II Esonero

Complementi di Probabilità

A.A. 2011/2012

Esercizio 1. Su $(\Omega, \mathcal{F}, \mathbb{P})$, siano X_1 e X_2 due v.a. i.i.d. di legge¹ Exp(1). Per $\alpha > 0$, sia \mathbb{Q}_{α} la misura di probabilità su (Ω, \mathscr{F}) definita da

$$\mathbb{Q}_{\alpha}(A) = \mathbb{E}((\alpha+1)e^{-\alpha X_1}\mathbf{1}_A), \quad A \in \mathscr{F}.$$

- Scrivere la funzione caratteristica di $X=(X_1,X_2)$ sotto \mathbb{Q}_{α} e dire se X_1 e X_2 rimangono i.i.d.
- b) Sia $\{\mu_n\}_n \subset \text{Prob}(\mathbb{R}^2)$ definita come segue: per $n \in \mathbb{N}$, μ_n è la legge di $X = (X_1, X_2)$ sotto \mathbb{Q}_{α} quando $\alpha = n$. Studiare la convergenza debole di $\{\mu_n\}_n$.

Esercizio 2. Sia $(M_n)_{n\geq 0}$ una martingala non negativa e limitata in L^2 . Posto

$$X = \sum_{n>0} M_n,$$

dimostrare che X è una v.a. finita q.c. se e solo se X=0 q.c.

Esercizio 3. Su $(\Omega, \mathcal{F}, \mathbb{P})$, sia data una successione $\{X_n\}_n$ di v.a. i.i.d. di legge² Po(1). Poniamo $S_0 = 0$, $\mathscr{F}_0 = \{\emptyset, \Omega\}$ e per $n \geq 1$, $S_n = X_1 + \dots + X_n$, $\mathscr{F}_n = \sigma(X_1, \dots, X_n)$. Fissato $\rho > 1$, sia

$$M_n = e^{-n(\rho - 1)} \rho^{S_n}, \quad n \ge 0.$$

a) Dimostrare che $(M_n)_n$ è una \mathscr{F}_n -martingala che converge a 0 q.c. Converge anche in L^1 ?

Per a > 0, sia $\tau_a = \inf\{n \ge 0 : S_n \ge a\}$.

- **b)** Dimostrare che τ_a è un \mathscr{F}_n -tempo d'arresto finito q.c.
- c) Verificare che su $\{\tau_a = k\}$ si ha $S_k \leq a + X_k$ e su $\{\tau_a > n\}$ si ha $S_n \leq a$. Dedurre che

$$0 \le M_{\tau_a \wedge n} \le \sum_{k \le n} e^{-k(\rho - 1)} \, \rho^{a + X_k} \mathbf{1}_{\{\tau_a = k\}} + \rho^a \, \mathbf{1}_{\{\tau_a > n\}}$$

e che $(M_{\tau_a \wedge n})_n$ è un processo limitato in L^2 .

d) Dedurre da c) la seguente formula: $\mathbb{E}\left(e^{-\tau_a\,x}\,(x+1)^{S_{\tau_a}}\right)=1,\;x\geq0.$ Provare di conseguenza che

$$\mathbb{E}(e^{-\tau_a x}) \le \frac{1}{(x+1)^a}, \quad x \ge 0.$$

¹Ricordiamo che se $X \sim \operatorname{Exp}(\lambda)$ allora $\mathbb{E}(e^{zX}) = \frac{\lambda}{\lambda - z}$ per ogni $z \in \mathbb{C}$ tale che $\operatorname{Re}(z) < \lambda$.

²Ricordiamo che se $Z \sim \operatorname{Po}(\lambda)$ allora $\mathbb{P}(Z = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, \ldots$; inoltre, $\mathbb{E}(Z) = \lambda$ e $\mathbb{E}(\rho^Z) = 0$ $e^{\lambda(\rho-1)}, \, \rho \neq 0.$

