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Abstract— This note presents an example of bilinear conser-
vative system in an infinite dimensional Hilbert space for which
approximate controllability in the Hilbert unit sphere holds for
arbitrary small times. This situation is in contrast with the
finite dimensional case and is due to the unboundedness of the
drift operator.

I. INTRODUCTION

A. Control of quantum systems

The state of a quantum system evolving in a Riemannian
manifold Ω is described by its wave function, a point ψ in the
unit sphere of L2(Ω,C). When the system is submitted to
an electric field (e.g., a laser), the time evolution of the wave
is given, under the dipolar approximation and neglecting
decoherence, by the Schrödinger equation:

i
∂ψ

∂t
= (−∆ + V (x))ψ(x, t) + u(t)W (x)ψ(x, t) (1)

where ∆ is the Laplace-Beltrami operator on Ω, V and W are
real potential accounting for the properties of the free system
and the control field respectively, while the real function of
the time u accounts for the intensity of the laser.

It is standard to rewrite the dynamics as

d

dt
ψ = (A+ u(t)B)ψ (2)

where ψ belongs to a separable Hilbert space H and (A,B)
satisfies Assumption 1.

Assumption 1: A and B are linear operators such that
1) A is essentially skew-adjoint (possibly unbounded)

with domain D(A);
2) there exists an Hilbert basis (φk)k∈N of H made of

eigenvectors of A. For every k, Aφk = iλkφk;
3) for every k in N, φk belongs to the domain D(B) of

B;
4) for every u in R, A + uB is essentially skew-adjoint

on D(A) ∩D(B);
5) B is essentially skew-adjoint.

From Assumption 1, for every u, t in R, et(A+uB) is a uni-
tary operator. By concatenation, for every piecewise constant
function u, one can define the solution t 7→ Υu

t ψ0 of (2) with
initial condition ψ(0) = ψ0. With extra regularity hypotheses
(for instance: B bounded), it is possible to define Υu for
controls u not necessarily piecewise constant.

A natural question, with many practical implications, is
to determine the set of wave functions Υu

Tψ0 that can be
reached from a given initial condition ψ0 at a given time
T when the control law u varies in the set U of admissible
controls (here, U is the set of piecewise constant functions).
This set {Υu

Tψ0, u ∈ U} is called the reachable set from ψ0

at time T and is denoted RT (ψ0). For T ∈ (0,+∞), the
reachable set from ψ0 at time smaller than T is R<T (ψ0) =
∪t<TRt(ψ0) and R<+∞(ψ0) = ∪T>0RT (ψ0). At this time,
no definitive description of the reachable sets is known, with
the exception of R<+∞(ψ0) for a few simple examples ([1],
[2]) where U = L2([0,+∞),R) and Ω is a bounded interval
of R. Notice that even in this 1-D framework, the results are
far from obvious.

Instead of looking at the complicated structure ofRT (ψ0),
one may consider its topological closure for a given norm.
Many results of approximate controllability have been given
in the last few years. We refer to [3], [4], [5], [6], [2], [7]
and references therein for a description of the known theo-
retical results concerning the existence of controls steering
a given source to a given target. As proved in [4], [8], [9],
approximate controllability is a generic property for systems
of the type of (2).

B. Temporal diameter

Let (A,B) be a couple of linear operators associated with
an Hilbert basis (φk)k∈N of H made of eigenvectors of A
be given. If R<+∞(φ1) is everywhere dense in the Hilbert
unit sphere SH of H , we define the temporal diameter of H
for the control system (2) as

ρ = inf
{
T ≥ 0

∣∣∣R<T (φ1) = SH

}
.

The aim of this note is to give a positive answer (Theorem
11) to the following question: “Does it exists a couple (A,B)
satisfying Assumption 1 such that ρ = 0?”

The importance of this question goes beyond its purely
mathematical aspect. A positive answer is a strong justifica-
tion of the fact that we can neglect decoherence in (2), since
decoherence has little effect in small times.

C. Content of the paper

The first part of this paper (Section II) is a short summary
of the finite dimensional case. It includes finite dimensional
estimates (Section II-B) that are instrumental in our study.



The second part (Section III) presents basic infinite dimen-
sional material. The third part presents an example (Section
IV-A) with zero temporal diameter. The technical computa-
tion of this diameter (Sections IV-B and IV-C) combines the
results of Sections II-B and III-D.

