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Notations

Ck([a, b]; lRn) space of k times continuously differentiable functions f : [a, b]→ lRn

Ck([a, b]) space of k times continuously differentiable functions f : [a, b]→ lR

C∗([a, b]; lRn) space of piecewise continuous functions f : [a, b]→ lRn

C1
∗([a, b]; lRn) space of piecewise continuously differentiable functions f : [a, b]→ lRn

∂f
∂x

; Dxf ; fx partial derivatives of f with respect to the x variable

∂2f
∂x2 ; D2

xf ; fxx second partial derivatives of f with respect to the x variable

< a, b >; a · b scalar product of a and b

Mn×m space of n×m matrices

v



vi



Preface

The origin of Dynamic Optimization as a mathematical discipline can be traced back
at least to the year 1696, when the first official problem in Calculus of Variations was
formulated in a celebrated work by J. Bernouilli on the brachistocrone problem. However,
such a subject must have interested mankind for a much longer time, at least according
to Euler who wrote that ‘nothing at all takes place in the universe in which some rule of
maximum or minimum does not appear’. Since then, Calculus of Variations has been an
extremely active research area, rich of surprising results and new stimulating problems,
well connected with science and engineering. It was mostly for the needs of airspace
engineering and economics that, with the rapid development of Optimal Control and
Game Theory, in the second half of the twentieth century the subject grew into what is
now considered to be Dynamic Optimization. Several adaptations of the theory were later
required, including extensions to stochastic models and infinite dimensional processes.

These lecture notes are intended as a friendly introduction to Calculus of Variations
and Optimal Control, for students in science, engineering and economics with a general
background in ordinary differential equations and calculus for functions of several real
variables. In order to keep the exposition at a beginner’s level, we have deliberately
omitted any attempt to study the existence of optimal controls. In this way, no knowledge
of Lebesgue’s integration theory is required. Here, the main focus will be on optimality
conditions—either necessary or sufficient—and examples. In fact, we will examine in
detail both mathematical and economical models, such as the problem of Queen Dido,
the time-optimal capture of a wandering particle, the Evans model for a monopolistic firm
production and the Nordhaus model for optimal strategies in a democracy.

This book is organized as follows. Chapter 1 is concerned with Calculus of Varia-
tions. After introducing some classical examples, we quickly derive first order necessary
conditions, including the Euler-Lagrange equations and Erdmann’s condition. Then, we
apply these results to the examples introduced before. Afterwards, we discuss second
order optimality conditions and deduce Jacobi’s theory. Finally, we analyse a particu-
lar case of constrained problem, namely the isoperimetric problem. In Chapter 2, we
study optimal control problems. First, we obtain necessary optimality conditions in the
form of Pontryagin’s Maximum Principle for the Mayer problem. Then, we extend this
result to the Bolza problem and to problems with terminal constraints. The Maximum
Principle is used to study several different examples. Finally, after having introduced
the basic objects of Dynamic Programming, namely the value function, the optimality
principle and the Hamilton-Jacobi-Bellman equation, we show how to use this technique
to construct optimal trajectories. To assist the reader who may here be confronted with
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partial differential equations for the first time, we have provided a short exposition of
the classical method of characteristics. We conclude with an Appendix on the classical
Legendre-Fenchel transform.

The current version of these notes has profited by remarks and contributions coming
from students in mathematics and economics who were trained in this subject over the
last few years at the University of Rome Tor Vergata. Moreover, in writing Chapter 1,
we have been influenced by the lectures given by Francis Clarke this year at Tor Vergata.
We will also be grateful to anyone who will spot misprints and errors in the monograph,
reporting them to one of the e-mail addresses below.

Piermarco Cannarsa
cannarsa@mat.uniroma2.it

Elena Giorgieri
giorgier@mat.uniroma2.it

Maria Elisabetta Tessitore
tessitore@sefemeq.uniroma2.it
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Chapter 1

Calculus of Variations

1.1 Basic Problem in Calculus of Variations

Calculus of Variations is a branch of mathematics starting between the end of the seven-
teenth century and the middle of the eighteenth. Some of the basic problems arisen at
that time were the following.

Example 1.1.1 Given two points (a,A) and (b, B) (a 6= b) in the plane lR2, we want to
find the regular curve joining them that has minimal length. We can represent any such
a curve γ by means of a regular function

x(·) : [a, b]→ lR

such that x(a) = A, x(b) = B, for which the length is given by the formula

Length(γ) =
∫ b

a

√
1 + x′(t)2 dt =: J(x),

where x′(·) denotes the derivative of x(·).
It is easy to see that the problem concerns the minimization of the functional J over the
aforementioned class of functions.

Remark 1.1.2 The problem is of course trivial in the plane, because (as we will see later)
the unique solution is given by the segment joining (a,A) and (b, B); but this example
becomes more meaningful (and more involved) if, for instance, we require the curve to be
in the space lR3 and to join points on a given surface (the problem of geodesic).

Example 1.1.3 (The soap bubble problem) Consider in the space lR3 the circles{
y2 + z2 = A2

x = a.
,

{
y2 + z2 = B2

x = b.
,

where a 6= b. Consider any regular curve in the xz-plane ξ : [a, b]→ lR3, ξ(x) = (x, 0, α(x))
such that α(a) = A and α(b) = B and the surface of revolution generated by ξ.
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We want to minimize the area of the resulting surface among all the regular functions ξ
defined above. But the area of any such a surface S is given by

Area(S) = 2π
∫ b

a
α(x)

√
1 + α′(x)2 dx =: J(α),

so that the problem deals with the minimization of the functional J over the class of
regular functions α such that α(a) = A and α(b) = B.

Example 1.1.4 Consider a particle x(t) moving from time t1 to time t2 between two
points A and B and subject to a conservative force F (x(t)) = −∇V (x(t)). Among all the
(admissible) trajectories, we want to find the one that minimizes the “action”, i.e. the
functional

J(x) =
∫ t2

t1

[
1

2
m|x′(t)|2 − V (x(t))

]
dt,

where m is the mass of the particle and 1
2
m|x′(t)|2 is its kinetic energy. Roughly speaking,

we want to find the trajectory that goes from A to B in time t2 − t1 with “minimal
dissipation of energy”.

Example 1.1.5 (The brachistochrone problem - G. Bernoulli, 1696) Consider
a vertical plane π and two fixed points (a,A) and (b, B), with a < b and A > B. Take
any regular curve γ connecting (a,A) and (b, B) and a point P bound to this curve that
slips from (a,A) with initial velocity v0 > 0 to (b, B) subject to the gravity force only.
Among all the curves γ we want to find the one along which the point P reaches (b, B)
in minimal time. If we represent γ as a graph of a regular function x 7→ y(x) such that
y(a) = A and y(b) = B, it can be shown that the time for P to cover the distance (along
γ) between (a,A) and (b, B) is given by

Time(γ) =
1√
2g

∫ b

a

1√
H − y(x)

√
1 + y′(x)2dx =: J(y),

where H = A + v2
0/2g and g is the gravity acceleration. Hence, the given problem can

be formulated as the minimization problem of the functional J over the class of regular
functions y(·) such that y(a) = A and y(b) = B.

The previous examples show that a natural approach to solve many problems in Cal-
culus of Variations is to formulate them as a problem of minimization and (provided we
know that solutions exist) to look for necessary conditions which have to be satisfied by
minimizers. Although the setup of these examples is the space of C1 functions, we will
present a more general case, that is the one defined on the space of piecewise C1 functions.
Let us start by defining the general setting.

Definition 1.1.6 A continuous function ξ : [a, b]→ lRn is said to be piecewise C1 if there
exists a finite partition of [a, b], say

Π = {t0, t1, . . . , tN}, a = t0 < t1 < . . . < tN = b,
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such that ξ ∈ C1([ti, ti+1], lRn) for any i = 0, . . . , N−1, meaning that ξ ∈ C1((ti, ti+1), lRn)
and the right and left derivatives exist at ti and ti+1, respectively. In the sequel we will
denote by C1

∗([a, b], lR
n) the class of all piecewise C1 functions.

Fix a, b ∈ lR, a < b, and let Sa, Sb ⊂ lRn be closed nonempty sets. Denote by
C1
∗([a, b]; lRn) the class of all piecewise continuously differentiable arcs ξ : [a, b]→ lRn. We

define the set of admissible arcs by

A = {ξ ∈ C1
∗([a, b]; lRn) : ξ(a) ∈ Sa, ξ(b) ∈ Sb}.

Moreover we define the functional J over A as

J(ξ) =
∫ b

a
L(t, ξ(t), ξ′(t))dt+ φa(ξ(a)) + φb(ξ(b)), (1.1)

where L : [a, b] × lRn × lRn → lR, φa : lRn → lR, φb : lRn → lR are given continuous
functions called running cost (or Lagrangian), initial cost and terminal cost, respectively.
Notice that the integral in (1.1) is well defined on A since the number of discontinuity
points of the derivative of any element ξ ∈ A is finite.

The general problem we are dealing with is the minimization problem of the functional
J over the class of functions A, i.e.

min {J(ξ) | ξ ∈ A} . (1.2)

Definition 1.1.7 An admissible arc ξ∗ ∈ C1
∗([a, b]; lRn) is a minimizer (or a solution) of

problem (1.2) if

ξ∗ ∈ A and J(ξ∗) = min {J(ξ) : ξ ∈ A}. (1.3)

In the sequel it will be also useful to consider the notion of local minimizers.

Definition 1.1.8 An admissible arc ξ̄ ∈ C1
∗([a, b]; lRn) is a local minimizer of problem

(1.2) if there exists ε > 0 such that J(ξ̄) ≤ J(ξ) for any admissible ξ ∈ C1
∗([a, b]; lRn)

satisfying

max
t∈[a,b]

|ξ̄(t)− ξ(t)| < ε and max
i=1,...,N

max
t∈[ti,ti+1]

|ξ̄′(t)− ξ′(t)| < ε,

where Π = {t0, t1, . . . , tN} is a common partition for ξ̄ and ξ.

To simplify the notations, in the sequel we will set

‖ξ̄ − ξ‖∞ := max
t∈[a,b]

|ξ̄(t)− ξ(t)|

and
‖ξ̄′ − ξ′‖∗∞ := max

i=1,...,N
max

t∈[ti,ti+1]
|ξ̄′(t)− ξ′(t)|.

Observe that any minimizer of problem (1.2) is a local minimizer, while the converse is
not true in general.
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Remark 1.1.9 In the sequel we will be concerned with minimization problems only since
a maximization problem can be rewritten as a minimization one recalling that given a
function f , then

max f = −min(−f).

In Calculus of Variations, the first problem we face is to ensure the existence of a
minimizer ξ∗ of functional (1.1). From now on L, φa and φb will be required to satisfy at
least the following assumptions

φa, φb ∈ C1(lRn), and L ∈ C1([a, b]× lRn × lRn);

φa, φb, L ≥ −c, for some c ∈ lR+.
(1.4)

In the first half of the 20th century Tonelli proved the existence of minimizers for
problem (1.2) under the following (stronger) assumptions on L, φa and φb:

(E1) φa, φb ∈ C1(lRn), and L ∈ C1([a, b]× lRn × lRn);

φa, φb ≥ −c and L(t, x, q) ≥ θ(|q|)− c, for some c ∈ lR+

and some nonnegative function θ such that lim
r→+∞

θ(r)

r
= +∞.

(E2) L is twice differentiable with respect to q and
∂2L

∂q2
> 0.

(1.5)

Remark 1.1.10 In assumption (E1) φa, φb are required to be bounded from below, while
L has to be superlinear, that is it has a fast growth. Function θ is often referred to as the
Nagumo function for functional J .
For instance assumption (E1) holds if there exist p > 1, ν > 0 and λ ∈ lR such that

L(t, x, q) ≥ ν|q|p + λ.

In assumption (E2), L is required to be strictly convex with respect to the third variable
q. If q ∈ lRn, then condition ∂2L

∂q2 > 0 means that the Hessian matrix is positive definite.

Hypothesis (E2) can be strongly relaxed requiring L to be a convex function with respect
to the third variable.

Theorem 1.1.11 (Tonelli’s Theorem) Assume (E1) and (E2). Moreover, if Sa or Sb
is a bounded set, then problem (1.2) admits at least one solution.

For the proof see [3].
Let us show that the theorem does not hold true (in general) if assumptions (E1) or

(E2) are not satisfied.
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Example 1.1.12 Assumption (E1) does not hold.
Let L : [0, 1]× lR× lR → lR be defined as L(t, x, q) =

√
x2 + q2, S0 = {0}, S1 = {1} and

φ0 = φ1 = 0. (E1) is not satisfied since L is sublinear.
The problem is to minimize {∫ 1

0

√
ξ(t)2 + ξ′(t)2dt | ξ ∈ A

}
,

where A = {ξ ∈ C1
∗([0, 1]; lR) : ξ(0) = 0, ξ(1) = 1}.

It is easy to see that

inf
{∫ 1

0

√
ξ(t)2 + ξ′(t)2dt | ξ ∈ A

}
= 1,

since for all ξ ∈ A∫ 1

0
L(t, ξ(t), ξ′(t))dt =

∫ 1

0

√
ξ(t)2 + ξ′(t)2dt ≥

∫ 1

0
|ξ′(t)|dt ≥ ξ(1)− ξ(0) = 1.

Hence if there exists ξ∗ where the minimum is attained, then J [ξ∗] ≥ 1.
On the other hand, evaluating the functional on the maps ξk(t) = tk, k ∈ lN, we have

∫ 1

0
L(t, ξk(t), ξ

′
k(t))dt =

∫ 1

0
tk−1
√
t2 + k2dt ≤

√
k2 + 1

[
tk

k

]1

0

=

√
k2 + 1

k
→ 1 as k →∞.

Hence J [ξ∗] = 1, which yields ξ∗ = 0. The conclusion that the minimum cannot exist
follows since the boundary conditions are not satisfied.

Example 1.1.13 Assumption (E2) does not hold.
Consider the map L : [0, 1] × lR × lR → lR, defined by L(t, x, q) = |x|2 + (|q|2 − 1)2,
S0 = {0}, S1 = {0} and φ0, φ1 ≡ 0 .
It is easy to see that inf{J(ξ) : ξ ∈ A} ≥ 0. Moreover, for the maps ξk ∈ A, k ≥ 2, given
by

ξk(t) =


t− j

k
for t ∈

[
j

k
,
2j + 1

2k

]
, j = 0, . . . , k − 1,

−t+
j + 1

k
for t ∈

]
2j + 1

2k
,
j + 1

k

]
, j = 0, . . . , k − 1,

we have
∫ 1

0 L(s, ξk(s), ξ
′
k(s))ds = 1

12k2 → 0, as k → ∞. Hence inf{J(ξ) : ξ ∈ A} = 0.
Hence, if a minimizer would exist, it should be the null function ξ∗ ≡ 0, as a simple
computation shows. But this cannot happen, since J(ξ∗) = 1.

Remark 1.1.14 It is important to stress that the existence result stated above, which
is meant for the problem over the class of piecewise C1 functions, holds true also for the
“restricted” problem on the class of C1 functions, without further assumptions. However,
the introductory Examples 1.1.1-1.1.3-1.1.5 do not satisfy hypotheses (E1) and (E2), so
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that Tonelli’s Theorem does not apply. Of course there are other theorems that guarantee
existence of minimizers for those problems, but their formulation is much more involved
than Tonelli’s one and their analysis is far beyond the scope of this course. So whenever
we handle again Examples 1.1.1-1.1.3-1.1.5 we will assume existence.

In the sequel, we will not consider problem (1.2) in the general form, but we will
mainly analyse two subcases:

min

{∫ b

a
L(t, ξ(t), ξ′(t))dt | ξ ∈ C1

∗([a, b]; lRn), ξ(a) = ξa, ξ(b) = ξb

}
,

which is a problem with given initial and terminal points, and null costs;

min

{∫ b

a
L(t, ξ(t), ξ′(t))dt+ φa(ξ(a)) | ξ ∈ C1

∗([a, b]; lRn), ξ(b) = ξb

}
,

which is a problem with a free initial point, a fixed terminal point and a not identically
null initial cost.

1.2 First Order Necessary Conditions

1.2.1 Euler equation

The standard technique applied in Calculus of Variations consists, first of all, in imposing
some necessary conditions in order to select from the admissible set of arcs A a suitable
subset of candidate minimizers, trying then to pick out a particular arc at which the
minimum value of the functional J is attained.

For the reader’s convenience, we begin by considering the simpler problem of mini-
mization over the class of C1 functions, i.e.

min

{∫ b

a
L(t, ξ(t), ξ′(t))dt | ξ ∈ C1([a, b]; lRn), ξ(a) = ξa, ξ(b) = ξb

}
, (1.6)

which is a problem with fixed boundary conditions and null costs.
Analogously to the C1

∗ case, we can define the notion of minimizer and local minimizer in
the C1 case.

Definition 1.2.1 An admissible arc ξ∗ ∈ C1([a, b]; lRn) is a minimizer (or a solution) of
problem (1.6) if

ξ∗ ∈ A and J(ξ∗) = min {J(ξ) : ξ ∈ A}, (1.7)

where A = {ξ ∈ C1([a, b]; lRn) : ξ(a) = ξa, ξ(b) = ξb}.
An admissible arc ξ̄ ∈ C1([a, b]; lRn) is a local minimizer of problem (1.6) if there exists
ε > 0 such that J(ξ̄) ≤ J(ξ) for any admissible ξ satisfying

max
t∈[a,b]

|ξ̄(t)− ξ(t)| < ε and max
t∈[a,b]

|ξ̄′(t)− ξ′(t)| < ε.
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Let us first prove a technical lemma which will be useful in the sequel.
We denote by · or < ·, · > the scalar product in lRn.

Lemma 1.2.2 Let f, g ∈ C([a, b]; lRn) satisfy∫ b

a
[f(t) · η(t) + g(t) · η′(t)]dt = 0, (1.8)

for all η ∈ C1([a, b]; lRn) such that η(a) = η(b) = 0.
Then

i) g ∈ C1([a, b]; lRn);

ii) g′(t) = f(t), ∀t ∈ [a, b].

Proof– Suppose f is identically equal to 0. Recalling (1.8), for every constant c we
have ∫ b

a
(g(t)− c) · η′(t) dt =

∫ b

a
g(t) · η′(t) dt− c[η(b)− η(a)] = 0. (1.9)

Let η be defined as

η(t) =
∫ t

a
(g(s)− c) ds

where the constant c is chosen to satisfy condition η(b) = 0. Obviously, the definition of
η gives

η′(t) = g(t)− c. (1.10)

Since

η(b) =
∫ b

a
g(s) ds− (b− a)c,

we derive that

c =
1

b− a

∫ b

a
g(s) ds.

Therefore putting (1.10) into (1.9) we get∫ b

a
(g(t)− c) · (g(t)− c) dt = 0, ∀c ∈ lR.

Choosing c = c, the above equation can be rewritten as∫ b

a
(g(t)− c)2 dt = 0,

which yields g(t) = c.
If f is not identically 0, we define a function F as

F (t) =
∫ t

a
f(s) ds.
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Recalling (1.8) and integrating by parts we obtain

0 =
∫ b

a
[f(t) · η(t) + g(t) · η′(t)] dt =

∫ b

a
[F ′(t) · η(t) + g(t) · η′(t)] dt

= [F (b) · η(b)− F (a) · η(a)] +
∫ b

a
(g(t)− F (t)) · η′(t) dt

=
∫ b

a
(g(t)− F (t)) · η′(t) dt.

Now, exploiting the result obtained above, we have g(t)−F (t) = k, where k is a constant.
Hence the lemma is proved.

We are now ready to state the necessary conditions that a minimizer ξ∗ must satisfy.

Theorem 1.2.3 Assume (1.4) and let ξ∗ be a solution of (1.6). Then

i)
∂L

∂q
(·, ξ∗(·), ξ∗′(·)) ∈ C1([a, b]× lRn × lRn);

ii)
d

dt

∂L

∂q
(t, ξ∗(t), ξ∗′(t)) =

∂L

∂x
(t, ξ∗(t), ξ∗′(t)), ∀t ∈ [a, b]. (Euler equation)

Proof– Consider any perturbation function η : [a, b] → lRn such that η ∈ C1([a, b]; lRn)
and η(a) = η(b) = 0. Then the arcs ξ(t) = ξ∗(t) + λη(t) are admissible for any constant
λ. Since ξ∗ is a solution of (1.6)

J(ξ∗) ≤ J(ξ∗ + λη), λ ∈ lR.

In other words, J(ξ∗ + λη) has a minimum for λ = 0. Hence, applying the classic first
order condition on J we get

0 =
d

dλ
J(ξ∗ + λη)|λ=0

=
∫ b

a

[
<
∂L

∂x
(t, ξ∗(t), ξ∗′(t)), η(t) > + <

∂L

∂q
(t, ξ∗(t), ξ∗′(t)), η′(t) >

]
dt.

The result follows from Lemma 1.2.2, taking

f(t) =
∂L

∂x
(t, ξ∗(t), ξ∗′(t)) and g(t) =

∂L

∂q
(t, ξ∗(t), ξ∗′(t)).
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Remark 1.2.4 It is easy to prove that any local minimizer of problem (1.6) is a solution
of the Euler equation. Indeed, if ξ̄ is a local minimizer, then for any fixed C1([a, b], lRn)
function η such that η(a) = η(b) = 0 the map g : lR → lR defined by g(h) := J(ξ̄ + hη)
has a local minimum at h = 0. Hence g′(0) = 0 and the Euler equation derives from
Lemma 1.2.2 as in the previous theorem.

Let us now consider another kind of problem, namely the Bolza problem

min

{∫ b

a
L(t, ξ(t), ξ′(t))dt+ φa(ξ(a)) | ξ ∈ C1([a, b]; lRn), ξ(b) = ξb

}
, (1.11)

which is a problem with a free initial boundary condition, but not identically null initial
cost.

Then, proceeding as we did for problem (1.6), we derive the Euler equation and an
additional condition called transversality condition, which replaces the constraint on the
initial state.

Theorem 1.2.5 Assume (1.4) and let ξ∗ be a solution of (1.11). Then

i)
∂L

∂q
(t, ξ∗, ξ∗′) ∈ C1([a, b]× lRn × lRn);

ii)
d

dt

∂L

∂q
(t, ξ∗(t), ξ∗′(t)) =

∂L

∂x
(t, ξ∗(t), ξ∗′(t)), ∀t ∈ [a, b];

iii)
∂L

∂q
(a, ξ∗(a), ξ∗′(a)) = Dφa(ξ

∗(a)).

Proof– Consider any perturbation function η : [a, b] → lRn such that η ∈ C1([a, b]; lRn)
and η(b) = 0. Then the arcs ξ(t) = ξ∗(t) + λη(t) are admissible for any constant λ.
Proceeding as in the previous theorem and integrating by parts, we have

0 =
d

dλ
J(ξ∗ + λη)|λ=0

=
∫ b

a
<
∂L

∂x
(t, ξ∗(t), ξ∗′(t))− d

dt

∂L

∂q
(t, ξ∗(t), ξ∗′(t)), η(t) > dt

+ < Dφa(ξ
∗(a))− ∂L

∂q
(a, ξ∗(a), ξ∗′(a)), η(a) >, ∀η.

Hence the result follows.

Remark 1.2.6 If we consider the case

min

{∫ b

a
L(t, ξ(t), ξ′(t)) dt+ φb(ξ(b)) : ξ ∈ C1([a, b]; lRn), ξ(a) = ξa

}
, (1.12)
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then the transversality condition is

∂L

∂q
(b, ξ∗(b), ξ∗′(b)) = −Dφb(ξ∗(b)),

as it can be easily seen by proceeding as in Theorem 1.2.5.

Definition 1.2.7 The equation

d

dt

∂L

∂q
(t, ξ∗(t), ξ∗′(t)) =

∂L

∂x
(t, ξ∗(t), ξ∗′(t)) (1.13)

is called the Euler equation. Any arc ξ∗ which solves (1.13) is called an extremal for
problem (1.6) or (1.11).

The class of C1 functions is not large enough to solve many problems in Calculus of
Variations. This is the reason why we introduced the problem on the larger class of C1

∗
functions. Although such a class is not the widest one on which we can set the problem
it is general enough for the purpose of these notes. The next example shows a problem
admitting C1

∗ solutions, but no regular ones.

Example 1.2.8 Let L : [−1, 1] × lR × lR → lR be defined as L(t, x, q) = x2(q − 1)2,
S−1 = {0}, S1 = {1} and φ−1 = φ1 = 0. The problem is to minimize{∫ 1

−1
ξ(t)2(ξ′(t)− 1)2 dt | ξ(−1) = 0, ξ(1) = 1

}
.

It is easy to see that the problem, set either on the space C1([−1, 1]; lR) or C1
∗([−1, 1]; lR),

satisfies

inf
{∫ 1

−1
ξ(t)2(ξ′(t)− 1)2 dt | ξ ∈ A

}
= 0,

since by definition

inf
{∫ 1

−1
ξ(t)2(ξ′(t)− 1)2 dt | ξ ∈ A

}
≥ 0

and for the maps ξ∗n ∈ C1([−1, 1]; lR), n ∈ lN, given by

ξ∗n(t) =



0 for t ∈ [−1, 0)

n

2
t2 for t ∈ [0, 1/n)

t− 1

2n
for t ∈ [1/n, 1]

we have ∫ 1

−1
L(t, ξ∗(t), ξ∗′(t)) dt

=
∫ 1/n

0

n2

4
t4(nt− 1)2 dt =

[
n4t7

28
+
n2t5

20
− n3t6

12

]1/n

0

=
1

28n3
+

1

20n3
− 1

12n3
=

1

420n3
→ 0, as n→∞.
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The minimum cannot be attained on the class of C1 functions. Indeed, if a minimizer ξ∗

exists, then by
∫ 1
−1 ξ

∗2(t)(ξ∗′(t)− 1)2 dt = 0 we get that either ξ∗(t) ≡ 0 or ξ∗′(t) ≡ 1 on
[−1, 1]. But ξ∗ has to verify also ξ∗(−1) = 0, ξ∗(1) = 1, which is impossible for any such
a function. On the other hand, the minimum is achieved on the class of C1

∗ functions, for
example, by the map

ξ∗(t) =


0 for t ∈ [−1, 0)

t for t ∈ [0, 1].

