PROVA SCRITTA DI PROBABILITÀ E STATISTICA I APPELLO, III SESSIONE, A.A. 2022/2023 24 GENNAIO 2024

Esercizio 1. Un'urna contiene 3 palline gialle e n-3 palline rosse, dove $n \ge 3$.

- a) Vengono effettuate 2 estrazioni con rimpiazzo. Calcolare per quali valori di n vengono estratte tutte palline gialle con probabilità $\geq 1/9$.
- b) Vengono effettuate 3 estrazioni senza rimpiazzo. Calcolare n affinché in media escano almeno 2 palline rosse.

Esercizio 2. Sia (X,Y) una v.a. discreta a valori in $\{\pm 1\} \times \mathbb{Z}$ con densità discreta congiunta

$$p_{X,Y}(x,y) = \begin{cases} \frac{\lambda^{|y|}}{2|y|!} e^{-\lambda} & \text{se } x = \pm 1, y \in \mathbb{Z} \text{ e } xy \geq 0 \\ 0 & \text{altrimenti} \end{cases}$$
dove $\lambda > 0$ è fissato.

- a) $X \in Y$ sono indipendenti?
- b) Verificare che Z = Y/X è ben posta e calcolarne la legge.

Poiché la legge di Z dipende dal parametro λ , scriveremo $Z \equiv Z_{\lambda}$.

c) Posto $\lambda = n$, studiare la convergenza in legge di $V_n = \frac{1}{n} Z_n$ quando $n \to \infty$.

Esercizio 3. Siano X e Y v.a. indipendenti tali che $X \sim \mathcal{N}(0,1)$ e $Y \sim \Gamma(\frac{1}{2},\frac{1}{2})$.

- a) Calcolare la legge di X^2 .
- b) Calcolare la legge di $Z = X^2 + Y$.
- c) Siano X_n , $n \ge 1$, copie indipendenti di X. Calcolare

$$\lim_{n\to\infty} \mathbb{P}\Big(\frac{1}{n}\sum_{k=1}^{n^2}(X_k^2-1)\leq 1\Big).$$

Esercizio 4. Sia $\{X_n\}_{n\geq 0}$ una catena di Markov a valori in $E=\{1,2,3,4,5\}$ con matrice di transizione

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 5 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

- a) Calcolare, se i dati lo consentono, $\mathbb{P}(X_2 = 3 \mid X_0 = 2)$ e $\mathbb{P}(X_2 = 3)$.
- b) Classificare gli stati della catena e scrivere tutte le classi chiuse irriducibili.
- c) Calcolare, se esistono, tutte le distribuzioni stazionarie.
- d) Dire se esiste ed in caso affermativo calcolare $\lim_{n\to\infty} \mathbb{E}(X_n \mid X_0 = 2)$.