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Exponentials

Let M be a smooth connected manifold. Let V, V, be complete.

Autonomous v.f. V € VecM Nonautonomous v.f. V; € VecM
g(t) = Vig(1) g(t) = Vilq(®)
q(0) = qo. q(to) = qo0,

For every fixed ¢

oV [t
exp / V.dr

to

is a diffeomorphism of M which maps any ¢y € M to the value of the
solution at time ¢ of the system.
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Our goal

Let F C VecM be a family of vector fields we set
GtF = {e"io...0e : 1, e R, f; € F, k € N}.

Our purpose is to study the relation between GrF and Diffy(M).
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Our goal

Let F C VecM be a family of vector fields we set
GtF = {e"io...0e : 1, e R, f; € F, k € N}.

Our purpose is to study the relation between GrF and Diffy(M).

Thurston 1971
If M is compact then the group Diff, (M) is simple. J

If 7 = VecM then GrF is a normal subgroup of Diff,(M). Therefore

Gr(VecM) = Diffy(M) J




The main result

Theorem
If M is compact and GrF acts transitively on M, then

Gr{af :a € C*(M), f € F} = DiffoM.

Remark (Lobry)

The set of pairs (f1,f2) such that Gr{f,,/>} acts transitively on M is
dense in VecM x VecM.
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The main result

Main Theorem

Let M be a compact connected manifold and F C VecM.
If GrF acts transitively on M, then there exist

@ a neighborhood O of the identity in Diff,(M);
@ a positive integer u
such that every P € O can be presented in the form

— puifi aul
P_e] o...oellffﬂ’

forsomefi,....f, € Fandai,...,a, € C*(M).




MAIN RESULT

The main result

Main Theorem

Let M be a compact connected manifold and F C VecM.
If GrF acts transitively on M, then there exist

@ a neighborhood O of the identity in Diff,(M);
@ a positive integer u
such that every P € O can be presented in the form

— puifi aul,
P_e] o...oelljﬂ’

forsomefi,....f, € Fandai,...,a, € C*(M).

Remark
The number of exponentials ; does not depend on P.

Open Problem
Estimate .
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Control Systems

By Control System we mean a system of the form:

q=fulg), qEMucU, )

where
@ g € M is called state;
@ u € U is called control,
@ U C R™is called set of control parameters.
We represent the control system by a family of vector fields

F={fu :uecU} CVecM.

Control systems <= Families of vector fields J
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Attainable sets

The set of points reachable is called attainable set.
Attainable set

Aq:{qoet‘f‘o-noe“‘fk ] tiZO,fiG}-,kEN}.

We consider a larger set: the Orbit
Orbit

O, = {goeo-..oe" .1, eR, f € F,keN}
{goP : PeGtF}.

v

If a family F is symmetric, namely if 7 = —F, then the attainable sets
coincide with the orbits, i.e. A, = O,.
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Controllability

Definition: Controllability

A system F is controllable <= A, =M, foreveryqgec M. J
Remark

GrF acts transitively on M <= O, =M, foreveryge M. J

If 7 is symmetric then

Controllability on M

I
“Controllability” on Diffy(M)
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Bracket Generating families

Definition
(*] L1e(.7:) = span{[fl, [ o c [fkfl,fk] .. H fl,. i € Fk e N}
@ Lie, F = {f(q) : f € Lie(F)}.

Definition
We say that the family F is bracket generating if

Lie, F =T,M foreveryqgec M.

Theorem (Chow—Rashevsky)
Let F be a bracket generating family of vector fields. Then

O,=M, foranygeM.
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Application to control systems

Corollary
Let{fi,...,fu} be bracket generating. Consider the system

g=>Y w9, qeM, (1)
i=1
with controls that are
@ piecewise constant int,
@ smooth in gq.
For every P € Diffy(M) there exist controls u;(t,q) such that

1 m
P:er)/ > it dr.
0 =1
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Outline of the proof

@ Localization of the problem;

@ Use the controllability assumption to consider a full-dimensional
case;

@ Restriction to a 1-dimensional problem with parameters;
@ Linearize the diffeomorphism.
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Localization

Lemma (Palis—Smale)
Let|J U; = M be an open covering of M and O be a neighborhood of

J
identity in DiffoM.
Then the group DiffyM is generated by the subset

{P € O : 3 such that supp P C U;}.

Where supp P = {x € M : P(x) # x}.
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Orbit Theorem

Theorem (Orbit Theorem of Sussmann)
0, is a connected submanifold of M. Moreover,

T,0, =span{go AdPf : Pc GtF.f € F}, peO,.

