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Abstract

In control theory, the term chattering is used to refer to fast oscillations of controls, such
as an infinite number of switchings over a finite time interval. In this paper we focus on
three typical instances of chattering: the Fuller phenomenon, referring to situations where an
optimal control features an accumulation of switchings in finite time; the Robbins phenomenon,
concerning optimal control problems with state constraints, where the optimal trajectory
touches the boundary of the constraint set an infinite number of times over a finite time
interval; the Zeno phenomenon, for hybrid systems, referring to a trajectory that depicts
an infinite number of location switchings in finite time. From the practical point of view,
when trying to compute an optimal trajectory, for instance by means of a shooting method,
chattering may be a serious obstacle to convergence.

In this paper we propose a general regularization procedure, by adding an appropriate
penalization of the total variation. This produces a family of quasi-optimal controls whose
associated cost converge to the optimal cost of the initial problem as the penalization tends
to zero. Under additional assumptions, we also quantify quasi-optimality by determining a
speed of convergence of the costs.

1 Introduction

Chattering phenomena in optimal control have been known since the first example presented in [1].
Roughly speaking, chattering refers to fast oscillations of the optimal control switching infinitely
many times over a finite time interval. To explain this behavior, let us recall the famous example
in [1], also known as Fuller’s problem. Given T > 0 arbitrary, consider the control system in R2

ẋ1 = x2, ẋ2 = u, (1)

with controls u : [0, T ] → [−1, 1], and the optimal control problem which amounts to minimizing
the cost functional ∫ T

0

x2
1(t) dt, (2)

over all trajectories of (1) steering an (arbitrary) initial point (x0
1, x

0
2) to the origin, i.e., such that

x1(0) = x0
1, x2(0) = x0

2, x1(T ) = 0, x2(T ) = 0.
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It is well known that there exists a unique optimal control u : [0, T ]→ [−1, 1], satisfying

u(t) =

{
1, t ∈ (t2k, t2k+1), k ∈ N,
−1, t ∈ (t2k+1, t2k+2), k ∈ N,

where (tk)k∈N is an increasing sequence depending on the initial condition (x0
1, x

0
2) and converging

to T . Although, at first sight, one could think that this strong oscillation property is a kind of
aberration due to specific symmetries of the system, it turns out that such behavior is rather
typical. Indeed, it was later shown in [2] that the set of single-input optimal control problems
which have a control-affine Hamiltonian and whose solution is chattering is an open semi-algebraic
set (see also [3]), showing therefore that chattering is a common phenomenon in optimal control.

Control problems presenting chattering properties have been found for a variety of problems:
besides the ones mentioned above, a similar phenomenon also concerns state-constrained prob-
lems and hybrid systems. In [4], Robbins studied an optimal control problem with an inequality
state constraint of third order and he showed that the optimal trajectory touches the constraint’s
boundary at an infinite sequence of isolated points converging to a point at the boundary, even if
the optimal control has finite total variation. In the framework of hybrid systems, chattering is
often called Zeno phenomenon and is due to trajectories whose discrete part jumps infinitely many
times over a finite time interval (see, for instance, the examples in [5]).

Although chattering cannot be considered as a degeneracy phenomenon (see [6]), it may however
cause some difficulties in theoretical and numerical aspects of optimal control.

From the theoretical point of view, due to the lack of a positive length interval where the
control function is continuous when chattering occurs, finding necessary and sufficient optimality
conditions becomes much more intricate (see [7] for state-constrained problems). Some results in
this sense were proved in [3], yet the problem is not completely understood in other contexts, such
as state-constrained problems or hybrid systems. Another delicate issue comes from the study of
regularity properties of optimal syntheses [8, 9].

From the numerical point of view, chattering phenomena may be an obstacle to the conver-
gence of numerical methods applied to optimal control problems, in particular when using indirect
methods. Indeed, chattering implies ill-posedness of shooting methods (non-invertible Jacobian)
[10, 11]. When chattering occurs it is therefore required to develop an adequate numerical method
in order to compute a good approximation of the optimal control. This problem has been raised
in [12, 13] for the optimal control of the attitude of a launcher, in which chattering may occur,
depending on the terminal conditions under consideration. After having observed that chattering
was indeed causing the failure of the shooting method, the authors have proposed two remedies:
one is based on a specific homotopy combined with the shooting method, and the other consists of
using a direct method with a finite number of arcs. However, on one hand these remedies remain
specific to the problem studied thereof, and on the other hand there is no convergence result that
would show and quantify the quasi-optimality property.

In this paper, we propose a general regularization procedure, consisting of penalizing the cost
functional with a total variation term. The main idea comes from the fact that to avoid oscillations
phenomena one needs to master the derivative of the control: indeed, for controls in the Sobolev
space W 1,1 our penalization term coincides with the L1-norm of the derivative of the control.
Our method is actually more general, since W 1,1 ( BV . Moreover, note that a more classical
penalization in the L2-norm of the control is not well-suited for our aim since it does not prevent
chattering.

Our approach is valid for general classes of nonlinear optimal control problems. For a bang-
bang scalar control, the total variation of the control is proportional to the number of switchings.
In the case where the Fuller phenomenon occurs, the total variation is infinite. Hence, with such
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a penalization term, the optimal control does not chatter, and its numerical computation is then
a priori feasible. Under appropriate assumptions of small-time local controllability, we prove in
Theorem 1 that, if the weight on the total variation term in the cost functional tends to zero, then
the regularized optimal control problem Γ-converges to the initial optimal control problem, meaning
that the optimal cost and any optimal solution of the regularized problem converge respectively to
the optimal cost and an optimal solution of the initial problem, as the parameter ε tends to zero.
This shows that, when this total variation regularization is used, the optimal control that one may
then compute numerically is quasi-optimal, with a good rate of optimality.

In order to quantify quasi-optimality, it remains to determine at what speed the cost of the
regularized problem converges to the cost of the initial problem, as the weight of the total variation
term tends to zero. This can be done by estimating explicitly the rate of convergence of the
cost along suboptimal regimes obtained by suitable truncations of the chattering one in terms
of switching times. In the existing literature, such results, related to truncation, were obtained
in [14, 15] for small perturbations of the Fuller’s problem. In those papers, the authors exhibited
a sequence of suboptimal regimes for the specific optimal control problem (1)-(2), and they proved
that the cost converges with the same rate as the sequence of switching times (of the chattering
control). Our Theorem 2 establishes a polynomial rate of convergence for the cost, for general
nonlinear optimal control problems, under appropriate controllability assumptions, and under the
additional assumption of Hölder continuity of the time-optimal map, i.e. the map associating with
every y the minimal time needed to steer the system from y to 0. Note that, for the specific case
considered in [15], the rate of convergence is exponential as a function of the number of switchings.
Likewise, for the class of systems considered in [2], the switching times converge exponentially to
the final time. Whether a slower rate of convergence is “typical” remains an open question.

Finally, we treat by total variation regularization two other general cases where chattering
occurs:

• For optimal control problems involving state-constraints, under adequate controllability as-
sumptions, Theorem 3 provides a regularization result for optimal trajectories having an
infinite sequence of contact points with the constraint’s boundary (Robbins phenomenon).
Here, the penalization term essentially counts the contact points with the constraint’s bound-
ary.

• For hybrid optimal control problems, Theorem 4 provides a convergence result to regularize
the Zeno phenomenon, obtaining estimates of the cost convergence as the number of location
switchings grows.

The paper is organized as follows. In Section 2 we present the main results on the regularization
by total variation penalization of chattering phenomena (Fuller, Robbins and Zeno). Section 3 is
devoted to prove the main results. In Appendix A we provide some additional results concerning
the controllability condition required in Theorem 2. Finally, we provide in Appendix B an existence
result for optimal control problems having a total variation term in the cost functional, without
any convexity assumptions.

2 Main results

2.1 Regularization of the Fuller phenomenon

Let N and m be positive integers. Consider the control system

ẋ = f(x, u), u ∈ U , (Σ)
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where f ∈ C∞(RN × Rm,RN ), f(0, 0) = 0, and

U = {u(·) measurable | u(t) ∈ U for a.e. t}, (3)

with U ⊂ Rm a measurable subset containing 0. Denote by

F = {f(·, u) : RN → RN | u ∈ U},

the family of vector fields associated with the dynamics of (Σ).
A control u ∈ U is called admissible if it steers the system (Σ) from a given (arbitrary) initial

point to the origin in finite time denoted t(u).
Given an initial state x0 ∈ RN , a function L ∈ C0(R × RN × Rm) (called Lagrangian), we

consider the optimal control problem
min
u∈U

∫ t(u)

0

L(s, x(s), u(s)) ds,

ẋ = f(x, u), u ∈ U ,
x(0) = x0, x(t(u)) = 0.