Soluzioni

Esercizio 1. a) Per $\theta \in \mathbb{R}^2$, indichiamo con $\varphi_{\alpha}(\theta)$ la funzione caratteristica di X sotto \mathbb{Q}_{α} . Si ha

$$\begin{split} \varphi_{\alpha}(\theta) = & \mathbb{E}^{\mathbb{Q}_{\alpha}}(e^{i\langle\theta,X\rangle}) = \mathbb{E}\Big(e^{i\langle\theta,X\rangle}\frac{d\mathbb{Q}_{\alpha}}{d\mathbb{P}}\Big) = (\alpha+1)\mathbb{E}\Big(e^{i\langle\theta,X\rangle}e^{-\alpha X_{1}}\Big) \\ = & (\alpha+1)\mathbb{E}\big(e^{(i\theta_{1}-\alpha)X_{1}}e^{i\theta_{2}X_{2}}\big). \end{split}$$

Ma $(i\theta_1 - \alpha)X_1$ e $i\theta_2X_2$ sono indipendenti, ed usando il suggerimento $(\text{Re}(i\theta_1 - \alpha) = -\alpha < 0 < 1)$ si ha

$$\varphi_{\alpha}(\theta) = (\alpha + 1) \mathbb{E}\left(e^{(i\theta_1 - \alpha)X_1}\right) \mathbb{E}\left(e^{i\theta_2 X_2}\right)$$
$$= \frac{\alpha + 1}{\alpha + 1 - i\theta_1} \times \frac{1}{1 - i\theta_2} \equiv \psi_{\text{Exp}(\alpha + 1)}(\theta_1) \times \psi_{\text{Exp}(1)}(\theta_2),$$

dove $\psi_{\text{Exp}(\lambda)}$ denota la f.c. della legge $\text{Exp}(\lambda)$. Ciò prova che, sotto \mathbb{Q}_{α} , X_1 e X_2 sono indipendenti ma non equidistribuite perché $X_1 \sim \text{Exp}(\alpha + 1)$ e $X_2 \sim \text{Exp}(1)$.

b) Posto $\hat{\mu}_n$ la funzione caratteristica di μ_n , allora $\hat{\mu}_n = \varphi_n$, quindi

$$\hat{\mu}_n(\theta) = \frac{n+1}{n+1-i\theta_1} \times \frac{1}{1-i\theta_2}.$$

Ma allora, detta ν la legge Exp(1), si ha

$$\lim_{n \to \infty} \hat{\mu}_n(\theta) = 1 \times \frac{1}{1 - i\theta_2} = \hat{\delta}_{\{0\}}(\theta_1) \times \hat{\nu}(\theta_2) = \hat{\mu}(\theta)$$

dove $\mu = \delta_{\{0\}} \times \nu$ denota la misura prodotto di $\delta_{\{0\}}$ e ν su \mathbb{R}^2 , da cui segue che $\mu_n \xrightarrow{w} \mu$. Detto in altri termini, e posto $X_n = (X_{n,1}, X_{n,2})$ una v.a. che ha la stessa legge di X sotto \mathbb{Q}_n , la successione $\{X_n\}_n$ converge in legge ad una v.a. $Z = (Z_1, Z_2)$, dove $Z_1 = 0$ q.c. e $Z_2 \sim \text{Exp}(1)$.

Esercizio 2 Se X=0 q.c. ovviamente X è finita q.c. Viceversa, se X è finita q.c. allora $\sum_n M_n$ è una serie convergente q.c., quindi $\lim_{n\to\infty} M_n=0$ q.c. Ma $(M_n)_{n\geq 0}$ è una martingala limitata in L^2 , dunque esiste $M_\infty\in L^2$ tale che $M_n\to M_\infty$ q.c. e in L^2 . Ma allora $M_\infty=0$ q.c. ed essendo $M_n\geq 0$ q.c. per ogni n, si ha anche $\mathbb{E}(M_n)=\|M_n\|_1\to 0$. Poiché però $\{\mathbb{E}(M_n)\}_n$ è una successione costante, dev'essere $\mathbb{E}(M_n)=0$ per ogni n, cioè $M_n=0$ q.c. per ogni n. Dunque, $X=\sum_n M_n=0$ q.c.