II. FINITE DIMENSIONAL CASE
In this Section, we concentrate on the case where H is

finite dimensional. This case has been extensively studied
([10], [11], [12]). In this case, a classical choice for the set
of admissible controls is the set L1

loc([0,+∞),R) of locally
integrable functions in R. Other choices could be to restrict
to the set of piecewise constant functions or to extend to the
set of Radon measures. By continuity of the input-output
mapping, and since we are only concerned with the closure
of the reachable sets, all this choice are equivalent.

A. Bilinear systems in semi-simple Lie Groups
The operators A and B can be seen as skew-hermitian

matrices. Changing A into A − Trace(A)/dim(H) and
B into B − Trace(B)/dim(H) just induces a physically
irrelevant phase shifts.

Considering the resolvent, the original system in H = CN

can be lift to SU(N), the group of unitary matrices of order
N with determinant 1. Denoting with x the matrix of the
linear operator ψ 7→ Υu

t ψ, (2) turns into
d

dt
x = (A+ uB)x = dRx(A+ uB) (3)

with initial condition x(0) = IH where R is the right
translation in SU(N): Rx : y 7→ yx.

The lift of (2) from CN to SU(n) as the right invariant
controlled system (3) allows us to use the rich structure
of semi-simple compact Lie groups. In particular, the Lie
algebra su(N) = TINSU(N) turns into an Euclidean space
when endowed with the (opposite) of the bi-invariant nega-
tive definite Killing form K(x, y) = NTrace(xy).

The major drawback is that we have now to consider the
whole propagator x (that is, equation (2) with all possible
initial conditions).

A classical result states that the temporal diameter of
SU(N) for the dynamic of (3) is finite for generic pairs
(A,B).

Proposition 1: If Lie(A,B) = su(N), then there exists
T > 0 such that R<T (ψ) = SH for every ψ in SH . In other
words, ρ < +∞.

Proof: We refer for instance to [13].
For every admissible control u, define v : t 7→

∫ t
0
u(τ)dτ

and y : t 7→ exp (−v(t)B)x. The dynamics of y is given by
d

dt
y = e−v(t)BAev(t)By := dRyAdev(t)BA (4)

The adjoint mapping Ad is an isometry for the Killing norm.
In other words, the derivative of y has a constant Killing
norm (equal to the Killing norm of A). As a consequence, the
temporal diameter is positive as soon as the torus {eKB |K ∈
R does not fill SU(n).

Proposition 2: When H is finite dimensional with dimen-
sion larger than or equal to 2, ρ > 0.

B. Some time estimates

In this Section, we give an estimate of the time needed
to steer an eigenstate of A to another. The proof relies on
averaging techniques (see [14] for details).

Definition 1: Let H = CN and (A(N), B(N)) satisfy
Assumption 1. A couple (j, k) is a non-degenerate transition
of (A(N), B(N)) if i) 〈φj , B(N)φk〉 6= 0 and ii) λj − λk =
λl− λm implies that {j, k} = {l,m} or {l,m} ∩ {j, k} = ∅
or 〈φl, B(N)φm〉 = 0.

Proposition 3: Let (A(N), B(N)) be a couple of skew-
Hermitian matrices of order N . Assume that A(N) is di-
agonal and that (1, 2) is a non degenerate transition of
(A(N), B(N)). We denote with Xu

(N) the propagator of x′ =

(A(N) + uB(N))x. Define T = 2π
|λ2−λ1| and u∗ : t 7→

|λ2 − λ1| cos((λ2 − λ1)t + φ). Then, for every n in N, for
every t ≤ 4πn/|λ2 − λ1|,

‖Xu∗/n
(N) (t, 0)− etA(N)

eKM
†‖

I(C + 1)‖B(N)‖
≤ 1 + 2K‖B(N)‖

n

with I =
∫ T

0
|u∗(τ)|dτ = 4, K = 1

n

∫ t
0
|u∗(t)|dt, M† the

skew-Hermitian matrix of order N which entries are all zero
but the ones of index (1, 2) and (2, 1) equal to πb12e

iφ/4
and πb21e

−iφ/4 respectively and

C = sup
(j,k)∈Λ

∣∣∣∣∣∣
∫ T

0
u∗(τ)ei(λj−λk)τdτ

sin
(
π
|λj−λk|
|λ2−λ1|

)
∣∣∣∣∣∣ ,

where Λ is the set of all pairs (j, k) in {1, . . . , N}2 such that
bjk 6= 0 and {j, k}∩{1, 2} 6= ∅ and |λj −λk| /∈ Z|λ2−λ1|.

