PROVA SCRITTA DI PROBABILITÀ E STATISTICA I APPELLO, I SESSIONE, A.A. 2022/2023 19 GIUGNO 2023

ISTRUZIONI

Recupero del I esonero: esercizi 1 e 2.

Recupero del II esonero: esercizi 3 e 4.

Prova scritta: esercizi 2, 3 e 5.

Esercizio 1. Vengono fatte delle estrazioni ripetute e senza rimpiazzo da un'urna che contiene 4 palline gialle e 4 rosse.

a) Su 4 estrazioni,

- a1) qual è la probabilità di estrarre almeno 2 palline rosse?
- **a2)** se si osservano almeno 2 palline rosse, qual è la probabilità di aver ottenuto una pallina gialla alla prima estrazione?
- b) Quante estrazioni occorrono per osservare in media almeno 2 palline rosse?

Esercizio 2. Sia $p \in (0,1)$ e sia (X,Y) una coppia di v.a. discrete di densità discreta congiunta

$$p_{X,Y}(x,y) = p^2(1-p)^y 1_{y>x>0}, \quad x,y \in \mathbb{N}.$$

- a) Calcolare $\mathbb{E}(Y \mid X = x)$, per ogni x nell'insieme in cui la media è definita.
- b) Determinare la densità discreta di Z = Y X. Si tratta di una legge nota?
- c) Supponiamo p=1/2. Siano Z_k , $k \geq 1$, copie indipendenti di Z e sia $S_n = \sum_{k=1}^n Z_k$. Determinare n affinché $\mathbb{P}(S_n \geq 3n) \leq 0.1$.

Esercizio 3. Siano X e Y due v.a. reali con densità congiunta

$$f_{X,Y}(x,y) = \frac{1}{(n-2)!} x^{n-1} e^{-x(y+1)} 1_{x>0,y>0},$$

dove n denota un intero ≥ 2 .

- a) Calcolare la densità congiunta di U = X e V = XY. Discutere se $U \perp \!\!\! \perp V$.
- **b)** Verificare che $Z = U + V \sim \Gamma(n, 1)$.

Poiché la legge di Z dipende dal parametro n, useremo d'ora in poi la notazione Z_n .

- c) Calcolare $\lim_{n\to\infty} \mathbb{P}(|Z_n n| > \sqrt{n}).$
- d) Studiare la convergenza in legge di $\{\frac{1}{n}Z_n\}_{n\geq 2}$.

Esercizio 4. Sia $B_{\mathbb{C}}(0,1) = \{z \in \mathbb{C} : |z| \leq 1\}$ e sia $\varphi : \mathbb{R} \to B_{\mathbb{C}}(0,1)$ una funzione C^{∞} tale che $\varphi(0) = 1$, $\varphi'(0) = 0$ e $\varphi''(0) = 1$. φ può essere una funzione caratteristica?

1

Esercizio 5. Sia data una catena di Markov su $E = \{1, 2, 3, 4, 5, 6\}$ con matrice di transizione

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\ 2 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 5 & 0 & 0 & 1 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- a) Classificare gli stati della catena; dire se la catena è irriducibile e/o regolare; determinare tutte le distribuzioni stazionarie.
- **b)** Calcolare $\lim_{n\to\infty} p_{3j}^{(n)}$ per ogni $j\in E$.
- c) Supponendo che la legge inziale sia $\nu = (1,0,0,0,0,0)$, quando tempo occorre in media alla catena per raggiungere la classe $R = \{3,4,5,6\}$? E per raggiungere la classe $C = \{3,4,5\}$?