(OCP)

The final time in (OCP) may be fixed or free. If it is fixed to some T > 0, then of course one has
to replace t(u) with T everywhere.

Throughout the section, we make the following assumptions:

• for every (t, x) ∈ R× RN , the set

V (t, x) = {(f(x, u), L(t, x, u) + γ) | u ∈ U, γ > 0} (4)

is convex;

• U is compact, and there exists b > 0 such that, for every admissible control u ∈ U , we have

t(u) + ‖xu(·)‖∞ 6 b. (5)

The first assumption means that the epigraph of extended velocities is convex. It is satisfied, for
example, for control-affine systems with control-affine or quadratic cost.

These are classical assumptions used to derive existence results (see, for instance, [16, 17, 18]).
Under these assumptions, the optimal control problem (OCP) has at least one optimal solution
x∗(·), associated with a control u∗ : [0, t(u∗)]→ U.

We introduce a regularization of (OCP) by adding to the cost functional a total variation term,
penalizing oscillations, with a small weight ε.

Given any ε > 0, we consider the optimal control problem
min
u∈U

(∫ t(u)

0

L(s, x(s), u(s)) ds+ εTV(u)

)
,

ẋ = f(x, u), u ∈ U ,
x(0) = x0, x(t(u)) = 0.

(OCP)ε

Here, TV(u) denotes the total variation of the function u ∈ L1([0, t(u)],Rm) and it is defined by

TV(u) = sup
φ

∫ t(u)

0

u(s) · φ′(s)ds,
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the supremum being taken over all functions φ ∈ C1
c ([0, t(u)],Rm) with compact support such that

‖φ‖L∞ 6 1. If u is continuous the total variation is equivalent to

sup

p∑
i=1

‖u(ti)− u(ti−1)‖,

the supremum being taken over all possible partitions 0 = t0 < t1 < · · · < tp = t(u) of the interval
[0, t(u)]. Notice that if m = 1 and if u is a piecewise constant function taking values in {0, 1}, then
TV(u) is simply equal to the number of switchings. A function with bounded total variation is
said to have bounded variation, or BV .

The rationale for introducing the term εTV(u) in the cost of (OCP)ε is to penalize highly
oscillating controls in order to avoid chattering in the sense of Definition 1 below.

Definition 1. By chattering control we mean a measurable function u : [0, t(u)] → U such that
there exists an increasing sequence {tn}n∈N converging to t(u) with the property that TV(u|[0,tn]) <
+∞ for every n ∈ N, and

lim
n→+∞

TV(u|[0,tn]) = +∞.

The optimal control problem (OCP)ε is seen as a regularization of (OCP). We are next going
to prove that any optimal solution (OCP)ε converges uniformly to an optimal solution of (OCP),
thus providing a quasi-optimal solution that does not chatter.

Recall that the control system (Σ) is small-time locally controllable (STLC) at x0 ∈ RN if, for
every δ > 0, there exists a neighborhood Nδ of x0 such that every x1 ∈ Nδ can be reached by x0

within time δ with a control u ∈ U .
In the sequel, Liex F denotes the Lie algebra of vector fields generated by F evaluated at x,

that is Liex F = {V (x) | V ∈ LieF}, where LieF = span{[f1, [. . . [fk+1, fk] . . .]] | fi ∈ F , k ∈ N}.

Theorem 1. Assume that Lie0 F = RN , and the control system (Σ) is small-time locally control-
lable at 0. Then, for every ε > 0, the optimal control problem (OCP)ε has at least one solution.
Moreover, for every optimal solution xε(·) of (OCP)ε, associated with a control uε : [0, t(uε)]→ U,
we have

lim
ε→0

∫ t(uε)

0

L(t, xε(t), uε(t)) dt =

∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt. (6)

Theorem 1 establishes the existence of a non-chattering control uε which is quasi-optimal for
(OCP) in the sense that the cost of uε converges to the optimal value of (OCP). In the case where
the optimal control of (OCP) chatters and therefore cannot be computed by means of a shooting
method, the total variation term in (OCP)ε plays the role of a regularization, and the control uε
does not chatter and can be computed numerically. Theorem 1 establishes that uε is quasi-optimal,
and hence it is reasonable to replace (OCP) by (OCP)ε when chattering occurs, in order to ensure
the convergence of a shooting method.

We refer to [19] for a survey on methods for the numerical implementation of the TV term
in the (OCP)ε problem and to [20] for numerical algorithms for the minimization of the total
variation.

Remark 1. In general one cannot infer convergence of an optimal solution xε(·) of (OCP)ε to an
optimal solution of the original problem (OCP). However, we have that for every sequence (εn)n∈N
converging to 0 there exists a subsequence (εnk)k∈N and an optimal trajectory x of (OCP) such
that xεnk (·) converges uniformly to x(·) as k → ∞ (see the proof of Lemma 6 below). Hence, in
particular, if the optimal solution x∗ of (OCP) is unique then one has that any optimal solution
xε(·) of (OCP)ε converges uniformly to x∗(·).
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Remark 2. The Lie algebra and small-time controllability assumptions, although generic, may
be slightly weakened without altering the conclusion of the theorem: they can be replaced by
assuming local controllability in a neighborhood of the origin in arbitrarily small time and with
piecewise constant controls. The fact that the latter assumption is weaker follows from a well
known result due to Krener (see for instance [21, Corollary 8.3]).

Remark 3. Note that smoothness of f is required in order to give a sense to Lie brackets. In
contrast, we only need the Lagrangian function L to be continuous. Besides, L may depend on t
but it is important that the dynamics f is autonomous (indeed in Lemma 5 below the reverse time
dynamics is considered).

Theorem 1 establishes the convergence (6) of the costs. It is then interesting to derive a speed
of convergence. This is possible under additional assumptions.

We need the following “strong” notion of controllability which requires a uniform bound on
the total variation of the control and a steering time comparable with the minimum time. To this
purpose, we define the time-optimal map x0 7→ Υ(x0) associated with the control system (Σ), by

Υ(x0) = inf{t > 0 such that ẋ = f(x, u), x(0) = x0, x(t) = 0, u ∈ U}. (7)

Definition 2. We say that the control system (Σ) satisfies (Ω) at 0 if

(Ω1) the control system (Σ) is STLC at 0;

(Ω2) there exist a neighborhood N of 0 and M > 1 such that, for every y ∈ N , there exists
u : [0, τy]→ U such that u steers y to 0 in time τy, τy 6MΥ(y), TV(u) 6M .

We provide in Appendix A some comments on Definition 2 and some results on the relationships
between the properties (Ω), STLC, and the regularity of Υ.

In the sequel, C0,α designates the class of Hölder continuous functions with exponent α.

Theorem 2. Assume that:

(i) the control system (Σ) satisfies (Ω) at 0;

(ii) the optimal control problem (OCP) admits an optimal solution u∗ which is chattering and its
sequence of switching times (tn)n∈N satisfies (t(u∗)− tn) = O(n−β) for some β > 0;

(iii) the time-optimal map is C0,α for some α ∈ (0, 1] in a neighborhood of 0.

Then, for every ε > 0, the optimal control problem (OCP)ε has at least one solution. Moreover,
for every optimal solution xε(·) of (OCP)ε, associated with a control uε : [0, t(uε)]→ U, we have∫ t(uε)

0

L(t, xε(t), uε(t)) dt−
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt = O
(
ε

αβ
1+αβ

)
. (8)

If (ii) is replaced by:

(ii)′ the optimal control problem (OCP) admits an optimal solution u∗ with bounded total varia-
tion,

then the conclusion holds with (8) replaced by∫ t(uε)

0

L(t, xε(t), uε(t)) dt−
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt = O (ε) .
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Remark 4. For linear control systems and for driftless control-affine systems, (Ω) is related to
controllability. Sufficient conditions guaranteeing that (Ω) holds true can be found in [22, 23] for
single-input control systems. For more general control-affine systems, (Ω) is related to the Exact
State Space Linearizability Problem (see Appendix A).

Remark 5. Assumption (ii) is verified for a large class of systems having an exponential rate of
accumulation of switchings (see [2]). In this case the convergence rate is O(εγ) for every γ < 1.

Remark 6. Sufficient conditions for Assumption (iii) have been established in [24, Theorem 3.3,
3.10, 3.12], where the authors provide an estimate on the Hölder exponent.

Example 1. We consider the regularized Fuller’s problem, that is, for ε > 0 the optimal control
problem of minimizing ∫ T

0

x2(t)dt+ εTV (u) (9)

with dynamics ẍ = u, u ∈ [−1, 1] and constraints x(0) = 0, ẋ(0) = 1, x(T ) = 0 = ẋ(T ). We
denote by (uε, xε) a solution associated with the parameter ε and by x0 the optimal trajectory of
the unperturbed Fuller’s problem. We compare, in Table 1, for different values of the parameter ε,
the total variation of the associated optimal controls and the difference with the optimal cost. In
Figure 1 we compare the controls associated with the values of ε in Table 1 and in Figure 2 the
corresponding trajectories.