Recall that transitivity of the action of Gr7 on M — O, = M.
If X1(q),...,X.(q) form a basis of T,M then

e“‘X‘o...oea”X”EGr{af:aECoo(M),fEf} J

for every ay,...,a, € C>(M).
Indeed X; = AdPyfifor i=1,...,nwith P, € GtF, f; € F
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The problem reduces to

Given Xy, ..., X, such that
span{X;(0),...,X,(0)} =R".

We have to prove that there exist

@ an open neighborhood U C R”;

@ a open subset of O C Diffy(U);
such that every P € O can be written as

P =45 ... 0 e¥n (Z)J

In the following we study analytical properties of map

2 )

aXi o, anXn

oce

(ayy...,ay) — €
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Outline of the proof

@ Localization of the problem;

@ Use the controllability assumption to consider a full-dimensional
case;

@ Restriction to a 1-dimensional problem with parameters;
@ Linearize the diffeomorphism.
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Restriction to a single direction

Let Xi,...,X, € VecR" such that
span{X;(0),...,X,(0)} =R".

For

@ U neighborhood of the origin in R";

@ U neighborhood of the identity in Diffy(U);
small enough every P € U splits into the composition

P=pio-oply, |
where ; € Diff(U) and preserves the 1-foliation generated by the
trajectories of the equation ¢ = X;(g), for every i = 1,...,n. Namely of
the form

1
(p,:€7f)/ a(t,~)X,»dt.
0
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Idea
The linear diffeomorphism of U C R, say

x+—>ax|U, a#l, (a>0),

is the exponential of the linear vector field log(a)x2-
@ Itis possible to take a nonempty open subset of U/ such that the
linearization of every ¢ is not trivial.

@ The change of coordinates that linearizes can be recovered from
the solution of the PDE:

Ou @

a(t7x7y)7(t’xay) + ot

o (t,x,y) + b(t,x,y)u(t,x,y) =0, (3)7/

witht,x € R,y € R""! O
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Improvements

q:Zui<t7Q)fia C]EM,

i=1

with {f1,...,fn} bracket generating .
For every P € Diffy(M) there exist controls (¢, q) that are

(i) piecewise constant w.r.t. ¢,
(i) smooth w.r.t. .
such that P is the flow at time 1 of the system.
@ Is it possible to assume controls more regular?
@ Is it possible to add a drift to the system?
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The Second Result

Let {fi,f,....fn} bracket generating. Consider the system

i=1

q :fO(Q) + Zui(ta q)ﬁ(q)a qgc an J

with controls u; such that, forevery i =1,... m:
(i) u; is polynomial with respect to g € R”;
(ii) u; is a trigonometric polynomial with respect to 7 € [0, 1].
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The Second Result

Let {fi,f,....fn} bracket generating. Consider the system

m

q="rolg) + Y _uw(t,9)f(q), qeR,

i=1

with controls u; such that, forevery i =1,... m:

(i) u; is polynomial with respect to g € R”;

(ii) u; is a trigonometric polynomial with respect to ¢ € [0, 1].
Let k be a positive integer and consider

JP)E) = P(0) + (DP(0)) - 2+ S(0°P(0) -2 -4 2RO on

Let r be a positive integer, € > 0, and B ball in R". For any
P € Diffy(R"), there exist controls u;(z,q), . . ., un(t, ¢) such that, if @ is
the flow at time 1 of the system then

J5(®@) =J5P) and ||® — P|lop) < J
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The core of the method

We have to study analytical properties of map

a1 X @ oo

(ayy...,a,) — ¢ -oea”X"|U, (4)J

Consider
@ the space X of polynomials of degree < k, in n variables;
@ the jet—group Y = J§(Diffy(R"));

and consider the map:

F X" — Y
(ar,y...,ay) > JE(eXio. .. 0emXn)

dimX < oo and dimY < oo
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Implicit Function Theorem applied to F

F: X" — Y
(ar,...,a,) +—— JE(e X1 0... 0em)

@ F(0,...,0) =Id;
@ T Y = J&(Vec(R"));
@ DyF(ai,...,ay) = a1Ji(X1) + ... + anJE(Xa)-

DyF is surjective

Thus F is locally surjective.
Moreover:

@ Fis continuous;
@ F has aright inverse;
@ the right inverse of F is continuous.
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Relaxation

Theorem
If GrF acts transitively on R" . For any P € Diffy(R"), there exists a
sequence
{P;}; C Gr{af : a € C*(R"),f € F}
such that

P,— P, asj— oo

in the C*>°—topology.
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Relaxation

Theorem
If GrF acts transitively on R" . For any P € Diffy(R"), there exists a
sequence
{P;}; C Gr{af : a € C*(R"),f € F}
such that

P, — P, asj— oo

in the C*>—topology.

