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Notation

• R = (−∞,∞) stands for the real line, R+ for [0,∞), and R∗+ for (0,∞).

• N∗ = N \ {0} = {1, 2, . . . } and Z∗ = Z \ {0} = {±1,±2, . . . }.

• For any τ ∈ R we denote by dτe and {τ} the integer and the fractional
part of τ , respectively, defined as

dτe = max{m ∈ Z : m 6 τ} {τ} = τ − dτe.

• For any λ ∈ C, <λ and =λ denote the real and imaginary parts of λ,
respectively.

• | · | stands for the norm of a Banach space X, as well as for the absolute
value of a real number or the modulus of a complex number.

• Generic elements of X will be denoted by u, v, w . . .

• L(X) is the Banach space of all bounded linear operators Λ : X → X
equipped with the uniform norm ‖Λ‖ = sup|u|61 |Λu|.

• For any metric space (X, d), Cb(X) denotes the Banach space of all
bounded uniformly continuous functions f : X → R with norm

‖f‖∞,X = sup
u∈X
|f(x)|.

For any f ∈ Cb(X) and δ > 0 we call

oscf (δ) = sup
{
|f(x)− f(y)| : x, y ∈ X , d(x, y) 6 δ

}
the oscillation of f over sets of diameter δ.

• Given a Banach space (X, | · |) and a closed interval I ⊆ R (bounded
or unbounded), we denote by Cb(I;X) the Banach space of all bounded
uniformly continuous functions f : I → X with norm

‖f‖∞,I = sup
s∈I
|f(s)|.

We denote by C1
b (I;X) the subspace of Cb(I;X) consisting of all functions

f such that the derivative

f ′(t) = lim
s→t

f(s)− f(t)

s− t
exists for all t ∈ I and belongs to Cb(I;X).

• D(A) denotes the domain of a linear operator A : D(A) ⊂ X → X.

• Πω =
{
λ ∈ C : <λ > ω

}
for any ω ∈ R.
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1 Semigroups of bounded linear operators

Preliminaries

Let (X, | · |) be a (real or complex) Banach space. We denote by L(X) the
Banach space of all bounded linear operators Λ : X → X with norm

‖Λ‖ = sup
|u|61

|Λu|.

We recall that, for any given A,B ∈ L(X), the product AB remains in L(X)
and we have that

‖AB‖ 6 ‖A‖ ‖B‖. (1.0.1)

So, L(X) ia a Banach algebra.

Proposition 1 Let A ∈ L(X) be such that ‖A‖ < 1. Then (I−A)−1 ∈ L(X)
and

(I −A)−1 =
∞∑
n=0

An. (1.0.2)

Proof. We observe that the series on the right-hand side of (1.0.2) is totally
convergent in L(X). So,

Λ :=

∞∑
n=0

An ∈ L(X).

Moreover,

(I −A)Λ =

∞∑
n=0

(I −A)An = I =
∞∑
n=0

An(I −A) = Λ(I −A). �

1.1 Uniformly continuous semigroups

Definition 1 A semigroup of bounded linear operators on X is a map

S : [0,∞)→ L(X)

with the following properties:

(a) S(0) = I,

(b) S(t+ s) = S(t)S(s) for all t, s > 0.

We will use the equivalent notation {S(t)}t>0 and the abbreviated form S(t).
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Definition 2 The infinitesimal generator of a semigroup of bounded linear
operators S(t) is the map A : D(A) ⊂ X → X defined byD(A) =

{
u ∈ X : ∃ limt↓0

S(t)u−u
t

}
Au = limt↓0

S(t)u−u
t ∀u ∈ D(A)

(1.1.1)

Exercise 1 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
semigroup of bounded linear operators S(t). Prove that

(a) D(A) is a subspace of X,

(b) A is a linear operator.

Definition 3 A semigroup S(t) of bounded linear operators on X is uniformly
continuous if

lim
t↓0
‖S(t)− I‖ = 0.

Proposition 2 Let S(t) be a uniformly continuous semigroup of bounded lin-
ear operators. Then there exists M > 1 and ω ∈ R such that

‖S(t)‖ 6Meωt ∀t > 0.

Proof. Let τ > 0 be such that ‖S(t)− I‖ 6 1/2 for all t ∈ [0, τ ]. Then

‖S(t)‖ 6 ‖I‖+ ‖S(t)− I‖ 6 3

2
∀t ∈ [0, τ ].

Since every t > 0 can be represented as t = dt/τeτ + {t/τ}τ, we have that

‖S(t)‖ 6 ‖S(τ)‖dt/τe
∥∥∥S({ t

τ

}
τ
)∥∥∥ 6 (3

2

)dt/τe+1
6
(3

2

) t
τ

+1
= Meωt

with M = 3/2 and ω = log(3/2)/τ . �

Corollary 1 A semigroup S(t) is uniformly continuous if and only if

lim
s→t
‖S(s)− S(t)‖ = 0 ∀t > 0.

Example 1 let A ∈ L(X). Then

etA :=
∞∑
n=0

tn

n!
An

is a uniformly continuous semigroup of bounded linear operators on X. More
precisely, the following properties hold.
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(a)
∑∞

n=0
tn

n!A
n converges for all t > 0 and etA ∈ L(X).

Proof. Indeed, the series is totally convergent in L(X) because

∞∑
n=0

∥∥ tn
n!
An
∥∥∥ 6 ∞∑

n=0

tn

n!
‖A‖n <∞. �

(b) e(t+s)A = etAesA for all s, t > 0.

Proof. We have that

e(t+s)A =
∞∑
n=0

(t+ s)n

n!
An =

∞∑
n=0

An

n!

n∑
k=0

(
n
k

)
tks(n−k)

=

∞∑
n=0

n∑
k=0

tkAk

k!

s(n−k)A(n−k)

(n− k)!

where the last term coincides with the Cauchy product of the two series
giving etA and esA. �

(c) AetA = etAA for all t > 0.

(d) ‖etA − I‖ = ‖
∑∞

n=1
tn

n!A
n‖ 6 t‖A‖et‖A‖ for all t > 0.

(e) ‖ etA−It −A‖ = ‖
∑∞

n=2
tn−1

n! A
n‖ 6 t‖A‖2et‖A‖ for all t > 0.

Notice that property (e) shows that A is the infinitesimal generator of etA.

Theorem 1 For any linear operator A : D(A) ⊂ X → X the following prop-
erties are equivalent:

(a) A is the infinitesimal generator of a uniformly continuous semigroup,

(b) D(A) = X and A ∈ L(X).

Proof. Example 1 shows that (b) ⇒ (a). Let us prove that (a) ⇒ (b). Let
τ > 0 be fixed such that ∥∥∥I − 1

τ

∫ τ

0
S(t)dt

∥∥∥ < 1.

Then the bounded linear operator
∫ τ

0 S(t)dt is invertible. For all h > 0 we
have that

S(h)− I
h

∫ τ

0
S(t)dt =

1

h

(∫ τ

0
S(t+ h)dt−

∫ τ

0
S(t)dt

)
=

1

h

(∫ τ+h

h
S(t)dt−

∫ τ

0
S(t)dt

)
=

1

h

(∫ τ+h

τ
S(t)dt−

∫ h

0
S(t)dt

)
.
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Hence

S(h)−I
h = 1

h

( ∫ τ+h
τ S(t)dt−

∫ h
0 S(t)dt

)( ∫ τ
0 S(t)dt

)−1

↓ h ↓ 0 ↓
A =

(
S(τ)− I

)( ∫ τ
0 S(t)dt

)−1
.