Let us go back to the minimization problems over the class of C1
∗ functions, in partic-

ular to the fixed boundary conditions problem

min

{∫ b

a
L(t, ξ(t), ξ′(t)) dt | ξ ∈ C1

∗([a, b]; lRn), ξ(a) = ξa, ξ(b) = ξb

}
, (1.14)

and to the Bolza problem

min

{∫ b

a
L(t, ξ(t), ξ′(t)) dt+ φa(ξ(a)) | ξ ∈ C1

∗([a, b]; lRn), ξ(b) = ξb

}
. (1.15)

Let us see the appropriate formulation of the Euler equation for problems (1.14) and
(1.15).

Theorem 1.2.9 Assume (1.4) and let ξ̄ be a local minimizer for problem (1.14) or (1.15).
Then

i)
∂L

∂q
(·, ξ̄(·), ξ̄′(·)) ∈ C1

∗([a, b]× lRn × lRn);

ii) there exists c ∈ lR such that
∂L

∂q
(t, ξ̄(t), ξ̄′(t)) = c+

∫ t

a

∂L

∂x
(s, ξ̄(s), ξ̄′(s)) ds, ∀t ∈ [a, b].

(Integral Euler equation)

Moreover, if ξ̄ is a local minimizer for problem (1.15), then it also satisfies the transver-
sality condition

∂L

∂q
(a, ξ̄(a), ξ̄′(a)) = Dφa(ξ̄(a)).

Proof– Let us start by considering problem (1.14). Take any function η : [a, b] → lRn

such that η ∈ C1
∗([a, b]; lRn) and η(a) = η(b) = 0. Then the arcs ξ(t) = ξ̄(t) + λη(t) are

admissible for any constant λ. Since ξ̄ is a solution of (1.14)

J(ξ̄) ≤ J(ξ̄ + λη), λ small enough.
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In other words, J(ξ̄ + λη) has a local minimum for λ = 0. Hence, applying the classic
first order condition on J we get

0 =
d

dλ
J(ξ̄ + λη)|λ=0

=
N∑
i=1

∫ ti

ti−1

[
∂L

∂x
(t, ξ̄(t), ξ̄′(t)) · η(t) +

∂L

∂q
(t, ξ̄(t), ξ̄′(t)) · η′(t)

]
dt,

where Π = {t0, t1, . . . , tN} is a common partition for ξ̄ and η. As in Theorem 1.2.3 the
result follows from Lemma 1.2.2, which holds true if we replace C([a, b]; lRn) by

C∗([a, b]; lRn) =

{
ξ ∈ C([ti, ti+1], lRn), i = 0, . . . , N − 1, for some
partition Π = {a = t0, t1, . . . , tN = b} of [a, b]

}

and C1([a, b]; lRn) by C1
∗([a, b]; lRn). The integral Euler equation in the case of the Bolza

problem (1.15) can be derived by the previous argument, provided we take into account
the initial cost as in Theorem 1.2.5. Notice that any admissible function of the C1

∗ case is
continuously differentiable in a suitable right (left) neighbourhood of the initial (terminal)
point a (b).

Remark 1.2.10 Even though the proof of Theorem 1.2.3 shows that the Euler equation
(1.13) holds true almost everywhere for problems set on the class of C1

∗ functions, it is not
the most suitable tool to provide a reasonable selection of candidate minimizers. Indeed,
consider the problem

min
{∫ 1

0
ξ′(t)2 dt | ξ : [0, 1]→ lR, ξ(0) = 0, ξ(1) = 1

}
. (1.16)

Classical Euler equation (1.13) would give ξ′′ ≡ 0 and then ξ∗(t) = t in the case of
minimization on C1 functions. On the other hand, taking the minimization problem over
the class of C1

∗ functions and considering the equation (1.13) on subintervals, it yields an
infinite number of extremals, i.e. all piecewise linear functions connecting the points (0, 0)
and (1, 1) in the plane. Applying Theorem 1.2.9 instead of the classical Euler equation
(1.13) we obtain that ξ∗(t) = t is the unique candidate minimizer of the problem set over
the class of piecewise C1

∗ functions, as in the case of minimization on C1 functions. As we
will see in Section 1.2.2, this is due to the strict convexity of the Lagrangian with respect
to the q variable.

Definition 1.2.11 Any arc ξ̄ ∈ C1
∗([a, b]; lRn) which solves (for some c ∈ lR)

∂L

∂q
(t, ξ̄(t), ξ̄′(t)) = c+

∫ t

a

∂L

∂x
(s, ξ̄(s), ξ̄′(s)) ds, ∀t ∈ [a, b].

is called an extremal for problem (1.14) or (1.15).
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We conclude this section with a sufficient condition for the existence of global mini-
mizers of problem (1.14).

Theorem 1.2.12 Assume (1.4) and suppose that L = L(t, x, q) is convex with respect to
the pair of variables (x, q). Then, any extremal ξ̄ of problem (1.14) which satisfies the
boundary conditions ξ̄(a) = ξa and ξ̄(b) = ξb is a global minimizer.

Proof– If ξ̄ is an extremal, then there exists c ∈ lR such that

∂L

∂q
(t, ξ̄(t), ξ̄′(t)) = c+

∫ t

a

∂L

∂x
(s, ξ̄(s), ξ̄′(s)) ds, ∀t ∈ [a, b].

Setting p(t) = ∂L
∂q

(t, ξ̄(t), ξ̄′(t)), we have

(p(t), p′(t)) =

(
∂L

∂q
(t, ξ̄(t), ξ̄′(t)),

∂L

∂x
(t, ξ̄(t), ξ̄′(t))

)

on any subinterval of continuity of ξ̄′. Hence, due to the convexity1 assumption on L, for
any admissible ξ, we obtain

J(ξ)− J(ξ̄)

=
∫ b

a

[
L(t, ξ(t), ξ′(t))− L(t, ξ̄(t), ξ̄′(t))

]
dt

≥
∫ b

a

[
∂L

∂x
(t, ξ(t), ξ′(t)) · (ξ(t)− ξ̄(t)) +

∂L

∂q
(t, ξ̄(t), ξ̄′(t)) · (ξ′(t)− ξ̄′(t))

]
dt

=
∫ b

a

[
p′(t) · (ξ(t)− ξ̄(t)) + p(t) · (ξ′(t)− ξ̄′(t))

]
dt =

[
p(t) · (ξ(t)− ξ̄(t))

]b
a

= 0.

1.2.2 Regularity and Erdmann condition

In this section we prove finer regularity properties of extremals for problem (1.14) under
some injectivity assumptions on the Lagrangian, so that we can reformulate the minimiza-
tion problem (1.14) as (1.6), restricting the set of admissible functions. Afterwards, we
give an alternative formulation of the Euler equation in the case of autonomous problems,
called Erdmann condition.

1We recall that whenever f : lRn → lR is a convex function and x is a differentiability point of f , then

f(y)− f(x) ≥ Dxf(x) · (y − x) ∀y ∈ lRn.
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Proposition 1.2.13 Let ξ̄ be an extremal for problem (1.14) or (1.15) and suppose that
for any t ∈ [a, b] the map q ∈ lRn 7→ ∂L

∂q
(t, ξ̄(t), q) is injective. Then ξ̄ ∈ C1([a, b], lRn) and

satisfies the classical Euler Equation.

Proof– Since ξ̄ ∈ C1
∗([a, b]; lRn), we already know that ξ̄ ∈ C1([ti, ti+1], lRn) for any

i = 0, . . . , N − 1. Let ξ+
i = limt→t+i

ξ̄′(t) and ξ−i = limt→t−i
ξ̄′(t). Since ∂L

∂q
(·, ξ̄(·), ξ̄′(·)) is

continuous by Theorem 1.2.9, then

lim
t→t±i

∂L

∂q
(t, ξ̄(t), ξ̄′(t)) =

∂L

∂q
(t, ξ̄(t), ξ̄±i ).

Hence, the injectivity property of ∂L
∂q

(t, ξ̄(t), q) implies that ξ+
i = ξ−i .

Remark 1.2.14 Observe that ∂L
∂q

(t, ξ̄(t), q) is injective if, for example, ∂2L
∂q2 (t, ξ̄(t), q) > 0

for any q ∈ lRn.

Remark 1.2.15 If ∂L
∂q

(t, ξ̄(t), q) is not injective, then problem (1.14) can admit solutions

that are not C1. Indeed, consider the problem

min
{∫ 1

−1
ξ′(t)2(t− ξ(t))2dt | ξ : [−1, 1]→ lR, ξ(−1) = 0, ξ(1) = 1

}
.

It is easy to see that such a problem is not solvable on C1([−1, 1]), while

ξ̄ =

{
0 for t ∈ [−1, 0),
t for t ∈ [0, 1],

is a local minimizer in C1
∗([−1, 1]).

Now, let us apply the previous regularity result to study a particular case of Bolza
problem, whose Lagrangian depends on the q variable only. Indeed, the minimization
problem (1.11) can be reduced to another minimization problem which is simpler to treat
since it is set on a finite dimensional space. In what follows we will consider a free endpoint
t ∈ (a, b] and all possible terminal conditions ξ(t) = x, in order to study the behaviour of
minimizers when t and x are varying.

The problem is to minimize for any t ∈ (a, b] and x ∈ lRn

J(ξ, t, x) =
{∫ t

a
L(ξ′(s)) ds+ φa(ξ(a)) | ξ ∈ At,x

}
,

where At,x = {ξ ∈ C1
∗([a, b]; lRn) | ξ(t) = x}. We denote by v = v(t, x) the value of such

a minimum (if it exists). Clearly v(a, x) = φa(x).

Theorem 1.2.16 Assume that L ∈ C2(lRn) is superlinear and strictly convex. Then
Hopf’s formula holds:

v(t, x) = min
ξ∈At,x

J(ξ, t, x) = min
y∈lRn

{
(t− a)L

(
x− y
t− a

)
+ φa(y)

}
. (1.17)
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Proof– First of all, Proposition 1.2.13 guarantees that we can restrict the problem over the
class of C1 functions. Moreover, since L = L(q), the Euler equation and the transversality
condition are respectively:

d

dt

∂L

∂q
(ξ∗′(t)) = 0,

∂L

∂q
(ξ∗′(a)) = Dφa(ξ

∗(a)).

Hence,
∂L

∂q
(ξ∗′(s)) = Dφa(ξ

∗(a)) ∀s ∈ [a, t].

Taking into account that ∂2L
∂q2 > 0, we have

ξ∗′(s) = q∗ =
∂L

∂q

−1

(Dφa(ξ
∗(a)) ∀s ∈ [a, t].

Integrating the above equation and recalling that ξ(t) = x, we derive

ξ∗(s) = (s− t)q∗ + x ∀s ∈ [a, t].

Setting y∗ = x− (t− a)q∗ we get

v(t, x) =
∫ t

a
L(q∗) ds+ φa(x− (t− a)q∗) = (t− a)L

(
x− y∗

t− a

)
+ φa(y

∗).

We have shown that

v(t, x) ≥ min
y∈lRn

{
(t− a)L

(
x− y
t− a

)
+ φa(y)

}
.

On the other hand, to prove the opposite inequality, we recall that the Euler equation is

ξ∗′′(s) = 0 ∀s ∈ [a, t].

It follows that the minimizing arcs are straight lines and we can restrict the research of
the minimum on linear admissible arcs ξ(s) = (s− t)q + x. Since v is the minimum of J :

v(t, x) ≤
∫ t

a
L(q) ds+ φa(x− (t− a)q) = (t− a)L

(
x− y
t− a

)
+ φa(y), ∀y = x− (t− a)q.

The result follows passing to the minimum over y ∈ lRn in the above inequality.

Example 1.2.17 Consider the case n = 1, [a, b] = [0, 1], L(q) = q2/2 and

φ0(z) =

{
−z2 if |z| < 1
1− 2|z| if |z| ≥ 1.

15



Using Hopf’s formula we find that the minimum in (1.17) is attained at
z =

x

1− 2t
if t < 1/2 and |x| < 1− 2t

z = x+ sgn(x)2t if |x| ≥ 1− 2t ≥ 0 or if t ≥ 1/2,

yielding

v(t, x) =


− x2

1− 2t
if t < 1/2 and |x| < 1− 2t

1− 2(|x|+ t) if |x| ≥ 1− 2t ≥ 0 or if t ≥ 1/2.

Definition 1.2.18 The function v : lR+ × lRn → lR defined by

v(t, x) = min
ξ∈At,x

J(ξ, t, x)

is called value function.

Let’s go back to the analysis of the regularity of extremals of problem (1.14) or (1.15).

Theorem 1.2.19 Assume (1.4) and suppose that the Lagrangian L is of class Ck, k ≥ 2,
with respect to all variables and is strictly convex in the third variable, i.e. ∂2L

∂q2 > 0. Then

any minimizer ξ∗ of J is of class Ck([a, b], lRn).

Proof — We already know that ξ∗ ∈ C1([a, b], lRn); so it remains to show that if
ξ∗ ∈ Ch−1([a, b], lRn), 2 ≤ h ≤ k, then ξ∗ ∈ Ch([a, b], lRn). Let

P (t) =
∫ t

a
DxL(r, ξ∗(r), ξ∗′(r)) dr

and
Φ(t, q) = DqL(t, ξ∗(t), q)− P (t), (t, q) ∈ [a, b]× lRn.

Then Φ ∈ Ch−1([a, b], lRn) and the Euler equation gives

Φ(t, ξ∗′(t)) = k0 ∀t ∈ [a, b], for some k0 ∈ lR.

Applying the Implicit Function Theorem to the map F (t, q) = Φ(t, q) − k0 in any point
(t0, q0) = (t0, ξ

∗′(t0)) (notice that DqF = ∂2L
∂q2 > 0), we easily obtain that ξ∗′ is a Ch−1

function.

Remark 1.2.20 Theorem 1.2.19 can be refined in the following sense. Assume (1.4) and
suppose that along a minimizer ξ∗ of J the following conditions hold:
i) the Lagrangian L is of class Ck([a, b] × U × lRn), for some k ≥ 2, where U is an open
bounded subset of lRn containing {ξ∗(t) : t ∈ [a, b]};

ii)
∂2L

∂q2
(t, ξ∗(t), ξ∗′(t)) > 0 for all t ∈ [a, b].

Then ξ∗ is of class Ck([a, b], lRn).
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Now we are going to analyse a particular kind of problem, namely that having La-
grangian independent of t

L(t, x, q) = L(x, q).

For such a problem, called autonomous problem, the Euler equation yields the useful
corollary known as the Erdmann condition:

Corollary 1.2.21 Assume (1.4) and L = L(x, q). Let ξ∗ be an extremal of class C2, i.e.
a (regular) solution of the Euler equation. Then there exists a constant k such that

L(ξ∗(t), ξ∗′(t))− < ξ∗′(t), DqL(ξ∗(t), ξ∗′(t)) >= k, for all t ∈ [a, b].

Proof– Exploiting the fact that ξ∗ is a C2 solution of the Euler equation, we obtain

d

dt
[L(ξ∗(t), ξ∗′(t))− < ξ∗′(t), DqL(ξ∗(t), ξ∗′(t)) >]

= < DxL(ξ∗(t), ξ∗′(t)), ξ∗′(t) > + < DqL(ξ∗(t), ξ∗′(t)), ξ∗′′(t) >

− < ξ∗′′(t), DqL(ξ∗(t), ξ∗′(t)) > − < ξ∗′(t),
d

dt
DqL(ξ∗(t), ξ∗′(t)) >

= < DxL(ξ∗(t), ξ∗′(t)), ξ∗′(t) > − < ξ∗′(t), DxL(ξ∗(t), ξ∗′(t)) >= 0

and the proof is complete.

1.2.3 Examples

In this section we will present three applications of Calculus of Variations to economics and
we will also discuss some of the introductory examples (1.1.1-1.1.3-1.1.5). The economic
minimization problem in Example 1.2.22 deals with a strictly convex Lagrangian with
respect to the q variable, while the economic maximization problems 1.2.23 and 1.2.24
have a strictly concave Lagrangian. Hence, the regularity results of Section 1.2.2 apply,
so that we can directly consider them on the space of C1 functions. The Examples 1.1.1-
1.1.3-1.1.5 were already defined on the class of C1 functions and so they will be analysed
in such a space. Let us start with the economic examples.

Example 1.2.22 Inflation and unemployment are the cause of social losses. The task is
to find the optimal combination of inflation and unemployment under Philipps tradeoff
in order to minimize the social loss function. The economic ideal is represented by the
couple (I0, 0), where I0 is the ideal income level when there is full employment and the
ideal inflation rate is equal to 0.
Let I(t) be the real income and p(t) the inflation rate. Since any deviations from the ideal
economic (I0, 0) is undesirable, we introduce the social loss function λ as follows:

λ(I, p) = (I0 − I(t))2 + αp2(t), α > 0.
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I and p are related through the expectation augmented Phillips tradeoff:

p(t) = −β(I0 − I(t)) + π(t) β > 0, (1.18)

where I0−I(t) represents the shortfall of current national income from its full–employment
level and π is the expected inflation rate which satisfies the adaptivity assumption:

π′(t) = γ[p(t)− π(t)] 0 < γ ≤ 1, π(0) = π0, π(T ) = πT π0, πT assigned. (1.19)

The condition π(T ) = πT represents a policy target.
The problem is the following: find π(·) that minimizes the discounted social loss over the
time interval [a, b], that is ∫ T

0
e−ρtλ(I(t), p(t)) dt (1.20)

where ρ > 0 and e−ρt is the discount factor. See [21] or [5, p.54] for further details.
From (1.18) and (1.19) it follows

I0 − I(t) =
π(t)− p(t)

β
= −π

′(t)

βγ
(1.21)

and again from (1.19) we have

p(t) =
π′(t)

γ
+ π(t). (1.22)

Using equalities (1.21) and (1.22), then functional (1.20) can be rewritten as functional
J [π] defined as

J [π] =
∫ T

0
e−ρtΛ(π(t), π′(t))dt, (1.23)

where

Λ(π, q) =

[
q

βγ

]2

+ α

[
q

γ
+ π

]2

.

Hence the problem is to minimize J over all π ∈ C1([0, T ]; lR), such that π(0) = π0, π(T ) =
πT .
The Lagrange function L is the following

L(t, π, q) = e−ρt
[
q

βγ

]2

+ α

[
q

γ
+ π

]2

,

and
φ0 = φT = 0, S0 = {π0}, ST = {πT}.

Let us check if Theorem 1.1.11 can be applied to ensure the existence of minimizers.
Assumption (E1) holds since ∀t such that 0 ≤ t ≤ T

L(t, x, q) ≥ e−ρt
[
q

βγ

]2

≥ e−ρT
[
q

βγ

]2

,

18



and the Nagumo function θ can be defined as θ(r) = e−ρT
[
r
βγ

]2
.

As for assumption (E2) we remark that L is twice differentiable with respect to q and

∂2L

∂q2
= 2e−ρt

[
1

(βγ)2
+
α

γ2

]
> 0.

Finally, S0 = {π0} and ST = {πT} are bounded. Hence all the hypotheses of Theorem
1.1.11 are satisfied and problem (1.20) has minimizers.
Let us now evaluate the candidate minimizers. The Euler equation

d

dt

∂L

∂q
(t, π(t), π′(t)) =

∂L

∂x
(t, π(t), π′(t))

associated with this problem is

d

dt

{
2e−ρt

[
π′(t)

(βγ)2
+
α

γ
(
π′(t)

γ
+ π(t))

]}
= 2αe−ρt

[
π′(t)

γ
+ π(t)

]
.

Hence, differentiating and performing several algebraic calculations, we get the boundary
problem 

π′′(t)− ρπ′(t)− δπ(t) = 0

π(0) = π0

π(T ) = πT ,

where

δ = α
(βγ)2

1 + αβ2

γ + ρ

γ
.

The general integral of the above second order linear homogeneous differential equation
with constant coefficients is

π(t) = c1e
r+t + c2e

r−t

where r+, r− are the characteristic roots

r+ =
ρ+
√
ρ2 + 4δ

2
> 0

and

r− =
ρ−
√
ρ2 + 4δ

2
< 0,

and c1, c2 are some constants to be evaluated exploiting the boundary conditions π(0) = π0

and π(T ) = πT . In particular, 
c1 + c2 = π0

er+T c1 + er−T c2 = πT ,
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from which we get

c1 =
π0e

r−T − πT
er−T − er+T

and c2 =
πT − π0e

r+T

er−T − er+T
.

The optimal expected inflation rate π is then completely determined, since any minimizer
of the minimization problem must be a solution of the Euler equation and we proved that
such an equation admits a unique extremal.

Let us now consider the Hamermesh model of optimal adjustment of labor demand,
which is an economic example with a fixed initial point, a variable terminal state and a
terminal payoff.

Example 1.2.23 After a reduction of wages at t = 0, a firm wants to raise its labor
input from the present state L0 to an undetermined one L(T ) = LT in a fixed amount of
time T . Adjusting labor input the firm faces a cost C which depends on the velocity of
the adjustment: C = C(L′(t)) = aL′(t)2 +b, where a > 0, and b > 0 if L′ is not vanishing.
The aim of the firm is to maximize the total discounted net profit Π over time. Let us
denote by ρ > 0 the instantaneous interest rate. In the time interval that goes from 0 to T
such a profit is equal to the definite integral between 0 and T of [π(L(t))−C(L′(t))]e−ρt,
where π(L(t)) represents the profit of the firm at time t. In order to have a quantitative
solution we choose π(L(t)) = 2cL(t)− dL2(t), 0 < d < c. For t > T Π contains the term
1
ρ
π(L(T ))e−ρT which represents the present value of a continuous perpetual rent of π(LT )

from time T onward. The problem is to maximize the functional

Π(L) =

{∫ T

0
e−ρt[2cL(t)− dL2(t)− aL′(t)2 − b]dt+

1

ρ
[2cL(T )− dL2(T )]e−ρT

}
,

on functions L ∈ C1([0, T ]; lRn), L(0) = L0 (see also [16] or [5, p. 75]).
In order to find the Euler equation of this problem we consider the Lagrange function
associated with it and we evaluate its partial derivatives

L(t, x, q) = [2cx− dx2 − aq2 − b]e−ρt,

Lx(t, x, q) = [2c− 2dx]e−ρt,

Lq(t, x, q) = [−2aq]e−ρt.

Hence the Euler equation is

d

dt
[−2aL′(t)]e−ρt = 2[c− 2dL(t)]e−ρt.

After several calculations this equation can be written as

L′′(t)− ρL′(t)− d

a
L(t) = − c

a
,
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which is a second order non–homogeneous linear differential equation with constant coef-
ficients. Its general integral is

L(t) = C1e
r+t + C2e

r−t + L

where r+, r− are the characteristic roots

r+ =
ρ+

√
ρ2 + 4d

a

2
> 0 and r− =

ρ−
√
ρ2 + 4d

a

2
< 0,

L is the particular integral

L =
c

d

and C1, C2 are constants to be determined by exploiting the initial condition L(0) = L0

and the transversality condition.
Hence

L0 = L(0) = C1 + C2 + L,
which yields

C1 + C2 = L0 − L =: D1. (1.24)

On the other hand, from the transversality condition

Lq(T,L(T ),L′(T )) = −DφT (L(T )),

we get

−2aL′(T )e−ρT = −1

ρ
[2c− 2dL(T )]e−ρT .

Substituting L(T ) = C1e
r+T +C2e

r−T +L and L′(T ) = C1r+e
r+t +C2r−e

r−T in the above
equation, after several calculations we have

AC1 +BC2 = D2, (1.25)

where

A = (r+ +
d

aρ
)er+T , B = (r− +

d

aρ
)er−T and D2 =

c

aρ
.

Finally, recalling equations (1.24) and (1.25), we have
C1 + C2 = D1

AC1 +BC2 = D2,

from which we get

C1 =
BD1 −D2

B − A
and C2 =

D2 − AD1

B − A
.

As in Example 1.2.22, it can be shown that the Lagrangian of this problem satisfies the as-
sumptions of Tonelli’s Theorem; hence the specific quantitative solution L(·), determined
by the above constants, is the unique maximizer.
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We consider an economic example where we apply the Erdmann condition.

Example 1.2.24 In the Evans Model a monopolistic firm produces a single item with
the following cost function

C(Q) = Q2 +Q+ 1, (1.26)

where Q is the output produced by the firm, which we assume to be always equal to the
quantity of the item the market requires. Q depends on the item price P and on the rate
of variation P ′ of such a price:

Q = 1− P + P ′. (1.27)

The firm’s profit is
π = PQ− C, (1.28)

hence substituting (1.26) and (1.27) into (1.28)

π(P, P ′) = −2P 2 + 3PP ′ + 4P − P ′2 − 3P ′ − 3.

The firm’s aim is to maximize the total profit Π on the time interval [0, T ], i.e. to maximize

Π(P ) =
∫ T

0
π(P (t), P ′(t)) dt

subject to
P (0) = P0, P (T ) = PT , P0 6= PT . (1.29)

For further details on the model see also [11] or [5, p. 49]. Since L(x, q) = −2x2+4x−q2−
3q + 3xq − 3 is a C2, autonomous function, strictly concave in q, the Erdmann condition
applies giving the following necessary condition for maximizers

P ′(t)2 + 4P (t)− 2P (t)2 − 3 = K, for some constant K. (1.30)

Differentiating (1.30) with respect to t, we get

2P ′(t)[P ′′(t)− 2P (t) + 2] = 0. (1.31)

Hence by (1.31) either P ′(t) = 0, yielding P (t) = constant (which is not admissible for
conditions (1.29)), or

P ′′(t)− 2P (t) + 2 = 0.