Esercizio 3. a) M_n è banalmente \mathscr{F}_n -misurabile. È integrabile perché, al variare di k ρ^{X_k} sono v.a. i.i.d. e in L^1 (vedi suggerimento) e quindi $\rho^{S_n} = \prod_{k=1}^n \rho^{X_k} \in L^1$. Infine.

$$\mathbb{E}(M_{n+1} \mid \mathscr{F}_n) = \mathbb{E}(M_n \times e^{-(\rho-1)} \rho^{X_{n+1}} \mid \mathscr{F}_n) = M_n e^{-(\rho-1)} \mathbb{E}(\rho^{X_{n+1}} \mid \mathscr{F}_n)$$
$$= M_n e^{-(\rho-1)} \mathbb{E}(\rho^{X_{n+1}}) = M_n e^{-(\rho-1)} e^{\rho-1} = M_n$$

Poiché $M_n \geq 0$, si ha $M_n \to M_\infty$, per qualche v.a. $M_\infty \in L^1$. Dimostriamo che $M_\infty = 0$ q.c. Osserviamo che

$$M_n = \left(e^{-(\rho-1)} \,\rho^{\frac{1}{n}\,S_n}\right)^n$$

e, per la LFGN, $\frac{1}{n}S_n \to \mathbb{E}(X_1) = 1$ q.c., quindi

$$e^{-(\rho-1)} \rho^{\frac{1}{n} S_n} \to \rho e^{-(\rho-1)}$$
.

Ma, per $\rho > 1$ è facile vedere che $0 < \rho e^{-(\rho-1)} < 1$. Infatti, $\rho e^{-(\rho-1)} < 1 \ \forall \rho > 1$ sse $e^x > x+1 \ \forall x > 0$, il che è vero. Ma allora si ottiene subito che $M_n \to 0$ q.c. Infine, se convergesse anche in L^1 si avrebbe che $\mathbb{E}(M_n) = \mathbb{E}(|M_n|) \to 0$. Ma $\mathbb{E}(M_n) = \mathbb{E}(M_0) = 1$ per ogni n, quindi non è vero che $M_n \to 0$ anche in L^1 .

b) Per $n \geq 0$,

$$\{\tau_a > n\} = \{S_1 < a, \dots, S_n < a\} = \bigcap_{k=1}^n \underbrace{\{S_k < a\}}_{\in \mathscr{F}_k \subset \mathscr{F}_n} \in \mathscr{F}_n$$

e quindi τ_a è un \mathscr{F}_n -t.a. Poi,

$$\mathbb{P}(\tau_a > n) \le \mathbb{P}(S_n < a) = \mathbb{P}\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{n}} < \frac{a - \mathbb{E}(S_n)}{\sqrt{n}}\right) \le \mathbb{P}\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{n}} < \frac{a}{\sqrt{n}} - \sqrt{n}\right)$$

perché $\mathbb{E}(S_n) = n$. Quindi, per ogni n_* e $n \geq n_*$ possiamo scrivere

$$\mathbb{P}(\tau_a > n) \le \mathbb{P}\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{n}} < a - \sqrt{n_*}\right).$$

Usando il TLC e denotando con Φ_{σ} la f.d. della legge $N(0, \sigma^2)$ con $\sigma^2 = Var(X_1)$, si ha

$$\limsup_{n \to \infty} \mathbb{P}(\tau_a > n) \le \Phi_{\sigma}(a - \sqrt{n_*}).$$

Mandando $n_* \to \infty$, si ottiene $\mathbb{P}(\tau_a > n) \to 0$ e quindi $\tau_a < \infty$ q.c. In alternativa, si può osservare che

$$\{\tau_a = +\infty\} = \bigcap_n \{S_n < a\} \subset \left\{ \sum_k X_k < +\infty \right\}$$
$$\subset \left\{ \lim_n X_n = 0 \right\} = \bigcup_n \bigcap_{k > n} \left\{ X_k = 0 \right\}$$

perché le X_k assumono valori in $\{0,1,\ldots\}$. Ma per ogni n fissato,

$$\mathbb{P}\Big(\bigcap_{k\geq n} \{X_k = 0\}\Big) = \lim_{N \to \infty} \mathbb{P}\Big(\bigcap_{k=n}^N \{X_k = 0\}\Big) = \lim_{N \to \infty} \prod_{k=n}^N \mathbb{P}(X_k = 0)$$
$$= \lim_{N \to \infty} e^{-(N-n+1)} = 0,$$

da cui segue che $\mathbb{P}(\tau_a = +\infty) = 0$.