This shows that A ∈ L(X). �

Let A ∈ L(X). For any u0 ∈ X, a solution of the Cauchy problem{
u′(t) = Au(t) t > 0

u(0) = u0

(1.1.2)

is a function u ∈ C1([0,∞[;X) which satisfies (1.1.2) pointwise.

Proposition 3 Problem (1.1.2) has a unique solution given by u(t) = etAu0.

Proof. The fact that u(t) = etAu0 solves (1.1.2) follows from Example 1.
Let v ∈ C1([0,∞[;X) be another solution of (1.1.2). Fix any t > 0 and set
U(s) = e(t−s)Av(s) for all s ∈ [0, t]. Then

U ′(s) = −Ae(t−s)Av(s) + e(t−s)AAv(s) = 0 ∀s ∈ [0, t].

Therefore, U is constant on [0, t] by Corollary 6 of Appendix A. So, v(t) =
U(t) = U(0) = etAu0. �

Example 2 Consider the integral equation{
∂u
∂t (t, x) =

∫ 1
0 k(x, y)u(t, y) dy t > 0

u(0, x) = u0(x)
(1.1.3)

where k ∈ L2
(
[0, 1] × [0, 1]

)
and u0 ∈ L2(0, 1). Problem (1.1.3) can be recast

in the abstract form (1.1.2) taking X = L2(0, 1) and

Au(x) =

∫ 1

0
k(x, y)u(t, y) dy ∀x ∈ X.

Then Proposition 3 insures that (1.1.3) has a unique solution u ∈ C1([0,∞[;X)
given by u(t) = etAu0.
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1.2 Strongly continuous semigroups

Example 3 (Translations on R) Let Cb(R) be the Banach space of all bounded
uniformly continuous functions f : R→ R with the uniform norm

|f |∞,R = sup
x∈R
|f(x)|.

For any t ∈ R+ define(
S(t)f

)
(x) = f(x+ t) ∀f ∈ Cb(R).

The following holds true.

1. S(t) is a semigroup of bounded linear operators on Cb(R).

2. S(t) fails to be uniformly continuous.

Proof. For any n ∈ N the function

fn(x) = e−nx
2

(x ∈ R)

belongs to Cb(R) and has norm equal to 1. Therefore, for any t > 0

‖S(t)− I‖ > |S(t)fn − fn|∞,R = sup
x∈R
|e−n(x+t)2 − e−nx2 | > 1− e−nt2 .

Since this is true for any n, we have that ‖S(t)− I‖ > 1. �

3. For all f ∈ Cb(R) we have that |S(t)f − f |∞,R → 0 as t ↓ 0.

Proof. Indeed,

|S(t)f − f |∞,R = sup
x∈R
|f(x+ t)− f(x)| 6 oscf (t)

t↓0−→ 0 �

Definition 4 A semigroup S(t) of bounded linear operators on X is called
strongly continuous (or of class C0, or even a C0-semigroup) if

lim
t↓0

S(t)u = u ∀u ∈ X. (1.2.1)

Theorem 2 Let S(t) be a C0-semigroup of bounded linear operators on X.
Then there exist ω > 0 and M > 1 such that

‖S(t)‖ 6Meωt ∀t > 0. (1.2.2)
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Proof. We first prove the following:

∃τ > 0 and M > 1 such that ‖S(t)‖ 6M ∀t ∈ [0, τ ]. (1.2.3)

We argue by contradiction assuming there exists a sequence tn ↓ 0 such that
‖S(tn)‖ > n for all n > 1. Then, the principle of uniform boundedness implies
that, for some u ∈ X, ‖S(tn)u‖ → ∞ as n→∞, in contrast with (1.2.1).

Now, given t ∈ R+, let n ∈ N and δ ∈ [0, τ [ be such that

t = nτ + δ.

Then, in view of (1.2.3),

‖S(t)‖ = ‖S(δ)S(τ)n‖ 6M ·Mn = M · (M1/τ )nτ 6M · (M1/τ )t

which yields (1.2.2) with ω = logM
τ . �

Corollary 2 Let S(t) be a C0-semigroup of bounded linear operators on X.
Then for every u ∈ X the map t 7→ S(t)u is continuous from R+ into X.

Definition 5 A C0-semigroup of bounded linear operators on X is called uni-
formly bounded if S(t) satisfies (1.2.2) with ω = 0. If, in addition, M = 1,
we say that S(t) is a contraction semigroup.

Exercise 2 Prove that the translation semigroup of Example 3 satisfies

‖S(t)‖ = 1 ∀t > 0.

So, S(t) is a contraction semigroup.

Exercise 3 For any fixed p > 1, let X = Lp(R) and define, ∀f ∈ X,(
S(t)f

)
(x) = f(x+ t) ∀x ∈ R , ∀t > 0. (1.2.4)

Prove that S is C0-semigroup which fails to be uniformly continuous.

Solution. Suppose S is uniformly continuous and let τ > 0 be such that
‖S(t)− I‖ < 1/2 for all t ∈ [0, τ ]. Then by taking fn(x) = n1/pχ[0,1/n](x) for
p <∞ and n > 1/τ we have that |fn| = 1 and

|S(τ)fn − fn| =
(∫

R
n|χ[0,1/n](x+ τ)− χ[0,1/n](x)|pdx

) 1
p

= 21/p. �

Exercise 4 Given a uniformly bounded C0-semigroup , ‖S(t)‖ 6M , define

|u|S = sup
t>0
|S(t)u| , ∀u ∈ X. (1.2.5)

Show that:

(a) | · |S is a norm on X,

(b) |u| 6 |u|S 6M |u| for all u ∈ X, and

(c) S is a contraction semigroup with respect to | · |S .
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1.3 The infinitesimal generator of a C0-semigroup

Theorem 3 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of bounded linear operators on X, denoted by S(t). Then the
following properties hold true.

(a) For all t > 0

lim
h↓0

1

h

∫ t+h

t
S(s)u ds = S(t)u ∀u ∈ X.

(b) For all t > 0 and u ∈ X∫ t

0
S(s)u ds ∈ D(A) and A

∫ t

0
S(s)u ds = S(t)u− u.

(c) D(A) is dense in X.

(d) For all u ∈ D(A) and t > 0 we have that S(t)u ∈ D(A), t 7→ S(t)u is
continuously differentiable, and

d

dt
S(t)u = AS(t)u = S(t)Au.

(e) For all u ∈ D(A) and all 0 6 s 6 t we have that

S(t)u− S(s)u =

∫ t

s
S(τ)Audτ =

∫ t

s
AS(τ)u dτ.

Proof. We remind the reader that all integrals are to be understood in the
Cauchy sense.

(a) This point is an immediate consequence of the strong continuity of S.

(b) For any t > h > 0 we have that

S(h)− I
h

(∫ t

0
S(s)u ds

)
=

1

h

∫ t

0
(S(h+ s)− S(s))u ds

=
1

h

(∫ t+h

h
S(s)u ds−

∫ t

0
S(s)u ds

)
=

1

h

(∫ t+h

t
S(s)u ds−

∫ h

0
S(s)u ds

)
.

Therefore, by (a),

lim
h↓0

S(h)− I
h

(∫ t

0
S(s)x ds

)
= S(t)x− x

which proves (b).
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(c) This point follows from (a) and (b).