In the latter case, the general solution is

P (t) = c1e
√

2t + c2e
−
√

2t + 1, (1.32)

where the constants c1 and c2 are determined exploiting (1.29), i.e. solving the linear
system 

c1 + c2 + 1 = P (0) = P0

e
√

2T c1 + e−
√

2T c2 = P (T ) = PT .

22



Hence

c1 =
1− PT + e−

√
2T [1− P0]

e−
√

2T − e
√

2T

c2 =
PT − 1− e

√
2T [1− P0]

e−
√

2T − e
√

2T
,

and substituting c1 and c2 into (1.32) we have the candidate maximizer P .

Let us now analyse Examples 1.1.1-1.1.3-1.1.5 by means of the previous theorems.

Example 1.2.25 Consider the functional

J(ξ) =
∫ b

a

√
1 + ξ′(t)2 dt

arisen in Example 1.1.1. We want to minimize J over the class of C1([a, b]) functions
ξ such that ξ(a) = A and ξ(b) = B. Since L(q) =

√
1 + q2 is a C2, strictly convex

and autonomous function, Theorem 1.2.19 and the Erdmann condition apply, giving the
following necessary condition for minimizers:

√
1 + ξ′(t)2 − ξ′(t)2√

1 + ξ′(t)2
= k, for some constant k.

Hence √
1 + ξ′(t)2 = 1/k, i.e. ξ′(t) = constant.

Since minimizers must satisfy the boundary condition ξ(a) = A and ξ(b) = B we conclude
that the unique solution to problem 1.1.1 is the line joining points (a,A) and (b, B).

Example 1.2.26 (The soap bubble problem) Consider the functional

J(ξ) = 2π
∫ b

a
ξ(x)

√
1 + ξ′(x)2 dx

from Example 1.1.3. We want to minimize it among all the regular functions ξ such that
ξ(a) = A and ξ(b) = B (A,B 6= 0). In this case L(y, q) = y

√
1 + q2 is C2, autonomous,

but not strictly convex with respect to q, since ∂2L
∂q2 (y, q) = y(1 + q2)−3/2 is zero whenever

y is. Anyway, since A,B 6= 0, any minimizer of J cannot be identically zero on [a, b] and
it can be shown that for suitable choices of a, b, A and B the Erdmann condition applies,
giving

ξ(x)
√

1 + ξ′(x)2 − ξ(x)ξ′(x)2√
1 + ξ′(x)2

= k for some k ∈ lR.

Hence
ξ(x)√

1 + ξ′(x)2
= k, i.e. ξ′(x)2 =

ξ(x)2

k2
− 1.
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This equation is solvable in any nonincreasing (or nondecreasing) interval of the extremals,
with solutions of the following type

ξ(x) = ±k cosh
(
x− x0

k

)
(x0 depending on the integration interval). Therefore minimizers of J must be locally
arcs of hyperbolic functions.

Example 1.2.27 Consider the functional

J(ξ) =
1√
2g

∫ b

a

1√
H − ξ(x)

√
1 + ξ′(x)2 dx

arisen in the Brachistochrone Problem (see Example 1.1.5). We want to minimize J over
the class of C1([a, b]) functions ξ such that ξ(a) = A and ξ(b) = B, where a < b and
A > B. By physical reasonings we can suppose that minimizers ξ of J are nonincreasing

functions, so that we can study L(y, q) =
√

1+q2

H−y (remember thatH = A+
v2
0

2g
, where v0 > 0)

in the closed strip [m,M ]×lR, where m, M are suitable values such that m < B < A < M .
In this strip L is C2 with respect to all variables and strictly convex in q; hence any
minimizer ξ of J is a C2 function that satisfies the Erdmann condition. Therefore ξ solves√√√√1 + ξ′(x)2

H − ξ(x)
− ξ′(x)2√

(1 + ξ(x)2)(H − ξ(x))
= k, for some k ∈ lR,

i.e. (1 + ξ(x)2)(H − ξ(x)) = 2c, where 2c = 1/k2 > 0. Now, if we change variables,
parameterizing the curve {(x, ξ(x)) : x ∈ [a, b]} as {(x(t), ξ(t)) : t ∈ [τ1, τ2]}, where
the parameter t satisfies dξ

dx
(x(t)) = − cot(t/2), we obtain that x(t) = c̃ + c(t − sin t),

ξ(t) = H− c(1− cos t) for some c̃ ∈ lR and t ∈ [τ1, τ2]. Finally, c, c̃, τ1 and τ2 are uniquely
determined imposing conditions x(τ1) = a, x(τ2) = b, ξ(τ1) = A and ξ(τ2) = B.

1.2.4 Hamilton equations

In the previous sections we have proved that any minimizing arc of the functional J is
also an extremal. This property is usually not enough in practice to determine minimiz-
ers. A first reason is that being an extremal is only a necessary condition for being a
minimizer. Moreover, finding all extremals may not be an easy task, so it is important to
have additional tools to study minimizers. This will be done in the case of strictly convex
Lagrangian, which ensures at least C1 regularity of extremals.

So let us consider again the Bolza problem of minimization of the functional

J(ξ) =
∫ b

a
L(t, ξ(t), ξ′(t)) dt+ φa(ξ(a)) (1.33)

over the class
A = {ξ ∈ C1([a, b]; lRn) : ξ(b) = ξb},
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where a, b ∈ lR, a < b, are fixed and L : [a, b] × lRn × lRn → lR, φa : lRn → lR are given
continuous functions.
Let us set

H(t, x, p) = sup
q∈lRn

[p · q − L(t, x, q)]. (1.34)

The function H is the Legendre–Fenchel transform of L with respect to the third argument
(see Appendix A) and is called the Hamiltonian associated with L.

Euler’s equation (1.13) can be equivalently restated as a first order system of 2n equa-
tions, as it is shown below. Such a formulation, called Hamiltonian, is more convenient
to use in many cases.

Theorem 1.2.28 Assume that L ∈ C2([a, b]×lRn×lRn) is superlinear and strictly convex
with respect to the third variable. Let ξ∗ ∈ C2([a, b], lRn) be an extremal for problem (1.33)
and let us set

η∗(t) = DqL(t, ξ∗(t), ξ∗′(t)), t ∈ [a, b].

Then η∗(a) = Dφa(ξ
∗(a)) and the pair (ξ∗, η∗) satisfies

ξ∗′(t) = DpH(t, ξ∗(t), η∗(t))

η∗′(t) = −DxH(t, ξ∗(t), η∗(t)).
(1.35)

Conversely, suppose that ξ∗, η∗ ∈ C2([a, b], lRn) solve system (1.35) together with the con-
dition η∗(a) = Dφa(ξ

∗(a)). Then ξ∗ is an extremal for problem (1.33).

Proof — Since DqL(t, x, ·) and DpH(t, x, ·) are reciprocal inverse (see (3.10)), the defini-
tion of η∗ implies that

ξ∗′(t) = DpH(t, ξ∗(t), η∗(t)) t ∈ [a, b].

On the other hand, since ξ∗ is an extremal, we have

η∗′(t) = DxL(t, ξ∗(t), ξ∗′(t)) η∗(a) = Dφa(ξ
∗(a)). (1.36)

Recalling that −DxH(t, x,DqL(t, x, q)) = DxL(t, x, q) (see (3.7) ) we obtain the first part
of the assertion. The converse part is obtained by similar arguments.

Example 1.2.29 Consider the map L : lR× lR→ lR, defined by

L(x, q) = ax2 + bq2, with b > 0,

and the minimization of functional

J(ξ) =
∫ 1

0
L(ξ(t), ξ′(t)) dt
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over the class A = {ξ ∈ C1([0, 1]; lRn) : ξ(0) = x0, ξ(1) = x1}. Then

H(t, p) = sup
q∈lR

(p · q − ax2 − bq2) = −ax2 + sup
q∈lRn

(p · q − bq2) = −ax2 +
p2

4b

and system (1.35) becomes 
ξ′(t) =

η(t)

2b
,

η′(t) = 2aξ(t).

If we differentiate the first equation we obtain ξ′′(t) = η′(t)
2b

= aξ(t)
b

. Let us distinguish the
following cases.

1. Case a > 0.
If we set λ =

√
a
b
, then solutions to ξ′′(t) = aξ(t)

b
are given by

ξ(t) = c0e
λt + c1e

−λt,

where c0, c1 ∈ lR are uniquely determined by the boundary conditions. Hence in
this case our problem admits a unique extremal, given by

ξ(t) =
1

e−λ − eλ
(
(x0e

−λ − x1)eλt + (x1 − x0e
λ)e−λt

)
.

2. Case a = 0.
All the solutions of ξ′′(t) = 0 are straight lines. Then the unique extremal of the
problem is ξ(t) = x0 + (x1 − x0)t.

3. Case a < 0.
If we set λ =

√
|a|
b

, then solutions to ξ′′(t) = aξ(t)
b

are given by

ξ(t) = c0 sinλt+ c1 cosλt,

where c0, c1 ∈ lR depend on the boundary conditions. But in this case we do not
always have uniqueness of solutions. Indeed, if we consider x0 = x1 = 0, a = −π2,
b = 1, then the map ξ(t) = c0 sinλt is an extremal for the functional J(ξ) for any
choice of c0 ∈ lR.

1.2.5 Exercises

Exercise 1.2.30 Find all the extremals for the functionals J given below.

• J(ξ) =
∫ 1

0
[t+ 2ξ(t) +

1

2
ξ′(t)]2 dt;

• J(ξ) =
∫ 1

0
et[ξ(t)2 +

1

2
ξ′(t)]2 dt;
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• J(ξ) =
∫ 1

0
[ξ′1(t)2 + ξ′2(t)2 − 2ξ1(t)ξ2(t)] dt, ξ = (ξ1, ξ2).

Exercise 1.2.31 Fix T > 0 and x0 ∈ lRn. Minimize functional

J(ξ) =
∫ T

0
[2|ξ(s)|2 +

1

2
|ξ′(s)|2] ds+

1

2
|ξ(0)|2

over the class of C1 functions ξ : [0, T ]→ lRn such that ξ(T ) = x0.

Exercise 1.2.32 Minimize functional

J(ξ) =
∫ 1

0

[
1

2
ξ′(s)2 +

1

2
ξ(s)2 − ξ(s)

]
ds+ ξ(0)2

over the class of C1 functions ξ : [0, 1]→ lR such that ξ(1) = 1.

Exercise 1.2.33 Minimize functional

J(ξ) =
∫ 1

0

[
1

2
ξ′1(s)2 +

1

2
ξ′2(s)2 +

1

4
(ξ1(s) + ξ2(s))2

]
ds+ ξ1(0)− ξ2(0)

over the class of C1 functions ξ = (ξ1, ξ2) : [0, 1]→ lR2 such that (ξ1(1), ξ2(1)) = (1, 1).

Exercise 1.2.34 Consider the following functional and boundary conditions:

J(ξ) =
∫ 1

0
(1 + t)(ξ′(t)2 + ξ(t)) dt ξ(0) = 0, ξ(1) = 1,

where J is defined on the class of C1 functions ξ : [0, 1] → lR. Find the extremals of J
satisfying the above boundary conditions.

1.3 Second Order Conditions

Let us consider again the problem with fixed extremes:

to minimize

{∫ b

a
L(t, ξ(t), ξ′(t))dt | ξ ∈ C1

∗([a, b]; lRn), ξ(a) = ξa, ξ(b) = ξb

}
. (1.14)

Necessary conditions for minimizers of problem (1.14) arisen in section 1.2 are called
first order conditions because they all come from the analysis of the first variation of L,
that is of

d

dλ
J(ξ∗ + λη)|λ=0,

where J(ξ) =
∫ b
a L(t, ξ(t), ξ′(t))dt, ξ∗ is a minimizer of J and η is any fixed C1

∗ function
such that η(a) = 0 and η(b) = 0. Existence of such a derivative is guaranteed by the
assumption L = L(t, x, q) is of class C1([a, b]× lRn × lRn).
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If we assume L ∈ C2([a, b]× lRn × lRn) a second order necessary condition can be stated,
called the Legendre condition.

Let us analyse the map g : lR → lR defined by g(h) := J(ξ̄ + hη) when L is of class
C2. Notice that g has the same regularity as the Lagrangian L. So, in this case g is a C2

map. Since

g′(h) =
∫ b

a

[
Lx(t, ξ̄(t) + hη(t), ξ̄′(t) + hη′(t)) · η(t)

+Lq(t, ξ̄(t) + hη(t), ξ̄′(t) + hη′(t)) · η′(t)
]
dt,

we obtain

g′′(0) =
∫ b

a
[Lxx(t, ξ̄(t), ξ̄

′(t))η(t) · η(t) + 2Lxq(t, ξ̄(t), ξ̄
′(t))η′(t) · η(t)

+ Lqq(t, ξ̄(t), ξ̄
′(t))η′(t) · η′(t)] dt.

The fact that ξ̄ is a local minimizer implies that g′′(0) ≥ 0. Now, we are ready to state
the Legendre condition, which was first proved by Legendre in the second half of the
seventeenth century.

Lemma 1.3.1 (Legendre condition) Assume that L = L(t, x, q) is of class C2([a, b]×
lRn × lRn) and let ξ̄ be a local minimizer of problem (1.14). Then, for any t ∈ [a, b] the
matrix

P (t) := Lqq(t, ξ̄(t), ξ̄
′(t)) is positive semidefinite. (1.37)

Proof– Suppose first that n = 1. Then P (t) is one-dimensional and assumption (1.37)
reads P (t) ≥ 0 for any t ∈ [a, b]. So, suppose by contradiction that there exists t0 ∈ [a, b]
such that P (t0) < 0. If t0 ∈ (a, b) and t0 is a continuity point of ξ̄′, we can find an open
neighbourhood of t0, say {t : |t − t0| < δ} where P (·) is continuous and P (t) < −ε, for
some positive ε. Moreover, for any k ∈ lN we can find nk ∈ lN such that nk

k
≤ t0 <

nk+1
k

.

For any k sufficiently large so that
[
nk
k
, nk+1

k

]
⊂ (t0 − δ, t0 + δ), consider the C1 maps

ηk(t) =


0 for t ∈ [a, b] \

[
nk
k
, nk+1

k

)
,

sin2(kπt) for t ∈
[
nk
k
, nk+1

k

)
.

We have ∣∣∣∣∣
∫ b

a
[Lxx(t, ξ̄(t), ξ̄

′(t))η2
k(t) + 2Lxq(t, ξ̄(t), ξ̄

′(t))η′k(t)ηk(t)] dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ nk+1

k

nk
k

[Lxx(t, ξ̄(t), ξ̄
′(t))η2

k(t) + 2Lxq(t, ξ̄(t), ξ̄
′(t))η′k(t)ηk(t)] dt

∣∣∣∣∣
≤ 1

k
‖L̄xx‖∗∞ + 2(2kπ)

1

k
‖L̄xq‖∗∞,
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where
‖L̄xx‖∗∞ := max

i=1,...,N
max

t∈[ti,ti+1]
|Lxx(t, ξ̄(t), ξ̄′(t))|

and
‖L̄xq‖∗∞ := max

i=1,...,N
max

t∈[ti,ti+1]
|Lxq(t, ξ̄(t), ξ̄′(t))|

(as usual, Π = {t0, t1, . . . , tN} is the partition [a, b] that appears in Definition 1.1.6).
On the other hand,

∫ b

a
P (t)η′2k(t) dt =

∫ nk+1

k

nk
k

P (t)η′2k(t) dt < −ε
∫ nk+1

k

nk
k

k2π2 sin2(2kπt) dt

= −ε
∫ nk+1

k

nk
k

k2π2 1− cos(4kπt)

2
dt = −εk2π2 1

2k
.

Then we have∫ b

a
[Lxx(t, ξ̄(t), ξ̄

′(t))η2
k(t) + 2Lxq(t, ξ̄(t), ξ̄

′(t))η′k(t)ηk(t) + Lqq(t, ξ̄(t), ξ̄
′(t))η′2k(t)] dt

≤ 1

k
‖L̄xx‖∗∞ + 4π‖L̄xq‖∗∞ −

εkπ2

2
< 0, for any k sufficiently large,

against the fact that g′′(0) ≥ 0 for any choice of η ∈ C1
∗([a, b]) such that η(a) = η(b) = 0.

If t0 = a, b or t0 is a discontinuity point of ξ̄′, the same argument applies replacing t0 with
some t′0 close to t0 where we still have P (t′0) < 0.
In the n-dimensional case we can proceed as follows. Suppose again by contradiction
that P (t0) < 0 for some t0 ∈ [a, b], i.e. the matrix P (t0) is negative definite. Let λ be a
negative eigenvalue of P (t0) and θ the corresponding eigenvector. Consider the functions
η̄k(t) = ηk(t)θ, k ∈ lN, where ηk are the scalar functions defined above. Repeating
the above argument with η̄k and taking into account the local continuity of the map
t 7→ P (t)θ · θ, we can derive a contradiction as before.

Notice that the previous theorem holds true also for problem (1.6), as the proof shows.

Example 1.3.2 (Wirtinger) The Legendre condition is only a necessary condition. In-
deed, consider the problem

min

{∫ T

0
(ξ′(t)2 − ξ(t)2) dt | ξ ∈ C1([0, T ]), ξ(0) = ξ(T ) = 0

}
.

Here the Lagrangian L(x, q) = q2 − x2 satisfies the Legendre condition and the arc ξ̄ ≡ 0
is an extremal. But, depending on the value of T , ξ̄ can either be or not a local minimizer
of functional J(ξ) =

∫ T
0 (ξ′(t)2 − ξ(t)2)dt. In particular, if T ≤ 2

√
2, then ξ̄ is a global

minimizer, since J(ξ̄) = 0 and for any other ξ ∈ C1([0, T ]) such that ξ(0) = ξ(T ) = 0 we
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have (by the Holder inequality2)

|ξ(t)| ≤
∫ t

0
|ξ′(s)| ds ≤

(∫ t

0
ξ′(s)2 ds

)1/2

t1/2

and

|ξ(t)| ≤
∫ T

t
|ξ′(s)| ds ≤

(∫ T

t
ξ′(s)2 ds

)1/2

(T − t)1/2.

Hence, ∫ T/2

0
ξ(t)2 dt ≤

∫ T/2

0

(∫ T/2

0
ξ′(s)2 ds

)
t dt =

T 2

8

∫ T/2

0
ξ′(s)2 ds

and ∫ T

T/2
ξ(t)2 dt ≤

∫ T

T/2

(∫ T

T/2
ξ′(s)2 ds

)
(T − t) dt =

T 2

8

∫ T

T/2
ξ′(s)2 ds.

Adding the above inequalities we deduce that∫ T

0
ξ(t)2 dt ≤

∫ T

0
ξ′(t)2 dt,

that is J(ξ) ≥ 0. But for T >
√

10 it is possible to find arcs ξ such that maxt∈[0,T ] |ξ(t)|,
maxt∈[0,T ] |ξ′(t)| are sufficiently small and J(ξ) < 0. For example, for any n ∈ lN big
enough the functions ξn(t) = 1

n
t(T − t) are close to the 0 function in the C1 norm and

verify J(ξn) = T 3

3n2

(
1− T 2

10

)
< 0.

The previous example shows that even if L and the extremal of J are C∞ functions
and L is strictly convex, the Legendre condition is not sufficient to determine minimizers
of J . However, Legendre thought that the following assertion was true:

False Theorem of Legendre

If ξ̄ is a C2 extremal of problem (1.14), where L is a C3([a, b] × lRn × lRn) Lagrangian
and if Lqq(t, ξ̄(t), ξ̄

′(t)) > 0 for any t ∈ [a, b], then ξ̄ is a local minimizer for functional J
in (1.14).

It is important to see the proof given by Legendre, although false, because Jacobi could
later state a sufficient condition for extremal to be minimizers by rectifying it.

2Holder Inequality for continuous scalar functions is the following: for f, g ∈ C([a, b]),

∫ b

a

f(t)g(t)dt ≤

(∫ b

a

f2(t)dt

)1/2(∫ b

a

g2(t)dt

)1/2

.

It can be proved as a consequence of the following inequality: for any α > 0

f(t)g(t) ≤ α

2
f2(t) +

1
2α
g2(t).
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Proof– We will give the “proof” only in the one-dimensional case. For any fixed C1([a, b])
function η such that η(a) = η(b) = 0 consider the map g : lR → lR defined by g(h) :=
J(ξ̄ + hη). Since ξ̄ is an extremal, then g′(0) = 0. Moreover, since L is C3 and ξ̄ is C2,

g′′(0) =
∫ b

a

[
Lxx(t, ξ̄(t), ξ̄

′(t))η2(t) + Lqq(t, ξ̄(t), ξ̄
′(t))η′2(t)

+ 2Lxq(t, ξ̄(t), ξ̄
′(t))η′(t)η(t)

]
dt

=
∫ b

a

[
Lxx(t, ξ̄(t), ξ̄

′(t))η(t)2 + Lqq(t, ξ̄(t), ξ̄
′(t))η′2(t)

+
d

dt
{Lxq(t, ξ̄(t), ξ̄′(t))η2(t)} − d

dt
{Lxq(t, ξ̄(t), ξ̄′(t))}η2(t)

]
dt

=
∫ b

a

[
(Lxx(t, ξ̄(t), ξ̄

′(t))− d

dt
{Lxq(t, ξ̄(t), ξ̄′(t))})η(t)2

+ Lqq(t, ξ̄(t), ξ̄
′(t))η′2(t)

]
dt =

∫ b

a

[
Q(t)η(t)2 + P (t)η′2(t)

]
dt,

where

Q(t) := Lxx(t, ξ̄(t), ξ̄
′(t))− d

dt
{Lxq(t, ξ̄(t), ξ̄′(t))}

and
P (t) := Lqq(t, ξ̄(t), ξ̄

′(t)).

We would like to prove that g′′(0) > 0 for any η 6= 0. Since P (t) > 0, for any C1 function
R(t) we have

g′′(0) =
∫ b

a

[
Q(t)η(t)2 + P (t)η′2(t)

]
dt

=
∫ b

a

[
Q(t)η(t)2 + P (t)η′2(t) +

d

dt
(R(t)η2(t))

]
dt

=
∫ b

a

[
Q(t)η(t)2 + P (t)η′2(t) +R′(t)η2(t) + 2R(t)η(t)η′(t)

]
dt

=
∫ b

a
P (t)

[
η′2(t) +

Q(t) +R′(t)

P (t)
η(t)2 + 2

R(t)

P (t)
η(t)η′(t)

]
dt.

Hence if we can prove that there exists a C1([a, b]) function R(t) such that

Q(t) +R′(t)

P (t)
=
R2(t)

P 2(t)
, i.e. R′(t) =

R2(t)

P (t)
−Q(t),

we obtain

g′′(0) =
∫ b

a
P (t)

{(
η′2(t) +

R(t)

P (t)
η(t)

)2}
dt.
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Of course, if such a function exists, then g′′(0) > 0 for any η 6= 0 and the proof of
the theorem is “almost” finished3. Unfortunately, the previous equation does not always
admit global solutions, as Legendre erroneously stated. However, on the basis of the
above argument, Jacobi could prove another sufficient condition for the existence of local
minimizers .

Jacobi’s idea was to better analyse equation

R′(t) =
R2(t)

P (t)
−Q(t), (1.38)

trying to find conditions that could guarantee global existence of solutions. He looked for
solutions of the following kind:

R(t) = −P (t)
η′(t)

η(t)
, where η(t) 6= 0, ∀t ∈ [a, b].

Substituting R(t) as above in (1.38) we obtain the equation

− d

dt
(P (t)η′(t)) +Q(t)η(t) = 0, t ∈ [a, b] (Jacobi equation). (1.39)

Before stating Jacobi’s result, let us introduce the following notion:

Definition 1.3.3 A point c ∈ (a, b] is called a conjugate point (to a) if there exists a
nontrivial solution η of (1.39) in (a, c) such that η(a) = η(c) = 0.

Theorem 1.3.4 (Jacobi-1830) Let L = L(t, x, q) be a C3([a, b]× lRn× lRn) Lagrangian
and let ξ̄ be a C2 extremal of problem (1.14). Then

I) if P (t) := Lqq(t, ξ̄(t), ξ̄
′(t)) > 0, t ∈ [a, b], and if no conjugate points exist in (a, b],

then ξ̄ is a local minimizer.

II) if ξ̄ is a local minimizer and P (t) > 0 for any t ∈ [a, b], then there are no conjugate
points in (a, b).

Let us apply Theorem 1.3.4 in the minimization problem given in Example 1.3.2.

Example 1.3.5 Consider again the problem

min

{∫ T

0
(ξ′(t)2 − ξ(t)2) dt | ξ ∈ C1([0, T ]), ξ(0) = ξ(T ) = 0

}
.

Let us find the values of T for which ξ̄ ≡ 0 is a local minimizer.
The Euler equation for such a problem is: ξ′′(t) + ξ(t) = 0, with boundary conditions

3The term almost means that the inequality g′′(0) > 0 for any η 6= 0 is not sufficient to conclude that
ξ̄ is minimizer, because it is not uniform in η. We should work a little more to finish the proof.
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ξ(0) = ξ(T ) = 0. Hence, any extremal is of the form ξ(t) = α sin(t), with α sin(T ) = 0.
Now, if T < π, the unique extremal is the zero function, since the latter condition gives
α = 0. Therefore, ξ ≡ 0 is the unique possible (global) minimizer. So, let us consider
the Jacobi equation for this problem. It is easy to see that such an equation coincides
(because of the special structure of L) with the Euler one and that no conjugate points
exist for T < π. Hence, ξ̄ ≡ 0 is the unique minimizer of the given problem.
If T = π, then for any α ∈ lR the function ξα(t) = α sin(t) is an extremal and a nontrivial
solution of the Jacobi equation. Moreover, since

J(ξα) =
∫ π

0
α2(cos2(t)− sin2(t)) dt =

∫ π

0
α2 cos(2t) dt = 0,

either all the extremals are local minimizers or none of them is. In this case Tonelli’s
Theorem and Jacobi’s result do not apply and so, in particular, we cannot conclude if the
0 function is a minimizer or not. However, by means of Fourier series, it can be shown
that for any ξ ∈ C1

∗([0, π]) such that ξ(0) = ξ(π) = 0∫ π

0
ξ(s)2 ds ≤

∫ π

0
ξ′(s)2 ds,

yielding that any extremal ξα is a global minimizer. Indeed, given any ξ ∈ C1
∗([0, π]) such

that ξ(0) = ξ(π) = 0, we can define an odd and 2π-periodic function ξ̃ : [−π, π] → lR
by setting ξ̃(t) = ξ(t) on [0, π] and ξ̃(t) = −ξ(−t) on [−π, 0). For such a function, the
Fourier series exists, it is uniformly convergent on [−π, π] and, due to the fact that we
are dealing with an odd function, it is given by∑

k≥0

bk sin(kt), t ∈ [−π, π].