Proposition

Ifv, = Z a;(1,)X;, = 3 Z" sequence of piecewise constant w.r.t. t

vectorf/eldsst Zhe{aX;|laeC®i=1...,m}, Vit n,and

t i
%/ZﬁdT —»e?f)/ V.dr, asn— o
0 0

in the C>—topology and uniformly w.r.t. t € [0, 1].
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&b [ Ve dr

exp [, Ztdr

exp /(; 7l dr
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Back to Control Systems

Let {fi,...,fn} be a bracket—generating family and consider the
control-affine system

g="> ut,q)fi(q), qER". J

i=1

for every P € Diffy(R?):
@ there exist (¢, -) piecewise constant in ¢
such that

1] m
JE(P) = JE(e®1 0. .. Jk<exp / Z fdt).

and

exp / Z ,-)f; dt is arbitrary close to P.




GET THE JET

[e]e]e]e]o]e] lelelele]e]

Lemma
Consider the control system

with
@ {fi,/»,...,fn} bracket generating;
@ u; piecewise constant with respect tot € [0, 1];
@ u; smooth with respect to q.

Let N and r be positive integers, € > 0, and B ball in R". For any
P € Diffy(R"), there exist controls u;(t,q), - .. ,un(t,q) such that, if

@:eﬁ’)/ Zu, Nfidt.

then
JE(®)=J5(P) and ||®—P

c(B) <E.
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If U is the space of controls u(t, ¢):
@ smooth w.r.t. g;
@ piecewise constant w.r.t. r.
By Implicit Function Theorem the map:

F: un —
1 m

(Uny oo oyu) — I exp/ Zu, f; dt)

is continuous, surjective and with continuous right inverse.

Remark

Lete > 0. If G: U™ — Yis s.t. sup, ¢ |[F(x) — G(x)| < e forany K
compact,
then G is surjective too.

Small perturbations of map F remain surjective. J
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Theorem

Let{fi.f,-..,fn} be a bracket generating family of vector fields on
R". Consider the control system

m

4= > uilt.q)fi(e), qER",
i=1
with controls u; such that, foreveryi=1,... m:
(i) u; is smooth w.rt. g € R";
(ii) u; is piecewise constant w.r.t. t € [0, 1].

Let N and r be positive integers, € > 0, and B ball in R". For any
P € Diffy(R"), there exist controls u;(t,q), . .. ,un(t,q) such that, if

1 m
q):eTIS/fO+Zu,-(t,.)ﬁdt.
0 i=1

then
J5(®)=J5(P) and |[®—Plcp) <e.
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Theorem

Let{fi.f,-..,fn} be a bracket generating family of vector fields on
R". Consider the control system

m

g="rq) + > wt,q)f(q), qeR",
i=1

with controls u; such that, foreveryi=1,... m:
(i) u; is smooth w.rt. g € R";
(ii) u; is piecewise constant w.r.t. t € [0, 1].

Let N and r be positive integers, € > 0, and B ball in R". For any
P € Diffy(R"), there exist controls u;(t,q), . .. ,un(t,q) such that, if

1 m
q):eTIS/fO+Zu,-(t,.)ﬁdt.
0 i=1

then
J5(®)=J5(P) and |®—Plcs) <e.
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Theorem

Let{fi.f,-..,fn} be a bracket generating family of vector fields on
R". Consider the control system

m

q=rflg)+ Z”"(” 9fi(q), qeR",

with controls u; such that, foreveryi=1,... m:
(i) u; is polynomial w.r.t. g € R";
(ii) u; is piecewise constant w.r.t. t € [0, 1].

Let N and r be positive integers, € > 0, and B ball in R". For any
P € Diffy(R"), there exist controls u;(t,q), . .. ,un(t,q) such that, if

1 m
q):eTIS/fO+Zu,-(t,.)ﬁdt.
0 i=1

then
Js(®)=J5(P) and |[®—Pllcs) <e.
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Theorem

Let{fi.f,-..,fn} be a bracket generating family of vector fields on
R". Consider the control system

m

q=rflg)+ Z”"(” 9fi(q), qeR",

with controls u; such that, foreveryi=1,... m:
(i) u; is polynomial w.r.t. g € R";
(i) wu; is trigonometric polynomial w.r.t. ¢ € [0, 1].