Proof: This is a particular case (for u∗ : t 7→ |λ2 −
λ1| cos((λ2 − λ1)t+ φ) of the inequality (13) in [14].

C. A technical computation

In order to apply Proposition 3, we will have to find K
and φ such that eKM

†
sends a given vector to another one.

For r, φ in R, we define the 2× 2 matrix

M(r, φ) :=

(
0 ireiφ

−ire−iφ 0

)
.

Let r > 0 and (α, β)T ∈ C2 \ {(0, 0)T } be given. We
aim to find K and φ such that eKM(r,φ)(α, β)T is colinear
to (0, 1)T

For every s, φ in R,

exp(sM(r, φ)) =

(
cos(sr) eiφ sin(sr)

−eiφ sin(sr) cos(sr)

)
.

Hence

exp(sM(r, φ))

(
α
β

)
=

(
α cos(sr) + eiφ sin(sr)β
β cos(sr)− e−iφα sin(sr)

)
.

Without loss of generality, we assume that |α|2 + |β|2 = 1
thus there exist θ in [0, π/2] and α1, β1 in (−π, π] such that

α = cos θeiα1 (5)
β = sin θeiβ1 . (6)



With these notations, α cos(rs) + eiφβ sin(rs) = 0 if and
only if  cos

(
α1−β1−φ

2

)
cos(θ − rs) = 0

sin
(
α1−β1−φ

2

)
cos(θ + rs) = 0

Since we are interested in small time, we will chose φ and
K such that{

cos
(
α1−β1−φ

2

)
= 0

cos(θ + rK) = 0
that is,

{
α1−β1−φ

2 = π
2 (π)

θ + rK = π
2 (π).

III. INFINITE DIMENSIONAL TOOLS

A. Notations

Let (A,B) satisfy Assumption 1. For every N in N, we
define LN the linear space spanned by φ1, φ2, . . . , φN and
πN : H → H , the orthogonal projection onto LN :

πN (ψ) =

N∑
k=1

〈φk, ψ〉φk.

The compressions of order N of A and B are the finite
rank operators A(N) = πNA�LN and B(N) = πNB�LN .
The Galerkin approximation of (2) at order N is the infinite
dimensional system

d

dt
x = A(N)x+ u(t)B(N)x. (7)

Since LN is invariant by (7), one may also consider (7) as
a finite-dimensional system, whose propagator is denoted by
Xu

(N)(t, s).
The operator |A| is a positive self-adjoint operator. In the

case where A is injective, we define for every k ≥ 0 the
norm k-norm: ‖ψ‖k = ‖|A|kψ‖.

B. Basic facts

Proposition 4: Assume that H has infinite dimension.
Then, for every ψ0 in SH , {eKBψ0,K ∈ R} 6= SH .

Proof: By the spectral theorem, up to a unitary trans-
formation, H = L2(Ω,C) with Ω a set of cardinality larger
than two and B is the multiplication by a purely imaginary
function. Then, the set {eKBψ0,K ∈ R} is included in the
set {ψ ∈ H such that |ψ(x)| = |ψ0(x)| for a. e. x ∈ Ω}.
The latter set is not equal to SH .

Proposition 5: If H has infinite dimension and A is
bounded, then ρ > 0.

Proof: For every u in U , define Y u : t 7→
e−

∫ t
0
|u(τ)|dτBΥu

t . For every ψ0 in SH , for every k in N,
the mapping t 7→ Y ut ψ0 satisfies

d

dt
〈φk, Y ut ψ0〉 = 〈e−

∫ t
0
|u(τ)|dτBAe

∫ t
0
|u(τ)|dτBφk, Y

u
t ψ0〉.