Hence, ∫ π

0
ξ(t)2 dt =

∑
k≥0

∫ π

0
b2
k sin2(kt) dt =

π

2

∑
k≥0

b2
k

and ∫ π

0
ξ′(t)2 dt =

∑
k≥0

∫ π

0
k2b2

k cos2(kt) dt =
π

2

∑
k≥0

k2b2
k.

We conclude that for any ξ ∈ C1
∗([0, π]) such that ξ(0) = ξ(π) = 0,∫ π

0
ξ(s)2 ds ≤

∫ π

0
ξ′(s)2 ds.

It only remains to analyse the case T > π. To this end, let us consider as above the Jacobi
equation for this problem. It is easy to see that any point c = kπ, for k ∈ lN such that
kπ < T is a conjugate point to 0. By Theorem 1.3.4 we can conclude that ξ̄ ≡ 0 cannot
be a local minimizer for J .

Let us go back to problem (1.14) and to Jacobi’s statement. Let L = L(t, x, q) be a
C3([a, b]× lRn × lRn) Lagrangian and ξ̄ be a local minimizer of problem (1.14) for which

P (t) := Lqq(t, ξ̄(t), ξ̄
′(t)) > 0, t ∈ [a, b].
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Hence for any η ∈ C1
∗([a, b], lR

n) such that η(a) = η(b) = 0 we have (actually ξ̄ is C2)

0 ≤ d2

dλ2
J(ξ̄ + λη)|λ=0 =

∫ b

a
[Lxx(t, ξ̄(t), ξ̄

′(t))η(t) · η(t) + Lqq(t, ξ̄(t), ξ̄
′(t))η′(t) · η′(t)

+ 2Lxq(t, ξ̄(t), ξ̄
′(t))η′(t) · η(t)] dt.

Now define

Lξ̄(t, y, z) = Lxx(t, ξ̄(t), ξ̄
′(t))y · y + Lqq(t, ξ̄(t), ξ̄

′(t))z · z + 2Lxq(t, ξ̄(t), ξ̄
′(t))z · y,

which is called the accessory Lagrangian to problem (1.14). Then consider the new prob-
lem

min

{∫ b

a
Lξ̄(t, η(t), η′(t)) dt | η ∈ C1

∗([a, b]; lRn), η(a) = η(b) = 0

}
(1.40)

(here Jξ̄[η] =
∫ b
a Lξ̄(t, η(t), η′(t)) dt is called the accessory functional).

Observe first that the zero function is a global minimizer for this problem and that

Jξ̄[0] = 0. Moreover, since ∂2Lξ̄
∂z2 (t, η(t), z) = ∂2L

∂q2 (t, ξ̄(t), ξ̄′(t)) > 0 for all z ∈ lRn, any

other extremal η of problem (1.40) (in the sense of Definition 1.2.11) is a C1 function and
satisfies the classical Euler equation by Corollary 1.2.13. Furthermore, the Euler equation
for problem (1.40) is

d

dt

{
L̄qq(t)η

′(t) + L̄xq(t)η(t)
}

= L̄xq(t)η
′(t) + L̄xx(t)η(t).

where

L̄qq(t) := Lqq(t, ξ̄(t), ξ̄
′(t)), L̄xx(t) := Lxx(t, ξ̄(t), ξ̄

′(t)) and L̄xq(t) := Lxq(t, ξ̄(t), ξ̄
′(t)).

Any solution of the previous equation is called the accessory extremal. It is easy to prove
the following connection between accessory extremals and conjugate points.

Proposition 1.3.6 Let L = L(t, x, q) be a C3([a, b]× lRn × lRn) Lagrangian and ξ̄ be an
extremal of problem (1.14) for which L̄qq(t) := Lqq(t, ξ̄(t), ξ̄

′(t)) > 0, t ∈ [a, b]. Then a
point c ∈ (a, b] is conjugate to a if and only if there exists a nontrivial accessory extremal
ηc on [a, c] such that ηc(a) = ηc(c) = 0.

Remark 1.3.7 Nontriviality of the accessory extremal is equivalent to the condition
η′c(a) 6= 0 (η′c(c) 6= 0) since the Euler equation related to the accessory functional is a
second order linear equation.

Now we are ready to prove the Jacobi Necessary Condition.
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Proof of Theorem 1.3.4-II)– Let ξ̄ be a C2 local minimizer such that L̄qq(t) > 0 and
suppose by contradiction that there exists a conjugate point c ∈ (a, b). Take the nontrivial
accessory extremal ηc associated with c as in Proposition 1.3.6. Then,∫ c

a
Lξ̄(t, ηc(t), η′c(t)) dt

=
∫ c

a
[L̄qq(t)η

′
c(t) · η′c(t) + 2L̄xq(t)η

′
c(t) · ηc(t) + L̄xx(t)ηc(t) · ηc(t)] dt

=
∫ c

a

{ d
dt

[(L̄qq(t)η
′
c(t) + L̄xq(t)ηc(t)) · ηc(t)]− ηc(t) ·

d

dt
(L̄qq(t)η

′
c(t) + L̄xq(t)ηc(t))

+ L̄xq(t)η
′
c(t) · ηc(t) + L̄xx(t)ηc(t) · ηc(t)

}
dt

=
[
(L̄qq(t)η

′
c(t) + L̄xq(t)ηc(t)) · ηc(t)

]c
a

= 0,

since ηc(a) = ηc(c) = 0 and

d

dt

{
L̄qq(t)η

′
c(t) + L̄xq(t)ηc(t)

}
= L̄xq(t)η

′
c(t) + L̄xx(t)ηc(t).

If we define

η̃(t) =


ηc(t) for t ∈ [a, c],

0 for t ∈ [c, b],

we then have that η̃(t) ∈ C1
∗([a, b]; lRn), η̃(a) = η̃(b) = 0 and

Jξ̄[η̃] =
∫ c

a
Lξ̄(t, ηc(t), η′c(t)) dt+

∫ b

c
Lξ̄(t, 0, 0) dt = 0,

that is η̃ is a minimizer of Jξ̄. By Corollary 1.2.13 we conclude that η̃ is a C1 function,
against the fact that

0 = lim
t→c+

η̃′(t) 6= lim
t→c−

η̃′(t) = η′c(c).

(see Remark 1.3.7).

Let us now prove the Jacobi Sufficient Condition in the one dimensional case.

Proof of Theorem 1.3.4-I)– Let ξ̄ be a C2 extremal of problem (1.14) such that
L̄qq(t) := Lqq(t, ξ̄(t), ξ̄

′(t)) > 0 for all t ∈ [a, b] and such that no conjugate points ex-
ist in (a, b]. Consider any η ∈ C1

∗([a, b]) with η(a) = η(b) = 0. Since ξ̄ is an extremal,
then

J [ξ̄ + η]− J [ξ̄] =
1

2

d2

dλ2
J [ξ̄ + λη] for some λ ∈ (0, 1).

Denoting by Lλqq(t) the derivative Lqq(t, ξ̄(t) + λη(t), ξ̄′(t) + λη′(t)) we have
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J [ξ̄ + η]− J [ξ̄]

=
1

2

∫ b

a

[
Lλqq(t)η

′2(t) + 2Lλxq(t)η
′(t)η(t) + Lλxx(t)η

2(t)
]
dt

=
1

2
Jξ̄[η] + I0,

where

I0 :=
1

2

∫ b

a

[
(Lλqq(t)− L̄qq(t))η′2(t) + 2(Lλxq(t)− L̄xq(t))η′(t)η(t)

+(Lλxx(t)− L̄xx(t))η2(t)
]
dt.

Since by assumption L is a C3 function, there exists a constant K = K(ξ̄) > 0 such that∣∣∣(Lqq(t, ξ̄(t) + x, ξ̄′(t) + q)− Lqq(t, ξ̄(t), ξ̄′(t))
∣∣∣ ≤ K(|x|+ |q|)

for any (x, q) ∈ [−1, 1]× [−1, 1]. Hence,∣∣∣(Lλqq(t)− L̄qq(t))η′2(t)
∣∣∣ ≤ K(‖η‖∞ + ‖η′‖∗∞)η′2(t),

for any η ∈ C1
∗([a, b]) such that η(a) = η(b) = 0, provided ‖η‖∞ < 1 and ‖η′‖∗∞ < 1.

Similar estimates hold for all the other terms in I0, giving (increasing K if needed)

|I0| ≤
K

2
(‖η‖∞ + ‖η′‖∗∞)

∫ b

a

(
η′2(t) + 2|η′(t)η(t)|+ η2(t)

)
dt.

Moreover, as in Wirtinger’s Example (see 1.3.2), we have∫ b

a

(
η′2(t) + 2|η′(t)η(t)|+ η2(t)

)
dt ≤ C

∫ b

a
η′2(t) dt,

for some C = C(a, b). So, for any ε > 0 we can find Cε > 0 such that, for any η ∈ C1
∗([a, b])

satisfying η(a) = η(b) = 0 and ‖η‖∞ + ‖η′‖∗∞ < Cε, we have

|I0| ≤
ε

2

∫ b

a
η′2(t) dt.

Then

J [ξ̄ + η]− J [ξ̄] ≥ 1

2
Jξ̄[η]− ε

2

∫ b

a
η′2(t) dt

=
1

2

∫ b

a

[
(L̄qq(t)− ε)η′2(t) + 2L̄xq(t)η

′(t)η(t) + L̄xx(t)η
2(t)

]
dt

=
1

2

∫ b

a

[
(P (t)− ε)η′2(t) +Q(t)η2(t)

]
dt
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(where Q(t) := Lxx(t, ξ̄(t), ξ̄
′(t)) − d

dt
{Lxq(t, ξ̄(t), ξ̄′(t))} and P (t) := Lqq(t, ξ̄(t), ξ̄

′(t)) as
in the false Theorem of Legendre). In order to complete the proof, we need the following
lemma.

Lemma 1.3.8 Assume the hypotheses of Theorem 1.3.4-I). Then there exists ε0 > 0 such
that for any 0 < ε < ε0 the equation {(P (t)− ε)u′(t)}′+Q(t)u(t) = 0 admits a (classical)
solution uε 6= 0 for all t ∈ [a, b].

Before proving Lemma 1.3.8, let us conclude Jacobi’s Theorem.

Since
∫ b
a{w(t)η2(t)}′dt = 0 for any continuous w and any η ∈ C1

∗([a, b]) such that η(a) =
η(b) = 0, taking

w(t) = −(P (t)− ε)u′ε(t)
uε(t)

,

with uε as in Lemma 1.3.8, we have

J [ξ̄ + η]− J [ξ̄] ≥ 1

2

∫ b

a

[
(P (t)− ε)η′2(t) +Q(t)η2(t) + {w(t)η2(t)}′

]
dt

=
1

2

∫ b

a

[
(P (t)− ε)η′2(t) +Q(t)η2(t) +

(−(P (t)− ε)u′ε(t))′

uε(t)
η2(t)

+
(P (t)− ε)u′2ε (t)

u2
ε(t)

η2(t)− 2
(P (t)− ε)u′ε(t)

uε(t)
η(t)η′(t)

]
dt

=
1

2

∫ b

a
(P (t)− ε)

[
η′2(t) +

u′2ε (t)

u2
ε(t)

η2(t)− 2
u′ε(t)

uε(t)
η(t)η′(t)

]
dt

=
1

2

∫ b

a
(P (t)− ε)

[
η′(t)− u′ε(t)

uε(t)
η(t)

]2
dt ≥ 0,

for any ε sufficiently small. Hence we have proved that for any ε > 0 small enough, there
exists Cε > 0 such that for any η ∈ C1

∗([a, b]) with η(a) = η(b) = 0 and ‖η‖∞+‖η′‖∗∞ < Cε
we have

J [ξ̄ + η] ≥ J [ξ̄],

i.e. ξ̄ is a local minimizer for functional J .

Proof of Lemma 1.3.8– Let u0 be the unique solution of the Cauchy problem

−{P (t)u′(t)}′ +Q(t)u(t) = 0 t ∈ (a, b)

u(a) = 0

u′(a) = 1.
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Since there are no conjugate points (to a) in (a, b] and u′0(a) 6= 0, then u0(t) 6= 0 for any
t 6= a. Hence there exist δ > 0 and d ∈ (a, b) such that u′0(t) > δ on [a, d] and u0(t) > δ on
[d, b]. For any α > 0 and ε > 0 let uα,ε be the solution of the perturbed Cauchy problem

−{(P (t)− ε)u′(t)}′ +Q(t)u(t) = 0 t ∈ (a, b)

u(a) = α

u′(a) = 1.

By the continuous dependence of solutions of Cauchy problems from initial data and
parameters, we have that for any α, ε sufficiently small,

|uα,ε(t)− u0(t)| ≤ δ

2
, |u′α,ε(t)− u′0(t)| ≤ δ

2
for any t ∈ [a, b]

and then

uα,ε(t) >
δ

2
, on [d, b],

and

u′α,ε(t) >
δ

2
on [a, d].

This obviously implies that uα,ε(t) > 0 on [a, b] for all α, ε sufficiently small.

At the end of this section we consider again the Evans model presented in Example
1.2.24.

Example 1.3.9 We recall that the problem was to maximize

Π(P ) =
∫ T

0

(
−2P 2(t) + 3P (t)P ′(t) + 4P (t)− P ′2(t)− 3P ′(t)− 3

)
dt

subject to
P (0) = P0, P (T ) = PT , P0 6= PT ,

and that in Example 1.2.24 we got a unique extremal (see (1.32)). We could not conclude
that such an extremal was a local maximizer of the problem, because assumption (E1)
of Tonelli’s Theorem was not fulfilled. However, a positive answer is given by Jacobi’s
Theorem 1.3.4, since L is strictly concave with respect to q and no conjugate points to 0
exist in the interval (0, T ]. Indeed, for any fixed c ∈ (0, T ], Jacobi’s equation is

η′′(t)− 2η(t) = 0,

with boundary conditions η(0) = η(c) = 0. It is easy to see that the null function is the
unique solution to the previous problem for any c.

Exercise 1.3.10 Consider again the minimization problem of Exercise 1.2.34. The func-
tional J and the boundary conditions are:

J(ξ) =
∫ 1

0
(1 + t)(ξ′(t)2 + ξ(t)) dt ξ(0) = 0, ξ(1) = 1,

where J is defined on the class of C1 functions ξ : [0, 1] → lR. By means of Jacobi’s
Theorem 1.3.4, determine the nature of the extremals.
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1.4 Isoperimetric Problem

There are many problems in Calculus of Variations which cannot be formulated as the ones
we have introduced so far. Most of them are optimization problems under constraints.
The isoperimetric problem is one of these. It can be stated as follows: minimize the
functional

J [ξ] =
∫ b

a
L(t, ξ(t), ξ′(t)) dt

subject to
ξ ∈ C1

∗([a, b], lR
n), ξ(a) = A, ξ(b) = B,

and

G(ξ) =
∫ b

a
g(t, ξ(t), ξ′(t)) dt = C, C ∈ lR.

For such a problem we have the following sufficient condition for optimality:

Theorem 1.4.1 Let L, g ∈ C1([a, b]× lRn× lRn). Moreover, suppose that for some λ ∈ lR
the augmented Lagrangian L:

L(t, x, q) = L(t, x, q) + λg(t, x, q),

is a convex function with respect to the (x, q) variable for any fixed t ∈ [a, b]. Then any
extremal ξ̄ of L such that ξ̄(a) = A, ξ̄(b) = B is a solution of the isoperimetric problem
for

C = Cλ =
∫ b

a
g(t, ξ̄(t), ξ̄′(t)) dt.

Proof– Let J [ξ] = J [ξ] +λG(ξ). By assumption, J is a convex and smooth functional on
C1
∗([a, b], lR

n). Furthermore, if ξ̄ is an extremal for the augmented Lagrangian such that
ξ̄(a) = A, ξ̄(b) = B, then ξ̄ is a minimizer of J , that is

J [ξ̄] ≤ J [ξ], for all ξ ∈ C1
∗([a, b], lR

n), ξ(a) = A, ξ(b) = B.

Indeed, by the convexity and regularity of L we have

J [ξ]− J [ξ̄] =
∫ b

a
{L(t, ξ(t), ξ′(t))− L(t, ξ̄(t), ξ̄′(t))} dt

≥
∫ b

a
{Lx(t, ξ̄(t), ξ̄′(t)) · (ξ(t)− ξ̄(t))} dt

+
∫ b

a
{Lq(t, ξ̄(t), ξ̄′(t)) · (ξ′(t)− ξ̄′(t))} dt

=
[
Lq(t, ξ̄(t), ξ̄

′(t)) · (ξ(t)− ξ̄(t))
]b
a

+
∫ b

a

{
− d

dt
Lq(t, ξ̄(t), ξ̄

′(t)) + Lx(t, ξ̄(t), ξ̄
′(t))

}
· (ξ(t)− ξ̄(t)) dt = 0.
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We have just proved that

J [ξ̄] + λG(ξ̄) ≤ J [ξ] + λG(ξ), for all ξ ∈ C1
∗([a, b], lR

n), ξ(a) = A, ξ(b) = B.

Restricting the previous inequality to the functions ξ ∈ C1
∗([a, b], lR

n) such that ξ(a) = A,
ξ(b) = B and G(ξ) = G(ξ̄), we get the desired result.

Remark 1.4.2 The isoperimetric problem can be also formulated with a finite number
of conditions, say

Gi(ξ) =
∫ b

a
gi(t, ξ(t), ξ

′(t)) dt = Ci, Ci ∈ lR, i = 1, . . . , N.

In this case, Theorem 1.4.1 holds true provided we consider N scalars λi and we define
the augmented Lagrangian by L = L+

∑N
i=1 λigi.

We stress that all the regularity results of Section 1.2.2 can be applied to the augmented
Lagrangian whenever it satisfies the hypotheses of injectivity and regularity. In the sequel
we will present several examples of isoperimetric problems. Anytime that the regularity
results apply, we will automatically set the problem on the class of C1 functions.

Example 1.4.3 Consider the problem

min
{∫ 1

0
ξ′(t)2 dt | ξ : [0, 1]→ lR, ξ(0) = ξ(1) = 0,

∫ 1

0
ξ(t) dt = 1

}
.

Then, L(q) = q2, λg(x) = λx are convex functions for any λ ∈ lR. The Euler equation
for the augmented Lagrangian is 2x′′(t) = λ (L is strictly convex with respect to q and
regular). Hence, for λ fixed, there is a unique extremal of the augmented Lagrangian
which satisfies the boundary conditions, namely ξ̄(t) = λ

4
(t2 − t). Since

∫ 1

0
ξ̄(t) dt =

[
λ

4

(
t3

3
− t2

2

)]1

0

= − λ

24
,

for λ = −24 we obtain that ξ̄(t) = 6(t− t2) is a minimizer for the original problem.

Example 1.4.4 (Queen Dido’s Problem) It deals with the maximization of the func-
tional

J̄ [ξ] =
∫ a

−a
ξ(t) dt, (a > 0 fixed)

subject to

ξ(−a) = ξ(a) = 0 and
∫ a

−a

√
1 + ξ′(t)2 dt = L,

where 2a < L < πa. In other words, we want to maximize the area of the region enclosed
by the curve {(t, ξ(t)) : t ∈ [−a, a]} and the line segment [−a, a] among all the curves
with fixed extremes (−a, ξ(−a)) = (−a, 0), (a, ξ(a)) = (a, 0) and prescribed length L.
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Setting J [ξ] := −J̄ [ξ], the hypotheses of Theorem 1.4.1 are fulfilled provided λ ≥ 0. Let
ξ be an extremal for the augmented Lagrangian

L(t, x, q) = −x+ λ
√

1 + q2,

which is a regular function and it is strictly convex with respect to q. The Euler equation
is

d

dt

 λξ
′
(t)√

1 + ξ
′
(t)2

 = −1.

Integrating we obtain
λξ
′
(t)√

1 + ξ
′
(t)2

= c− t,

and squaring the above equality we get

ξ̄′(t)2(λ2 − (c− t)2) = (c− t)2.

Simple maximality arguments imply that we can restrict to symmetric solutions, decreas-
ing for t > 0; hence c = 0 and

ξ
′
(t) =

−t√
λ2 − t2

, t ∈ [−a, a]

provided λ > a. Integrating again and imposing ξ̄(a) = 0 we get

ξ(t) =
√
λ2 − t2 −

√
λ2 − a2.

Hence, for any λ > a, the solution is a circle whose equation is

(ξ(t) +
√
λ2 − a2)2 + t2 = λ2.

In order to find the minimizers of Dido’s problem, we have to find (if they exist) the values

of λ such that
∫ a
−a

√
1 + ξ̄′(t)2 dt = L. This means that λ must satisfy

L =
∫ a

−a

√
1 +

t2

λ2 − t2
dt

= λ
∫ a

−a

dt√
λ2 − t2

(λ > a)

= 2λ arcsin
a

λ
.

First notice that equation L = 2λ arcsin a
λ

is well-posed, since λ > a and L < πa. Let us
now consider the map

f(λ) =
sin L

2λ
L
2λ

L

2
λ > a.

Since limλ→+∞ f(λ) = L
2
> a and limλ→a+ f(λ) = a sin L

2a
< a, we conclude the existence

of λ > a such that f(λ) = a, that is L = 2λ arcsin a
λ
.
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The following theorem is a necessary condition for the local minimizers of the isoperi-
metric problem in the case when no convexity assumptions are made on the data L and
g.

Theorem 1.4.5 Let L, g ∈ C1([a, b]×lRn×lRn). If ξ̄ is a local solution of the isoperimetric
problem, then either

(i) ξ̄ is an extremal for the functional G, i.e. d
ds
G(ξ̄ + sη)|s=0 = 0 for any η ∈

C1
∗([a, b], lR

n) such that η(a) = η(b) = 0;

or

(ii) there exists λ ∈ lR such that ξ̄ is an extremal for J + λG.

Proof– Let us set V := {η ∈ C1
∗([a, b], lR

n) : η(a) = η(b) = 0}. We will first prove that
if ξ̄ is a local solution of the isoperimetric problem, then for any η, µ ∈ V

det

 J ′(ξ̄)η J ′(ξ̄)µ

G′(ξ̄)η G′(ξ̄)µ

 = 0,

where J ′(ξ̄)η := d
ds
J(ξ̄+sη)|s=0. Indeed, suppose by contradiction that there exist η, µ ∈ V

such that

det

 J ′(ξ̄)η J ′(ξ̄)µ

G′(ξ̄)η G′(ξ̄)µ

 6= 0

and for r > 0 small consider the map ϕ : Br(0, 0) ∈ lR2 → lR2, defined by

ϕ(l,m) = (J(ξ̄ + lη +mµ), G(ξ̄ + lη +mµ)).

Then, ϕ(0, 0) = (J(ξ̄), G(ξ̄)), ϕ ∈ C1(Br(0, 0)) because of the regularity of L and g, and
detDϕ(0, 0) 6= 0 by the previous assumption. Hence, for a suitable r′ ≤ r, ϕ is a local
diffeomorphism between Br′(0, 0) and ϕ(Br′(0, 0)) and then it is possible to find some
(l,m) ∈ Br′(0, 0) such that G(ξ̄ + lη + mµ) = G(ξ̄) and J(ξ̄ + lη + mµ) < J(ξ̄), against
the fact that ξ̄ is a local solution of the isoperimetric problem.
Let us now conclude the proof of the theorem. If ξ̄ is not an extremal for G, then there
exists µ̄ ∈ V such that G′(ξ̄)µ̄ 6= 0. Since for any η ∈ V we have

det

 J ′(ξ̄)η J ′(ξ̄)µ̄

G′(ξ̄)η G′(ξ̄)µ̄

 = 0,

then J ′(ξ̄)ηG′(ξ̄)µ̄ = J ′(ξ̄)µ̄G′(ξ̄)η, i.e.

J ′(ξ̄)η =
J ′(ξ̄)µ̄

G′(ξ̄)µ̄
G′(ξ̄)η = −λG′(ξ̄)η, ∀η ∈ V , if we set λ := − J

′(ξ̄)µ̄

G′(ξ̄)µ̄
,

which is (ii).
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Example 1.4.6 In Example 1.4.4 we needed the assumption L < aπ in order to use a
cartesian representation for the boundary of the region whose area was to be maximized.
If we get rid of it, we can formulate Queen Dido’s problem in the following way: let
ξ : [0, 1]→ lR2, ξ(t) = (ξ1(t), ξ2(t)), be any piecewise regular curve in the plane such that
ξ(0) = (−a, 0), ξ(1) = (a, 0). Since by Green’s formula the area of the region enclosed
by the curve and the line segment [−a, a] is given by

∫ 1
0 ξ1(t)ξ′2(t) dt, then Queen Dido’s

problem becomes

max

{∫ 1

0
ξ1(t)ξ′2(t) dt | ξ : [0, 1]→ lR2,

ξ(0) = (−a, 0)
ξ(1) = (a, 0)

,
∫ 1

0

√
ξ′1(t)2 + ξ′2(t)2 dt = L

}
.