(d) For all u ∈ D(A), t > 0, and h > 0 we have that

S(h)− I
h

S(t)u = S(t)
S(h)− I

h
u→ S(t)Au as h ↓ 0.

Therefore, S(t)u ∈ D(A) and AS(t)u = S(t)Au = d+

dt S(t)u. In order to
prove the existence of the left derivative, observe that for all 0 < h < t

S(t− h)u− S(t)u

−h
= S(t− h)

S(h)− I
h

u.

Moreover, by (1.2.2),∣∣∣S(t− h)
S(h)− I

h
u− S(t)Au

∣∣∣
6
∣∣∣S(t− h)

∣∣∣ · ∣∣∣S(h)− I
h

u− S(h)Au
∣∣∣

6Meωt
∣∣∣S(h)− I

h
u− S(h)Au

∣∣∣ h↓0−→ 0.

Therefore

S(t− h)u− S(t)u

−h
−→ S(t)Au = AS(t)u as h ↓ 0,

showing that the left and right derivatives coincide.

(e) This point follows from (d).

The proof is complete. �

Exercise 5 Show that the infinitesimal generator of the C0-semigroup of left
translations on R we introduced in Exampe 3 is given by{

D(A) = C1
b (R)

Af = f ′ ∀f ∈ D(A).

Solution. For any f ∈ C1
b (R) we have that∣∣∣S(t)f − f

t
− f ′

∣∣∣
∞,R

= sup
x∈R

∣∣∣f(x+ t)− f(x)

t
− f ′(x)

∣∣∣ 6 oscf ′(t)
t↓0−→ 0

Therefore, C1
b (R) ⊂ D(A) and Af = f ′ for all f ∈ C1

b (R). Conversely, let
f ∈ D(A). Then, Af ∈ Cb(R) and

sup
x∈R

∣∣∣f(x+ t)− f(x)

t
−Af(x)

∣∣∣ t↓0−→ 0.

So, f ′(x) exists for all x ∈ R and equals Af(x). Thus, D(A) ⊂ C1
b (R). �
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Exercise 6 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
uniformly bounded semigroup ‖S(t)‖ 6 M . Prove the Laundau-Kolmogorov
inequality:

|Au|2 6 4M2 |u| |A2u| ∀u ∈ D(A2), (1.3.1)

where {
D(A2) = {u ∈ D(A) : Au ∈ D(A)}
A2u = A(Au) , ∀u ∈ D(A2).

(1.3.2)

Solution. Assume M = 1. For any u ∈ D(A2) and all t > 0 we have∫ t

0
(t− s)S(s)A2u ds =

[
(t− s)S(s)Au

]s=t
s=0

+

∫ t

0
S(s)Auds

= −tAu+
[
S(s)u

]s=t
s=0

= −tAu+ S(t)u− u.

Therefore, for all t > 0,

|Au| 6 1

t
|S(t)u− u|+ 1

t

∫ t

0
(t− s)|S(s)A2u|ds

6
2

t
|u|+ t

2
|A2u|. (1.3.3)

If A2u = 0, then the above inequality yields Au = 0 by letting t → ∞. So,
(1.3.1) is true in this case. On the other hand, for A2u 6= 0 the function of t
on the right-hand side of (1.3.3) attains its minimum at

t0 =
2|u|1/2

|A2u|1/2
.

By taking t = t0 in (1.3.3) we obtain (1.3.1) once again.
(Question: how to treat the case of M 6= 1? Hint: remember Exercise 4.) �

Exercise 7 Use the Landau-Kolmogorov inequality to deduce the interpola-
tion inequality

|f ′|2∞,R 6 4 |f |∞,R |f ′′|∞,R ∀f ∈ C2
b (R).

1.4 The Cauchy problem with a closed operator

We recall that X ×X is a Banach space with norm

‖(u, v)‖ = |u|+ |v| ∀(u, v) ∈ X ×X.

Definition 6 An operator A : D(A) ⊂ X → X is said to be closed if its graph

graph(A) :=
{

(u, v) ∈ X ×X : u ∈ D(A) , v = Au
}

is a closed subset of X ×X.
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The following characterisation of closed operators is straightforward.

Proposition 4 The linear operator A : D(A) ⊂ X → X is closed if and only
if, for any sequence {xn} ⊂ D(A), the following holds:{

un → u

Aun → v
=⇒ u ∈ D(A) and Au = v. (1.4.1)

Example 4 In the Banach space X = Cb(R), the linear operator{
D(A) = C1

b (R)

Af = f ′ ∀f ∈ D(A).

is closed. Indeed, for any sequence {fn} ⊂ C1
b (R) such that{

fn → f in Cb(R)

f ′n → g in Cb(R),

we have that f ∈ C1
b (R) and f ′ = g.

Example 5 In the Banach space X = C([0, 1]) with the uniform norm, the
linear operator {

D(A) = C1([0, 1])

(Af)(x) = f ′(0) ∀x ∈ [0, 1]

fails to be closed. Indeed, for any n > 1 let

fn(x) =
sin(nx)

n
x ∈ [0, 1].

Then {
D(A) 3 fn → 0 in Cb(R)

Afn = 1 ∀n > 1,

in contrast with (1.4.1).

Exercise 8 Prove that if A : D(A) ⊂ X → X is a closed operator and
B ∈ L(X), then A+B : D(A) ⊂ X → X is also closed. What about BA?

Exercise 9 Prove that, if A : D(A) ⊂ X → X is a closed operator and
f ∈ C([a, b];D(A)), then

A

∫ b

a
f(t)dt =

∫ b

a
Af(t)dt. (1.4.2)
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Solution. Let πn = {tni }
in
i=0 ∈ Π(a, b) be such that diam(πn) → 0 and let

σn = {sni }
in
i=1 ∈ Σ(πn). Then

∫ b
a f(t)dt ∈ D(A) and{

D(A) 3 Sσnπn (f) =
∑in

i=1 f(sni )(tni − tni−1)→
∫ b
a f(t)dt

ASσnπn (f) =
∑in

i=1Af(sni )(tni − tni−1)→
∫ b
a Af(t)dt

(n→∞)

Therefore, by Proposition 4,
∫ b
a f(t)dt ∈ D(A) and (1.4.2) holds true. �

Proposition 5 The infinitesimal generator of a C0-semigroup S(t) is a closed
operator.

Proof. Let A : D(A) ⊂ X → X be the infinitesimal generator of S(t) and let
{un} ⊂ D(A) be as in (1.4.1). By Theorem 3−(d) we have that, for all t > 0,

S(t)un − un =

∫ t

0
S(s)Aundx.

Hence, taking the limit as n→∞ and dividing by t, we obtain

S(t)u− u
t

=
1

t

∫ t

0
S(s)vdu.

Passing to the limit as t ↓ 0, we conclude that Au = v. �

Remark 1 From Proposition 5 it follows that the domain D(A) of the in-
finitesimal generator of a C0-semigroup is a Banach space with the graph norm

|u|D(A) = |u|+ |Au| ∀u ∈ D(A).

Exercise 10 Let Ω ⊂ Rn be a bounded domain with boundary of class C2.
Define {

D(A) = H2(Ω) ∩H1
0 (Ω)

Au = ∆u ∀u ∈ D(A).

Prove that A is a closed operator on the Hilbert space X = L2(Ω).

Solution. Let ui ∈ H2(Ω) ∩H1
0 (Ω) be such that{
ui → u

∆ui → v
in L2(Ω).