Table 1: Regularized Fuller’s problem

ε TV(uε)

∫
x2
ε − x2

0

0 +∞ 0
10−7 5.0970 1.6 ∗ 10−8

10−6 4.7514 3 ∗ 10−7

10−5 3.3599 5.3 ∗ 10−6

10−4 3.2557 1.4 ∗ 10−5

10−3 3.0159 2.9 ∗ 10−4

10−2 1.4897 4.9 ∗ 10−3

2.2 Regularization of the Robbins phenomenon for problems with state
constraints

In this section, we consider the general optimal control problem (OCP) of the previous section
with additional state constraints. Namely, let

C = {x ∈ RN | h1(x) > 0, . . . , hl(x) > 0}, (10)
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Figure 1: Optimal controls of the perturbed Fuller’s problem associated with different values of ε
ranging from 10−7 to 10−2 as in Table 1. Thicker lines corresponds to smaller values of ε.

where h1, . . . , hl are continuous functions and consider the optimal control problem
min
u∈U

∫ t(u)

0

L(s, x(s), u(s)) ds,

ẋ = f(x, u), u ∈ U ,
x(t) ∈ C, t ∈ [0, t(u)],

x(0) = x0, x(t(u)) = 0.

(OCPS)

The notations and the assumptions on the dynamics are the same as in Section 2.1. In particular,
we assume that the epigraph of extended velocities (4) is convex, that U is compact, that (5) holds
true, and that there exists at least one admissible trajectory satisfying the constraints. Under
these assumptions, the optimal control problem (OCPS) has at least one optimal solution x∗(·),
associated with a control u∗ : [0, t(u∗)]→ U (see [16, 17, 18]).

In [4], an instance of (OCPS) is provided where the final point 0 lies on the boundary ∂C, the
solution u∗ is C1-smooth and the trajectory x∗(·) corresponding to u∗ touches ∂C at a sequence
of isolated points converging to the final point 0. In other words, the optimal trajectory is a
concatenation of an infinite number of arcs contained in the interior of C and accumulating at the
final point. We call this phenomenon the Robbins phenomenon.

To regularize this chattering effect, one needs to find suboptimal controls whose trajectories
touch ∂C on a finite set. However, introducing the total variation of the control as a penalization
term, as in Section 2, does not suffice to prevent the solution of the regularized problem from
possibly intersecting ∂C infinitely many times. We next design a penalization term that rather
counts the number of contact points with ∂C.
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Figure 2: Optimal solutions of the perturbed Fuller’s problem associated with different values of
ε ranging from 10−7 to 10−2 as in Table 1. Thicker lines corresponds to smaller values of ε. The
optimal Fuller’s trajectory x0 is represented by the dashed line.

Let 1∂C : RN → {0, 1} be the indicator function of ∂C, defined by

1∂C(x) =

{
1 if x ∈ ∂C,
0 if x /∈ ∂C.

Given an admissible control u : [0, t(u)] → U with corresponding trajectory x(·), we define the
function Xu : [0, t(u)]→ {0, 1} by

Xu(t) = 1∂C(x(t)).

For every ε > 0, we consider the optimal control problem
min
u∈U

(∫ t(u)

0

L(s, x(s), u(s)) ds+ εTV(Xu)

)
,

ẋ = f(x, u), u ∈ U ,
x(t) ∈ C, t ∈ [0, t(u)],

x(0) = x0, x(t(u)) = 0.

(OCPS)ε

In the sequel, we consider the reachable set from 0 with trajectories lying in the interior C̊ of
the constraint set C defined by (10): let AC(0, (0, δ), f) be the set of points accessible from 0 in
time t ∈ (0, δ) by trajectories x(·) of the control system (Σ) such that x(s) ∈ C̊ for every s ∈ (0, δ).
We denote by x∗ an optimal trajectory of (OCPS) and by u∗ the associated optimal control.

Theorem 3. Assume that 0 ∈ ∂C and that:
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(i) for every δ > 0, there exists a neighborhood N of 0 such that N ∩ C̊ ⊂ AC(0, (0, δ),−f);

(ii) there exists a sequence of times tn converging to t(u∗), with

x∗([0, t(u∗)]) ∩ ∂C ⊂ {0} ∪ {x∗(tn) | n ∈ N};

Then, for every ε > 0, the optimal control problem (OCPS)ε has at least one solution. Moreover,
for every optimal solution xε(·) of (OCPS)ε, associated with a control uε : [0, t(uε)]→ U, we have

lim
ε→0

∫ t(uε)

0

L(t, xε(t), uε(t)) dt =

∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt. (11)

Remark 7. In analogy with Remark 1 one has that if, moreover, the solution x∗ of (OCPS) is
unique then any solution of (OCPS)ε converges to x∗ as ε tends to 0.

Remark 8. Assumption (i) is an adaptation of the classical small-time local attainability (STLA)
property (see [25, 26]), but we require here that the admissible trajectories stay in the interior of
the constraint C. Hence Assumption (i) may be seen as a generalization to nonlinear systems of
the notion of small-time controllability with respect to a cone. Controllability with respect to a
cone has been studied for linear control systems in [27] (see also [28]).

Remark 9. Assumption (ii) implies, in particular, that the interior of C is non-empty and prevents
x∗ to have boundary arcs.

2.3 Regularization of the Zeno phenomenon for hybrid problems

In this section, we present a regularization technique for hybrid systems, where the dynamics
involve a continuous and a discrete part. In the spirit of Theorem 1 we design a perturbed optimal
control problem with a penalization on the number of switchings of a trajectory, in order to rule
out the so-called Zeno trajectories. The problem of finding necessary and sufficient conditions for
the existence of Zeno trajectories of a hybrid system has been firstly addressed in [29] in which the
authors dealt with the regularization of two specific hybrid systems: water tank and bouncing ball.
Exploiting the specific geometry of the system, they introduced a family of regularized problems
whose solution is “close to” the Zeno trajectory. Their idea was either to introduce an additional
variable whose role is to delay of ε the time at which a switch takes place, or to introduce a spatial
hysteresis. We refer to [30, 5] for a large number of examples of Zeno hybrid systems from the
areas of modelling, simulation, verification, and control as well as for a list of references on the
subject. We also refer to [31, 32, 33] where conditions for the existence of Zeno solutions have
been established. The Zeno phenomenon for hybrid systems is related to so-called Zeno equilibria,
which are invariant under the discrete (but not under the continuous) dynamics. See also [34] for
asymptotic stability of Zeno equilibra.

Let us introduce some basic notions on hybrid systems, without control (see, e.g., [29]). A
hybrid system is a collection H = (Q,X, f,E,G,R) where

• Q is a finite set;

• X = {Xq}q∈Q is a collection of subsets Xq ⊂ RN called locations;

• f = {fq}q∈Q is a collection of smooth vector fields fq on Xq for every q ∈ Q;

• E ⊂ Q×Q is a subset of edges;

• G maps an edge (q, q′) ∈ E to a subset G(q, q′) ⊂ Xq called guard set ;
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• R maps a pair ((q, q′), x) ∈ E ×Xq to a subset R((q, q′), x) ⊂ Xq′ .

A trajectory (or execution) of H is a triple (τ, q(·), x(·)), where

• τ = {τi}Mi=0 is an increasing sequence of positive numbers such that τ0 = 0 and 1 6M 6∞.
We set I = [0, τM ] if M < +∞, I = [0, τM ) if M =∞;

• q : I → Q is such that q(t) = qi constant on [τi, τi+1) for every i = 0, . . . ,M − 1;

• for every i = 0, . . . ,M−1, xi(·) = x|(τi,τi+1) is an absolutely continuous function in (τi, τi+1),
which can be continuously extended to [τi, τi+1], and such that xi(t) ∈ Xqi ;

• for almost every t ∈ (τi, τi+1),
ẋi = fqi(xi); (12)

• for every i = 0, . . . ,M − 1, one has (qi, qi+1) ∈ E and xi(τi+1) ∈ G(qi, qi+1) and, for every
i = 0, . . . ,M − 2, one has xi+1(τi+1) ∈ R((qi, qi+1), xi(τi+1)).

In general a Zeno trajectory in a hybrid system is a trajectory presenting an infinite number
of discrete events in a finite amount of time. Here we restrict our analysis to Zeno trajectories
switching locations an infinite amount of times in a finite horizon. Namely, we say that a trajectory
(τ, q(·), x(·)) is Zeno if M = +∞ and τ∞ < +∞.