In particular, for every ψ0, for every t,∣∣∣∣ d

dt
〈φk, Y ut ψ0〉

∣∣∣∣ ≤ ‖A‖.
Consider now two points ψ0 and ψ1 in SH such that
the distance δ between the two sets {eKBψ0,K ∈ R} and
{eKBψ1,K ∈ R} is not zero (such a couple (ψ0, ψ1) exists

from Proposition 4). Then ρ ≥ δ/‖A‖, since ψ1 /∈ R<tψ0

for t < δ/‖A‖.
Proposition 6: If H has infinite dimension and B admits

an eigenvector in the domain of A, then ρ > 0.
Proof: For every u in U , define as above Y u : t 7→

e−
∫ t
0
|u(τ)|dτBΥu

t . Let v be an eigenvector of B associated
with eigenvalue λ. For every ψ0 in SH , the mapping t 7→
Y ut ψ0 satisfies

d

dt
〈v, Y ut ψ0〉 = 〈Av, Y ut ψ0〉.

Fix ψ0, ψ1 in SH such that |〈v, ψ0〉| 6= |〈v, ψ1〉|. Then ρ >
δ/‖Av‖ since ψ1 /∈ R<tψ0 for t < δ/‖Av‖.

Remark 1: Propositions 4, 5 and 6 are true also when H
has finite dimension larger than or equal to two.

C. The RAGE theorem

We define EB the linear space spanned by the eigenvectors
(if any) of B. We define HB = E⊥B

Theorem 7: Let N in N and ψ0 in HB . Then there exists
a sequence (kn)n∈N with limit +∞ such that ‖πNeknBψ0‖
tends to zero as n tends to infinity.

Proof: This is a weak-version of the celebrated RAGE-
theorem, see [15, Theorem XI.115].

D. Weakly-coupled quantum systems

Definition 2: Let k be a positive number and let (A,B)
satisfy Assumption 1 and such that the spectrum of iA is
purely discrete (λk)k and tends to +∞ Then (A,B) is k
weakly-coupled if for every u1 ∈ R, D(|A + u1B|k/2) =
D(|A|k/2) and there exists a constant c(A,B) such that, for
every ψ in D(|A|k), |<〈|A|kψ,Bψ〉| ≤ c(A,B)|〈|A|kψ,ψ〉|.
The notion of weakly-coupled systems is closely related to
the growth of the |A|k/2-norm 〈|A|kψ,ψ〉. For k = 1, this
quantity is the expected value of the energy of the system.

Proposition 8: Let (A,B) be k-weakly-coupled. Then,
for every ψ0 ∈ D(|A|k/2), K > 0, T ≥ 0, and u in
L1([0,∞)) for which ‖u‖L1 < K, one has ‖Υu

T (ψ0)‖k/2 ≤
ec(A,B)K‖ψ0‖k/2.

Proof: This is [16, Proposition 2].
Proposition 9: Let k and s be non-negative numbers with

0 ≤ s < k. Let (A,B) be k weakly-coupled. Assume that
there exists d > 0, 0 ≤ r < k such that ‖Bψ‖ ≤ d‖ψ‖r/2
for every ψ in D(|A|r/2). Then for every ε > 0, K ≥ 0,
n ∈ N, and (ψj)1≤j≤n in D(|A|k/2)n there exists N ∈ N
such that for every piecewise constant function u

‖u‖L1 < K ⇒ ‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖s/2 < ε,

for every t ≥ 0 and j = 1, . . . , n.
Proof: This is [16, Proposition 4].

Remark 2: An interesting feature of Propositions 8 and 9
is the fact that the bound of the |A|k/2 norm of the solution of
(2) or the bound on the error between the infinite dimensional
system and its finite dimensional approximation only depend
on the L1 norm of the control, not on the time.

Proposition 10: Let (A,B) be k-weakly coupled for some
k > 0. Then, for every ψ0 in SH , for every T > 0,
{eKBψ0,K ∈ R} ⊂ RT (ψ0).



Proof: Fix K in R and ε > 0. For every η > 0,
consider the control uη , constant equal to K/η on the time
interval [0, η] and equal to zero elsewhere. By Proposition 9,
there exists N such that ‖Υuη

t (ψ0)−Xuη
(N)(t, 0)πNψ0‖ < ε

for every t ≥ 0. The classical theory of ODE ensures that
X
uη
(N)(η, 0)πNψ0 tends to eKBπNψ0 as η goes to zero.

IV. AN EXAMPLE OF APPROXIMATE
CONTROLLABILITY IN TIME ZERO

A. A toy model

We consider the following bilinear control system

i
∂ψ

∂t
= −|∆|αψ + u(t) cos θψ θ ∈ Ω (8)

where α is a real constant, Ω = R/2π is the one dimensional
torus, H = L2(Ω,C) and ∆ is the Laplace-Beltrami operator
on Ω.