c) Abbiamo già visto che su $\{\tau_a > n\}$ si ha $S_n \le a$. Poiché $\{\tau_a = k\} = \{S_1 < a, \dots, S_{k-1} < a, S_k \ge a\} \subset \{S_{k-1} \le a\}$, su $\{\tau_a = k\}$ si ha $S_k = S_{k-1} + X_k \le a + X_k$. Allora,

$$M_{\tau_{a} \wedge n} = M_{\tau_{a} \wedge n} \mathbf{1}_{\{\tau_{a} \leq n\}} + M_{\tau_{a} \wedge n} \mathbf{1}_{\{\tau_{a} > n\}}$$

$$= \sum_{k \leq n} e^{-k(\rho - 1)} \rho^{S_{k}} \mathbf{1}_{\{\tau_{a} = k\}} + \underbrace{e^{-n(\rho - 1)}}_{\leq 1} \rho^{S_{k}} \mathbf{1}_{\{\tau_{a} > n\}}$$

$$\leq \sum_{k \leq n} e^{-k(\rho - 1)} \rho^{a + X_{k}} \mathbf{1}_{\{\tau_{a} = k\}} + \rho^{a} \mathbf{1}_{\{\tau_{a} > n\}}.$$

Quindi,

$$M_{\tau_a \wedge n}^2 \le \sum_{k \le n} e^{-2k(\rho - 1)} \rho^{2(a + X_k)} \mathbf{1}_{\{\tau_a = k\}} + \rho^{2a} \mathbf{1}_{\{\tau_a > n\}}$$

е

$$\mathbb{E}(M_{\tau_a \wedge n}^2) \le \sum_{k \le n} e^{-2k(\rho - 1)} \underbrace{\mathbb{E}(\rho^{2(a + X_k)})}_{=c_a} + \rho^{2a} \le c_a \sum_{k} \left(e^{-2(\rho - 1)}\right)^k + \rho^{2a} < \infty,$$

il che prova che $(M_{\tau_a \wedge n})_n$ è limitato in L^2 .

d) Per x=0, l'uguaglianza è banalmente soddisfatta. Sia quindi x>0. Ovviamente $M_{\tau_a \wedge n} \to M_{\tau_a}$ q.c. e da c) si ha che $M_{\tau_a \wedge n} \to M_{\tau_a}$ anche in L^2 , dunque in L^1 . Allora,

$$1 = \mathbb{E}(M_0) = \mathbb{E}(M_{\tau_a \wedge n}) \to \mathbb{E}(M_{\tau_a}),$$

quindi $\mathbb{E}(M_{\tau_a})=1$. Ma $M_{\tau_a}=e^{-\tau_a(\rho-1)}\,\rho^{S_{\tau_a}}$, quindi

$$\mathbb{E}(e^{-\tau_a(\rho-1)}\,\rho^{S_{\tau_a}}) = 1,$$

e la tesi è vera per $x = \rho - 1 > 0$. Oppure, essendo $\{M_{\tau_a \wedge n}\}_n$ una martingala che converge in L^1 a M_{τ_a} , per il teorema di convergenza in L^1 possiamo scrivere

$$M_{\tau_a \wedge n} = \mathbb{E}(M_{\tau_a} \mid \mathscr{F}_n)$$

e passando alle medie,

$$\mathbb{E}(M_{\tau_a \wedge n}) = \mathbb{E}(M_{\tau_a}).$$

Ma $\mathbb{E}(M_{\tau_a \wedge n}) = \mathbb{E}(M_0) = 1$ e $\mathbb{E}(M_{\tau_a}) = \mathbb{E}(e^{-\tau(\rho-1)} \rho^{S_{\tau_a}})$, da cui la tesi. Infine, essendo $S_{\tau_a} \geq a$ si ha

$$1 = \mathbb{E}(e^{-\tau_a x}(x+1)^{S_{\tau_a}}) \ge (x+1)^a \mathbb{E}(e^{-\tau_a x}),$$

e quindi

$$\mathbb{E}(e^{-\tau_a x}) \le \frac{1}{(x+1)^a}.$$