Given a hybrid system H, a Lagrangian for H is a family L = {Lq}q∈Q, with Lq : R×Xq → R,
Lq > 0, such that, for every trajectory (t, q(·), x(·)) of H and every i = 0, . . . ,M − 1, the function
t 7→ Lqi(t, xi(t)) is continuous in (ti, ti+1). Given a Lagrangian for H, we define the corresponding
hybrid cost functional C by

C(τ, q(·), x(·)) =

M−1∑
i=0

∫ ti+1

ti

Lqi(t, xi(t)) dt.

Let (q0, x0) ∈ Q×Xq0 be fixed. We consider the hybrid optimization problem
minC(τ, q(·), x(·)),
(τ, q(·), x(·)) trajectory of H,
q(0) = q0, x(0) = x0.

(HP)

Let Q = {q1, . . . , qk}. We define h : Q→ {1, . . . , k} by h(qi) = i. For every ε > 0, we consider the
optimization problem 

minC(τ, q(·), x(·)) + εTV(h ◦ q(·)),
(τ, q(·), x(·)) trajectory of H,
q(0) = q0, x(0) = x0.

(HP)ε

Casting Theorem 1 in the language of hybrid systems, we obtain the following result.

Theorem 4. Let H be a hybrid system such that Xq is a compact submanifold for every q ∈ Q,
and such that the sets G(q, q′), R((q, q′), x) are compact for every ((q, q′), x) ∈ E×Xq, with q ∈ Q.
Let L be a Lagrangian for H with corresponding cost functional C. Assume that there exists a
solution (τ∗, q∗(·), x∗(·)) to (HP) which is Zeno. For every ε > 0, the problem (HP)ε has at least
one solution. Moreover, for any solution (τε, qε(·), xε(·)) of (HP)ε, we have

lim
ε→0

C(τε, qε(·), xε(·)) = C(τ∗, q∗(·), x∗(·)). (13)
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The compactness assumption on Xq can be slightly weakened, and replaced by compactness of
trajectories in each location. The main idea of the proof is to interpret the role of the discrete part
of the hybrid system in (12) as a control. Since there are no final conditions, the proof is simplified
with respect to the ones of Theorem 1 and of Theorem 2.

The rate of convergence in (13) can be determined in the case where the rate of convergence
of the switching times along the Zeno trajectory is known. We refer to Remark 11 in Section 3.4
(end of the proof of Theorem 4) for a precise statement.

Remark 10. In the definition of hybrid systems, one may add a control. We do not provide the
details. For such hybrid optimal control problems, assuming moreover that, in each location, the
epigraph of extended velocities (defined by (4)) is convex, that U is compact and that (5) holds
true, the conclusion of Theorem 4 still holds true. In other words we have exactly the conclusion
of Theorem 1 in the hybrid framework, including the convergence of trajectories.

3 Proofs

3.1 Proof of Theorem 1

Before going into technical details, let us outline the proof of Theorem 1. First, the local con-
trollability assumption implies the existence of an optimal solution (uε, xε) of (OCP)ε for any
ε > 0. Second, thanks to the assumptions (4) on the extended velocity sets and on the equi-
boundedness of trajectories (5), there exists an admissible control w and a positive measur-
able function γ such that the family t 7→ (f(xε(t), uε(t)), L(t, xε(t), uε(t))) converges to t 7→
(f(xw(t), w(t)), L(t, xw(t), w(t)) + γ(t)) for the weak star topology of L∞. Third, we use the
optimality of uε to prove that w is optimal for (OCP). Fourth, we establish that γ = 0, which im-
plies that the Lagrangian cost along uε converges to the Lagrangian cost at u∗. This fact is proved
thanks to Lemma 6 which exhibits a sequence of admissible controls vn for which TV(vn) < +∞
and whose Lagrangian costs converge to the cost of u∗. To construct vn, we use a topological result
(Lemma 5), providing admissible controls steering any point of a neighborhood of the origin to 0,
with controls having bounded total variation.

We start by presenting the two auxiliary lemmas mentioned above, and then we proceed to the
proof of the theorem. Note that the two lemmas do not require the convexity assumption of (4)
nor the a priori estimate (5) on trajectories.

Lemma 5. Assume that Lie0 F = RN and that the control system (Σ) is small-time locally con-
trollable at 0. Then, there exists a neighborhood N of 0 such that, for every y ∈ N , there exists a
piecewise constant control wy : [0, τy]→ U steering (Σ) from y to 0 in time τy, with lim τy = 0 as
y → 0.

Proof. Since (Σ) is STLC at 0, by [35, Theorem 5.3 a-d] we have that the reversed control system

ẋ = −f(x, u), u ∈ U , (−Σ)

associated with the dynamics −f is also STLC at 0. As a consequence the time optimal map Ῡ
associated with system (−Σ), namely x0 7→ Ῡ(x0) = inf{t > 0 | ẋ = −f(x, u), x(0) = 0, x(t) =
x0} is continuous at 0 (see [24, Theorem 2.2]). We denote by A(x, [0, T ),−f), respectively by
A(x, [0, T ],−f), the set of points accessible from x in time t < T , respectively t 6 T , by trajectories
of the control system (−Σ). We set A(x,−f) = ∪T>0A(x, [0, T ),−f). By definition of STLC there
exists a neighborhoodN of 0 such thatN ⊂ A(0,−f). Let y ∈ N . By definition of the time optimal
map, we have that y ∈ A(0, [0, Ῡ(y)],−f) ⊂ A(0, [0, 2Ῡ(y)),−f). In particular this implies (see [35,
Theorem 5.5]) that y is normally reachable (see [35, Definition 3.6]) from 0 in time less than 2Ῡ(y)
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for the control system (−Σ). Namely, there exist q = q(y) ∈ N, u1, . . . uq ∈ U and positive numbers
t1, . . . , tq with t1 + · · ·+ tq < 2Ῡ(y), such that y = exp(−tqf(·, uq))◦· · ·◦exp(−t1f(·, u1))(0). Here,
exp(tV ) designates the flow at time t of the vector field V . Since f is autonomous, we obtain
exp(t1f(·, u1))◦ · · · ◦ exp(tqf(·, uq))(y) = 0. Setting τy = t1 + · · ·+ tq and defining wy : [0, τy] :→ U
by

wy(t) =


u1, t ∈ [0, t1],

u2, t ∈ [t1, t1 + t2],
...

uq, t ∈ [t1 + · · ·+ tq−1, τy],

the lemma follows. Notice that the continuity of Ῡ at 0 ensures τy → 0 as y → 0.

Lemma 6. Let u : [0, t(u)] → U be a measurable control steering x0 to 0. Then there exists a
countable family of controls un : [0, t(un)] → U such that TV(un) < +∞ for every n ∈ N, un
steers the control system (Σ) from x0 to 0 in time t(un) and

lim
n→+∞

‖un − u‖L1 = 0.

Here, the L1 norm is on [0,+∞), by extending u (resp., un) by 0 for t > t(u) (resp., t > t(un)).
Recall that f(0, 0) = 0, and thus this extension does not have any impact on admissible trajectories.

Proof. Consider a sequence of functions vn : [0, t(u)] → U with TV(vn) < +∞ for every n ∈ N
converging to u in L1([0, t(u)],Rm) for the strong topology and consider the associated solutions
yn(·) of the Cauchy problem ẏn = f(yn, vn), yn(0) = x0. Then the sequence yn(·) converges
uniformly to the trajectory xu(·) associated with the control u (see for instance [17, Theorem
3.4.1]). In particular, yn(t(u)) converge to 0 as n tends to +∞. By Lemma 5, for n sufficiently
large, there exists a control wn : [0, τn] → U which is piecewise constant, of bounded variation,
steering yn(t(u)) to 0 in time τn and such that τn → 0 as n→∞. Define

un(t) =


vn(t), t ∈ [0, t(u)),

wn(t− t(u)), t ∈ [t(u), t(u) + τn),

0, t > t(u) + τn.

By construction, un steers x0 to 0 in time t(un) = t(u)+τn and, for every n, one has TV(un) < +∞.
We extend u to [0,+∞) by setting u(t) = 0 for t > t(u). Then∫ +∞

0

|un(s)− u(s)| ds =

∫ t(u)

0

|vn(s)− u(s)| ds+

∫ t(u)+τn

t(u)

|wn(s− T )| ds

6
∫ t(u)

0

|vn(s)− u(s)| ds+ τn max
z∈U
|z|,

which converges to zero since τn → 0 as n→∞ and since vn tends to u (strongly) in L1.

Let us now prove Theorem 1. The proof follows the lines of [18, Theorem 5.14 and 6.15].