Remark 3: A realistic (and widely used) model for a
rotating molecule is (8) with α = 1. For α 6= 1, the presented
example is purely academic.

The self-adjoint operator −∆ has purely discrete spectrum
{k2, k ∈ N}. All its eigenvalues are double but zero which
is simple. The eigenvalue zero is associated with the constant
functions. The eigenvalue k2 for k > 0 is associated with
the eigenspace spanned by the two eigenfunctions θ 7→

1√
π

cos(kθ) and θ 7→ 1√
π

sin(kθ). The Hilbert space H =

L2(Ω,C) splits in two subspaces He and Ho, the spaces
of even and odd functions of H respectively. The spaces He

and Ho are stable under the dynamics of (8), hence no global
controllability is to be expected in H .

We consider the restriction of (8) to the space Ho. The
function φk : θ 7→ sin(kθ)/

√
π is an eigenvector of

the skew-adjoint operator A = i|∆|Ho |α associated with
eigenvalue ik2α. The familly (φk)k∈N is an Hilbert basis
of Ho. Here, B is the restriction to Ho of the multiplication
by −i cos(θ). The skew-adjoint operators B is bounded and
has no eigenvalue: EB = Ho. For every j, k, 〈φj , Bφk〉 = 0
if |j − k| 6= 1, and 〈φj , Bφj+1〉 = −i/2. For every N ,
transition (N,N + 1) is not degenerate and system (8) is
approximately controllable in the unit sphere of Ho.

Theorem 11: If α > 5/2, then for every ψ0, ψ1 in the
Hilbert unit sphere of Ho, for every ε > 0, for every T > 0,
there exists a piecewise constant function u : [0, T ] → R
such that ‖Υu

Tψ0 − ψ1‖ < ε. In other words, for (8), if
α > 5/2 then ρ = 0.

B. Some time estimates

Proposition 12: Assume α > 5/2. Let N0 large enough,
P ≥ N0 and ψ0, ψ1 be in LP ∩ L⊥N0−1 such that ‖ψ0‖ =
‖ψ1‖ = 1. Then, for every ε > 0, there exists u such that
(8) steers ψ0 to an ε-neighbourhood of ψ1 in time less than

2400

α2ε(2α− 5)

1

(N0 − 1)2α−4
+

2π

N2α
0

.

Proof: From Proposition 9, there exists N1 in N such
that, for every u, ‖u‖L1 ≤ 8P implies that ‖Xu

(N1)(t, 0)ψ0−

Υu
t ψ0‖ ≤ ε/2. The problem is now to give an upper bound

on the time needed to steer ψ0 to ψ1 with system

dψ

dt
= A(N1)ψ + u(t)B(N1)ψ.

The idea is to find a control u1 that steers ψ0 to a neighbor-
hood of eiϑ0φN0

for some ϑ0 in R in time T0 and, similarly,
a control u2 that steers ψ1 to a neighborhood of eiϑ1φN0 for
some ϑ1 in [ϑ0, ϑ0 + 2π) in time T1. The final control is
the concatenation of control u1, of control 0 during time
|ϑ1 − ϑ0|/λN0

and finally of the time-reverse of u2 (which
steers eiθ1φN0

to a neighborhood of ψ1). The total duration
is T0 + |ϑ1−ϑ0|/λN0

+T1. What remains to do is to give an
estimate for T0 (the same computation gives a similar result
for T1).

Let us describe intuitively our method. To induce the
transition from ψ0 to φN0

, we will first put the L2 mass of
the P th level of ψ0 to level (P − 1), without changing the
modulus of the other coordinates of ψ0. Then, we put all the
L2 mass of the (P−1)th level to level P−2, and so on until
all the mass is concentrated, up to a small error, on level N0.
We give now a formal description of the above method. We
proceed by induction on N from P to N0 to steer ψ0 = ψP0
to ψP−1

0 such that ‖(1 − πP−1)ψP−1
0 ‖ + ‖πN0−1ψ

P−1
0 ‖ ≤

ηP . If ψN+1
0 is constructed, we steer ψN+1

0 to ψN0 such that

‖(1−πN )ψN0 ‖2 +‖πN0−1ψ
N
0 ‖2 ≤ 1−

(
1−

∑
l≥N ηl

)2

. To

this end, we write ψN+1
0 =

∑
l≥N0

xlφl and we define

u∗ : t 7→ (λN+1 − λN ) cos(|λN+1 − λN |t+ θN )