Now, the Lagrangian L(x1, x2, q1, q2) = x1q2 is not convex, nor injective, so that Theo-

rems 1.4.1 and 1.2.13 do not apply. On the other hand, g(q1, q2) =
√
q2

1 + q2
2 is not C1

in a neighbourhood of (0, 0), so that we cannot use Theorem 1.4.5 if we consider the
problem on the class of C1

∗ functions. However, if we restrict our analysis to the class
of the regular functions with nonvanishing gradient, we can still apply Theorem 1.4.5 to
find some necessary conditions for maximizers belonging to such a class. Indeed, if ξ̄ is a
maximizer, then ξ̄ is an extremal for either functional G or functional J + λG, for some
λ ∈ lR. In the former case, ξ̄ must satisfy equation

d

dt

{
ξ̄′(t)

‖ξ̄′(t)‖

}
= 0,

that is
ξ̄′(t)

‖ξ̄′(t)‖
= k for some k = (k1, k2) ∈ lR2, ‖k‖ = 1.

Then,
‖ξ̄′(t)‖ = 〈ξ̄′(t), k〉

and ∫ 1

0

√
ξ′1(t)2 + ξ′2(t)2 dt =

∫ 1

0
‖ξ̄′(t)‖ dt = 2ak1 ≤ 2a < L,

which is a contradiction. In the latter case, the Euler equation is

d

dt

{
λξ̄′1(t)

‖ξ̄′(t)‖

}
= −ξ̄′2(t)

d

dt

{
−ξ̄1(t) +

λξ̄′2(t)

‖ξ̄′(t)‖

}
= 0.

Hence, there exist c1, c2 ∈ lR such that ξ̄ is a solution of the system

λξ̄′1(t)

‖ξ̄′(t)‖
= −ξ̄2(t) + c1

−ξ̄1(t) +
λξ̄′2(t)

‖ξ̄′(t)‖
= c2.

43



Since ξ̄ is a regular curve, then ξ′1(t)2 + ξ′2(t)2 6= 0 for all t ∈ [0, 1] and

λξ̄′1(t)

c1 − ξ̄2(t)
=

λξ̄′2(t)

c2 + ξ̄1(t)
.

Now λ 6= 0, since otherwise ξ̄ ≡ 0, and hence we obtain ξ̄′2(t)(c1− ξ̄2(t)) = ξ̄′1(t)(c2 + ξ̄1(t)),
i.e.

1

2

d

dt
{ξ′1(t)2 + ξ′2(t)2 + 2c2ξ̄1(t)− 2c1ξ̄2(t)} = 0.

This means that there exists some R > 0 such that

(ξ̄1(t) + c2)2 + (ξ̄2(t)− c1)2 = R− (c2
1 + c2

2).

We can conclude that if Queen Dido’s problem admits a solution ξ̄ in the class of regular
curves, then it has to be the parameterization of a circular sector.

Exercise 1.4.7 Using conditions ξ(0) = (−a, 0), ξ(1) = (a, 0) and∫ 1

0

√
ξ′1(t)2 + ξ′2(t)2 dt = L,

find out the admissible values for c1, c2 and R above.

An economic example of isoperimetric problem is the Hotelling model to determine
the optimal rate of extraction of an exhaustible resource. See also [17].

Example 1.4.8 The Hotelling Model describes the problem of minimizing over the time
interval [0, T ], the discounted price of extraction of an exhaustible resource when there
are B units of resource to extract, that is to minimize∫ T

0
e−rtx2(t) dt (1.41)

subject to ∫ T

0
x(t)dt = B, (1.42)

where x(·) is the rate of extraction, r > 0 and e−rt is the discount factor. The problem can
be studied in two ways: either introducing a new state variable or applying the augmented
Lagrangian method. We begin with the first approach.
We define a new state variable y(·) as

y(t) =
∫ t

0
x(s) ds,

so that y′(t) = x(t), y(0) = 0 and y(T ) = B.
Then problem (1.41)–(1.42) can be reformulated in the following way: to minimize∫ T

0
e−rty′2(t) dt (1.43)
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subject to y(0) = 0 and y(T ) = B.
Since L(t, q) = e−rtq2 is a regular function and it is strictly convex with respect to q, we
have ∂L

∂x
(t, q) = 0, ∂L

∂q
(t, q) = 2qe−rt and the Euler equation is

d

dt

∂L

∂q
(t, y′(t)) = 2e−rty′′(t)− 2re−rty′(t) = 0.

Solving the second order homogeneous linear differential equation

y′′(t)− ry′(t) = 0,

we get y(t) = c1 + c2e
rt, where c1 and c2 are constants to be determined exploiting the

initial and the terminal conditions, i.e. solving the linear system
c1 + c2 = y(0) = 0

c1 + ertc2 = y(T ) = B.

Its solution is

c1 = − B

erT − 1
and c2 =

B

erT − 1
;

hence

y(t) =
B

erT − 1
[ert − 1] and then x(t) = y′(t) =

rB

erT − 1
ert.

Applying the augmented Lagrangian method, we have L(t, x) = e−rtx2 + λx. Therefore
∂L
∂x

(t, x) = 2xe−rt + λ and ∂L
∂q

(t, x) = 0. The Euler equation is

∫ t

0

∂L

∂x
(s, x(s)) ds =

∫ t

0
2x(s)e−rs ds+ λt = c for some c ∈ lR;

hence, differentiating with respect to t,

2x(t)e−rt + λ = 0, that is x(t) = −λ
2
ert.

The multiplier λ can be found exploiting (1.42):

B =
∫ T

0
x(t) dt = −

∫ T

0

λ

2
ert dt = − λ

2r
[erT − 1].

Indeed λ must satisfy

λ = − 2rB

erT − 1
and then x(t) =

rB

erT − 1
ert.
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Exercise 1.4.9 Minimize the functional

J(ξ) =
∫ 1

0

[
1

2
ξ′(s)2 +

1

2
ξ(s)2 − ξ(s)

]
ds

on the arcs ξ ∈ C1((0, 1)) subject to

ξ(0) = ξ(1) = 0

and ∫ 1

0
(ξ′(s)− ξ(s))2 ds =

7e− 5

4(1 + e)
.
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Chapter 2

Optimal Control Theory

2.1 Basic Problem in Optimal Control Theory

One of the basic problems in Calculus of Variations is to minimize the functional∫ T

0
L(t, x(t), x′(t)) dt+ φT (x(T )),

on x(·) ∈ A, where

A = {x ∈ C1
∗([0, T ]; lRn) : x(0) = x0, x0 ∈ lRn}.

This problem can be rewritten as

min
u(·)

∫ T

0
L(t, x(t), u(t)) dt+ φT (x(T )), (2.1)

where u : [0, T ] → lRn is called the control variable and the state variable x = x(t;x0, u)
(also called trajectory) is the solution of the controlled system

x′(t) = u(t)

x(0) = x0.
(2.2)

In general, the controls u that can be applied to govern the system (2.2) are restricted to
take values in a closed subset U ⊂ lRn, called the control space. Calculus of Variations
Theory can no longer be used if U 6= lRn.

The state equation (2.2) can be considered in a more general form
x′(t) = f(t, x(t), u(t))

x(0) = x0,
(2.3)

where U ⊂ lRk is a closed set, f : [0, T ] × lRn × U → lR and u : [0, T ] → U is piecewise
continuous (in the sequel u ∈ C∗([0, T ], U)).
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Under standard hypotheses, the state equation (2.3) admits a unique solution for any
fixed control variable. Indeed, the following modification of the classical Picard Theorem
holds true.

Lemma 2.1.1 Suppose that f : [0, T ] × lRn × U → lR is a continuous function and that
there exists some K > 0 such that for any t ∈ [0, T ], u ∈ U and x, y ∈ lRn

|f(t, x, u)− f(t, y, u)| ≤ K|x− y|, |f(t, x, u)| ≤ K(1 + |x|). (2.4)

Then, for any fixed u ∈ C∗([0, T ], U) there exists a unique solution x to (2.3), that is a
piecewise C1 function x (x ∈ C1

∗([0, T ], lRn) in the sequel) which satisfies (2.3) up to the
discontinuity points of the control variable u.

Notice that (2.4) require f to be Lipschitz continuous and sublinear with respect to
x, uniformly in t and u.
Now let us define the basic problem in Optimal Control Theory.

Definition 2.1.2 Suppose that U ⊂ lRk is a closed set, f ∈ C([0, T ]× lRn × U) satisfies
hypothesis (2.4) and that L : [0, T ] × lRn × U → lR and φ : lRn → lR are continuous and
bounded from below functions. Then problem

inf
u(·)∈C∗([0,T ],U)

∫ T

0
L(t, xx0(t, u), u(t)) dt+ φ(xx0(T, u)), (2.5)

where xx0(·, u) ∈ C1
∗([0, T ], lRn) is a solution of

x′(t) = f(t, x(t), u(t))

x(0) = x0,
(2.6)

is called Bolza problem; if in (2.5) L = 0 or φ = 0, then problem (2.5)–(2.6) is called
respectively Mayer problem and Lagrange problem.

Example 2.1.3 (Boat in stream) We want to model the problem of a boat leaving
from the shore to enter in a wide basin where the current is parallel to the shore, increasing
with the distance from it. We assume that the engine can move the boat in any direction,
but its power is limited. For a fixed time T > 0, we want to evaluate the furthest point
the boat can reach from the starting point, measured along shore. The mathematical
model can be formulated as follows: we fix the (x1, x2) Cartesian axes in such a way that
the starting point is (0, 0) and the x1–axis coincides with the (starting) shore. Hence, we
want to solve the Mayer problem

min −x1(T ),
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where (x1, x2) : [0, T ]→ lR2 is a solution of the system

x′1(t) = x2(t) + u1(t) t ∈ (0, T )

x′2(t) = u2(t) t ∈ (0, T )

x1(0) = 0

x2(0) = 0,

and the controls (u1, u2), which represent the engine power, vary in the unit ball of lR2,
i.e. u2

1 + u2
2 ≤ 1.

In what follows, we will always assume at least the hypotheses of Definition 2.1.2.

Remark 2.1.4 The Bolza type control problem seems to be the most general formulation.
Actually, if we enlarge the dimension of the state space we can rewrite a Bolza problem
into a Mayer problem with a higher dimensional state space. In fact, let X(t) ∈ lR× lRn

be defined as

X(t) =

 z(t)

x(t)

 ,
where z(t) =

∫ t

0
L(s, x(s), u(s)) ds.

Consider the state equation

X ′(t) =

 z′(t)

x′(t)

 =

 L(t, x(t), u(t))

f(t, x(t), u(t))

 = F (t,X(t), u(t));

X(0) =

 0

x0

 .
(2.7)

Then the Bolza problem can be written as

inf
u(·)

Φ(X(T )) (2.8)

where Φ(X(T )) = z(T ) + φ(x(T )).
On the other hand, a Lagrange problem can be rewritten as a Mayer problem applying

the above reasoning and recalling that φ = 0.

Another example of optimal control problems is the one concerning the model of
pumping out water from a basin, see [15].
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Example 2.1.5 This example is related to the problem of emptying a basin in a fixed
amount of time T . The power u of the engine used by the pump is the control variable
and the height x of the level of water left in the basin is the state variable.
The functional is the cost to pay to empty the water reservoir. It consists of two terms:
the first one is the pumping cost, while the second one is a cost on the residual level of
water in the basin.
Let T > 0 be fixed and U = [0, 1]. The problem is

min
u(·)

∫ T

0
u2(t) dt+ x2(T ) (2.9)

where u : [0, T ]→ [0, 1] and x = x(t;x0, u) is a solution of the controlled system
x′(t) = −u(t)

x(0) = 1.
(2.10)

2.2 Pontryagin Minimum/Maximum Principle

Let us start by analysing the Mayer problem. Fix T > 0, x0 ∈ lRn and consider the
minimization problem

inf
u(·)∈C∗([0,T ],U)

φ(x(T, u)), (2.11)

where x(·, u) ∈ C1
∗([0, T ], lRn) is a solution of

x′(t) = f(t, x(t), u(t))

x(0) = x0,
(2.12)

(we omit the dependence of the state variable from x0 for brevity).

Definition 2.2.1 Control ū is said to be optimal for problem (2.11)–(2.12) if

φT (x(T, ū)) = min
u(·)

φT (x(T, u))

and x̄(t, ū) is the optimal trajectory associated with it. In what follows we will often refer
to {ū, x̄} as an optimal pair.

It can be proved (but it is far beyond the scope of these notes) that if the control
space U is compact and f(t, x, U) is a convex set for any t ∈ [0, T ] and x ∈ lRn, then
the Mayer problem admits an optimal pair {ū, x̄}. But in this section we are interested
in determining necessary conditions for optimality. Let us begin with the scalar case. In
Calculus of Variations, we considered a perturbation of the optimal trajectory ξ̄ and we
built a family of admissible arcs. In this case perturbing the optimal trajectory x̄ we
get x(t) = x̄(t) + λη(t), for λ ∈ lR and η : [0, T ] → lR and we cannot ensure that the
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perturbed trajectory x satisfies (2.12); on the other hand, perturbing the control ū so that
v(t) = ū(t)+γδ(t), for γ ∈ lR and δ : [0, T ]→ U , we cannot be certain that the perturbed
control v takes values into U . This is why in Optimal Control Theory we cannot research
necessary conditions exploiting the same kind of perturbations as we did in the Calculus
of Variations approach. In the present case we will use a particular kind of perturbations
(spike perturbations), using a constant control on some short interval.

Theorem 2.2.2 Assume that φ ∈ C1(lRn) and Dxf is continuous on [0, T ] × lRn × U .
Let {ū, x̄} be an optimal pair for problem (2.11)–(2.12) and let λ(·) be the C1

∗ solution of
−λ′(t) = (Dxf)∗ (t, x̄(t, ū), ū(t)) · λ(t) on [0, T ]

λ(T ) = Dφ(x̄(T, ū)).
(2.13)

Then,
〈λ(t), f(t, x̄(t, ū), ū(t))〉 = min

v∈U
〈λ(t), f(t, x̄(t, ū), v)〉, (2.14)

in any continuity point t of ū.

The equation (2.14) is called Pontryagin Minimum Principle, the equation in (2.13) is
called co–state or adjoint equation and the terminal condition on λ is called transversality
condition. Function λ is often referred to as co–state .
In equation (2.13), the notation Dxf

∗ stands for the adjoint matrix of Dxf .

Proof–For simplicity we will write x̄(t) instead of x̄(t, ū). Fix any continuity point s ∈
(0, T ] of ū, h ∈ (0, s), v ∈ U , and define

uh(t) =


v if s− h < t ≤ s

ū(t) elsewhere .

We denote by xh(·) the corresponding state xh(·, uh).
Since ū is optimal we have

φ(xh(T )) ≥ φ(x̄(T ));

hence, dividing by h and passing to the limit as h→ 0+, we get (if the limit exists)

0 ≤ lim
h→0+

φ(xh(T )− φ(x̄(T )

h
(2.15)

In order to prove the existence and to compute the limit in (2.15) we need the following
two lemmas.

Lemma 2.2.3 Assume the hypotheses of Theorem 2.2.2. Under the above assumptions
on s and h we have that there exists C > 0 such that

|xh(t)− x̄(t)| ≤ Ch

for all t ∈ [0, T ] and h ∈ (0, s). In particular, xh uniformly converges to x̄ on [0, T ].

51



Proof– Take M > 0 such that |f(t, x̄(t), ū(t))| ≤ M for any t ∈ [0, T ]. Then, by the
sublinear growth of f we have

|xh(t)| =
∣∣∣∣x0 +

∫ t

0
f(r, xh(r), uh(r)) dr

∣∣∣∣ ≤ |x0|+
∫ t

0
K(1 + |xh(r)|) dr,

and hence |xh(t)| ≤ (|x0| + KT )eKT for any t ∈ [0, T ] by the Gronwall inequality1.
Moreover,

xh(t)− x̄(t) =
∫ t

0
[f(r, xh(r), uh(r))− f(r, x̄(r), ū(r))] dr =

∫ t

0
Fh(r) dr,

where

Fh(r) =



0 for r ∈ (0, s− h)

f(r, xh(r), v)− f(r, x̄(r), ū(r)) for r ∈ (s− h, s)

f(r, xh(r), ū(r))− f(r, x̄(r), ū(r)) for r ∈ (s, T )

Being f and xh bounded, we easily find that also |Fh(r)| ≤ M̃ for all r ∈ (s − h, s) and
some M̃ > 0. Hence,

|xh(t)− x̄(t)| ≤



0 for t ∈ [0, s− h]

M̃h for t ∈ [s− h, s]

M̃h+
∫ t

s
K|xh(r)− x̄(r)| dr for t ∈ [s, T ].

Then, by the Gronwall inequality we have |xh(t) − x̄(t)| ≤ M̃heK(t−s) on [s, T ] and the
assertion follows by taking C = M̃eKT .

Lemma 2.2.4 Assume the hypotheses of Theorem 2.2.2. Under the above assumptions
on s and h we have that

xh(t)− x̄(t)

h
→ ξ(t), uniformly on [s, T ],

where ξ solves 
ξ′(t) = Dxf(t, x̄(t), ū(t)) · ξ(t) on (s, T ],

ξ(s) = f(s, x̄(s), v)− f(s, x̄(s), ū(s)).

1Gronwall’s Lemma
Let u0 ∈ lR, K > 0 and u : [a, b]→ lR be a continuous function. If

u(t) ≤ u0 +K

∫ t

a

u(s) ds, ∀t ∈ [a, b],

then u(t) ≤ u0e
K(t−a) for all t ∈ [a, b].
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Proof– For any t ∈ (s, T ] we have

xh(t)− x̄(t)

h
− ξ(t)

=
1

h

∫ s

s−h
Fh(r) dr +

1

h

∫ t

s
Fh(r) dr −

(
ξ(s) +

∫ t

s
Dxf(r, x̄(r), ū(r)) · ξ(r) dr

)

=
1

h

∫ s

s−h
[f(r, xh(r), v)− f(r, x̄(r), ū(r))− (f(s, xh(s), v)− f(s, x̄(s), ū(s)))] dr

+
∫ t

s

[
f(r, xh(r), ū(r))− f(r, x̄(r), ū(r))

h
−Dxf(r, x̄(r), ū(r)) · ξ(r)

]
dr

=: I1 + I2.

Now,

I1 =
1

h

∫ s

s−h
[f(r, xh(r), v)− f(r, x̄(r), v)] dr

+
1

h

∫ s

s−h
[f(r, x̄(r), v)− f(r, x̄(r), ū(r))] dr − [f(s, xh(s), v)− f(s, x̄(s), ū(s))]

:= I11 + I12 + I13,

where I11 is bounded by Ch by Lemma 2.2.3 and I12+I13 is of the form 1
h

∫ s
s−h g(r) dr−g(s)

and then goes to 0 as h → 0 because s is a continuity point for ū. Hence we can write
I1 = ε(h) with ε(h)→ 0 as h→ 0. As for I2 we have

f(r, xh(r), ū(r))− f(r, x̄(r), ū(r)) = Dxf(r, x̄(r), ū(r)) · (xh(r)− x̄(r)) + ω(h),

where ω(h)
h
→ 0 as h → 0, because of the regularity of f and the uniform convergence of

xh to x̄. Collecting together the previous estimates we deduce that∣∣∣∣∣xh(t)− x̄(t)

h
− ξ(t)

∣∣∣∣∣ ≤ |ε(h)|+
∫ t

s
|Dxf(r, x̄(r), ū(r))|

∣∣∣∣∣xh(r)− x̄(r)

h
− ξ(r)

∣∣∣∣∣ dr+T

∣∣∣∣∣ω(h)

h

∣∣∣∣∣ .
Using the Gronwall inequality we conclude that∣∣∣∣∣xh(t)− x̄(t)

h
− ξ(t)

∣∣∣∣∣ ≤
(
|ε(h)|+ T

∣∣∣∣∣ω(h)

h

∣∣∣∣∣
)
eKT → 0, as h→ 0,

which is the desired result.

Let us now conclude the proof of Theorem 2.2.2. We know that

φ(xh(T )− φ(x̄(T )

h
≥ 0,
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φ is a C1 function and for t ∈ [s, T ] we can write xh(t) = x̄(t) + hξ(t) + o(h, t), where

sup[s,T ]
|o(h,t)|
h
→ 0 as h→ 0. Then we obtain that

0 ≤ φ(x̄(T ) + hξ(T ) + o(h, T ))− φ(x̄(T ))

h
→ Dφ(x̄(T )) · ξ(T ).

But if M(t, s) is the fundamental solution (in s) of the equation of ξ, that is the unique
solution of 

M ′(t, s) = Dxf(t, x̄(t), ū(t))M(t, s) on (s, T ],

M(s, s) = I,

then ξ is given by ξ(t) = M(t, s) [f(s, xh(s), v)− f(s, x̄(s), ū(s))] and the previous in-
equality becomes

〈Dφ(x̄(T )),M(T, s)f(s, xh(s), v)〉 ≥ 〈Dφ(x̄(T )),M(T, s)f(s, x̄(s), ū(s))〉,

or, equivalently,

〈M∗(T, s)Dφ(x̄(T )), f(s, xh(s), v)〉 ≥ 〈M∗(T, s)Dφ(x̄(T )), f(s, x̄(s), ū(s))〉,

The proof is then complete, once we observe that the solution of equation (2.13) is given
by λ(s) = M∗(T, s)Dφ(x̄(T )), where M∗(T, s) is the adjoint of M(T, s). Indeed, the
semigroup property of the fundamental matrix gives

M(t, r)M(r, s) = M(t, s) for any s ≤ r ≤ t.

Then,
∂M

∂s
(t, r)M(r, s) +M(t, r)

∂M

∂t
(r, s) = 0

and for r = s we get

∂M

∂s
(t, s) = −M(t, s)Dxf(s, x̄(s), ū(s)).

This means that
∂M∗

∂s
(t, s) = −(Dxf)∗(s, x̄(s), ū(s))M∗(t, s),

which is the equation of the fundamental matrix related to equation (2.13).

Remark 2.2.5 If our control problem is a maximization one, then, in the above reason-
ing, everything stays the same except for the direction of inequalities; so we have the so
called Pontryagin Maximum Principle

〈λ(t), f(t, x̄(t), ū(t))〉 = max
v∈U
〈λ(t), f(t, x̄(t), v)〉.

In the case of a Bolza problem, the Pontryagin Minimum Principle can be formulated
as follows:
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Theorem 2.2.6 (Pontryagin Minimum Principle) Assume that φ ∈ C1(lRn), Dxf
is continuous on [0, T ]× lRn×U and that the Lagrangian L satisfies the same assumptions
of f , that is (2.4) and the continuity of DxL. Let {ū, x̄} be an optimal pair for problem
(2.5)–(2.6) and let λ(·) be the solution of the adjoint equation

−λ′(t) = DxL(t, x̄(t, ū), ū(t)) + (Dxf)∗ (t, x̄(t, ū), ū(t)) · λ(t)

λ(T ) = Dφ(x̄(T, ū)).
(2.16)

Then,

〈λ(t), f(t, x̄(t), ū(t))〉+ L(t, x̄(t), ū(t)) = min
v∈U
〈λ(t), f(t, x̄(t), v)〉+ L(t, x̄(t), v) (2.17)

in any continuity point t of ū.

Proof– We have seen in Remark 2.1.4 that we can reformulate a Bolza problem (2.5)–(2.6)
into a Mayer one (2.8)–(2.7). Hence recalling the definitions of X,F,Φ in Remark 2.1.4,
and denoting by λz, λ, the co–state variable of the state variable z, x respectively, Theo-
rem 2.2.2 gives

〈Λ(t), F (t, X̄(t), ū(t))〉 = min
v∈U
〈Λ(t), F (t, X̄(t), v)〉,

where Λ is the solution of the co–state equation
−Λ′(t) = (DXF )∗

(
t, X̄(t), ū(t)

)
Λ(t)

Λ(T ) = DΦ(X̄(T )).

(2.18)

Here

i) DXF =

(
∂Fi
∂Xj

)
i,j=1...n

=

 0 DxL

0 Dxf



ii) DΦ =

 1

Dφ



iii) Λ(t) =

 λz(t)

λ(t)

 .
Writing (2.18) in vector form, we obtain

−λ′z(t) = 0

−λ′(t) = DxL(t, x̄(t, ū), ū(t))λz(t) + (Dxf)∗ (t, x̄(t, ū), ū(t)) · λ(t)

λz(T ) = 1

λ(T ) = Dφ(x̄(T )),
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which yields (2.16).

Let H = H(t, x, v, λ) be the pre–Hamiltonian function defined as

H(t, x, v, λ) =< λ, f(t, x, v) > +L(t, x, v)

and associated with the optimal control problem (2.5)–(2.6). Then necessary optimality
conditions can be restated as follows:

Theorem 2.2.7 Assume hypotheses of Theorem 2.2.6. Let {ū, x̄} be an optimal pair for
problem (2.5)–(2.6) and let λ be the corresponding co–state. Then, λ solves

H(t, x̄(t), ū(t), λ(t)) = min
v∈U
H(t, x̄(t), v, λ(t)), (2.19)

in any continuity point t of ū.
Moreover, x̄ and λ can be characterized as the solutions of the Hamiltonian system

λ′(t) = −∂H
∂x

(t, x̄(t), ū(t), λ(t)) λ(T ) = Dφ(x̄(T ))

x̄′(t) =
∂H
∂λ

(t, x̄(t), ū(t), λ(t)) x̄(0) = x0.

(2.20)

Remark 2.2.8 Let us consider a Bolza maximization problem,

max
u(·)

∫ T

0
L(t, x(t), u(t)) dt+ φ(x(T ))

where x = x(t;x0, u) is a solution of the controlled system (2.6). Remarking that a func-
tion f has a maximum at x if and only if −f has a minimum at x and reviewing Theorem
2.2.6, we obtain that the co–state equation related to a Bolza maximization problem
is still (2.16) or (2.20), while the Pontryagin principle turns out to be a maximization
condition, i.e.:

〈λ(t), f(t, x̄(t), ū(t))〉+ L(t, x̄(t), ū(t)) = max
v∈U
〈λ(t), f(t, x̄(t), v)〉+ L(t, x̄(t), v).