By elliprtic regularity, we have that

‖ui − uj‖2.Ω 6 C‖∆ui −∆uj‖0,Ω

for some constant C > 0. Hence, {ui} is a Cauchy sequence in the Hilbert
space H2(Ω) ∩H1

0 (Ω). So, u ∈ H2(Ω) ∩H1
0 (Ω) and ∆u = v. �
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Given a closed operator A : D(A) ⊂ X → X, let us consider the Cauchy
problem with initial datum u0 ∈ X{

u′(t) = Au(t) t > 0

u(0) = u0.
(1.4.3)

Definition 7 A classical solution of problem (1.4.3) is a function

u ∈ C(R+;X) ∩ C1(R∗+;X) ∩ C(R∗+;D(A))1

such that u(0) = u0 and u′(t) = Au(t) for all t > 0.

Our next result ensures the existence and uniqueness of a classical solution
to (1.4.3) for initial data in D(A), provided A is the infinitesimal generator of
a C0-semigroup of bounded linear operators on X.

Proposition 6 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of bounded linear operators on X, S(t).

Then, for every u0 ∈ D(A), problem (1.4.3) has a unique classical solution
u ∈ C1(R+;X) ∩ C(R+;D(A)) given by u(t) = S(t)u0 for all t > 0.

Proof. The fact that u(t) = S(t)u0 satisfies (1.4.3) is point (d) of Theorem 3.
To show that u is the unique solution of the problem let v ∈ C1(R+;X) ∩
C(R+;D(A)) be any solution of (1.4.3), fix t > 0, and set

U(s) = S(t− s)v(s) , ∀s ∈ [0, t].

Then, for all s ∈]0, t[ we have that

U(s+ h)− U(s)

h
− S(t− s)v′(s) +AS(t− s)v(s)

= S(t− s− h)
v(s+ h)− v(s)

h
− S(t− s)v′(s)

+
(S(t− s− h)− S(t− s)

h
+AS(t− s)

)
v(s).

Now, point (d) of Theorem 3 immediately yields

lim
h→0

S(t− s− h)− S(t− s)
h

v(s) = −AS(t− s)v(s).

Moreover,

S(t− s− h)
v(s+ h)− v(s)

h
− S(t− s)v′(s)

= S(t− s− h)
(v(s+ h)− v(s)

h
− v′(s)

)
+
(
S(t− s− h)− S(t− s)

)
v′(s),

1Here D(A) is ragarded as a Banach space with the graph norm.
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where (
S(t− s− h)− S(t− s)

)
v′(s)

h→0−→ 0

by the strong continuity of S(t), while∣∣∣S(t− s− h)
(v(s+ h)− v(s)

h
− v′(s)

)∣∣∣
6Meω(t−s−h)

∣∣∣v(s+ h)− v(s)

h
− v′(s)

∣∣∣ h→0−→ 0

in view of (1.2.2). Therefore,

U ′(s) = −AS(t− s)v(s) + S(t− s)Av(s) = 0 , ∀s ∈]0, T [.

So, U is constant and u(t) = U(t) = U(0) = v(t). �

Exercise 11 Let S(t) and T (t) be C0-semigroups with infinitesimal generators
A : D(A) ⊂ X → X and B : D(B) ⊂ X → X, respectively. Show that

A = B =⇒ S(t) = T (t) ∀t > 0.

Example 6 (Transport equation in Cb(R)) Returning to the left-trans-
lation semigroup on Cb(R) of Example 3, by Proposition 6 and Exercise 5
we conclude that for each f ∈ C1

b (R) the unique solution of the problem{
∂u
∂t (t, x) = ∂u

∂x (t, x) (t, x) ∈ R+ × R
u(0, x) = f(x) x ∈ R

is given by u(t, x) = f(x+ t).

1.5 Resolvent and spectrum of a closed operator

Let A : D(A) ⊂ X → X be a closed operator on a complex Banach space X.

Definition 8 The resolvent set of A, ρ(A), is the set of all λ ∈ C such that
λI − A : D(A) → X is bijective. The set σ(A) = C \ ρ(A) is called the
spectrum of A. For any λ ∈ ρ(A) the linear operator

R(λ,A) := (λI −A)−1 : X → X

is called the resolvent of A.

Example 7 On X = C([0, 1]) with the uniform norm consider the linear
operator A : D(A) ⊂ X → X defined by{

D(A) = C1([0, 1])

Af = f ′, ∀f ∈ D(A)

15



is closed (compare to Example 4). Then σ(A) = C because for any λ ∈ C the
function fλ(x) = eλx satisfies

λfλ(x)− f ′λ(x) = 0 ∀x ∈ [0, 1].

On the other hand, for the closed operator A0 defined by{
D(A0) =

{
f ∈ C1([0, 1]) : f(0) = 0

}
A0f = f ′, ∀f ∈ D(A0),

we have that σ(A0) = ∅. Indeed, for any g ∈ X the problem{
λf(x)− f ′(x) = g(x) x ∈ [0, 1]

f(0) = 0

admits the unique solution

f(x) = −
∫ x

0
eλ(x−s)g(s) dx (x ∈ [0, 1])

which belongs to D(A0).

Proposition 7 (properties of R(λ,A)) Let A : D(A) ⊂ X → X be a closed
operator on a complex Banach space X. Then the following holds true.

(a) R(λ,A) ∈ L(X) for any λ ∈ ρ(A).

(b) For any λ ∈ ρ(A)

AR(λ,A) = λR(λ,A)− I. (1.5.1)

(c) The resolvent identity holds:

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A) ∀λ, µ ∈ ρ(A). (1.5.2)

(d) For any λ, µ ∈ ρ(A)

R(λ,A)R(µ,A) = R(µ,A)R(λ,A). (1.5.3)

Proof. Let λ, µ ∈ ρ(A).

(a) Since A is closed, so is λI − A and aslo R(λ,A) = (λI − A)−1. So,
R(λ,A) ∈ L(X) by the closed graph theorem.

(b) This point follows from the definition of R(λ,A).
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(c) By (1.5.1) we have that

[λR(λ,A)−AR(λ,A)]R(µ,A) = R(µ,A)

and

R(λ,A)[µR(µ,A)−AR(µ,A)] = R(λ,A).

Since AR(λ,A) = R(λ,A)A on D(A), (1.5.2) follows.

(d) Apply (1.5.2) to compute

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A)

R(µ,A)−R(λ,A) = (λ− µ)R(µ,A)R(λ,A).

Adding the above identities side by side yields the conclusion.

The proof is complete. �

Theorem 4 (analiticity of R(λ,A)) Let A : D(A) ⊂ X → X be a closed
operator on a complex Banach space X. Then the resolvent set ρ(A) is open
in C and for any λ0 ∈ ρ(A) we have that

|λ− λ0| <
1

‖R(λ0, A)‖
=⇒ λ ∈ ρ(A) (1.5.4)

and the resolvent R(λ,A) is given by the (Neumann) series

R(λ,A) =
∞∑
n=0

(λ0 − λ)nR(λ0, A)n+1. (1.5.5)

Consequently, λ 7→ R(λ,A) is analytic on ρ(A) and

dn

dλn
R(λ,A) = (−1)n n!R(λ,A)n+1 ∀n ∈ N. (1.5.6)

Proof. For all λ ∈ C and λ0 ∈ ρ(A) we have that

λI −A = λ0I −A+ (λ− λ0)I = [I − (λ0 − λ)R(λ0, A)](λ0I −A).