Proof of Theorem 1. First of all, by Lemma 5, there exists a piecewise constant control u : [0, t(u)]→
U steering x0 to 0. In particular u has bounded total variation. Therefore, the existence of an
optimal solution of (OCP)ε follows from Theorem 16 in Appendix B.
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Let xε(·) be any optimal solution of (OCP)ε, associated with a control uε : [0, t(uε)]→ U. Set

x̃ε(t) = (xε(t),
∫ t

0
L(s, xε(s), uε(s))ds). Then the triple (x̃ε, uε, γε) with γε ≡ 0 is a solution of

min
u∈U,γ>0

(∫ t(u)

0

(L(s, x, u) + γ(s))ds+ εTV(u)

)

subject to
ẋ = f(x, u), ẋN+1 = L(t, x, u) + γ, (14)

with initial conditions x(0) = x0, xN+1(0) = 0, and final conditions x(t(u)) = 0, xN+1(t(u)) > 0.
Denote by f̃(t, x, u, γ) = (f(x, u), L(t, x, u) + γ) the augmented dynamics of (14) which are convex
for u in U and γ > 0 by Assumption (4).

Thanks to Assumption (5), the sequence t(uε) is bounded and converges, up to some subse-
quence, to t1 > 0 as ε tends to 0. Hence, given δ > 0 there exists ε0 > 0 such that |t(uε)−t1| < δ for
every ε ∈ [0, ε0] in the chosen subsequence. Since f(0, 0) = 0, we extend xε and uε to [t(uε), t1 + δ]
by 0. By Assumption (5), the trajectories xε(·) are uniformly bounded, and hence the family of
functions s 7→ f̃(s, xε(s), uε(s), 0) is bounded in L∞([0, t1 + δ],RN+1). Thus by Banach–Alaoglu
Theorem [36] it converges, up to some subsequence, to some function g ∈ L∞([0, t1 + δ],RN+1) for
the weak star topology. We define

x̃(t) = x̃0 +

∫ t

0

g(s) ds, x̃0 = (x0, 0).

By construction, t 7→ x̃(t) is absolutely continuous. Moreover, the family x̃ε(t) converges uniformly,
up to subsequences to x̃(·) on [0, t1 +δ]. By the convexity assumption (4) the absolutely continuous
function x̃(·) is also a trajectory of (14) (see, for instance [17, Corollary 3.3.2]), in particular there
exists an admissible control w : [0, t(w)]→ U and a nonnegative measurable function γ : [0, t(w)]→
R such that t 7→ x̃(t) := (xw(t),

∫ t
0
L(s, xw(s), w(s)) + γ(s)ds) is the associated solution of (14).

It remains to prove that xw(·) is optimal for (OCP). For every admissible control v ∈ U
satisfying TV(v) < +∞, we have (note that γ(·) > 0)∫ t(w)+δ

0

L(t, xw(t), w(t)) dt 6
∫ t(w)+δ

0

(L(t, xw(t), w(t)) + γ(t)) dt

6 lim sup
ε→0

(∫ t(w)+δ

0

L(t, xε(t), uε(t)) + εTV(uε)

)
(15)

6
∫ t(v)

0

L(t, xv, v) dt+

∫ t(w)+δ

t(w)

(L(t, xw(t), w(t)) + γ(t)) dt.

Hence, for every δ > 0 and every admissible v as above, we have∫ t(w)

0

L(t, xw(t), w(t)) dt 6
∫ t(v)

0

L(t, xv, v) dt+

∫ t(w)+δ

t(w)

γ(t) dt.

For δ converging to 0, we conclude that∫ t(w)

0

L(t, xw(t), w(t)) dt 6
∫ t(v)

0

L(t, xv, v) dt,

for every admissible control v ∈ U satisfying TV(v) < +∞ Using Lemma 6 and the dominated
convergence theorem, we infer that the inequality above also holds for any possible admissible
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control v ∈ U (not necessarily of bounded variation). Therefore, w is the optimal control solution
of (OCP).

Finally, to prove (6), it suffices to show that γ = 0. By optimality of uε, we have∫ t(uε)

0

L(s, xε(s), uε(s)) ds 6
∫ t(uε)

0

L(s, xε(s), uε(s)) ds+ εTV(uε)

6
∫ t(v)

0

L(s, xv(s), v(s))) ds+ εTV(v),

for any admissible control v such that TV(v) < +∞. Letting ε tend to 0, we deduce that∫ t(w)

0

(L(s, xw(s), w(s)) + γ(s)) ds 6
∫ t(v)

0

L(s, xv(s), v(s))) ds.

Finally, since w is optimal for (OCP), we conclude that γ = 0.

3.2 Proof of Theorem 2

We start with the following lemma.

Lemma 7. Assume that the control system (Σ) satisfies (Ω) at 0. Then, for every η > 0 sufficiently
small, there exists an admissible control vη : [0, t(vη)] → U satisfying TV(vη) < +∞, whose
corresponding trajectory is denoted by xη(·), such that

lim
η→0

∫ t(vη)

0

L(t, xη(t), vη(t)) dt =

∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt, (16)

and

lim
η→0
|t(vη)− t(u∗)| = lim

η→0
‖vη − u∗‖L1

= lim
η→0
‖xη(·)− x∗(·)‖∞ = 0.

Moreover, under the additional assumption that the time-optimal map is C0,α for some α ∈ (0, 1]
in a neighborhood of 0, there exists C > 0 such that∫ t(vη)

0

L(t, xη(t), vη(t)) dt−
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt 6 Cηα. (17)

Proof. Let N be the neighborhood of 0 in RN and M be the constant given by Definition 2.
Without loss of generality we can assume that N is bounded. Fix η0 such that x∗(s) ∈ N , for
every s > t(u∗)−η0. By condition (Ω), there exists a control wη steering x∗(t(u∗)−η) to 0 in time
τη 6MΥ(x∗(t(u∗)− η)) with TV(wη) 6M . We define vη by

vη(t) =


u∗(t) for t ∈ [0, t(u∗)− η),

wη(t− t(u∗) + η) for t ∈ [t(u∗)− η, t(u∗)− η + τη),

0, for t > t(u∗)− η + τη,

(18)

and let xη(·) be the corresponding trajectory, starting from x0 (see Figure 3). By construction,
we have TV(vη) 6 TV(u∗|[0,t(u∗)−η]) + M . If TV(u∗) < +∞ or u∗ is chattering in the sense of
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x∗(t(u∗)− η)

0

Figure 3: The trajectory xη(·) (solid and dashed red line) associated with the control vη built in
Lemma 7. The solid line represents the optimal trajectory x∗(·).

Definition 1, then TV(vη) < +∞. We have τη → 0 as η → 0, since Υ is upper semi-continuous.
Hence vη → u∗ almost everywhere, and for some subsequence, we have

lim
η→0
‖vη − u∗‖L1 = 0.

Now, set X0 = {x∗(t) | t ∈ [0, t(u∗) − η0]} ∪ N , C1 = supX0×U |∂xf |, and C2 = supX0×U |∂uf |.
For every t > 0 and for every η ∈ (0, η0), we have

|xη(t)− x∗(t)|

=

∣∣∣∣∫ t

0

f(xη(s), vη(s)) ds−
∫ t

0

f(x∗(s), u∗(s)) ds

∣∣∣∣
6
∫ t

0

|f(xη(s), vη(s))− f(x∗(s), vη(s))| ds

+

∫ t

0

|f(x∗(s), vη(s))− f(x∗(s), u∗(s))| ds

6 C1

∫ t

0

|xη(s)− x∗(s)| ds+ C2‖u∗ − vη‖L1 ,

and thus, by the Gronwall lemma, we get that ‖xη(·)−x∗(·)‖∞ 6 C2‖u∗−vη‖L1eC1T̄ . In particular
limη→0 ‖xη(·)− x∗(·)‖∞ = 0.

Finally, let us prove (16). By continuity of L, there exist constants c ∈ R and C̄ > 0 such
that L(t, x∗(t), u∗(t)) > c for almost every t ∈ [0, t(u∗)], and |L(t, x, u)| 6 C̄ for almost every
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(t, x, u) ∈ [0, T̄ ]×X0 ×U. Then, we have

0 6
∫ t(u∗)−η+τη

0

L(t, xη(t), vη(t)) dt

−
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt

=

∫ t(u∗)−η+τη

t(u∗)−η
L(t, xη(t), vη(t)) dt

−
∫ t(u∗)

t(u∗)−η
L(t, x∗(t), u∗(t)) dt

6 C̄τη − cη,

which implies (16). To prove (17) it suffices to note that τη 6MΥ(x∗(t(u∗)− η)) 6 Cηα.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Assumption (Ω) implies in particular the existence of bounded variation con-
trols steering the control system (Σ) from any initial condition in the neighborhood N to the
origin. Hence, from Theorem 16 in Appendix B, the problem (OCP)ε has at least one solution.