(Pontryagin Maximum Principle)

Recalling that H(t, x, u, λ) =< λ(t), f(t, x, u) > +L(t, x, v) we can rewrite the above
principle as,

H(t, x̄(t), ū(t), λ(t)) = max
v∈U
H(t, x̄(t), v, λ(t)).

Very often, in applications of Optimal Control Theory to economics, the Lagrange
function is taken of the form

L(t, x, v) = F (t, x, v)e−ρt,

where ρ is a positive constant. For this kind of problems, instead of considering the co–
state λ and the pre–Hamiltonian function H, as we did so far, it is sometimes useful to
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introduce the so called current value co–state λc and the current value pre–Hamiltonian
Hc as follows, see [5, p. 210]:

λc = λeρt, Hc(t, x, v, λc) = H(t, x, v, λ)eρt.

Let us consider the maximization problem,

max
u(·)

∫ T

0
F (t, x(t), u(t))e−ρtdt+ φT (x(T )),

where x = x(t;x0, u) is a solution of the controlled system (2.6). If {x̄(·), ū(·)} is an
optimal pair for such a problem, then the above theorem can be reformulated in terms of
λc and Hc as follows:

Hc(t, x̄(t), ū(t), λc(t)) = max
v∈U
Hc(t, x̄(t), v, λc(t))

and x̄ and λc solve the Hamiltonian system
λ′c(t) = −∂Hc

∂x
(t, x̄(t), ū(t), λc(t)) + ρλc(t) λc(T ) = Dφ(x̄(T ))eρt

x̄′(t) =
∂Hc

∂λc
(t, x̄(t), ū(t), λc(t)) x̄(0) = x0.

2.2.1 Examples

In this section, we will present three applications of the Pontryagin Minimum Principle
to economics and we will also discuss the introductory Examples 2.1.3 and 2.1.5. For the
reader’s convenience, we begin with a simple mathematical example of the Mayer optimal
control problem in order to see how the principle applies.

Example 2.2.9 Let x0 ∈ lR \ {0}, T = 1 and U = [−1, 1]. The problem is

max
u(·)

1

2
x2(1, u) (2.21)

where u : [0, 1]→ [−1, 1] and x = x(t, u) is a solution of the controlled system
x′(t) = x(t)u(t)

x(0) = x0 6= 0.
(2.22)

Optimal trajectories are computed by hand

x̄(t) = x0e
t. (2.23)

If we solve the problem via the Pontryagin Maximum Principle we get

λ(t)ū(t)x̄(t) = max
−1≤u≤1

λ(t)u x̄(t) = |λ(t)x̄(t)| and ū(t) = sgn(λ(t)x̄(t)).
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On the other hand 
λ′(t) = ū(t)λ(t)

λ(1) = x̄(1);

hence
λ(t) = x̄(1)e

∫ 1

t
ū(s) ds.

Since both λ(t) and x̄(t) have the same sign as x̄(1), we conclude that ū(t) = 1. Setting
the optimal control in the state equation we obtain the optimal trajectories x̄(t) = x0e

t.

Economic applications of Optimal Control Theory raised between 1965 and 1975. In
the sequel we shall present examples both in macro and in microeconomic theory. In the
following example we present a model which shows how to choose an optimal portfolio in
the presence of transaction cost, see [14, p. 254].

Example 2.2.10 An agent has a capital to invest in a remunerative bank account or in a
stock. The setup is deterministic and we assume to know the instantaneous remuneration
rate r(t) of the bank account, the dividend flow δ(t) associated with the stock and the
stock prize S(t), for each t ∈ [0, T ]. At any time t we can buy or sell a maximum number
of stocks M and for every transaction we pay a cost α ∈ (0, 1). We denote by x1(t) the
amount of money on the bank account at time t and by x2(t) the number of stocks in the
portfolio at time t. Moreover we call v(t) the algebraic number of stocks sold at time t.
We are interested in maximizing the portfolio value at T that is

max
v(·)
{x1(T ) + S(T )x2(T )} (2.24)

subject to 

x′1(t) = r(t)x1(t) + δ(t)x2(t) + S(t)(v(t)− α|v(t)|)

x′2(t) = −v(t)

x1(0) = x1

x2(0) = x2

(2.25)

and v : [0, T ] → [−M,M ]. Let ū be an optimal control and (x̄1, x̄2) the related optimal
trajectory. The co–state equations are

−λ′1(t) = r(t)λ1(t)

−λ′2(t) = δ(t)λ1(t)

λ1(T ) = 1

λ2(T ) = S(T ),

(2.26)
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whose solutions are

λ1(t) = e
∫ T
t
r(τ)dτ and λ2(t) = S(T ) +

∫ T

t
δ(τ)e

∫ T
τ
r(s)dsdτ.

Applying the Pontryagin Maximum Principle, we also have

λ1(t)[r(t)x̄1(t) + δ(t)x̄2(t) + S(t)(ū(t)− α|ū(t)|)]− λ2(t)ū(t)

= max
|v|≤M

{λ1(t)[r(t)x1(t) + δ(t)x2(t) + S(t)(v − α|v|)]− λ2v} ,

which gives

λ1(t)S(t)(ū(t)− α|ū(t)|)− λ2(t)ū(t)] = max
|v|≤M

{v (λ1(t)S(t)(1− αsgn(v))− λ2(t)v)} .

Exploiting the previous equation we find that the optimal control ū is given by

ū(t) =



M if λ1(t)S(t)(1− α) > λ2(t);

0 if λ1(t)S(t)(1− α) < λ2(t) < λ1(t)S(t)(1 + α);

−M if λ1(t)S(t)(1 + α) < λ2(t).

(2.27)

Denoting by q(t) the ratio
λ2(t)

S(t)λ1(t)
the control ū can also be written as

ū(t) =



M if q(t) < 1− α;

0 if 1− α < q(t) < 1 + α;

−M if q(t) > 1 + α.

Once we specify the data r(·), δ(·), S(·) and α we can say for which t ū is equal to −M ,
0 or M .

The next example is due to Nordhaus in 1975. He discussed the political business
cycles which arise in democratic countries within each electoral period, see [18] or [5, p.
193].

Example 2.2.11 In a democratic nation there are elections to decide which party is
going to rule the country. In the Nordhaus Model, the party which is in charge of the
government wishes to get more voters considering only two economic variables: u, the
unemployment rate, and π, the inflation rate. These variables are considered in a vote
function V = V (u, π) which represents how many votes the ruling party is going to get
managing a policy which acts on the unemployment rate and on the inflation rate. V is
assumed to be a decreasing function with respect to the u and π variables:

∂V

∂u
< 0 and

∂V

∂π
< 0,
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that is there is an interplay between inflation and unemployment.
Moreover u and π are related through the Phillips tradeoff relation

p(t) = φ(u(t)) + aπ(t),

where φ is a decreasing function, a is a constant such that a ∈ (0, 1] and π is the expected
rate of inflation which behaves accordingly to the adaptive differential equation

π′(t) = b(p(t)− π(t)), b positive constant.

Assuming T to be the time left to the elections’day and taking into account the Phillips
relation, the problem that the incumbent party has to face is the following: to maximize
on the controls u the functional ∫ T

0
V (u(t), φ(u(t)))ertdt,

where r > 0 and ert is a decay memory factor (voters give more importance to what the
government does near the elections’ day).
Again, according to the Phillips relation the state equation is

π′(t) = bφ(u(t)) + b(a− 1)π(t)

π(0) = π0.

The aim is to find the optimal inflation rate ū the government has to implement. Although
u cannot be negative, there are no constraints on the sign of u. In the Nordhaus framework

φ(u) = j − ku and V (u, π) = −(u2 + hp), j, k, h > 0.

The optimal control problem is to maximize

−
∫ T

0
[u2(t) + h(j − ku(t) + aπ(t))]ert dt,

which is equivalent to minimize∫ T

0
[u2(t) + h(j − ku(t) + aπ(t))]ert dt,

subject to 
π′(t) = b[j − ku(t) + (a− 1)π(t)]

π(0) = π0.

The pre–Hamiltonian function of this problem is

H(t, π, u, λ) = ert[u2 + h(j − ku+ aπ)] + λb[j − ku+ (a− 1)π].
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If ū is an optimal control, then it minimizes H and hence we have

0 =
∂H
∂u

= 2uert − hkert − bkλ.

Since
∂2H
∂u2

= 2ert > 0,

H attains its unique minimum at

ū(t) =
hk

2
+
bk

2
λ̄(t)e−rt.

So, knowing λ̄ we have the optimal control.
In order to find λ̄, we solve the co–state equation

λ′(t) = −∂H
∂π

(t, π̄(t), ū(t), λ(t)) = ahert + b(a− 1)λ(t)

λ(T ) = 0.

The solution of the above Cauchy problem can be easily obtained:

λ̄(t) =
ah

r + b(a− 1)
[e[r+b(a−1)]T+(1−a)bt − ert].

Finally, substituting λ̄ into ū we get the optimal unemployment rate

ū(t) =
hk

2
+
bk

2

ah

r + b(a− 1)
[e[r+b(a−1)](T−t) − 1]

=
hk

2[r + b(a− 1)]

[
r − b+ abe[r+b(a−1)](T−t)

]
.

We remark that since

ū′(t) = −hk
2
abe[r+b(a−1)](T−t) < 0,

ū is a decreasing function of t. Moreover, since ū(T ) = hk
2
> 0, we conclude that the

optimal unemployment rate is always positive.

Our last economic example is the so–called Eisner–Strotz model to expand a firm’s
plant size. We will analyse such a model by means of the current value pre–Hamiltonian
formulation.

Example 2.2.12 The Eisner–Strotz model analyses the problem of a firm that wants
to expand the machinary used in its industrial process in a fixed interval of time [0, T ],
T > 0. The profit rate π associated with each plant size is supposed to be a known
function and it will be evaluated on the capital stock K, which is a measure of the plant
size. In the expansion process the firm has to face an adjustment cost C, which depends
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on the velocity K ′ of the expansion. On the other hand, the capital stock K satisfies the
equation K ′(t) = I(t), where I(t) is the net investment and our control variable. Indeed,
the more the firm invests, the fastest the expansion is. The optimal control problem we
are dealing with is

max
I(·)

∫ T

0
[π(K(t))− C(I(t))] e−ρt dt,

where ρ > 0, I : [0, T ]→ lR and K is the solution of the controlled system
K ′(t) = I(t)

K(0) = K0, K0 > 0.

Roughly speaking, the above maximization problem is the mathematical representation
of the firm’s aim of finding the optimal path K∗(t) which maximizes the total discounted
value of its net profit (see [10] or [5, p. 106] for further details). In order to give quanti-
tative solutions, we assume that

π(K) = αK − βK2 and C(I) = aI2 + bI,

where α, β, a and b are given positive constants. In this case, the current value pre–
Hamiltonian is

Hc(t,K, I, λc) = αK − βK2 − aI2 − bI + λcI,

whose maximum value with respect to the control variable I is attained at

I =
λc − b

2a
.

Hence, the Hamiltonian system is
λ′c(t) = −α + 2βK(t) + ρλc(t), λc(T ) = 0

K ′(t) =
λc(t)− b

2a
, K(0) = K0.

Solving the above system, we can easily derive the required optimal path

K∗(t) = c1e
r1t + c2e

r2t + K̄,

where 

K̄ =
α− ρb

2β

r1 =
ρa+

√
ρ2a2 + 4aβ

2a
r2 =

ρa−
√
ρ2a2 + 4aβ

2a

c1 =
(K0 − K̄)r2e

r2T + b/2a

r2er2T − r1er1T
c2 = −(K0 − K̄)r1e

r1T + b/2a

r2er2T − r1er1T
.
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Let us now discuss Examples 2.1.3 and 2.1.5, starting from the model of the boat
entering in a basin.

Example 2.2.13 Let T > 0 be fixed and U = {(u1, u2) | u2
1 + u2

2 ≤ 1}. The problem is

min −x1(T ),

where (x1, x2) : [0, T ]→ lR2 is a solution of the system

x′1(t) = x2(t) + u1(t) t ∈ (0, T )

x′2(t) = u2(t) t ∈ (0, T )

x1(0) = 0

x2(0) = 0,

and (u1, u2) ∈ U .
Consider the optimal pair {x̄(t), ū(t)}. Then the co–state equation is

λ′1(t) = 0,

λ′2(t) = −λ1(t)

λ1(T ) = −1,

λ2(T ) = 0,

which gives λ1(t) = −1 and λ2(t) = t− T . Applying the Pontryagin Minimum Principle
we have that

min
u∈U
{λ1(t)(x̄2(t) + u1) + λ2(t)u2} = λ1(t)x̄2(t) + min

u∈U
{λ1(t)u1 + λ2(t)u2}

is attained at

ū1(t) = − λ1(t)√
λ2

1(t) + λ2
2(t)

and ū2(t) = − λ2(t)√
λ2

1(t) + λ2
2(t)

,

i.e.

ū1(t) =
1√

1 + (t− T )2
and ū2(t) =

T − t√
1 + (t− T )2

.
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By inserting the optimal control ū into the state equation we obtain

x′1(t) = x2(t) +
1√

1 + (t− T )2
t ∈ (0, T )

x′2(t) =
T − t√

1 + (t− T )2
t ∈ (0, T )

x1(0) = 0

x2(0) = 0,

which produces the optimal trajectory

x̄1(t) = −1

2
(t− T )

√
1 + (t− T )2 − T

2

√
1 + T 2 + t

√
1 + T 2

−1

2
log

(
T − t+

√
1 + (t− T )2

)
+

1

2
log

(
T +
√

1 + T 2
)

x̄2(t) = −
√

1 + (t− T )2 +
√

1 + T 2

Let us now complete the discussion of the model of pumping out water from a basin,
see Example 2.1.5.

Example 2.2.14 Let T > 0 be fixed and U = [0, 1]. We have already seen that the
problem is

min
u(·)

∫ T

0
u2(t)dt+ x2(T ), (2.28)

where u : [0, T ]→ [0, 1] and x = x(t;u) is a solution of the controlled system
x′(t) = −u(t)

x(0) = 1.
(2.29)

Consider the optimal pair {x̄(t), ū(t)}. Then the co–state equation is
λ′(t) = 0,

λ(T ) = 2x̄(T ),

which gives λ(t) = 2x̄(T ). Applying the Pontryagin Minimum Principle we have that

min
v∈U
〈λ(t),−v〉+ v2
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is attained at ū(t) ≡ x̄(T ). By inserting the optimal control ū into the state equation
x̄′(t) = −x̄(T )

x̄(0) = 1,

we obtain x̄(t) = 1 − tx̄(T ) and therefore x̄(T ) =
1

1 + T
. Hence the optimal control and

the optimal trajectory are respectively

ū(t) =
1

1 + T
and x̄(t) = 1− t

1 + T
.

2.2.2 Time Optimal Problem

In the optimal control theory we introduced so far the interval [0, T ] was fixed. Then we
cannot directly apply it to problems where the final time varies with the control variable.
However, using the previous computations, we can formulate a suitable Minimum Princi-
ple for the Time Optimal Problem. Let us first introduce the general setting for Optimal
Control Problems with Exit Time.

Let C ∈ lRn be a closed nonempty set, and take U ∈ lRk, f ∈ C([0, T ] × lRn × U),
L : [0, T ] × lRn × U → lR and φ : lRn → lR as in Definition 2.1.2. Moreover, for any
x0 ∈ lRn \ C and u ∈ C∗([0,∞), U) define the (extended valued) map

τ(x0, u) = inf{t > 0 : xx0(t, u) ∈ C},

where xx0(·, u) ∈ C1
∗([0, T ], lRn) is the solution of

x′(t) = f(t, x(t), u(t))

x(0) = x0.
(2.30)

Then the Optimal Control Problem with Exit Time is the following

inf
u(·)∈C∗([0,∞),U)

{∫ τ(x0,u)

0
L(t, xx0(t, u), u(t)) dt+ φ(xx0(τ(x0, u), u))

}
, (2.31)

with xx0(·, u) and τ(x0, u) as above.
In the language of Optimal Control Theory, the set C is called target and the map τ is
called transition time.

In this section we are interested in the particular problem with φ ≡ 0 and L ≡ 1,
which is the Time Optimal Problem:

inf
u(·)∈C∗([0,∞),U)

τ(x0, u), (2.32)
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where τ(x0, u) = inf{t > 0 : xx0(t, u) ∈ C} and xx0(·, u) ∈ C1
∗([0, T ], lRn) is the solution of

x′(t) = f(t, x(t), u(t))

x(0) = x0.
(2.33)

Theorem 2.2.15 Assume that there exists d ∈ C1(lRn) such that C = {x ∈ lRn : d(x) ≤
0} and that ∇d 6= 0 on the set ∂C = {x ∈ lRn : d(x) = 0}. Let {ū, x̄} be an optimal pair
for problem (2.32) (here x̄(·) stands for xx0(·, ū)), i.e.

τ(x0, ū) = min
u(·)∈C∗([0,∞),U)

τ(x0, u)

and x̄ solves (2.33). Then the solution of the adjoint equation (called co–state)
−λ′(t) = (Dxf)∗ (t, x̄(t), ū(t)) · λ(t)

λ(T ) = ν(x̄(τ(x0, ū))),
(2.34)

where ν(x̄(τ(x0, ū))) is the outer unit normal to C in x̄(τ(x0, ū)), satisfies the Pontryagin
Minimum Principle

〈λ(t), f(t, x̄(t), ū(t))〉 = min
v∈U
〈λ(t), f(t, x̄(t), v)〉 (2.35)

in any continuity point t ∈ (0, τ(x0, ū)] of the optimal control ū.

Proof– Let us call τ̄ the optimal arrival time τ(x0, ū). Fix any continuity point
s ∈ (0, τ̄ ] of ū, h ∈ (0, s), v ∈ U and define

uh(t) =


v if s− h < t ≤ s

ū(t) elsewhere .

We denote by xh(·) the corresponding state xh(·, uh). Arguing as in Theorem 2.2.2 we
find that

xh(t)− x̄(t)

h
→ ξ(t), uniformly on [s, τ̄ ],

where

ξ(t) =


0 on [0, s]

M(t, s)[f(s, x̄(s), v)− f(s, x̄(s), ū(s))] on (s, τ̄ ]

and M(t, s) solves
∂M

∂t
(t, s) = Dxf(t, x̄(t), ū(t))M(t, s) on (s, T ],

M(s, s) = I
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Moreover, by the minimality of τ̄ , we have

d(x̄(τ̄)) = 0 and d(xh(τ̄)) ≥ 0.

Hence we find again that

0 ≤ d(xh(τ̄))− d(x̄(τ̄))

h
→ 〈∇d(x̄(τ̄)), ξ(τ̄)〉, as h→ 0,

i.e.
〈∇d(x̄(τ̄)),M(τ̄ , s)[f(s, x̄(s), v)− f(s, x̄(s), ū(s))]〉 ≥ 0.

Dividing by |∇d(x̄(τ̄))| 6= 0 and taking into account that ∇d(x̄(τ̄))
|∇d(x̄(τ̄))| is precisely the outer

unit normal to C in x̄(τ̄) we obtain the assertion.

Theorem 2.2.16 Assume that C = {0} and let {ū, x̄} be an optimal pair for problem
(2.32) (here x̄(·) stands for xx0(·, ū)). Then there exists some µ ∈ lRn with |µ| = 1 such
that the solution of the adjoint equation

−λ′(t) = (Dxf)∗ (t, x̄(t), ū(t)) · λ(t)

λ(T ) = ν,
(2.36)

satisfies the Pontryagin Minimum Principle

〈λ(t), f(t, x̄(t), ū(t))〉 = min
v∈U
〈λ(t), f(t, x̄(t), v)〉 (2.37)

in any continuity point t ∈ (0, τ(x0, ū)] of the optimal control ū.

Proof– We will only give an idea of the proof. For any r > 0 take the perturbed optimal
control problem with target Cr = {x ∈ lRn : |x|2 − r2 ≤ 0}. Let {ur, xr} be an optimal
pair, τr the optimal arrival time to Cr and λr the co–state. Then

λr(τr) =
xr(τr)

|xr(τr)|

is a unit vector for any r > 0. By taking the limit as r → 0, it can be shown that {ur, xr},
τr, Cr and λr converge (by subsequence and in some sense to be specified) to {ū, x̄}, τ̄ ,
C and λ, respectively. Hence the vector λr(τr) converges to some unit vector which is the
final datum for the co–state of problem (2.32) with target C = {0}.

Remark 2.2.17 If the state equation (2.33) is autonomous, then it can be shown that
actually in Theorems 2.2.15 and 2.2.16

〈λ(t), f(x̄(t), ū(t))〉 = 0,

along any optimal pair {ū, x̄} of the Time Optimal Problem (see [15], p. 143).
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We present an example of a time–optimal problem whose state equation is a second
order differential equation, see [5, p. 226].

Example 2.2.18 We study the time–optimal capture of a wandering particle. Let x0, y0 6=
0 be fixed. The problem we face is to solve

inf{t ≥ 0 : there exists u(·) ∈ [−1, 1] = U such that x(t, u) = 0, x′(t, u) = 0}

where x(t, u) is subject to 

x′′(t) = u(t),

x(0) = x0,

x′(0) = y0.

The control u(·) represents the force we apply to the particle to drive it to rest. Since we
are considering a second order equation, introducing the new state variable y(t) = x′(t)
we can define

X(t) =

 x(t)

y(t)

 ,
and the state equation above can be rewritten as a first order system

X ′(t) =

 x′(t)

y′(t)

 =

 y(t)

u(t)

 =

 0 1

0 0

X(t) +

 0

1

u(t),

X(0) =

 x0

y0

 .
Using this formulation, the initial problem reads as a time optimal problem in lR2 with
target C = {(0, 0)}. The pre–Hamiltonian function H is

H(x, y, u, λ, µ) = 1 +

 λ

µ

 ·

 0 1

0 0


 x

y

+

 0

1

u


= 1 +

 λ

µ

 ·
 y

u

 = 1 + λy + µu.

The adjoint equations are 
λ′(t) = −∂H

∂x
= 0,

µ′(t) = −∂H
∂y

= −λ(t).
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Hence
λ(t) = c1,

µ(t) = c2 − c1t,

where c1 and c2 are unknown constants such that c2
1 + (c2 − c1τ(x0, u))2 = 1.

The Pontryagin Minimum Principle yields

ū(t) = argmin{1 + c1ȳ(t) + (c2 − c1t)u : u ∈ [−1, 1]}.

Since the pre–Hamiltonian function H is linear with respect to u we have

ū(t) = −sgn(c2 − c1t) ∈ {−1, 1}

and then ū is a bang–bang control, i.e. it takes value from one side of the boundary of U
to the other.
Since c1 and c2 are not known there are four possible cases:
Case 1: Suppose µ > 0. Then ū(t) = −1 and the optimal trajectories are

x̄(t) = x0 + y0t− 1
2
t2

ȳ(t) = y0 − t.
(2.38)

In the phase plane they are parabolas over which we move clockwise, as it can be seen by
rewriting the optimal trajectories as

x̄(t) = −1

2
(y0 − t)2 +K1 = − ȳ(t)2

2
+K1, where K1 = x0 +

y2
0

2

Case 2: Suppose µ < 0. Then ū(t) = 1 and the optimal trajectories are
x̄(t) = x0 + y0t+ 1

2
t2

ȳ(t) = y0 + t.

Again, in the phase plane, they are parabolas over which we move clockwise, as it can be
seen by rewriting the optimal trajectories as

x̄(t) =
ȳ(t)2

2
+K2, where K2 = x0 −

y2
0

2

In the cases we analyse so far, in order to have x̄(T ) = 0 we need to start at some point
on the parabolas passing through the origin which are the ones where K1 = 0 in case 1
or K2 = 0 in case 2. Since we are dealing with bang–bang solutions the optimal control
ū may switch from values on the boundary of the control space U .
We denote by Π−, Π+, Ω− and Ω+ the sets

Π− =

{
(x, y)|x = −y

2

2
, y ≥ 0

}
, Π+ =

{
(x, y)|x =

y2

2
, y ≤ 0

}
,

69



Ω− =

{
(x, y)|x < −y

2

2
, y > 0

}
∪
{

(x, y)|x < y2

2
, y < 0

}
and

Ω+ =

{
(x, y)|x > −y

2

2
, y > 0

}
∪
{

(x, y)|x > y2

2
, y < 0

}
.

We have two other cases.
Case 3: Suppose (x0, y0) ∈ Ω+. In this case we catch a parabola associated with ū(t) = −1,
we keep using this optimal control for a time t at which we hit Π+ at a certain point
(x1, y1) = (x̄(t), ȳ(t)). Hence (x1, y1) is such that

x1 = −y
2
1

2
+

(
x0 +

y2
0

2

)

x1 =
y2

1

2
.

Solving the system we obtain

(x1, y1) =

1

2

(
x0 +

y2
0

2

)
,−
√
x0 +

y2
0

2

 .
Moreover from (2.38) we can evaluate t:

y1 = ȳ(t) = y0 − t;

therefore

t = y0 − y1 = y0 +

√
x0 +

y2
0

2
,

which means that the time elapsed is equal to the distance swept by ȳ.
From time t on, we drive along on Π+ using the control ū(t) = 1 until we hit the origin.
Recalling that on Π+ we have 0 = ȳ(t) + t, the time elapsed is

t = −ȳ(t) = −y1 =

√
x0 +

y2
0

2
,

and the total driving time from (x0, y0) to the origin is

τ(x0, y0) = t+ t = y0 + 2 +

√
x0 +

y2
0

2
.

Case 4: Suppose (x0, y0) ∈ Ω−. In this case we catch a parabola associated with ū(t) = 1,
we keep using this optimal control for a time t at which we hit Π− at a certain point
(x2, y2) = (x̄(t), ȳ(t)). From time t on, we drive along on Π− using the control u∗(t) = −1
until we hit the origin. The reasoning is the same as the one used in the previous case.
It is easy to see that now

τ(x0, y0) = −y0 + 2 +

√
y2

0

2
− x0.
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Exercise 2.2.19 Describe the level sets of the function τ in the previous example.