This operator is bijective if and only if [I − (λ0 − λ)R(λ0, A)] is invertible,
which is the case if λ satisfies (1.5.4). Then

R(λ,A) = R(λ0, A)[I − (λ0 − λ)R(λ0, A)]−1 =

∞∑
n=0

(λ0 − λ)nR(λ0, A)n+1.

The analyticity of R(λ,A) and (1.5.6) follows from (1.5.5). �
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Theorem 5 (integral representationof R(λ,A)) Let A : D(A) ⊂ X → X
be the infinitesimal generator of a C0-semigroup of bounded linear operators
on X, S(t), and let M > 1 and ω ∈ R be such that

‖S(t)‖ 6Meωt ∀t > 0. (1.5.7)

Then ρ(A) contains the half-plane

Πω =
{
λ ∈ C : <λ > ω

}
(1.5.8)

and

R(λ,A)u =

∫ ∞
0

e−λtS(t)u dt ∀u ∈ X , ∀λ ∈ Πω. (1.5.9)

Proof. We have to prove that, given any λ ∈ Πω and u ∈ X, the equation

λv −Av = u (1.5.10)

has a unique solution v ∈ D(A) given by the right-hand side of (1.5.9).

Existence: observe that v :=
∫∞

0 e−λtS(t)u dt ∈ X because <λ > ω. More-
over, for all h > 0,

S(h)v − v
h

=
1

h

{∫ ∞
0

e−λtS(t+ h)u dt−
∫ ∞

0
e−λtS(t)u dt

}
=

1

h

{
eλh
∫ ∞
h

e−λtS(t)u dt−
∫ ∞

0
e−λtS(t)u dt

}
=

eλh − 1

h
v − eλh

h

∫ h

0
e−λtS(t)u dt.

So

lim
h↓0

S(h)v − v
h

= λv − u

which in turn yields that v ∈ D(A) and (1.5.10) holds true.

Uniqueness: let v ∈ D(A) be a solution of (1.5.10). Then∫ ∞
0

e−λtS(t)u dt =

∫ ∞
0

e−λtS(t)(λv −Av) dt

= λ

∫ ∞
0

e−λtS(t)v dt−
∫ ∞

0
e−λt

d

dt
S(t)v dt = v

which implies that v is given by (1.5.9). �

Proposition 8 Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be closed
linear operators in X and suppose B ⊂ A, that is,

D(B) ⊂ D(A) and Au = Bu ∀x ∈ D(B).

If ρ(A) ∩ ρ(B) 6= ∅, then A = B.
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Proof. It suffices to show that D(A) ⊂ D(B). Let u ∈ D(A), λ ∈ ρ(A)∩ρ(B),
and set

v = λu−Au and w = R(λ,B)v.

Then w ∈ D(B) and λw−Bw = λu−Au. Since B ⊂ A, λw−Bw = λw−Aw.
Thus, (λI −A)(u− w) = 0. So, u = w ∈ D(B). �

Example 8 (Right-translation semigroup on R+) On the real Banach
space

X = {f ∈ Cb(R+) : f(0) = 0}
with the uniform norm, consider the right-translation semigroup(

S(t)f
)
(x) =

{
f(x− t) x > t

0 x ∈ [0, t]
∀x, t > 0.

It is easy to check that S is a C0-semigroup on X with ‖S(t)‖ = 1 for all
t > 0. In order to characterize its infinitesimal generator A, let us consider
the operator B : D(B) ⊂ X → X defined by{

D(B) =
{
f ∈ X : f ′ ∈ X

}
Bf = −f ′, ∀f ∈ D(B).

We claim that:

(i) B ⊂ A
Proof. Let f ∈ D(B). Then, for all x, t > 0 we have(

S(t)f
)
(x)− f(x)

t
=

−
f(x)
t = −f ′(xt), 0 6 x 6 t

f(x−t)−f(x)
t = −f ′(xt) x > t

with 0 6 x− xt 6 t. Therefore

sup
x>0

∣∣∣(S(t)f
)
(x)− f(x)

t
+ f ′(x)

∣∣∣ 6 sup
|x−y|6t

|f ′(x)− f ′(y)| → 0 as t ↓ 0

because f ′ is uniformly continuous. �

(ii) 1 ∈ ρ(B)

Proof. For any g ∈ X the unique solution f of the problem{
f ∈ D(B)

f(x) + f ′(x) = g(x) ∀x > 0

is given by

f(x) =

∫ x

0
es−xg(s) ds (x > 0). �

Since 1 ∈ ρ(A) by Proposition 5, Proposition 8 yields that A = B.
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1.6 The Hille-Yosida generation theorem

Theorem 6 Let M > 1 and ω ∈ R. For a linear operator A : D(A) ⊂ X → X
the following properties are equivalent:

(a) A is closed, D(A) is dense in X, and

ρ(A) ⊇ Πω =
{
λ ∈ C : <λ > ω

}
(1.6.1)

‖R(λ,A)k‖ 6 M

(<λ− ω)k
∀k > 1,∀λ ∈ Πω (1.6.2)

(b) A is the infinitesimal generator of a C0-semigroup, S(t), such that

‖S(t)‖ 6Meωt ∀t > 0. (1.6.3)

Proof of (b)⇒ (a) The fact that A is closed, D(A) is dense in X, and (1.6.1)

holds true has already been proved, see Theorem 3-(c), Proposition 5, and
Theorem 5. In order to prove (1.6.2) observe that, by using (1.5.9) to compute
the k-th derivative of the resolvent of A, we obtain

dk

dλk
R(λ,A)u = (−1)k

∫ ∞
0

tke−λtS(t)u dt ∀u ∈ X , ∀λ ∈ Πω.

Therefore, ∥∥∥ dk
dλk

R(λ,A)
∥∥∥ 6M ∫ ∞

0
tke−(<λ−ω)t dt =

M k!

(<λ− ω)k+1

where the integral is easily computed by induction. The conclusion follows
recalling (1.5.6). �

Lemma 1 Let A : D(A) ⊂ X → X be as in (a) of Theorem 6. Then:

(i) For all u ∈ X
lim
n→∞

nR(n,A)u = u. (1.6.4)

(ii) The Yosida Approximation An of A, defined as

An = nAR(n,A) (n > 1) (1.6.5)

is a sequence of bounded operator on X which satisfies

AnAm = AmAn ∀n,m > 1 (1.6.6)

and
lim
n→∞

Anu = Au ∀u ∈ D(A). (1.6.7)
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(iii) For all m,n > 2ω, u ∈ D(A), t > 0 we have that

‖etAn‖ 6 Me
nωt
n−ω 6Me2ωt (1.6.8)

|etAnu− etAmu| 6 M2te2ωt|Anu−Amu|. (1.6.9)

Consequently, for all u ∈ D(A) the sequence un(t) := etAnu is Cauchy
in C([0, T ];X) for any T > 0.

Proof of (i): owing to (1.5.1), for any u ∈ D(A) we have that

|nR(n,A)u− u| = |AR(n,A)u| = |R(n,A)Au| 6 M |Au|
n− ω

(n→∞)−→ 0,

where we have used (1.6.2) with k = 1. Moreover, again by (1.6.2) ,

‖nR(n,A)‖ 6 Mn

n− ω
6 2M ∀n > 2ω.