Let xε(·) be an arbitrary solution of (OCP)ε, associated with a control uε : [0, Tε]→ U. Assume
u∗ chattering and let n0 ∈ N be such that x∗(tn) ∈ N for every n > n0. We apply Lemma 7 with
η = t(u∗)−tn and, for simplicity, we denote by un the control vt(u∗)−tn and by τn the time τt(u∗)−tn .
Note that TV(un) 6 c1n+M , where c1 is the diameter of U. By optimality of uε for (OCP)ε, we
have ∫ Tε

0

L(t, xε(t), uε(t)) dt

6
∫ Tε

0

L(t, xε(t), uε(t)) dt+ εTV(uε)

6
∫ tn+τn

0

L(t, xn(t), un(t)) dt+ εTV(un)

6
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt

+ C|t(u∗)− tn|α + ε(c1n+M). (19)

Now, by Assumption (ii) made in the statement of the Theorem, we have |t(u∗)− tn|α = O(n−αβ),

and choosing n = O(ε−
1

1+αβ ), we infer that∫ Tε

0

L(t, xε(t), uε(t)) dt−
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt

6 C|t(u∗)− tn|α + ε(n+M) = O
(
ε

αβ
1+αβ

)
.

This concludes the proof in the chattering case. Let, now, u∗ be of bounded variation. Let η0 > 0
be such that x∗(s) ∈ N for every s > T ∗ − η0. Apply Lemma 7 to obtain the control vη. Then

TV (vη) 6 TV (u∗) + M = M̃ . Using the same reasoning as in the chain of inequalitites (19) we
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deduce ∫ Tε

0

L(t, xε(t), uε(t)) dt 6
∫ t(u∗)

0

L(t, x∗(t), u∗(t)) dt

+ Cη + M̃ε.

Finally, the proof is concluded by choosing η = O(ε).

3.3 Proof of Theorem 3

We start with the following existence result.

Lemma 8. Given any ε > 0, the problem (OCPS)ε has at least one solution.

Proof. Let ε > 0 be fixed. First of all, remark that if there exists no admissible trajectory such

that TV(Xu) < +∞, then the functional u 7→
∫ T

0
L(s, x(s), u(s)) ds + εTV(Xu) is infinite and

there is nothing to prove. Otherwise, let I < +∞ denote the infimum in (OCPS)ε. We consider
a minimizing sequence of admissible controls un : [0, t(un)] → U, with corresponding trajectories
denoted by xn(·), such that

lim
n→∞

(∫ t(un)

0

L(s, xn(s), un(s)) ds+ εTV(Xun)

)
= I.

Since the sequence (t(un))n∈N is bounded by Assumption (5), we can assume that t(un) converges
(up to some subsequence) to some tε > 0. Using f(0, 0) = 0 we extend un to [t(un), tε + δ] by
0 for δ > 0. Reasoning as in the proof of Theorem 1, up to some subsequence, there exist a
positive measurable function γ : [0, tε + δ] → R and a measurable control w : [0, tε + δ] ∈ U,
with corresponding trajectory xw(·), such that xn(·) converges to xw(·) uniformly on [0, tε+ δ] and
L(·, xn(·), un(·)) converges to L(·, xw(·), w(·)) + γ(·) in L∞(0, tε + δ) for the weak star topology.
By uniform convergence of trajectories, w : [0, tε] → U is admissible, that is, xw(tε) = 0 and
xw(t) ∈ C for every t. Up to some subsequence, by dominated convergence, we can assume that
Xun(·) = 1∂C(xn(·)) converges to Xw(·) = 1∂C(xw(·)) in L1(0, tε + δ). Moreover, since xn(t) = 0
on [t(un), tε + δ], we have TV(Xun |[0,tε+δ]) = TV(Xun |[0,t(un)]). Therefore,∫ tε+δ

0

L(t, xn(t), un(t)) dt+ εTV(Xun |[0,tε+δ])

=

∫ t(un)

0

L(t, xn(t), un(t)) dt+ εTV(Xun |[0,t(un)])

+

∫ tε+δ

t(un)

L(t, xn(t), un(t)) dt.

We infer that

lim sup
n→∞

(∫ tε+δ

0

L(t, xn(t), un(t)) dt+ εTV(Xun |[0,tε+δ])
)

6 I + lim sup
n→∞

∫ tε+δ

t(un)

L(t, xn(t), un(t)) dt

= I +

∫ tε+δ

tε

(L(t, xw(t), w(t)) + γ(t)) dt.
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Besides, by lower semicontinuity of TV(·), we have TV(Xw) < +∞ and

lim inf
n→∞

(∫ tε+δ

0

L(t, xn(t), un(t)) dt+ εTV(Xun |[0,tε+δ])
)

> lim inf
n→∞

∫ tε+δ

0

L(t, xn(t), un(t)) dt+ εTV(Xw|[0,tε+δ])

>
∫ tε+δ

0

(L(t, xw(t), w(t)) + γ(t)) dt+ εTV(Xw|[0,tε]).

Finally, we obtain that I >
∫ tε

0
(L(t, xw(t), w(t)) +γ(t)) dt+ εTV(Xw|[0,tε]). Since w is admissible,

we have xw(tε) = 0 and there holds I 6
∫ tε

0
L(t, xw(t), w(t)) dt+ εTV(Xw|[0,tε]). Therefore, since

γ > 0, we infer that
∫ tε

0
γ(t) dt = 0 and w : [0, tε]→ U is optimal for (OCPS)ε.

Lemma 9. Assume condition (i) of Theorem 3. Let ū : [0, t̄] → U be an admissible control
such that the corresponding trajectory x̄(·) satisfies x̄(t) ∈ C for every t and {t | x̄(t) ∈ ∂C} =
{t̄, t1, t2, . . . } with limn→∞ tn = t̄. Then, there exists a sequence (uk)k∈N of U of admissible
controls, such that uk converges to ū in L1, the corresponding trajectories xk(·) satisfy xk(t) ∈ C
for every t, and TV(Xuk) < +∞.

Proof. Fix k > 0. Recall that condition (i) states that there exists a neighborhood N of 0 such
that N ∩ C̊ ⊂ AC(0, (0, 1/k),−f). By assumption, for almost every η > 0, the point xη = x̄(t̄− η)
belongs to the interior of C. Hence for almost every η > 0 sufficiently small we have xη ∈ N ∩ C̊ ⊂
AC(0, (0, η),−f). Then, there exists a control wη : [0, τη]→ U, with τη 6 η, such that the solution

y(·) of the Cauchy problem ẏ = −f(y, w), y(0) = 0, satisfies y(t) ∈ C̊ for every t ∈ (0, τη] and
y(τη) = xη. Reversing time, since the dynamics is autonomous, we get that z(τη) = 0, where z(·)
is the solution of the Cauchy problem ż = f(z, w), z(0) = xη, and z(t) ∈ C̊ for every t ∈ [0, τη).
Let T > 0. We extend the control ū to [t̄, t̄+ T ] by setting ū = 0. We define

uη(t) =


ū(t), t ∈ [0, t̄− η]

wη(t− t̄+ η), t ∈ [t̄− η, t̄− η + τη]

0, t > t̄− η + τη.

Since τη converges to 0 as η → 0, uη converges to ū in L1(0, t̄ + T ). Therefore, the sequence
of corresponding trajectories xη(·) converges uniformly to x̄(·) on [0, t̄ + T ] (see Figure 4). Thus
L(·, xη(·), uη(·)) converges to L(·, x̄(·), ū(·)) strongly in L∞(0, t̄ + T ). Set Tη = t̄ − η + τη. By
construction, we have xη(Tη) = 0 and TV(1∂C(xη)|[0,Tη ]) = TV(1∂C(x̄)|[0,t̄−η]) < +∞. Finally, the

convergences above imply that
∫ Tη

0
L(t, xη(t), uη(t)) dt converges to

∫ ū
0
L(t, x̄(t), ū(t)) dt as η → 0.

The statement follows by taking a sequence η = 1/k for k ∈ N sufficiently large.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let xε(·) be any optimal solution of (OCPS)ε, associated with a control uε
(existence is ensured by Lemma 8). We make the same reasoning as in the proof of Theorem 1.

