is corrected, giving
rise to the following different simulating schemes. We slide the current simulation of
the discretized path and at the generic step i ≥ 1, we check if

case 1: the process reaches the boundary;

case 2: the process does not reach the boundary.

Then the algorithm works as follows:

case 1: we update a counting variable, and we go on with the next simulated path;

case 2: we proceed with a “correction”: we take into account the (past) observations
at times jε for j ≤ i − 1 = n and the observation at (the current) time
iε = (n+ 1)ε, we compute the large deviation estimate of the probability that
the pinned process exits during the time interval [nε, (n + 1)ε] and we use it
to eventually stop the current simulation. Indeed, we generate an independent
Bernoulli r.v. with parameter equal to such an (approximation for the) exit
probability in order to decide whether the barrier has been reached or not.
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So, the “correction” is applied in two ways, giving rise to two different procedures: the
“CP method”, which uses the large deviation approximation of the exit probability
studied in [9] (see Proposition 5.1 therein), and the “CPS procedure”, being based
on the estimate given here, in Proposition 13. Since we will be interested in an upper
barrier (as it will be clear soon), we consider a Bernoulli variable with parameter

exp
(
− IUY /ε

2H
)
,

with IUY computed by Proposition 13 (“CPS” method) or Proposition 5.1 in [9] (“CP”
method). Details on the computation of IUY are given in Remark 14. Therefore, we
can give a comparison of the numerical behavior between the approaches involving
the correction.

4.3 Our tests and numerical results

In order to give a comprehensive survey of the results, we numerically evaluate the
cumulative distribution function of the maximum of XH over [0, 1], that is

FH(x) = P(max
t∈[0,1]

XH
t ≤ x), x > 0

for H = 0.3 and H = 0.7. This is obviously related to an exit probability problem:
for x > 0,

FH(x) = P(τHx ≤ 1) where τHx = inf{t > 0 : XH
t ≥ x}.

In practice, we have built a grid on the x-axis from a varying step size δ. We assessed
the step size by means of some numerical experiments, and we set: δ = 2× 10−3 as
x ∈ (0, 0.2], δ = 2 × 10−2 as x ∈ (0.2, 1], δ = 3 × 10−2 as x ∈ (1, 2], δ = 5 × 10−2

as x ∈ (2, 3], δ = 10−1 as x > 3. For each x, we have numerically computed
the associated exit probability by performing the Monte Carlo procedures described
above (“crude”, “CP” and “CPS”), by means of 104 (that is, a standard number of)
simulations of the discretized path, involving a splitting of the time interval [0, 1] in
N = 100 sub-intervals, so that ε = 10−2.
The figures also contain a benchmark cumulative distribution function, evaluated by
means of the crude method with 106 simulations and by discretizing [0, 1] in 1000
sub-intervals in the case H = 0.3 and in 500 sub-intervals as for H = 0.7 (in this
latter case the sample paths are more regular, so the time interval [0, 1] does not
need to be split in too many monitoring instants to reach accuracy). The simulating
parameters for the benchmarks have been assessed by empirical experiments: we
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Figure 1: Cumulative distribution function of maxt∈[0,1] X
H
t for H = 0.3

reached no sensibly different results with a larger number of simulations and of
discretizing intervals. The regularity that can be observed in the figures for the
benchmark cumulative distribution function actually supports the validity of the
chosen number of simulations, even if a systematic over estimate actually remains,
due to the fact that the benchmarks have been developed with a crude method,
although in an accurate way. So, the validity of the introduction of the correction
is well supported by the fact the the corresponding graphs are both close to the
benchmark curve and are even below it. These situations are well represented in
Figures 1 and 2, which refer to the cumulative distribution function of the maximum
over [0, 1] for H = 0.3 and H = 0.7 respectively. So, by resuming, we can deduce that
the correction gives crucial improvements to the results, just as it happens in the
case H = 1/2 (this is actually well known in the literature, see e.g. [3] and references
quoted therein). A sketch of the relative errors w.r.t. the benchmark function is
given as well, in Figures 3 and 4. Let us be more precise: we call “relative error”
the difference between the benchmark value and the considered value, divided by the
benchmark one.
What is worth to be discussed is then the numerical behavior of the use of the two
different large deviation asymptotics of the exit probability in a small time interval.
While for H = 0.3 Figure 1 immediately displays that the CP method is much more
accurate than the CPS one, in the case H = 0.7 the graphs are quite overlapping.
Nevertheless, Figure 4, which is related to the relative errors, shows that for H = 0.7
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Figure 2: Cumulative distribution function of maxt∈[0,1] X
H
t for H = 0.7

the corrected schemes behave differently: the CPS approach works more efficiently
than the CP one. This can be explained by means of the memory property of
the fractional Brownian motion. We recall that the CP method is based on the
estimates in [9], which loose the dependence on the past observations and feel what
happens only in the current infinitesimal interval. So, in the short range memory
case considered in our tests, that is H = 0.3, the CP large deviation estimates work
very efficiently. On the contrary, as H increases and becomes larger than 1/2, that
is a long range dependence property holds, the CP approach starts to fail. In fact,
the CPS method takes into account what happens from the beginning, so that for
H = 0.7 increases in competitiveness and gives more significant improvements.
But it is clear that the above discussion is strictly dependent on the quality of the
benchmarks, that are subject to an over estimate with respect to the true cumulative
distribution functions. However, we guess that the error of the benchmarks with
respect to the true curves is small enough in order to confirm our deductions on
the behavior of the CP and the CPS method. Our conjecture can be supported
by means of what happens as H = 1/2. In Figure 5, we have drawn the exact
cumulative distribution function (this can be done by using the reflection principle)
and we report the results from the crude scheme and the corrected one (recall that
in this case the CP and CPS methods agree, as already observed in Remark 14).
Here, we also add the benchmark curve evaluated with 1000 monitoring instants and
106 simulations. One can see that the CP/CPS method gives highly reliable results,
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Figure 3: Relative errors w.r.t. the benchmark values for H = 0.3

and this is well known: the correction produces an unbiased Monte Carlo estimator
for the exit probability and gives results that, for an equal number of simulations,
are absolutely much more efficient with respect to any crude procedure built on
any number of discretizing monitoring instants. Moreover, Figure 5 shows that the
benchmark curve is of course above the true one but at the same time it is really
very close to it, and this brings us to think that the benchmark curves in figures 1
and 2 behave similarly.
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