We claim that the last two inequalities yield the conclusion because D(A) is
dense in X. Indeed, let u ∈ X and fix any ε > 0. Let uε ∈ D(A) be such that
|uε − u| < ε. Then

|nR(n,A)u− u| 6 |nR(n,A)(u− uε)|+ |nR(n,A)uε − uε|+ |uε − u|

< (2M + 1)ε+
M |Auε|
n− ω

(n→∞)−→ (2M + 1)ε.

Since ε is arbitrary, (1.6.4) follows.
Proof of (ii): observe that An ∈ L(X) because

An = n2R(n,A)− nI ∀n > 1. (1.6.10)

Moreover, in view of (1.5.3) we have that

AnAm = [n2R(n,A)− nI] [m2R(m,A)−mI]

= [m2R(m,A)−mI] [n2R(n,A)− nI] = AmAn.

Finally, owing to (1.6.4), for all u ∈ D(A) we have that

Anu = nAR(n,A)u = nR(n,A)Au
(n→∞)−→ Au.

Proof of (iii): recalling (1.6.10) we have that

etAn = e−nt
∞∑
k=0

n2ktkR(n,A)k

k!
, ∀t > 0.

Therefore, in view of (1.6.2),

‖etAn‖ 6Me−nt
∞∑
k=0

n2ktk

k!(n− ω)k
= Me

nωt
n−ω 6Me2ωt

21



for all t > 0 and n > 2ω. This proves (1.6.8).

Next, observe that, for any u ∈ D(A), un(t) := etAnu satisfies{
(un − um)′(t) = An(un − um)(t) + (An −Am)um(t) ∀t > 0

(un − um)(0) = 0.

Therefore, for all t > 0 we have that

etAnu− etAmu =

∫ t

0
e(t−s)An(An −Am)esAmu ds

=

∫ t

0
e(t−s)AnesAm(An −Am)u ds (1.6.11)

because An and esAmu commute in view of (1.6.6). Thus, by combining
(1.6.11) and (1.6.8) we obtain

|etAnu− etAmu| 6 M2

∫ t

0
e2ω(t−s)e2ωs|Anu−Amu|, ds

6 M2 t e2ωt |Anu−Amu|.

In view of (1.6.7), the last inequality shows that etAnu is a Cauchy sequence
in C([0, T ];X) for any T > 0, thus completing the proof. �

Exercise 12 Use a density argument to prove that etAnu is a Cauchy se-
quence on all compact subsets of R+ for all u ∈ X.

Solution. Let u ∈ X and fix any ε > 0. Let uε ∈ D(A) be such that
|uε − u| < ε. Then for all m,n > 2ω we have that

|etAnu− etAmu| 6 |etAn(u− uε)|
+|(etAn − etAm)uε|+ |etAm(uε − u)|

6 |(etAn − etAm)uε|+ 2Me2ωtε

Since ε is arbitrary, recalling point (iii) above the conclusion follows. �

Proof of (a)⇒ (b) On account of Lemma 1 and Exercise 12, we have that

etAnu is a Cauchy sequence on all compact subsets of R+ for all u ∈ X.
Consequently, the limit (uniform on all [0, T ] ⊂ R+)

S(t)u = lim
n→∞

etAnu, ∀u ∈ X, (1.6.12)

defines a C0-semigroup of bounded linear operators on X. Moreover, passing
to the limit as n→∞ in (1.6.8), we conclude that ‖S(t)‖ 6Meωt, ∀t > 0.
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Let us identify the infinitesimal generator of S(t). By (1.6.8), for u ∈ D(A)
we have that∣∣∣ d

dt
etAnu− S(t)Au

∣∣∣ 6 |etAnAnu− etAnAu|+ |etAnAu− S(t)Au|

6Me2ωt|Anu−Au|+ |etAnAu− S(t)Au| (n→∞)−→ 0

uniformly on all compact subsets of R+ by (1.6.12). Therefore, for all T > 0
and u ∈ D(A) we have thatetAnu

(n→∞)−→ S(t)u

d
dt e

tAnu
(n→∞)−→ S(t)Au

uniformly on [0, T ].

This implies that

S′(t)u = S(t)Au, ∀u ∈ D(A) , ∀t > 0. (1.6.13)

Now, let B : D(B) ⊂ X → X be the infinitesimal generator of S(t). Then
A ⊂ B in view of (1.6.13). Moreover, Πω ⊂ ρ(A) by assumption (a) and
Πω ⊂ ρ(B) by Proposition 5. So, on account of Proposition 8, A = B. �

Remark 2 The above proof shows that condition (a) in Theorem 6 can be
relaxed as follows:

(a′) A is closed, D(A) is dense in X, and

ρ(A) ⊇]ω,∞[ (1.6.14)

‖R(n,A)k‖ 6 M

(n− ω)k
∀k > 1, ∀n > ω. (1.6.15)

Remark 3 When M = 1, the countably many bounds in condition (a) follow
from (1.6.2) for k = 1, that is,

‖R(λ,A)‖ 6 1

<λ− ω
∀k > 1 , ∀λ ∈ Πω.

Example 9 (parabolic equations in L2(Ω)) Let Ω ⊂ Rn be a bounded
domain with boundary of class C2. Define{

D(A) = H2(Ω) ∩H1
0 (Ω)

Au =
∑n

i,j=1Dj(aijDj)u+
∑n

i=1 biDiu+ cu ∀u ∈ D(A).

where

(H1) aij ∈ C1(Ω) satisfies aij = aji for all i, j = 1, . . . , n and

n∑
i,j=1

aij(x)ξjξi > θ|ξ|2 ∀ξ ∈ Rn, x ∈ Ω
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(H2) bi ∈ L∞(Ω) for all i = 1, . . . , n and c ∈ L∞(Ω).

In order to apply the Hille-Yosida theorem to show that A is the infinitesimal
generator of a C0-semigroup S(t) on L2(Ω), one can check that the following
assumptions are satisfied.

1. D(A) is dense in L2(Ω).

[This is a known property of Sobolev spaces (see, for instance, [3].)

2. A is a closed operator.

Proof. Let uk ∈ D(A) be such that

uk
k→∞−→ u and Auk

k→∞−→ f.

Then, for all h, k > 1 we have that vhk := uh − uk satisfies{∑n
i,j=1Dj(aijDj)vhk +

∑n
i=1 biDivhk + cvhk =: fhk in Ω

vhk = 0 on ∂Ω.

So, elliptic regularity insures that

‖vhk‖2,Ω 6 C
(
‖fhk‖0,Ω + ‖vhk‖0,Ω

)
for some constant C > 0. The above inequality implies that {uk} is a
Cauchy sequence in D(A) and this yields f = Au. �

3. ∃ω ∈ R such that ρ(A) ⊃]ω,∞[.

[This follows from elliptic theory (see, for instance, [3]).]

4. ‖R(λ,A)‖ 6 1
λ−ω for all k > 1 and λ > ω.

[This follows from elliptic theory (see, for instance, [3]).]

Then, for any u0 ∈ H2(Ω) ∩H1
0 (Ω), the function u(t, x) =

(
S(t)u0

)
(x) is the

unique solution of the initial-boundary value problem
∂u
∂t =

∑n
i,j=1Dj(aijDj)u+

∑n
i=1 biDiu+ cu in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = u0(x) x ∈ Ω.

in the class

C1
(
[0,∞);L2(Ω)

)
∩ C
(
[0,∞);H2(Ω) ∩H1

0 (Ω)
)
.
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1.7 Asymptotic behaviour of C0-semigroups

Let S(t) be a C0-semigroup of bounded linear operators on X.