Let t(uε) converge (up to some subsequence) to some t1 > 0. Let δ > 0 be arbitrary. We extend
uε to [0, t1+δ] by 0. As in the previous proofs, there exists an admissible control w : [0, t1+δ]→ U,
with corresponding trajectory xw(·), and a positive measurable function γ : [0, t1+δ]→ R such that
xε(·) converges to xw(·) uniformly on [0, t1 +δ], and L(·, xε(·), uε(·)) converges to L(·, xw(·), w(·))+
γ(·) in L∞(0, t1 + δ) for the weak star topology. Replacing the total variation of controls t 7→ u(t)
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Figure 4: The trajectory xη(·) associated with the control uη.

with the total variation of t 7→ Xu(t) = 1∂C(xu(t)) in (15), we get that, for every admissible control
v : [0, t(v)]→ U such that TV(Xv) < +∞, there holds∫ t1

0

L(t, xw(t), w(t)) dt

6
∫ t(v)

0

L(t, xv(t), v(t)) dt+

∫ t1+δ

t1

γ(t) dt.

Since δ > 0 is arbitrary, letting δ tend to zero we conclude that, for every v as above,∫ t1

0

L(t, xw(t), w(t)) dt 6
∫ t(v)

0

L(t, xv(t), v(t)) dt. (20)

We apply Lemma 9 to ū = u∗ and we denote by uk the corresponding sequence. Then, taking
inequality (20) with v = uk and letting k tend to +∞, we obtain that w is optimal for (OCPS).
In order to establish (11), it remains to prove that γ|[0,t1] ≡ 0. To this aim, let v : [0, t(v)]→ U be

20



an admissible control such that TV(Xv) < +∞. Then, by optimality of uε for (OCPS)ε, we have∫ t1+T

0

(L(t, xw(t), w(t)) + γ(t)) dt

= lim
ε→0

∫ t1+T

0

L(t, xε(t), uε(t)) dt

6 lim sup
ε→0

(∫ t1+T

0

L(t, xε(t), uε(t)) dt+ εTV(Xuε)

)

6
∫ t(v)

0

L(t, xv(t), v(t)) dt

+ lim sup
ε→0

∫ t1+T

t(uε)

L(t, xε(t), uε(t)) dt

=

∫ t(v)

0

L(t, xv(t), v(t)) dt

+

∫ t1+T

t1

(L(t, xw(t), w(t)) + γ(t)) dt,

which gives
∫ t1

0
(L(t, xw(t), w(t)) + γ(t)) dt 6

∫ t(v)

0
L(t, xv(t), v(t)) dt. Again, let (uk)k∈N be the

sequence provided by Lemma 9 with ū = u∗. Then, since w is optimal for (OCPS), the inequality

above with v = uk implies that
∫ t1

0
γ(t) dt = 0, which gives γ[0,t1] = 0.

3.4 Proof of Theorem 4

We first prove an auxiliary lemma.

Lemma 10. Let H be a hybrid system such that Xq is a compact submanifold for every q ∈ Q,
and such that the sets G(q, q′), R((q, q′), x) are compact for every ((q, q′), x) ∈ E×Xq, with q ∈ Q.

Let L be a Lagrangian for H with corresponding cost functional C(·). Assume that (τ∗, q∗(·), x∗(·))
is a Zeno solution of (HP). Let τ∗ = {τ∗i }∞i=0. Define the sequence of trajectories (τn, qn(·), xn(·))
of H by

• τn = {τ∗0 , τ∗1 , . . . , τ∗n, τ∗∞};

• qn(t) = q∗(t) for every t ∈ [0, τ∗n), qn(t) ≡ q∗(τ∗n) for t ∈ [τ∗n, τ
∗
∞];

• xn(t) = x∗(t) for every t ∈ [0, τ∗n], and on [τ∗n, τ
∗
∞] the (continuous) trajectory xn(·) is solution

of ẋn(t) = fq∗(τ∗n)(x
n(t)) almost everywhere.

Then:

sup
τ∗0 6t6τ

∗
n

||xn(t)− x∗(t)|| 6 O(τ∗∞ − τ∗n), (21)

C(τn, qn(·), xn(·))− C(τ∗, q∗(·), x∗(·)) 6 O(τ∗∞ − τ∗n). (22)

Proof. Since qn(t) converges to q∗(t) almost everywhere in [0, τ∗∞], by standard convergence re-
sults (see for instance [37, Theorem 1 p. 57]) we deduce (21). For (22), note that, since the
Lagrangian is continuous, there exist positive constants c̃ and c, satisfying c̃ − c > 0, such that
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∫ τ∗∞
τ∗n

Lq∗(τ∗n)(t, x
n(t)) dt 6 c̃(τ∗∞ − τ∗n) for every n, and Lq∗(τ∗i )(t, x

∗(t)) > c almost everywhere in

[τ∗i , τ
∗
i+1] for every i. Therefore,

0 6 C(τn, qn(·), xn(·))− C(τ∗, q∗(·), x∗(·))

=

∫ τ∗∞

τ∗n

Lq∗(τni )(t, x
n(t)) dt−

∞∑
i=n

∫ τ∗i+1

τ∗i

Lq∗(t)(t, x
∗(t)) dt

6 c̃(τ∗∞ − τ∗n)− c
∞∑
i=n

(τ∗i+1 − τ∗i ) = (c̃− c)(τ∗∞ − τ∗n).

This concludes the proof of (22).

Consider the set TM of trajectories of a hybrid system having at mostM switchings. IfM < +∞
these trajectories are non-Zeno. We say that two non-Zeno trajectories have the same history if
they visit the same locations in the same sequence. Having the same history is an equivalence
relation in TM and the number of equivalence classes in TM is finite.

Let us now prove Theorem 4.

Proof of Theorem 4. By compactness of the location Xq0 there exists at least one trajectory start-
ing at (q0, x0) and having no location switchings 1. Hence, for every ε > 0 the functional to
minimize in (HP)ε is finite. Since the hybrid cost functional C is bounded from below, there exists
Mε such that any optimal trajectory of (HP)ε has at most Mε switchings. Hence any solution of

minC(τ, q(·), x(·)) + εTV(h ◦ q(·)),
(τ, q(·), x(·)) ∈ TMε ,

q(0) = q0, x(0) = x0,

(HP)
′

ε

where the minimization runs over all possible trajectories having only a finite number of switchings
Mε is also a solution of (HP)ε. Now consider a minimizing sequence for (HP)

′

ε. Then, up to some
subsequence, we can assume that all trajectories have the same history. Hence the penalization
term of total variation is constant along the chosen subsequence and the problem is then reduced
to that of minimizing the Lagrangian cost C(·, ·, ·) among trajectories with a fixed history. Hence,
by compactness, this problem has at least one solution, see [38, Theorem 1].

Let (τε, qε(·), xε(·)) be a solution of (HP)
′

ε, then it is also a solution of (HP)ε. We apply
Lemma 10, and we consider the corresponding sequence (τn, qn(·), xn(·)), which by construction
has a finite number of location switchings. Then, by optimality and using (22),

0 6 C(τε, qε(·), xε(·))− C(τ∗, q∗(·), x∗(·))
6 C(τε, qε(·), xε(·))− C(τ∗, q∗(·), x∗(·)) + εTV(h ◦ qε(·))
6 C(τn, qn(·), xn(·))− C(τ∗, q∗(·), x∗(·)) + εTV(h ◦ qn(·))
6 O(τ∗∞ − τ∗n) + εn|Q|,

where |Q| is the number of locations. Choose n = bε−1/2c. The convergence (13) follows by letting
ε converge to 0.

Remark 11. If the rate of convergence of τ∗n to τ∗∞ is known, then it is possible to determine the
rate of convergence in (13). For instance, if τ∗n − τ∗∞ 6 O(n−β) for some β > 0, then, for every
α > 0, we have

C(τε, qε(·), xε(·))− C(τ∗, q∗(·), x∗(·)) 6 O
(
εmin(1−α,αβ)

)
.

1By definition, a vector field on a compact manifold with boundary is tangent to the boundary. The compactness
of the location ensures that trajectories staying in one location are defined for all times.
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A Further comments on condition (Ω)

The relation between condition (Ω) and small-time local controllability depends on the continuity
of the time-optimal map Υ. Recall that Υ(y) is the minimal time needed to steer the control
system (Σ) from y to 0.

Note that, in Definition 2, (Ω2) does not imply (Ω1) in general, as the following example shows.

Example 2. Consider the control system

ẋ = uf1(x) + vf2(x), x = (x1, x2) ∈ R2, (u, v) ∈ [−1, 1]2,

where f1(x) = ∂x1
, f2(x) = h(x1)∂x2

, namely{
ẋ1 = u

ẋ2 = h(x1)v.

with

h(x1) =

{
0, if x1 ∈ [−1, 1],

1, if x1 /∈ (−2, 2),

and h is a smooth function with h(x1) ∈ [0, 1] for every x1 ∈ R.
The control system is clearly not STLC at 0. However every point of R2 can be steered to the

0 with at most two switches. Moreover every point y in the open strip N = (−1, 1) × R can be
steered to 0 with two switches in time τy 6 4Υ(y). Indeed consider for instance y = (y1, y2) ∈ N
with y1 > 0, y2 > 0 (the other cases can be treated similarly). The control

(u(t), v(t)) =


(1, 0), t ∈ [0, 2− y1)

(0,−1), t ∈ [2− y1, 2− y1 + y2)

(−1, 0), t ∈ [2− y1 + y2, 4− y1 + y2]

steers y to 0 in time τy = 4 − y1 + y2 6 4 + y2 while Υ(y) > 1 + y2. Hence the control system
satisfies condition (Ω2).