Let N and r be positive integers, € > 0, and B ball in R". For any
P € Diffy(R"), there exist controls u;(t,q), . .. ,un(t,q) such that, if

1 m
q):eTIS/fO+Zu,-(t,.)ﬁdt.
0 i=1

then
Js(®)=J5(P) and |[® —Pllcs) <e.
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An application of Nash—Moser

.0 e

F: M) — Diffo (M) 5
(al,...,a,,) — WX g .. X ()

The problem is to prove:
@ Fislocally onto;
@ small perturbations of the map F are locally surjective too.

Remark
Recall that point 1 implies the Main Theorem. J
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An alternative proof of Main Theorem

Proposition
LetX; € VecR", i = 1,...,n, such that

span{X;(0), ...,X,(0)} =R".

Then, there exist o > 0 and an open subsetU C C3°(B,)", such that
the mapping

F:U — Diffy(B,),
(al,...,an) — eulxlo...oeanxn)

(6)

B,’

is an open map from U into Diffy(B,), where

B,={e"Mo-0e"™(0): 5| <o, i=1,...,d}.
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Classical Implicit Function Theorem does not apply

It is possible to prove that
@ F maps C* functions into C* diffeomorphisms;
@ D,F maps C* functions into C* vector fields;
© D,F~! maps C* vector fields into C*~! functions.
Therefore
@ D,F~! “loses derivatives” <= The inverse of D,F is unbounded.
@ We have to look to map F as a map between Fréchet spaces.
@ We need to apply the Nash—Moser Implicit Function Theorem.
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Tame Spaces

Stated in terms of Tame Spaces and Tame Maps (Sergeraert 1970)

Definition (Graded Fréchet space)
A Fréchet space F with a family of seminorms {|| - ||,,}sen S-t.

Wfllo < Wl S fll2 < -

@ The space C*°(B) is a graded Fréchet with the family

1l = sup sup|f® (x)|.

1<k<n x€B

Spaces of smooth functions are something more:
@ C*°(B) and VecM are Tame Spaces;
@ Diffy(M) is a Tame Manifold.

Tame space means "scale of Banach spaces”. J
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Tame Maps

Definition (Tame Estimates)

Let X and Y tame spaces and F : U C X — Y. F satisfies tame
estimates of degree r and base b if there exists C = C(n) such that

IF(@)l» < C(llallnsr + 1),

for everyn > b, a € U.

Definition (Tame Map)

Amap F: U C X — Y is a smooth tame map if it is differentiable and
together with its differential satisfies tame estimates in a neighorhood
of each point.

Example

The map Exp : VecM — Diff(M) that sends f — ¢’ is a tame map.
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Hamilton’s version of Nash—Moser Theorem

Theorem (Nash—Moser)
LetX andY be tame spaces and

F:UcCcX—=Y

a smooth tame map. If
@ D,F(§) = n has a solution for every a € U and for every n;
@ DF~': 0O x Y — X is a smooth tame map.

Then F is locally surjective. Moreover in a neighborhood of any point
F has a smooth tame right inverse.

The method is:
@ prove that F is tame;
@ prove that D, F(¢) is tame bothina € O and € € X
@ invert DF not only in one point, but in all the neighborhood U;
@ prove that (D,F)~! is tame;
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Open Problems

We have that for u;(7), ..., u, () piecewise constant

— 1z
a) =exp /0 Z ui(t)af;, dt, J
i=1

is locally surjective. Consider the truncated fourier series of u;(¢), say
uk(t). Is the map

—exp Z u; (t)aif;, dt J

locally surjective too?

@ No fixed point argument applies;
@ Nash—Moser method (Newton iteration scheme) is the right tool.



CONCLUSION

“Of course the problem is hard! But this is SISSA... not a small
mediocre university!”

“Certo che il problema é difficile! Ma questa e la SISSA... mica una
piccola universita mediocral”




CONGLUSION

Main Theorem

Let M be a compact connected manifold and F C VecM.
If GrF acts transitively on M, then there exist

@ a neighborhood O of the identity in Diff,(M);
@ a positive integer u
such that every P € O can be presented in the form

— Wi anm
P_ello...oeﬂj}’

forsomefi,....f, € Fandai,...,a, € C°(M).
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