Definition 9 The number

ω0(S) = inf
t>0

log ‖S(t)‖
t

(1.7.1)

is called the type or growth bound of S(t).

Proposition 9 The growth bound of S satisfies

ω0(S) = lim
t→∞

log ‖S(t)‖
t

<∞. (1.7.2)

Moreover, for any ε > 0 there exists Mε > 0 such that

‖S(t)‖ 6Mεe
(ω0(S)+ε)t ∀t > 0. (1.7.3)

Proof. The fact that ω0(S) < ∞ is a direct consequence of (1.7.1). In order
to prove (1.7.2) it suffices to show that

lim sup
t→∞

log ‖S(t)‖
t

6 ω0(S). (1.7.4)

For any ε > 0 let tε > 0 be such that

log ‖S(tε)‖
tε

< ω0(S) + ε. (1.7.5)

Let us write any t > tε as t = ntε+ δ with n = n(ε) ∈ N and δ = δ(ε) ∈ [0, tε[.
Then, by (1.2.2) and (1.7.5),

‖S(t)‖ 6 ‖S(δ)‖ ‖S(tε)‖n 6Meωδ entε(ω0(S)+ε) = Me(ω−ω0(S)−ε)δe(ω0(S)+ε)t

which proves (1.7.3) with Mε = Me(ω−ω0(S)−ε)δ. Moreover, taking the loga-
rithm of both sides of the above inequality we get

log ‖S(t)‖
t

6 ω0(S) + ε+
logM + (ω − ω0(S)− ε)δ

t

and (1.7.4) follows as t→∞. �

Definition 10 For any operator A : D(A) ⊂ X → X we define the spectral
bound of A as

s(A) = sup{<λ : λ ∈ σ(A) }.

Corollary 3 Let S(t) be a C0-semigroup on X with infinitesimal generator
A. Then

−∞ 6 s(A) 6 ω0(S) < +∞.
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Proof. By combining Theorem 5 and (1.7.3) we conclude that

Πω0(S)+ε ⊂ ρ(A) ∀ε > 0.

Therefore, s(A) 6 ω0(S) + ε for all ε > 0. The conclusion follows. �

Example 10 For fixed T > 0 and p > 1 let X = Lp(0, T ) and

(
S(t)f

)
(x) =

{
f(x− t) x ∈ [t, T ]

0 x ∈ [0, t)
∀x ∈ [0, T ] , ∀t > 0.

Then S is a C0-semigroup of bounded linear operators on X which satisfies
‖S(t)‖ 6 1 for all t > 0. Moreover, observe that S is nilpotent, that is, we
have S(t) ≡ 0, ∀t > T. Deduce that ω0(S) = −∞. So, the spectral bound of
the infinitesimal generator of S(t) also equals −∞.

Example 11 (−∞ < s(A) = ω0(S)) In the Banach space

X = Cb(R+;C),

with the uniform norm, the left-translation semigroup(
S(t)f

)
(x) = f(x+ t) ∀x, t > 0

is a C0-semigroup of contractions on X which satisfies ‖S(t)‖ = 1 (Exercise).
Therefore

ω0(S) = 0.

The infinitesimal generator of S(t) is given by{
D(A) = C1

b (R+;C)

Af = f ′ ∀f ∈ D(A).

By Theorem 5 we have that

ρ(A) ⊃
{
λ ∈ C : <λ > 0

}
.

We claim that

σ(A) ⊃
{
λ ∈ C : <λ 6 0

}
.

Indeed, for any λ ∈ C the function fλ(x) := eλx satisfies λf−f ′ = 0. Moreover,
fλ ∈ D(A) for <λ 6 0. Therefore

s(A) = 0.
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Example 12 (s(A) < ω0(S)) Let us denote by C0(R+;C) the Banach space
of all continuous functions f : R+ → C such that

lim
x→∞

f(x) = 0

with the uniform norm. Let X be the space of all functions f ∈ C0(R+;C)
such that

‖f‖ := sup
x∈R+

|f(x)|+
∫ ∞

0
|f(x)|exdx <∞.

Exercise 13 Prove that (X, ‖ · ‖) is a Banach space.

Once again, the left-translation semigroup(
S(t)f

)
(x) = f(x+ t) ∀x, t > 0

is a C0-semigroup of contractions on X. Indeed, for all t > 0

‖S(t)f‖ = sup
x∈R+

|f(x+ t)|+
∫ ∞

0
|f(x+ t)|exdx

6 sup
x∈R+

|f(x)|+ e−t
∫ ∞

0
|f(x)|exdx.

Exercise 14 Prove that ‖S(t)‖ = 1 for all t > 0

Therefore

ω0(S) = 0.

The infinitesimal generator of S(t) is given by{
D(A) =

{
f ∈ X : f ′ ∈ X

}
Af = f ′ ∀f ∈ D(A).

For any λ ∈ C the function fλ(x) := eλx satisfies λf − f ′ = 0 and fλ ∈ D(A)
for <λ < −1. So,

s(A) > −1. (1.7.6)

We claim that

ρ(A) ⊃
{
λ ∈ C : <λ > −1

}
. (1.7.7)

Indeed, a change of variables shows that, for any g ∈ X, the function

f(x) =

∫ ∞
0

e−λt
(
S(t)g

)
(x)dt =

∫ ∞
0

e−λtg(x+ t)dt (x > 0)
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satisfies λf − f ′ = g. Consequently, if we show that f ∈ X, then f ∈ D(A)
follows and so λ ∈ ρ(A). To check that f ∈ X observe that, for all x > 0,

|f(x)| 6
∫ ∞

0

∣∣e−λtg(x+ t)
∣∣dt

=

∫ ∞
0

e−t<λ
∣∣g(x+ t)

∣∣ex+te−x−tdt

= e−x
∫ ∞

0
e−t(1+<λ)ex+t

∣∣g(x+ t)
∣∣dt (1.7.8)

6 e−x
∫ ∞
x

es
∣∣g(s)

∣∣ds
which insures that f ∈ C0(R+;C). Furthermore, by (1.7.8) we compute∫ ∞

0
|f(x)|exdx 6

∫ ∞
0

dx

∫ ∞
0

e−t(1+<λ)ex+t
∣∣g(x+ t)

∣∣dt
=

∫ ∞
0

e−t(1+<λ)dt

∫ ∞
0

ex+t
∣∣g(x+ t)

∣∣dx
6

∫ ∞
0

e−t(1+<λ)dt

∫ ∞
0

eτ
∣∣g(τ)

∣∣dτ <∞.
From (1.7.6) and (1.7.7) it follows that s(A) = −1 < 0 = ω0(S).

Exercise 15 Let S(t) be a C0-semigroup of bounded linear operators on X.
Prove that ω0(S) < 0 if and only if

lim
t→+∞

‖S(t)‖ = 0. (1.7.9)

Solution. One only needs to show that (1.7.9) implies that ω0(S) < 0. Let
t0 > 0 be such that ‖S(t0)‖ < 1/e. For any t > 0 let n ∈ N be the unique
integer such that

nt0 6 t <
(
n+ 1

)
t0. (1.7.10)

Then

‖S(t)‖ =
∥∥S(nt0)S(t− nt0)∥∥ 6 Meω(t−nt0)

en
6

Meωt0

en
.