In the example above, the time-optimal map is not continuous at 0. Indeed Υ(0) = 0 while
Υ((0, x2)) > 2 for every x2 6= 0. A relationship between (Ω2) and (Ω1) can be established depending
on the continuity of the time-optimal map Υ.

Proposition 11. The following conditions are equivalent.

(a) Υ is continuous at 0.

(b) Condition (Ω2) implies condition (Ω1).

Proof. (a) ⇒ (b). A stronger assertion actually holds, namely, (a) implies (Ω1). Indeed, if Υ is
continuous at 0, since Υ(0) = 0, for every ε > 0, Υ−1([0, ε)) is a neighborhood of 0 and every point
in Υ−1([0, ε)) can be steered to 0 in time less than ε for the control system (Σ).
(b)⇒ (a). This is a consequence of the classical fact that, if (Σ) is STLC at 0, then Υ is continuous
at 0 (see [24, Theorem 2.2]).

In the rest of this section, we present sufficient conditions ensuring (Ω). First, note that in
the simple case of a driftless control-affine system, (Ω) is a consequence of the Lie Algebra Rank
Condition. In this case the number of switchings needed to reach any point in a small neighborhood
of 0 depends only on the step of the Lie algebra Lie(f1, . . . , fm) at 0.

23



Proposition 12. For a driftless control-affine system ẋ =
∑m
i=1 uifi(x), if Lie0(f1, . . . , fm) = RN ,

then (Ω) is satisfied at 0.

For control-affine systems with a drift, a sufficient condition comes from the classical result
by Sussmann [23] in the single-input case. The main assumption in [23] (denoted by (∆) in this
reference) involves Lie brackets between the drift vector field and the controlled vector field (we
also refer to [22] for more precise estimates on the number of switchings in a particular case). More
precisely we have the following result.

Proposition 13. Consider the single-input control-affine system ẋ = f(x)+ug(x), where f and g
are analytic vector fields in RN . If the condition (∆) of [23] is satisfied, and if the control system
is STLC at 0, then (Ω) holds true at 0.

Proof. By [23], the system satisfies the bang-bang property with bounds on the number of switch-
ings (BBBNS). More precisely, for every K compact and for every T > 0, there exists n0 ∈ N∗
such that, if x(·) is a time-optimal trajectory that is entirely contained in K and steers the control
system from x ∈ K to y ∈ K, then there exists a time-optimal trajectory steering as well the
control system from x to y, which is moreover bang-bang with at most n0 switchings, with n0

depending on K and T . Since the control system is STLC at 0, the set K = {x | Υ(x) 6 1} is a
compact set containing 0 in its interior. Every x ∈ K can be steered to 0 in time Υ(x) with at
most n0 switchings.

Linear autonomous systems generically satisfy (Ω), as established next.

Proposition 14. If the linear autonomous control system ẋ = Ax + Bu satisfies the Kalman
condition, then (Ω) holds true.

Proof. It suffices to write the system in Brunowsky form (see, e.g., [37, Theorem 14, Section 5.2]).
The time-optimal control of a cascade system has a number of switchings depending only on
Kronecker indices (or controllability indices) of the system (see also [39]).

As a consequence, we have the following sufficient condition for control-affine systems.

Proposition 15. Consider the control affine system ẋ = f(x) +
∑m
i=1 uigi(x). We set

Gi = span{adkfgj | 0 6 k 6 i, 1 6 j 6 m}.

Assume that:

(i) for every 1 6 i 6 N − 1, the distribution Gi has constant dimension near 0;

(ii) the distribution GN−1 has dimension N ;

(iii) for every 1 6 i 6 N − 2, the distribution Gi is involutive.

Then (Ω) holds true at 0.

Proof. The result follows from Proposition 14 and from the fact that the State Space Exact Lin-
earization Problem is solvable (see, e.g., [40, Theorem 5.2.3]).
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B An existence result

For every ε > 0, consider the optimal control problem
min
u∈U

(∫ t(u)

0

L(s, x(s), u(s)) ds+ εTV(u)

)
,

ẋ = f(t, x, u), u ∈ U ,
x(t) ∈ C, t ∈ [0, t(u)],

x(0) ∈M0, x(t(u)) ∈M1,

(OCPS)ε

where

• f : R× RN ×U→ RN is measurable w.r.t. t, locally Lipschitz w.r.t. x,

• L ∈ C0(R× RN × Rm),

• C = {x ∈ RN | h1(x) > 0, . . . , hl(x) > 0} for some h1, . . . hl ∈ C0(RN ),

• U ⊂ Rm is compact,

• M0 and M1 are compact subsets of C.

Here, U is still defined by (3).

Theorem 16. Assume that:

(i) there exists ū ∈ U having bounded variation, steering the control system ẋ = f(t, x, u) from
M0 to M1, and whose corresponding trajectory satisfies the state constraint x(t) ∈ C, for
every t ∈ [0, t(ū)];

(ii) there exists b > 0 such that, for every u ∈ U steering the control system from M0 to M1, its
corresponding trajectory xu satisfies t(u) + ‖xu(·)‖∞ 6 b.

Then, for every ε > 0, the optimal control problem (OCPS)ε has at least one solution.

Note that existence is not ensured for ε = 0. The fact that ε > 0 is crucial here. The difference
with usual existence theorems is that, in the proof below, we use in an instrumental way the total
variation term. Note the remarkable fact that, in contrast to usual existence theorems (see [16]),
we do not assume, here, that the set of extended velocities (4) is convex. This classical assumption
can be removed thanks to the use of the total variation term.

Proof. The proof follows the lines of [18, Theorem 5.14 and 6.15], with an adaptation to the
bounded variation context. Let

δ = inf

(∫ t(u)

0

L(s, x(s), u(s)) ds+ εTV(u)

)
,

where the infimum is taken among all controls u ∈ U steering the control system from M0 to M1

and whose corresponding trajectory satisfies the state constraint x(t) ∈ C, for every t ∈ [0, t(u)].
Let xn(·) be a sequence of admissible trajectories, corresponding to a minimizing sequence of
admissible controls un : [0, t(un)]→ U, i.e.,

lim
n→∞

(∫ t(un)

0

L(s, xn(s), un(s)) ds+ εTV(un)

)
= δ.
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Using Assumptions (i) and (ii), for n sufficiently large we have

εTV(un) 6
∫ t(ū)

0

L(s, xū(s), ū(s)) ds+ εTV(ū) + C,

for some constant C > 0, and since t(un) is bounded by b, extending un by 0 for t > t(un), we
infer that the sequence (un)n∈N is bounded in the set BV([0, b],Rm) of bounded variation functions
from [0, b] to Rm. Since the embedding BV([0, b],Rm) ↪→ L1([0, b],Rm) is compact (see [41]), up
to some subsequence, (un)n∈N, converges to some uε ∈ L1([0, b],Rm) for the strong topology of
L1. Still up to some subsequence, xn(0) converge to some x0

ε ∈ RN , un converges to uε almost
everywhere and t(un) converges to t(uε), and thus uε : [0, t(uε)]→ U takes values in U.

Let us prove that uε : [0, t(uε)] → U is a solution of (OCPS)ε. By a standard Gronwall
argument (see [37, Theorem 1 p. 57], or see [42, 18]), the convergence almost everywhere of un
to uε implies that xn(·) converges uniformly to xε(·), where xε(·) is the trajectory corresponding
to the control uε and starting at x0

ε. In particular, we get that xε(t) ∈ C for every t ∈ [0, t(uε)]
and, by compactness of M0 and M1, we obtain that xε(t(uε)) ∈ M1. Hence uε is an admissible
control. Moreover, L(t, xn(t), un(t)) converges to L(t, xε(t), uε(t)) for almost every t. Hence, using
Assumption (ii) and the dominated convergence theorem, we conclude that

lim
n→∞

∫ t(un)

0

L(t, xn(t), un(t)) dt

=

∫ t(uε)

0

L(t, xε(t), uε(t)) dt. (23)

On the other hand, by lower semicontinuity of the functional TV(·), we have

TV(uε) 6 lim inf
n→∞

TV(un). (24)

Using (23), (24) and since un is a minimizing sequence, we infer that
∫ t(uε)

0
L(t, xε(t), uε(t)) dt +

εTV(uε) 6 δ, which implies that uε is optimal.
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