θN = arctan

(
|xN+1|√

|xN |2 + |xN+1|2

)
, KN = 4

π − 2θN
π

,

CN =

∣∣∣∣∫ 2π
(N+1)2α−N2α

0 u∗(t)ei(((N+2)2α−(N+1)2α)tdt

∣∣∣∣∣∣∣sin(π (N+2)2α−(N+1)2α

(N+1)2α−N2α

)∣∣∣ ,

ηN =
N0ε

4N2
, nN =

4(1 + 2KN‖B(N1)‖)(CN + 1)‖B(N1)‖
ηN

,

τN =
πKNnN

2|λN+1 − λN |
≤ 8π(1 + 2KN‖B‖)(CN + 1)‖B‖

(λN+1 − λN )ηN
.

Following Proposition 3, ψN0 is obtained from ψN+1
0 by

using control t 7→ u∗(t)/nN during time τN , ψN0 =

X
u∗/nN
(N1) (τN , 0)ψN+1

0 . The L1 norm of the control (equal
to KN ) is chosen (using the computation of Section II-C)
in such a way that exp

(
KNM

†) sends the mass of the
(N+1)th eigenstate to the N th one, that is a rotation of angle
θN . Since, for every N , bN,N+1 = −i/2, the matrix M†

appearing in Proposition 3 is a block diagonal matrix with
every block equal to zero, but the one in position N,N + 1
equal to (

0 −ieiωNπ/8
ie−iωNπ/8 0

)
.

The phase ωN is equal to aN − bN + π where aN and bN
are the phase of coordinates N + 1 and N of ψN+1

0 .



Notice that, while Proposition 3 is stated for n an integer,
nN is not an integer in general. Nevertheless we can apply
Proposition 3 with the integer part bnNc in order to ensure
that the transformation is done with an error less than ηN .
Changing the integer bnNc to the real number nN does not
change the bound on the error for more than a factor two
for large nN .

With our definitions of A and B, λN = N2α and ‖B‖ ≤ 1.
Straightforward computations yield, for N0 large enough,

CN + 1 ≤ 2N

απ
, KN ≤ 4 τN ≤

600

α2N0εN2α−4
,

and, for N0 large enough,

T0 ≤
P∑

N=N0

τN

≤ 600

α2N0ε

P∑
N=N0

1

N2α−4

≤ 600

α2N0ε(2α− 5)

2

(N0 − 1)2α−5

≤ 1200

α2ε(2α− 5)

1

(N0 − 1)2α−4
.

Finally, for N0 large enough, the total time needed to steer
ψ0 to an ε-neighborhood of ψ1 is less than

2400

α2ε(2α− 5)

1

(N0 − 1)2α−4
+

2π

N2α
0

,

which concludes the proof of Proposition 12.

C. Proof of Theorem 11

Proof: [of Theorem 11] Let ψ0, ψ1 in SH , ε > 0. To
prove Theorem 11, it is enough to prove that the system
(8) can approximately steer one point of {eKBψ0,K ∈ R}
to an ε-neighborhood of one point of {eKBψ1,K ∈ R} in
arbitrary small time.

Since α > 5/2, N4−2α
0 and N−2α

0 tend to zero as N0

tends to infinity. Define N0 in N such that

2400

α2ε(2α− 5)

1

(N0 − 1)2α−4
+

2π

N2α
0

< η.

By the RAGE-Theorem (Theorem 7), there exist K0 and K1

in R such that ‖πN0
eK0Bψ0‖ < ε and ‖πN0

eK1Bψ1‖ < ε.
There exists P in N such that ‖(1− πP )eK0Bψ0‖ < ε and
‖(1− πP )eK1Bψ1‖ < ε.

By Proposition 12, there exists a control that steers πP (1−
πN0−1)ψ0 to an ε-neighborhood of πP (1−πN0−1)ψ1 in time
less than η. This concludes the proof of Theorem 11.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This note presents a simple example of bilinear conserva-
tive control system in an infinite dimensional Hilbert space
for which approximate controllability in the Hilbert unit
sphere holds for arbitrary small time.

B. Future Works
At this time, we have no simple criterion to decide in

the general case (unbounded drift operator A and control
operator B without eigenvalue) whether a system of type
(2) has zero temporal diameter. New methods will likely be
needed for further investigations.
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