Exercise 2.2.20 Analyse the time–optimal capture of a wandering particle (see Exam-
ple 2.2.18) when the target (in the phase plane) is the unit ball in lR2.

Exercise 2.2.21 Analyse the time–optimal capture of a wandering particle (see Exam-
ple 2.2.18) when the target (in the phase plane) is the unit square in lR2.

Exercise 2.2.22 Calculate the transition time τ(x0, y0), (x0, y0) ∈ lR2, related to the
equation 

x′(t) = u(t)

y′(t) = v(t)

x(0) = x0

y(0) = y0

where |u|, |v| ≤ 1 and the target is C = {(0, 0)}.

The next example concerns the smooth landing (with velocity zero) of a space vehicle
on the surface of a planet along a vertical trajectory, see [15].

Example 2.2.23 (Soft Landing Problem) Denote by x(t) the height at time t, y(t)
the instantaneous velocity and z(t) the total mass of the vehicle (which is a nonincreasing
function of time, since fuel is being consumed). If we denote by u(t) the instantaneous
upwards thrust and we suppose that the rate of decrease of mass is proportional to u, we
obtain the following first–order system of ordinary differential equations

x′(t) = y(t),

y′(t) = −g +
u(t)

z(t)
,

z′(t) = −Ku(t),

(2.39)

where K > 0 and g is the gravity acceleration. At time 0 we have the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0. (2.40)

In addition we suppose that the thrust cannot exceed some fixed value, say 0 ≤ u(t) ≤ R
for some R > 0. The vehicle will land softly at time T ≥ 0 if

x(T ) = 0, y(T ) = 0.

The problem of soft landing is then to minimize the amount of fuel consumed from time 0
to time T , that is z0− z(T ). The problem actually includes two state constraints, namely

x(t) ≥ 0 and z(t) ≥ m0,
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where m0 is the mass of the vehicle with empty fuel tanks. Hence the general formulation
of the problem is

inf

z0 − z(T, u) dt :
u ∈ C∗([0,∞), [0, R]) such that ∃ T ≥ 0
with (x(T, u), y(T, u), z(T, u)) ∈ C
and x(t, u) ≥ 0 ∀ t ∈ [0, T ]

 , (2.41)

where of course x(·, u), y(·, u), z(·, u) are the solutions of (2.39)–(2.40) and

C = {(0, 0, z) ∈ lR3 : z ≥ m0}.

Observe that (2.39) gives
z′(t) = −K(y′(t) + g)z(t)

and then z(t) = z0e
−K
∫ t

0
(y′(s)+g) ds = z0e

−K(y(t)−y0+gt). So if (x(T, u), y(T, u), z(T, u)) ∈ C
we have that

z0 − z(T, u) = z0

(
1− e−K(−y0+gT )

)
.

Since the function t 7→ z0

(
1− e−K(−y0+gt)

)
is increasing, it can be proved that a control

u is optimal for problem (2.39) if and only if u is optimal for the problem

inf

T dt :
T = T (u), u ∈ C∗([0,∞), [0, R])
(x(T, u), y(T, u), z(T, u)) ∈ C
and x(t, u) ≥ 0 ∀ t ∈ [0, T ]

 , (2.42)

where x(·, u), y(·, u), z(·, u) are the solutions of (2.39)–(2.40) and C as above. If we dis-
regard condition x(u, t) ≥ 0, the previous problem is a time optimal problem. Hence we
will try to solve it by means of (a modification of) Theorem 2.2.16 (and Remark 2.2.17)
and then verify condition x(u, t) ≥ 0 a fortiori. So let {ū, (x̄, ȳ, z̄)} be an optimal pair for
problem (2.42) without condition x(u, t) ≥ 0 and put T̄ = T (ū). It can be shown, with
an argument similar to the one in Theorem 2.2.16, that the same assertion holds true in

the case when C is a half–line, provided the co–state

 ξ
η
ζ

 satisfies the following final

condition  ξ(T̄ )
η(T̄ )
ζ(T̄ )

 =

 ξ̄
η̄
ζ̄

 ,

where

 ξ̄
η̄
ζ̄

 is some element of the set NC(T̄ ) = NC((x̄(T̄ ), ȳ(T̄ ), z̄(T̄ ))), defined to be

the set
 ξ̄
η̄
ζ̄

 :

∣∣∣∣∣∣∣
 ξ̄
η̄
ζ̄


∣∣∣∣∣∣∣ = 1 and

〈 ξ̄
η̄
ζ̄

 ,
 x
y
z

−
 x̄(T̄ )
ȳ(T̄ )
z̄(T̄ )

〉 ≤ 0 ∀

 x
y
z

 ∈ C
 .

72



Now the adjoint system related to our problem is

ξ′(t) = 0,

η′(t) = ξ(t),

ζ ′(t) = − u(t)

z2(t)
η(t),

t ∈ (0, T̄ )

and since (x̄(T̄ ), ȳ(T̄ ), z̄(T̄ )) = (0, 0, z̄) with z̄ ≥ m0, then NC(T̄ ) is either the set
 ξ̄
η̄
ζ̄

 :

∣∣∣∣∣∣∣
 ξ̄
η̄
ζ̄


∣∣∣∣∣∣∣ = 1 and ζ̄ = 0

 if ζ̄ > m0,

or 
 ξ̄
η̄
ζ̄

 :

∣∣∣∣∣∣∣
 ξ̄
η̄
ζ̄


∣∣∣∣∣∣∣ = 1 and ζ̄ ≤ 0

 if ζ̄ = m0.

In any case, ζ(T̄ ) ≤ 0 and we get

ξ(t) = ξ0,

η(t) = η0 − ξ0t,

ζ ′(t) = − ū(t)

z̄2(t)
η(t),

ζ(T̄ ) ≤ 0,

t ∈ (0, T̄ )

where ξ0, η0 are constants. Let us apply the Pontryagin Minimum Principle. We have

ū(t) ∈ argminu∈[0,T ]

{
ξ0ȳ(t) +

(
u

z̄(t)
− g

)
η(t)−Kuζ(t)

}

and then

ū(t) ∈ argminu∈[0,T ]

{
u

[
η(t)

z̄(t)
−Kζ(t)

]}
.

In order to determine ū, let us prove that the map ρ(t) := η(t)
z(t)
−Kζ(t) vanishes at most

once on the interval [0, T̄ ]. Indeed,

ρ′(t) = − ξ0

z̄(t)
− Kη(t)z̄′(t)

z̄2(t)
−Kζ ′(t) = − ξ0

z̄(t)
.

There are several possibilities.
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(a) ξ0 6= 0. Since z̄(T̄ ) ≥ m0 and z̄(t) is nonincreasing, we have that ρ is strictly
increasing or decreasing, depending on the sign of ξ0.

(b) ξ0 = 0. Then ρ(t) ≡ c and we must show that c 6= 0. There are two subalternatives.

(b1) η0 = 0. This gives η(t) ≡ 0 and ζ(t) ≡ 1, since the co–state is unitary. But then
ρ(t) ≡ −K is non–zero.

(b2) η0 6= 0. Since ξ0 = 0, if ρ ≡ 0 then by Remark 2.2.17 we get −gη0 = 0, which is a
contradiction.

Since ρ can vanish at most once we obtain that there exists a time t0 ∈ [0, T̄ ] such that ρ
is strictly positive on [0, t0) and strictly negative on (t0, T̄ ], or viceversa. In the interval
where ρ > 0 we then have ū ≡ 0, while ū ≡ R in the negative case. Notice that actually
ρ can only change from positive to negative values (or remain strictly negative all time),
since otherwise ū would be 0 near the landing time, giving ȳ(T̄ ) 6= 0. We can summarize
the foregoing discussion saying that any optimal control ū of the minimum time problem
must be of the form

ū(t) =


0 for t ∈ [0, t0)

R for t ∈ [t0, T̄ ]
(2.43)

where either t0 = 0 if ρ < 0 or t0 ∈ (0, T ] the unique point where ρ vanishes. Let us now
solve system (2.39) for a control of the form (2.43). In the full thrust interval [t0, T̄ ] we
have

z̄(t) = z0 −KR(t− t0),

ȳ(t) = ȳ(t0)− g(t− t0)− 1

K
log

z0 −KR(t− t0)

z0

and then

x̄(t) = x̄(t0) + ȳ(t0)(t− t0)− 1

2
g(t− t0)2 +

t− t0
K

+
z0 −KR(t− t0)

K2R
log

z0 −KR(t− t0)

z0

Since we are seeking for trajectories with x̄(T̄ ) = ȳ(T̄ ) = 0, setting s = T̄ − t0 we get

φ(s) := gs+
1

K
log

z0 −KRs
z0

= ȳ(t0),

ψ(s) := −ȳ(t0)s+
1

2
gs2 − s

K
− z0 −KRs

K2R
log

z0 −KRs
z0

= x̄(t0)

and then, substituting ȳ(t0) in the last expression,

ψ(s) = −1

2
gs2 − s

K
− z0

K2R
log

z0 −KRs
z0

= x̄(t0)
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Since the amount of fuel used up in the interval [t0, T̄ ] is given by Rs, then

s ≤ z0 −m0

KR
<

z0

KR
.

We assume that
R

z0

> g, (2.44)

in order to offset the gravity acceleration as the engine is started at the beginning of the
full thrust interval. This condition implies

φ′(s) = g − R

z0 −KRs
< 0

so that φ is strictly decreasing in 0 ≤ s < z0
KR

. On the other hand,

ψ′(s) = −gs+
z0

K(z0 −KRs)
− 1

K
,

ψ′′(s) = −g +
z0R

(z0 −KRs)2
> −g +

R

z0

> 0.

Since ψ′(0) = 0, then ψ is strictly increasing in 0 ≤ s < z0
KR

. In the initial interval [0, t0]
of the trajectory, the rocket performs a free fall, so that we have

y(t) = −gt+ y0, x(t) = −1

2
gt2 + y0t+ x0. (2.45)

The switching point t0 and the terminal time T̄ can be simultaneously determined by
solving the system of two equations

φ(T̄ − t0) = −gt0 + x0, ψ(T̄ − t0) = −1

2
gt20 + y0t0 + x0.

We can solve the system graphically as follows. Plot the curve y = φ(s) and x = ψ(s)
in the (x, y) plane for 0 ≤ s < z0

KR
, which is the full thrust curve. Then, starting from

the initial position (x0, y0) draw the free fall curve given by (2.45) until it hits the full
thrust curve. The value t0 where this happens is the switching time; the value s0 of the
parameter s on the full thrust curve where the two curves intersect gives the final time
T̄ = s0 + t0. After the intersection the trajectory of the rocket is given by y(t) = φ(T̄ − t)
and x(t) = ψ(T̄ − t), t0 ≤ t ≤ T̄ . Observe that no initial positions below the full thrust
curve can be steered to the origin.

2.3 Basic Problem in Dynamic Programming

Fix T > 0. For any 0 ≤ s ≤ T and x ∈ lRn consider the optimal control problem of
minimization of the functional

Js,x(u) =
∫ T

s
L(t, ys,xu (t), u(t)) dt+ φ(ys,xu (T )) (2.46)
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among all the admissible controls u(·) ∈ C∗([s, T ], U), where ys,xu (t) is the solution of the
controlled system 

y′(t) = f(t, y(t), u(t))

y(s) = x.
(2.47)

As before, we suppose U ∈ lRm closed, L and φ continuous and bounded from below
functions, and f satisfying (2.4).

Remark 2.3.1 We have seen in Section 2.2 that the Pontryagin Maximum/Minimum
Principle is a necessary condition to be satisfied by the optimal solution. Hence, if from
this principle we obtain only one solution, then we determine the optimal trajectory and
the optimal control; otherwise the Pontryagin Principle is not that useful. But by means
of the Dynamic Programming approach (as we will see in this section) we are able to
obtain a Necessary and Sufficient condition for optimality. Moreover, from the Pontryagin
Maximum/Minimum Principle we get open loop controls, that is for each initial state we
find u = u(t), while from Dynamic Programming we get controls u = u(t, x) such that we
can solve the closed loop equation

y′(t) = f(t, y(t), u(t, y(t)))

y(s) = x,

and the related minimization problem (2.46) for any initial state. The control function
u = u(t, x) is called closed loop control or feedback control.

We define the value function v associated with (2.46)-(2.47) as v : [0, T ]× lRn → lR

v(s, x) = min
u(·)

Js,x(u). (2.48)

The next Theorem is the Bellman Optimality Principle

Theorem 2.3.2 (Bellman’s Optimality Principle) Under the above assumptions on
f , L, φ, the following assertions hold true.
i) For any fixed (s, x) ∈ [0, T ]× lRn and any u ∈ C∗([0, T ], U)

v(s, x) ≤
∫ r

s
L(t, ys,xu (t), u(t)) dt+ v(r, ys,xu (r)) ∀r ∈ [s, T ]. (2.49)

ii) u∗(·) is optimal if and only if

v(s, x) =
∫ r

s
L(t, ys,xu∗ (t), u∗(t)) dt+ v(r, ys,xu∗ (r)) ∀r ∈ [s, T ]. (2.50)

Proof– To prove statement i), consider an admissible strategy u(·) on [s, T ] and a strategy
ū(·) on [r,T], where r ∈ [s, T ]. Define a new strategy ũ(·) as follows

ũ(t) =


u(t) if s ≤ t ≤ r

ū(t) if r < t ≤ T
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By definition of v we have

v(s, x) ≤ Js,x(ũ) =
∫ r

s
L(t, ys,xu (t), u(t)) dt+

∫ T

r
L(t, y

r,ys,xu (r)
ū (t), ū(t)) dt+ φ(y

r,ys,xu (r)
ū (T ))

=
∫ r

s
L(t, ys,xu (t), u(t)) dt+ Jr,y

s,x
u (r)(ū).

Hence the first statement follows taking the minimum over ū(·) on both sides of the above
equality.
In order to prove statement ii), first notice that if (2.50) holds, then u∗ is the minimizer
(take r = T ). On the other hand if u∗ is optimal then∫ T

s
L(t, ys,xu∗ (t), u∗(t)) dt+ φ(ys,xu∗ (T )) = v(s, x),

which can be rewritten as∫ T

r
L(t, ys,xu∗ (t), u∗(t)) dt+ φ(ys,xu∗ (T )) = v(s, x)−

∫ r

s
L(t, ys,xu∗ (t), u∗(t)) dt.

From inequality (2.49) and by the definition of v

v(s, x)−
∫ r

s
L(t, ys,xu∗ (t), u∗(t)) dt ≤ v(r, ys,xu∗ (r)) ≤

∫ T

r
L(t, ys,xu∗ (t), u∗(t)) dt+ φ(ys,xu∗ (T )),

Hence (2.50) holds.

Another way to state Bellman’s Principle is to use the function V defined as follows

V (r) =
∫ r

s
L(t, ys,xu (t), u(t)) dt+ v(r, ys,xu (r)).

Theorem 2.3.3 For any strategy u(·), V (r) is non-decreasing, i.e. V ′(r) ≥ 0. If u∗ is
optimal then V (r) is constant.

Proof– Left as exercise.

Recall that the pre–Hamiltonian function H = H(s, x, u, p) is given by

H(s, x, u, p) =< p, f(s, x, u) > +L(s, x, u).

The Hamiltonian function is then defined by

H(t, x, p) := min
u∈U
H(t, x, u, p). (2.51)

The next Theorem can be seen as a link between Dynamic Programming Theory and
Optimal Control Theory, since it shows that if v is regular enough, then ∇v is the co–
state λ associated with the optimal trajectory. In what follows, we will denote by ∇v
the gradient of v with respect to the x variable, while vs will be the derivative of v with
respect to s.
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Theorem 2.3.4 Assume v is everywhere differentiable. Then v is a solution of the
Hamilton–Jacobi Cauchy problem

ws(s, x) +H (s, x,∇w(s, x)) = 0, in (0, T )× lRn

w(T, x) = φ(x).
(2.52)

Proof–It is easy to see that the terminal condition v(T, x) = φ(x) is fulfilled as a straight-
forward consequence of the definition of v. To show that v satisfies the Hamilton–Jacobi
equation we evaluate the derivative of V . Taking u(t) ≡ u, u ∈ U fixed, we have

0 ≤ V ′(r) = L(r, ys,xu (r), u) + vs(r, y
s,x
u (r))+ < ∇v(r, ys,xu (r)), f(r, ys,xu (r), u) >,

for any r ∈ [s, T ]. In particular, for r = s we obtain

0 ≤ vs(s, x) + L(s, x, u)+ < ∇v(s, x); f(s, x, u) > .

and hence

0 ≤ vs(s, x) + min
u∈U
H(s, x, u,∇v(s, x)) = vs(s, x) +H(s, x,∇v(s, x)).

On the other hand, if u(t) = u∗(t), where u∗ is optimal, this inequality is actually an
equality. Indeed, V is constant and then

0 = vs(s, x) + L(s, x, u∗(s))+ < ∇v(s, x); f(s, x, u∗(s)) >,

which gives vs(s, x) +H(s, x,∇v(s, x)) ≤ 0.

Definition 2.3.5 Equation

0 = ws(s, x) +H(s, x,∇w(s, x)),

is the Hamilton–Jacobi–Bellman Equation or the Dynamic Programming Equation.

Remark 2.3.6 If we are considering a maximization problem whose value function is
defined as

v(s, x) = max
u(·)

Js,x(u),

then v is a solution of the Hamilton–Jacobi Cauchy problem
ws(s, x) + max

u∈U
H(s, x, u,∇w(s, x)) = 0, in (0, T )× lRn

w(T, x) = φ(x).

Let QT = (0, T )× lRn. We are going to state a sufficient condition for optimality. We
begin by showing that any solution w of the Hamilton–Jacobi equation (2.52) is smaller
than the value function v.
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Theorem 2.3.7 Let w ∈ C1(QT ) ∩ C(QT ) be a solution of (2.52). Then

w ≤ v.

Proof– Let (s, x) ∈ QT be any initial state, u(·) ∈ C∗([s, T ], U) any fixed strategy and
y(·) the corresponding trajectory. Differentiating w with respect to s and recalling that
w is a solution of (2.52), we get

d

ds
w(t, y(t)) = ws(t, y(t)) +∇w(t, y(t)) · f(t, y(t), u(t))

= −H(t, y(t),∇w(t, y(t))) +∇w(t, y(t)) · f(t, y(t), u(t))

≥ −L(t, y(t), u(t)).

Therefore,
d

ds
w(t, y(t)) ≥ −L(t, y(t), u(t)). (2.53)

Recalling the terminal condition and integrating (2.53) from s to T we obtain

φ(y(T ))− w(s, x) ≥ −
∫ T

s
L(t, y(t), u(t)) dt,

that is
Js,x(u) ≥ w(s, x).

The result now follows taking the minimum over u(·).

Now we can state the sufficient condition for optimality, called Verification Theorem.

Theorem 2.3.8 Let w ∈ C1(QT )∩C(QT ) be a solution of (2.52) and let (s, x) ∈ QT . If
there exists u∗(·) ∈ C∗([s, T ], U) such that

u∗(t) ∈ argmin H(t, y∗(t), u,∇w(t, y∗(t))), ∀t ∈ [s, T ], (2.54)

where y∗(·) = y(·, s, x, u∗), then u∗(·) is optimal and w(s, x) = v(s, x).

Proof– Since y∗ is the optimal trajectory associated with u∗, then from (2.54)

d

dt
w(t, y∗(t)) = −L(t, y∗(t), u∗(t)).

Integrating from s to T we obtain

φ(y∗(T ))− w(s, x) = −
∫ T

s
L(t, y∗(t), u∗(t)) dt

and hence
w(s, x) = Js,x(u∗) ≥ v(s, x).

From the above inequality and from the previous Theorem it follows that w(s, x) = v(s, x);
therefore u∗ is optimal.
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Remark 2.3.9 Suppose that for any (s, x) ∈ QT we can find some

u∗(s, x) ∈ argminH(s, x, u,∇w(s, x)).

In general such a function can be very irregular. But if a selection of minimizers of H can
be done in such a way that u∗(·, ·) is continuous, then the closed loop equation

y′(t) = f(t, y(t), u∗(t, y(t)))

y(s) = x.

automatically produces an optimal trajectory y∗ of the mimimization problem (2.46)-
(2.47). Moreover, the (open loop) control ū∗(t) := u∗(t, y∗(t)) is the optimal control
whose related trajectory is y∗.

Definition 2.3.10 The continuous control u∗ in the previous remark is called closed loop
control or feedback.

We have established a three steps procedure in Dynamic Programming, that is:
1) Solve the Hamilton–Jacobi equation to get solutions w ∈ C1(QT ) ∩ C(QT );
2) for every (t, y) ∈ QT provide the feedback u(t, y) ∈ arg minuH(t, y, u,∇w(t, y));
3) solve the closed loop equation

y′(t) = f(t, y(t), u(t, y(t)))

y(s) = x.

to get the optimal trajectories.
Now we apply this procedure to the Linear Quadratic Regulator problem

Example 2.3.11 This problem is known as the Linear Quadratic Regulator problem,
that is the problem

min
u(·)

Js,x(u) := min
u(·)

{∫ T

s
[M(t)ys,xu (t) · ys,xu (t) +N(t)u(t) · u(t)] dt+Dys,xu (T ) · ys,xu (T )

}
,

where ys,xu (·) is governed by the controlled system
y′(t) = A(t)y(t) +B(t)u(t)

y(s) = x.
(2.55)

Here ys,xu (·) ∈ lRn, U = lRm, A(·) ∈ Mn×n, B(·) ∈ Mn×m, M(·) ∈ Mn×n is symmetric and
positive semi–definite, N(·) ∈Mm×m is symmetric and positive definite and D ∈Mn×n is
symmetric and positive definite. All the matrices are continuous. The pre–Hamiltonian
function associated with the problem is

H(t, x, u, p) = M(t)x · x+N(t)u · u+ p · [A(t)x+B(t)u].
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Minimizers of H in lRm (which exist because N is positive definite) must satisfy

0 = DuH(t, x, u, p) = 2N(t)u+B∗(t)p;

hence the minimizer is unique and given by

u∗ = −1

2
N−1(t)B∗(t)p.

The Hamilton–Jacobi equation associated with our problem is

ws(t, x) + A(t)x · ∇w(t, x) +M(t)x · x

−1

4
B(t)N−1(t)B∗(t)∇w(t, x) · ∇w(t, x) = 0, t ∈ (s, T )

w(T, x) = Dx · x.

(2.56)

We will now apply the above three steps procedure:
Step 1): we will first show that the solution of (2.56) is of the form w(t, x) = P (t)x · x,
with P (t) ∈Mm×m positive semi–definite and symmetric, which is reasonable because of
the assumptions on the data. Substituting w as above into (2.56) we get

P ′(t)x · x+ 2A(t)x · P (t)x+M(t)x · x

−B(t)N−1(t)B∗(t)P (t)x · P (t)x = 0, t ∈ (s, T )

P (T )x · x = Dx · x.

Therefore P must be a solution of the so called Riccati Equation
P ′(t) + P (t)A(t) + A∗(t)P (t) +M(t)− P (t)B(t)N−1(t)B∗(t)P (t) = 0, t ∈ (s, T )

P (T ) = D.
(2.57)

Now set Q(t) := P (T − t). It is easy to see that P solves (2.57) if and only if Q solves
Q′(t) = Q(t)Ã(t) + Ã∗(t)Q(t) + M̃(t)−Q(t)B̃(t)Ñ−1(t)B̃∗(t)Q(t) = 0, t ∈ (0, T − s)

Q(0) = D,
(2.58)

where the notation K̃(t) stands for K(T − t). The previous one is a Cauchy problem with
locally Lipschitz state function. Hence it admits a unique solution Q on some maximal
interval [0, τ) ⊂ [0, T − s). It is easy to see that the solution is symmetric, i.e. Q = Q∗,
since both Q and Q∗ solve the same equation with the same initial condition. Moreover,
Q is positive semi–definite. Indeed, let’s go back to the matrix P . The previous argument
shows the existence and uniqueness of a symmetric solution of the Riccati equation in the
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interval (t0, T ] := (T − τ, T ], which is sufficient to have a feedback in this interval and
to write the closed loop equation there. So fix any x ∈ lRn, t1 ∈ (t0, T ) and consider the
linear quadratic problem in the interval [t1, T ] with initial condition given in t1, y(t1) = x
and cost functional J t1,x(u). Let u1(·) be the optimal control and y1(·) the corresponding
optimal trajectory. Then we have

(P (t)y1(t) · y1(t))′

= P ′(t)y1(t) · y1(t) + 2P (t)y′1(t) · y1(t)

=
[
− P (t)A(t)− A∗(t)P (t)−M(t) + P (t)B(t)N−1(t)B∗(t)P (t)

]
y1(t) · y1(t)

+ 2
[
P (t)A(t)− P (t)B(t)N−1(t)B∗(t)P (t)

]
y1(t) · y1(t)

= −M(t)y1(t) · y1(t)−N(t)u1(t) · u1(t).

Integrating in [t1, T ] we then obtain

P (t1)x · x = Dy1(T ) · y1(T ) +
∫ T

t1

[
M(t)y1(t) · y1(t) +N(t)u1(t) · u1(t)

]
dt ≥ 0,

which gives the desired positivity property of P (and then of Q). It remains to show that
actually τ ≡ T − s, that is Q cannot “blow up”. Indeed, on the space of symmetric and
positive definite n× n matrices consider the following norm

‖Q(t)‖ := max
|x|=1

Q(t)x · x,

which is the one that gives the maximal eigenvalue of Q(t) (and coincides with the usual
operator norm on this space). Then, integrating (2.58) we get

Q(t)−D =
∫ t

0

[
Q(r)Ã(r) + Ã∗(r)Q(r) + M̃(r)−Q(r)B̃(r)Ñ−1(r)B̃∗(r)Q(r)

]
dr

and then

Q(t)x · x = Dx · x+
∫ t

0

[
Q(r)Ã(r)x · x+ Ã∗(r)Q(r)x · x+ M̃(r)x · x

]
dr

−
∫ t

0
Ñ−1(r)B̃∗(r)Q(r)x ·Q(r)B̃∗(r)x dr.

Hence, by means of the Cauchy–Schwartz inequality

|Q(s)Ã(s)x · x| ≤
√
Q(s)x · x

√
Q(s)Ã(s)x · Ã(s)x

we conclude that

‖Q(t)‖ ≤ ‖D‖+
∫ t

0

[
‖M̃(r)‖+ 2‖Q(r)‖‖A(r)‖

]
dr
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and the Gronwall inequality finally gives

‖Q(t)‖ ≤
(
‖D‖+

∫ t

0
‖M̃(r)‖ dr

)
e2
∫ t

0
‖Ã(r)‖ dr ≤ C,

since the data are continuous. From the previous discussion we deduce that there exists a
unique P solution of the Riccati Equation (2.57). Once we compute it explicitly, we can
go on computing optimal trajectories and controls.
Step 2) We found previously that

u(t, y) = −1

2
N−1(t)B∗(t)P (t)y.

Step 3) To find the optimal trajectories solve the closed loop equation
y′(t) = [A(t)−B(t)N−1(t)B∗(t)P (t)]y(t), t ∈ (s, T )

y(s) = x.

Example 2.3.12 Suppose that U = lR and consider the problem

min
{∫ 1

0
u2(t) dt+ (x′(1))2

}
,

where x is the solution of 

x′′(t) = u(t) in (0, 1)

x(0) = x0

x′(0) = y0.

This problem can be rewritten as a Linear Quadratic Regulator problem as soon as we
introduce another variable, namely y(t) := x′(t). In this case we have

A(t) ≡
(

0 1
0 0

)
, B(t) ≡

(
0
1

)
, D =

(
0 0
0 1

)
,

M ≡ 0 and N ≡ 1. Setting

Q(t) =

 α(t) β(t)

β(t) γ(t)

 ,
it is easy to see that the Riccati equation for the matrix Q is given by α′(t) β′(t)

β′(t) γ′(t)

 =

 −β2(t) α(t)− β(t)γ(t)

α(t)− β(t)γ(t) 2β(t)− γ2(t)

 ,
 α(0) β(0)

β(0) γ(0)

 = D =

 0 0

0 1

 .
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Hence the solution is

Q(t) =


0 0

0
1

1 + t

 ,
which in turn gives

P (t) =


0 0

0
1

2− t

 .
Exercise 2.3.13 Complete the previous example, finding out optimal trajectories and
controls.

Remark 2.3.14 In this section we found a link between the optimal control problem of
minimizing

Js,x(u) =
∫ T

s
L(t, ys,xu (t), u(t)) dt+ φ(ys,xu (T ))

on the admissible control u(·) ∈ C∗([s, T ], U), where ys,xu (t) is the solution of the controlled
system 

y′(t) = f(t, y(t), u(t))

y(s) = x,

and the Hamilton–Jacobi Cauchy problem
ws(s, x) + min

u∈U
{∇w(t, y(t)) · f(t, y(t), u) + L(t, y(t), u(t))} = 0, in (0, T )× lRn

w(T, x) = φ(x).

But if we consider the minimization of the functional

Js,x(u) =
∫ s

0
L(t, ys,xu (t), u(t)) dt+ φ(ys,xu (0))

on the admissible control u(·) ∈ C∗([0, s], U), where ys,xu (t) is the solution of the controlled
system 

y′(t) = f(t, y(t), u(t))

y(s) = x,

all the previous results hold true, provided we substitute the above Hamilton–Jacobi
Cauchy problem with the following one

ws(s, x) + max
u∈U
{∇w(t, y(t)) · f(t, y(t), u)− L(t, y(t), u(t))} = 0, in (0, T )× lRn

w(0, x) = φ(x).

Observe that in the case f(t, x, u) = u and U = lRn, as in Calculus of Variations theory,

max
u∈U
{∇w(t, y(t)) · f(t, y(t), u)− L(t, y(t), u(t))}

is exactly the Legendre–Fenchel transform of L that we introduced in Chapter 1.
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2.4 The Method of Characteristics

For the study of the Hamilton–Jacobi Cauchy problem (2.52) it is interesting to consider
the method of characteristics, which is a classical approach to find regular solutions to
first order partial differential equations. As we show below, the method of characteristics
provides a local smooth solution of the equation, if the data are smooth, but at the same
time shows that in general no global regular solution exists.

Let us consider the problem
wt(t, x) +H(t, x,∇w(t, x)) = 0, (t, x) ∈ (0, T )× lRn,

w(0, x) = φ(x), x ∈ lRn,
(2.59)

with H and φ of class C2.
Let us suppose to have a solution w ∈ C2([0, T ] × lRn) of the above problem. Given

z ∈ lRn, we call characteristic curve associated with w starting from z the curve X(·; z)
which solves

Ẋ = Hp(t,X,∇w(t,X)), X(0) = z.

Moreover, if we set

U(t; z) = w(t,X(t; z)), P (t; z) = ∇w(t,X(t; z)).

we find that

U̇ = wt(t,X) +∇w(t,X) · Ẋ = −H(t,X, P ) + P ·Hp(t,X, P ),

Ṗ = ∇wt(t,X) +∇2w(t,X)Hp(t,X,∇w(t,X))

= ∇[wt(t,X) +H(t,X,∇w(t,X))]−Hx(t,X,∇w(t,X))

= −Hx(t,X, P ).

Therefore, the pair X,P solves the ordinary differential problem
Ẋ = Hp(t,X, P )

Ṗ = −Hx(t,X, P )


X(0) = z

P (0) = ∇φ(z),

(2.60)

while U satisfies

U̇ = −H(t,X, P ) + P ·Hp(t,X, P ), U(0; z) = φ(z). (2.61)

This shows that X,P and U are uniquely determined by the initial value φ. The
above arguments suggest that one can obtain a solution of the Hamilton–Jacobi equation
by solving (2.60), as long as the map z → X(t; z) is invertible. Indeed we have the
following result.

85



Theorem 2.4.1 Given z ∈ lRn, let X(t; z), P (t; z) denote the solution of problem (2.60)
and let U(t; z) be defined by (2.61). Suppose that there exists T ∗ > 0 such that

(i) the maximal interval of existence of the solution to (2.60) contains [0, T ∗[ for all
z ∈ lRn;

(ii) the map z → X(t; z) is invertible with C1 inverse x→ Z(t;x) for all t ∈ [0, T ∗[ .

Then there exists a unique solution w ∈ C2([0, T ∗[×lRn) of problem (2.59), which is given
by

w(t, x) = U(t;Z(t;x)), (t, x) ∈ [0, T ∗[×lRn.

Proof — For simplicity, in what follows we will often write P,Z, etc. instead of
P (t;Z(t;x)), Z = Z(t;x) respectively.
From the definition it is clear that w is of class C1. Let us compute its derivatives.
Observe first that by (2.60) Xz is a solution of the equation

Ẋz = Hpx(t,X, P )Xz +Hpp(t,X, P )Pz, Xz(0) = I

and Uz solves the equation2

U̇z = −Hx(t,X, P )Xz + P [Hpx(t,X, P )Xz +Hpp(t,X, P )Pz],

with initial condition Uz(0) = ∇φ(z). Hence it is easy to see that Uz = (PXz), since
(PXz) and Uz both solve the same equation and (PXz)(0) = Uz(0) = ∇φ(z). This
implies, by the definition of Z,

∇w(t, x) = Uz(t;Z)Zx = (P (t;Z)Xz)Zx = P (t;Z(t;x)). (2.62)

We also find

wt(t, x) = Ut(t;Z(t;x)) + Uz(t;Z(t;x)) · Zt(t;x)

= [PHp(t,X, P )−H(t,X, P )] + (PXz) · Zt. (2.63)

Taking into account that X(t;Z(t;x)) ≡ x we obtain

Xt(t;Z) +Xz(t;Z)Zt = 0. (2.64)

Therefore, by (2.62), (2.63) and (2.64)

wt(t, x) +H(t, x,∇w(t, x)) =

= [P ·Hp(t,X, P )−H(t,X, P )] + (PXz) · Zt +H(t,X, P ) =

= P ·Hp(t,X, P ) + (PXz) · Zt =

= P · [Xt +XzZt] = 0.

2In what follows we will use the standard notation bA to indicate the left product of a vector b ∈ lRn

with a N ×N matrix A, while a · b will denote the scalar product between a, b ∈ lRn.
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This equality implies that w ∈ C2 and satisfies problem (2.59) (the fact that the initial
condition is satisfied is a direct consequence of the definition). Uniqueness follows from
the assumption that the map z → X(t; z) is invertible with C1 inverse.

Example 2.4.2 Let us apply the previous results to find the (unique) solution of problem
wt(t, x) +

1

2
w2
x(t, x) =

a

2
x2 for (t, x) ∈ lR+ × lR,

w(0, x) = λx2 for all x ∈ lR.

where a, λ are positive constants. Since the Hamiltonian is given by H(t, x, p) = 1
2
p2− a

2
x2,

the equations (2.60) become
Ẋ = P

Ṗ = aX


X(0) = z

P (0) = 2λz.

(2.65)

Solving these equations is equivalent to solve system

Ẍ = aX

X(0) = z

Ẋ(0) = 2λz.

(2.66)

So X(t; z) = c1e
t
√
a + c2e

−t
√
a, where c1 =

√
a+2λ
2
√
a
z and c2 =

√
a−2λ
2
√
a
z. Now set φ(t) =

√
a+2λ
2
√
a
et
√
a +

√
a−2λ
2
√
a
e−t
√
a. Since λ > 0, φ(t) 6= 0 for all t ∈ lR+. Hence z → X(t; z) is

invertible for all t and the inverse map is Z(t, x) = x
φ(t)

. Applying Theorem 2.4.1 we

deduce that the solution of our problem exists for all t ∈ lR+. Now,

P (t, z) = Ẋ(t; z) = φ̇(t)z =

(√
a+ 2λ

2
et
√
a −
√
a− 2λ

2
e−t
√
a

)
z

and

U(t; z) = λz2 +
∫ t

0
[|φ̇(s)z|2 − 1

2
|φ̇(s)z|2 +

a

2
|φ(s)z|2] ds

= λz2 +
z2

2

∫ t

0
[φ̇(s)2 + aφ2(s)] ds

= z2

(
(
√
a+ 2λ)2

8
√
a

e2t
√
a − (

√
a− 2λ)2

8
√
a

e−2t
√
a

)
.
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Therefore,

w(t, x) = U(t, Z(t;x)) =
λx2

φ2(t)
+

x2

2φ2(t)

∫ t

0
[φ̇(s)2 + aφ2(s)] ds

=

√
ax2

2

(
√
a+ 2λ)et

√
a − (

√
a− 2λ)e−t

√
a

(
√
a+ 2λ)et

√
a + (

√
a− 2λ)e−t

√
a
.

Example 2.4.3 We want to apply the Method of Characteristics to solve the following
partial differential equation

wt(t, x) +
1

2
wx(t, x)2 = 0, (t, x) ∈ (0, T )× lR

w(0, x) = 1
2
x2

(2.67)

Here the Hamiltonian function is H = H(p) = 1
2
p2 and the associated ordinary system is

Ẋ(s) = DH(P (s)) = P (s) X(0) = z

U̇(s) = P (s)DH(P (s))−H(P (s)) = 1
2
P (s)2 U(0) = φ(z) = 1

2
z2

Ṗ (s) = 0 P (0) = Dφ(z) = z,

whose solution is 

X(s, z) = (1 + s)z

U(s, z) = 1
2
z2(1 + s)

P (s, z) = z.

Deducing z from the expression x = X(t, z) = (1 + t)z we get z = Z(t, x) = x
1+t

and
evaluating U at (t, Z(t, x)) we obtain the solution w of (2.67)

w(t, x) = U(t, Z(t, x)) =
1

2

x2

1 + t
.

Since the Hamiltonian H is a superlinear and strictly convex function (with respect to
p), the system (2.67) can be associated with a problem of Calculus of Variations, whose
Lagrangian is the Legendre–Fenchel transform of H (see Remark 2.3.14). In our case the
Lagrangian is given by L(t, x, q) = 1

2
q2 and then the problem associated with (2.67) is the

following: for any fixed (s, x) ∈ (0, T )× lR minimize

J(ξ) =
{∫ s

0

1

2
ξ′(t)2 dt+

1

2
ξ(0)2 : ξ ∈ A

}
,

where A = {ξ ∈ C1
∗([0, s]; lRn), ξ(s) = x}, or equivalently

Js,x(u) =
{∫ s

0

1

2
y′2(t) dt+

1

2
y2(0)

}
,
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on the admissible controls u(·) ∈ C∗([0, s], U), where y(·) is the solution of the controlled
system 

y′(t) = u(t), t ∈ (0, s)

y(s) = x.
(2.68)

In this context, the pre–Hamiltonian function is H(s, x, u, p) = 1
2
u2 +pu. Hence u∗(s, x) =

∇w(s, x) = x
1+s

is a continuous selection of argminH(s, x, u,∇w(s, x)). Then, the closed
loop equation related to our problem is

y′(t) =
x

1 + s
, t ∈ (0, s)

y(s) = x,

whose solution is

y∗(t) =
1 + t

1 + s
x.

Remark 2.4.4 In general, the procedure of making z explicit in the expression x =
X(t, z) can be applied only locally, that is for a short amount of time. For example, if we
change the initial condition in (2.67) by

w(0, x) = −1

2
x2,

then applying the Method of Characteristics we have

Z(t, x) =
x

1− t
,

hence the function w

w(t, x) =
1

2

x2

t− 1

is defined only for t ∈ [0, 1).

Remark 2.4.5 The optimization problem of minimizing

J(ξ) =
{∫ s

0

1

2
ξ′2(t) dt+

1

2
ξ(0)2|ξ ∈ A

}
,

where A = {ξ ∈ C1
∗([0, s]; lRn) | ξ(s) = x}, can be directly solved using the Calculus of

Variations method instead of using the Hamiltonian formulation. Since the Lagrangian
depends on the q variable only, the optimal arcs are straight lines; hence we can write

ξ∗(t) = at+ b, (2.69)

where a and b will be determined exploiting the initial condition and the transversality
condition. In fact, evaluating (2.69) at t = s, we have ξ∗(s) = x = as+b. Hence b = x−as
and substituting b in (2.69) we get ξ∗(t) = a(t− s) + x. On the other hand, since

∂L

∂q
(ξ∗′(0)) = ξ∗′(0) = a and Dφ(0) = ξ∗(0) = −as+ x,
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the transversality condition
∂L

∂q
(ξ∗′(0)) = Dφ(0) yields

a = −as+ x, that is a =
x

1 + s
.

Substituting a and b into (2.69) we obtain

ξ∗(t) =
1 + t

1 + s
x,

as in the previous example.

Exercise 2.4.6 Solve the following problem by means of the Method of Characteristics.
wt(t, x) + b · ∇w(t, x) = 0 for (t, x) ∈ lR+ × lRn,

w(0, x) = w0(x) for all x ∈ lRn,

where b ∈ lRn is a fixed vector and w0 is arbitrary.

Exercise 2.4.7 Find the unique regular solution and the related maximal existence time
T of problem 

wt(t, x) + 1
2
(wx(t, x)2 + x2) = x for x ∈ lR, t > 0,

w(0, x) = x for all x ∈ lR.
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Chapter 3

Appendix A

3.1 The Legendre Transform

The Legendre transform (sometimes also called Fenchel transform or convex conjugate)
is a classical topic of convex analysis. A comprehensive treatment of this transform can
be found in many textbooks; here we give, for the convenience of the reader, a short and
self–contained exposition of its properties in the C1-case which is enough for the purposes
of these notes.

Definition 3.1.1 Let L : lRn → lR be a C1(lRn, lR) and convex function which satisfies

lim
|q|→∞

L(q)

|q|
= +∞, (3.1)

i.e. L is superlinear. The Legendre transform of L is the function

L∗(p) = sup
q∈lRn

[p · q − L(q)], p ∈ lRn. (3.2)

Example 3.1.2 Define L : lRn → lR by L(q) = 1
2
|q|2.

For all p ∈ lRn the map q 7→ p · q − L(q) is continuously differentiable at all points and
goes to −∞ as |q| → ∞; thus it attains its maximum at a point q where its differential
p−DL(q) vanishes. This means that p− q = 0 and hence L∗(p) = 1

2
|p|2.

Example 3.1.3 Given any symmetric, positive definite matrix A of order n, define L :
lRn → lR by L(q) = 1

2
Aq · q.

As in the previous example, for all p ∈ lRn the map q 7→ p ·q−L(q) achieves its maximum
at a point q where its differential p−DL(q) = p−Aq vanishes. Since A is invertible, we
get that q = A−1p. Hence L∗(p) = 1

2
A−1p · p.

Exercise 3.1.4 Calculate the Legendre transform of the following maps L defined over
lRn:

• L(q) = 1
2
Aq · q + b · q, where A is a positive definite matrix of order n and b ∈ lRn

is a fixed vector;
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• L(q) = 1
s
|q|s, where s > 1.

Theorem 3.1.5 Let L be as in Definition 3.1.1. Then

(a) for every p there exists a point qp where the supremum in (3.2) is attained. In addition,
for every bounded set C ⊂ lRn there exists R > 0 such that |qp| < R for all p ∈ C.

(b) the function L∗ is convex and superlinear.

(c) L∗∗ = L; moreover, p = DL(q) if and only if L∗(p) + L(q) = p · q.

Proof — (a) The claimed properties are a straightforward consequence of the convexity
of L and of assumption (3.1). Notice that for every p ∈ lRn and qp such that L∗(p) =
p · qp − L(qp) we must have DL(qp) = p, since F (q) = p · q − L(q) is a regular function
which attains its maximum in qp.
(b) Take any p1, p2 ∈ lRn and t ∈ [0, 1] and let qt be a point such that

L∗(tp1 + (1− t)p2) = (tp1 + (1− t)p2) · qt − L(qt).

Since L∗(pi) ≥ pi · qt − L(qt) for i = 1, 2, we easily conclude that L∗(tp1 + (1 − t)p2) ≤
tL∗(p1) + (1− t)L∗(p2), i.e. L∗ is convex. In addition, for all M > 0 and p ∈ lRn we have

L∗(p) ≥M
p

|p|
· p− L

(
M

p

|p|

)
≥M |p| − max

|q|=M
L(q),

and so, for all M > 0 and any sequence {pk} such that pk →∞ as k →∞

L∗(pk)

|pk|
≥ M

2
for k sufficiently large.

Since M is arbitrary, L∗ turns out to be superlinear.
(c) By definition we have that L(q) ≥ q · p − L∗(p) for all q, p ∈ lR, which implies that
L ≥ L∗∗. To prove the converse inequality, fix any q̄ ∈ lRn and take v̄ = DL(q̄). Let q(v̄)
be such that L∗(v̄) = q(v̄) · v̄ − L(q(v̄)). Since v̄ = DL(q̄), we have L(q(v̄)) − L(q̄) − v̄ ·
(q(v̄)− q̄) ≥ 0 (by the convexity of L) and therefore

L(q̄) ≤ L(q(v̄))− v̄ · (q(v̄)− q̄) = −L∗(v̄) + q̄ · v̄,

which implies that L(q̄) ≤ L∗∗(q̄). The second assertion is now a simple consequence of
the above proof.

Theorem 3.1.6 Let L be a C2 and strictly convex function, satisfying (3.1). Then

(a) for every p there exists a unique point qp where the supremum in (3.2) is attained.

(b) L∗ is a strictly convex and C2 function.
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Proof — (a) Existence is already proved. Uniqueness is a consequence of the following
facts:
- for every p ∈ lRn and qp such that L∗(p) = p · qp − L(qp) we have DL(qp) = p;
- DqL is injective, since, for every q1 6= q2 in lRn

(DL(q1)−DL(q2)) · (q1 − q2) =
∫ 1

0
D2L(tq1 + (1− t)q2)(q1 − q2)dt · (q1 − q2) > 0.

(by assumption L is a strictly convex function)
Now, if there exist p and two points q1 6= q2 in lRn such that L∗(p) = p · q1 − L(q1) =
p · q2 − L(q2), then p = DL(q1) = DL(q2), against the injectivity of DL.
(b) By the strict convexity of L and the fact that DL is an injective and surjective map
(see (a)), we have that DL is actually a global diffeomorphism of class C1. Furthermore,
for any p ∈ lRn L∗(p) = p · qp − L(qp), where DL(qp) = p, i.e. qp = DL−1(p). Hence
L∗(p) = p·DL−1(p)−L(DL−1(p)) is at least a C1 function. Moreover, from the proof (c) of
Theorem 3.1.5 we get that L∗∗ = L and that p̄ = DL(q̄) if and only if L(q̄)+L∗(p̄) = p̄ · q̄.
This means that any p̄ ∈ lRn maximizes G(p) = q̄ · p − L∗(p), where q̄ is such that
p̄ = DL(q̄). Since L∗ is a C1 function, then p̄ must satisfy q̄ = DL∗(p̄) = DL−1(p̄). This
means that DL∗ coincides with the inverse of DL and hence it is itself a C1 function. To
conclude the proof, we have to show that L∗ is strictly convex. But this follows from the
fact that DL∗ = DL−1 and hence D2L∗(p) = [D2L ((DL)−1(p))]

−1
.

Now let Ω ⊂ lRn be an open set, a, b ∈ lR, a < b, and let L ∈ C([a, b] × Ω × lRn).
Suppose that L is convex in the third argument and that it satisfies

lim
|q|→∞

inf
(t,x)∈[a,b]×Ω

L(t, x, q)

|q|
= +∞. (3.3)

Under these hypotheses we can define the Legendre transform of L with respect to the
third group of variables as follows

H(t, x, p) = sup
q∈lRn

[p · q − L(t, x, q)] , (t, x, q) ∈ [a, b]× Ω× lRn. (3.4)

Theorem 3.1.7

(a) For every (t, x, p) ∈ [a, b]×Ω× lRn there exists at least one point q(t, x, p) where the
supremum in (3.4) is attained. In addition, for every bounded set C ⊂ lRn there
exists R > 0 such that every q associated with (t, x, p) ∈ [a, b] × Ω × C satisfies
|q| < R.

(b) The transformed function H is continuous, convex in the third argument and satisfies

lim
|p|→∞

inf
(t,x)∈[a,b]×Ω

H(t, x, p)

|p|
= +∞.
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Proof — Without loss of generality we can suppose that L does not depend on t, i.e.
L(t, x, q) = L(x, q).
(a) It is a direct consequence of the properties of L.
(b) Convexity and superlinearity are proved as for the case without x–dependence. To
prove continuity, let us consider a sequence (xm, pm) ⊂ Ω× lRn converging to some (x̄, p̄).
We have

H(xm, pm) = pm · qm − L(xm, qm), H(x̄, p̄) = p̄ · q̄ − L(x̄, q̄)

for suitable qm, q̄. Then
H(xm, pm) ≥ pm · q̄ − L(xm, q̄).

Letting m → ∞ we obtain that lim infm→∞H(xm, pm) ≥ H(x̄, p̄). To prove the con-
verse inequality, let us choose a subsequence (xmk , pmk) such that limk→∞H(xmk , pmk) =
lim supm→∞H(xm, pm). Since, by part (a), {qm} is bounded, we can assume that the
subsequence qmk converges to some value q∗. Then we have

H(x̄, p̄) ≥ p̄ · q∗ − L(x̄, q∗) = lim
k→∞

pmk · qmk − L(xmk , qmk)

= lim sup
m→∞

H(xm, pm).

This proves the continuity of H.

To conclude we consider the case when L is strictly convex and smooth.

Corollary 3.1.8 Let L ∈ C2([a, b]× Ω× lRn). Assume that L satisfies (3.3) and

∂2L

∂q2
(t, x, q) is positive definite for all (t, x, q) ∈ [a, b]× Ω× lRn. (3.5)

Then H belongs to C2([a, b] × Ω × lRn). Moreover, if we denote by q(t, x, p) the unique
value of q at which the infimum in (3.4) is attained, we have

∂H

∂p
(t, x, p) = q(t, x, p), (3.6)

∂H

∂x
(t, x, p) = −∂L

∂x
(x, q(t, x, p)) (3.7)

∂H

∂t
(t, x, p) = −∂L

∂t
(x, q(t, x, p)) (3.8)

∂2H

∂p2
(t, x, p) =

[
∂2L

∂q2
(x, q(t, x, p))

]−1

(3.9)

In addition,

q =
∂H

∂p
(t, x, p) if and only if p =

∂L

∂q
(t, x, q) (3.10)

94



Proof —As before, consider the case L(t, x, q) = L(x, q).
For any x ∈ Ω, Theorem 3.1.6 implies that H(x, ·) ∈ C2(lRn) and that (3.10) holds. Since
q(x, p) satisfies

p− ∂L

∂q
(x, q(x, p)) = 0 (3.11)

we see that (3.6) follows from (3.10) and that (3.9) can be obtained as in Theorem 3.1.6-
(b). In addition, from the Implicit Function Theorem and from assumption (3.5) we get
that q(x, p) ∈ C1(Ω× lRn).
Moreover, recalling that H(x, p) = p · q(x, p) − L(x, q(x, p)), we see that H is at least of
class C1(Ω× lRn). Consider now x ∈ Ω, y ∈ lRn and λ > 0 small enough. We have

H(x+ λy, p)−H(x, p)

λ

≥ p · q(x, p)− L(x+ λy, q(x, p))− p · q(x, p) + L(x, q(x, p))

λ

=
L(x, q(x, p))− L(x+ λy, q(x, p))

λ
.

Letting λ→ 0 we obtain

∂H

∂x
(x, p) · y ≥ −∂L

∂x
(x, q(x, p)) · y, ∀y ∈ lRn,

which implies (3.7). The C2 regularity of H is then a consequence of (3.6), (3.7).
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