Therefore, on account of (1.7.9), we conclude that

log ‖S(t)‖
t

6
log
(
Meωt0

)
t

− n

t

6
log
(
Meωt0

)
t

−
( 1

t0
− 1

t

)
∀t > 0.

Taking the limit as t→ +∞ we conclude that ω0(S) < 0. �
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Exercise 16 Let S(t) be the C0-semigroup on L2(Ω) associated with the
initial-boundary value problem

∂u
∂t = ∆u in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = u0(x) x ∈ Ω

(1.7.11)

Show that ω0(S) < 0.

Solution. We know from Example 9 that the infinitesimal generator of S(t) is
the operator A defined by{

D(A) = H2(Ω) ∩H1
0 (Ω)

Au = ∆u ∀u ∈ D(A).

For u0 ∈ D(A), let u(t, x) =
(
S(t)u0

)
(x). Then u satisfies (1.7.11). So

d

dt

(1

2

∫
Ω
|u(t, x)|2dx

)
= −1

2

∫
Ω
|Du(t, x)|2dx ∀t > 0.

Moreover, by Poincaré’s inequality we have that∫
Ω
|u(t, x)|2dx 6 c(Ω)

∫
Ω
|Du(t, x)|2dx.

Therefore,
d

dt
|u(t)|2 6 − 2

c(Ω)
|u(t)|2

which ensures, by Gronwall’s lemma, that

|u(t)| 6 e−t/c(Ω)|u0| ∀t > 0.

By a density argument, one concludes that the above inequality holds true for
any u0 ∈ L2(Ω), so that ω0(S) 6 −1/c(Ω). �

1.8 Strongly continuous groups

Definition 11 A strongly continuous group, or a C0-group , of bounded linear
operators on X is a map G : R→ L(X) with the following properties:

(a) G(0) = I and G(t+ s) = G(t)G(s) for all t, s ∈ R,

(b) for all u ∈ X

lim
t→0

G(t)u = u. (1.8.1)
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Definition 12 The infinitesimal generator of a C0-group of bounded linear
operators on X, G(t), is the map A : D(A) ⊂ X → X defined byD(A) =

{
u ∈ X : ∃ limt→0

S(t)u−u
t

}
Au = limt→0

S(t)u−u
t ∀u ∈ D(A)

Theorem 7 Let M > 1 and ω > 0. For a linear operator A : D(A) ⊂ X → X
the following properties are equivalent:

(a) A is the infinitesimal generator of a C0-group, G(t), such that

‖G(t)‖ 6Meω|t| ∀t ∈ R. (1.8.2)

(b) A and −A are the infinitesimal generators of C0-semigroups, S+(t) and
S−(t)) respectively, satisfying

‖S±(t)‖ 6Meωt ∀t > 0. (1.8.3)

(c) A is closed, D(A) is dense in X, and

ρ(A) ⊇
{
λ ∈ C : |<λ| > ω

}
(1.8.4)

‖R(λ,A)k‖ 6 M

(|<λ| − ω)k
∀k > 1, ∀|<λ| > ω (1.8.5)

Remark 4 Let A and S±(t) be as in point (b) above. We claim that

(i) S+(t)S−(s) = S−(s)S+(t) for all s, t > 0,

(ii) S+(t)−1 = S−(t) for all t > 0.

Indeed, recall that

S+(t) = lim
n→∞

etAn , S−(t) = lim
n→∞

etBn

where

An = nAR(n,A) , Bn = −nAR(n,−A) = nAR(−n,A)

are the Yosida approximations of A and −A, respectively. Since An and Bm
commute in view of (1.5.3), so do etAn and etBm and (i) holds true.

Consequently,
S(t) := S+(t)S−(t) (t > 0)

is also a C0-semigroup and, for all u ∈ D(A) = D(−A), we have that

S(t)u− u
t

= S+(t)
S−(t)u− u

t
+
S+(t)u− u

t

t↓0−→ −Au+Au = 0.

So, d
dt S(t)u = 0 for all t > 0. Hence, S(t)u = u for all t > 0 and u ∈ D(A).

By density, S(t)u = u for all x ∈ X, which yields S+(t)−1 = S−(t). �
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Proof of (a)⇒ (b) Define, for all t > 0,

S+(t) = G(t) and S−(t) = G(−t).

Then it can be checked that S±(t) is C0-semigroup satisfying (1.8.3). More-
over, observing that

S−(t)u− u
t

=
G(−t)u− u

t
= −G(−t)G(t)u− u

t
,

it is easy to show that ±A is the infinitesimal generator of S±(t). �

Proof of (b)⇒ (c) By the Hille-Yosida theorem we conclude that A is closed,

D(A) is dense in X, and

ρ(A) ⊇ Πω =
{
λ ∈ C : <λ > ω

}
‖R(λ,A)k‖ 6 M

(<λ− ω)k
∀k > 1, ∀λ ∈ Πω.

Since

(λI +A)−1 = −(−λI −A)−1, (1.8.6)

we have that −ρ(A) = ρ(−A) ⊇ Πω, or

ρ(A) ⊇ −Πω =
{
λ ∈ C : <λ < −ω

}
,

and

‖R(λ,A)k‖ = ‖R(−λ,−A)k‖ 6 M

(−<λ− ω)k
∀k > 1, ∀λ ∈ −Πω. �

Proof of (c)⇒ (a) Recalling (1.8.6), by the Hille-Yosida theorem it follows

that ±A is the infinitesimal generator of a C0-semigroup, S±(t), satisfying
(1.8.3). For all u ∈ X define

G(t)u =

{
S+(t)u (t > 0)

S−(−t)u (t < 0).

Then, it follows that (1.8.1) and (1.8.2) hold true, and A is the infinitesimal
generator of G(t). Let us check that G(t+ s) = G(t)G(s) for all t > 0 and all
s 6 0 such that t+ s > 0. Recalling point (ii) of Remark 4, we have that

G(t)G(s) = S+(t)S−(−s) = S+(t+ s)S+(−s)S+(−s)−1 = G(t+ s). �
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1.9 Additional exercises

Exercise 17 Let S be C0-semigroup of bounded linear operators on X and
let K ⊂ X be compact. Prove that for every t0 > 0

lim
t→t0

sup
u∈K

∣∣S(t)u− S(t0)u
∣∣ = 0 . (1.9.1)

Solution. We may assume S ∈ G(M, 0) for some M >) without loss of gener-
ality. Let t0 > 0 and fix any ε > 0. Since K is totally bounded, there exist
u1, . . . , uNε ∈ X such that

K ⊂
Nε⋃
n=1

B
(
un,

ε

M

)
.

Moreover, there exists τ > 0 such that

|t− t0| < τ =⇒
∣∣S(t)un − S(t0)un

∣∣ < ε ∀n = 1, . . . , Nε.

Thus, for all |t − t0| < τ we have that, if u ∈ K is such that u ∈ B
(
un,

ε
M

)
,

then ∣∣S(t)u− S(t0)u
∣∣

6
∣∣S(t)u− S(t)un

∣∣+
∣∣S(t)un − S(t0)un

∣∣+
∣∣S(t0)un − S(t0)u

∣∣
6 2M |u− un|+ ε < 3ε.

So, the limit of
∣∣S(t)u− S(t0)u

∣∣ as t→ t0 is uniform on K. �

Exercise 18 Let A : D(A) ⊂ X → X be a closed operator satisfying (1.6.2)
but suppose D(A) fails to be dense in X. In the Banach space Y := D(A),
define the operator B, called the part of A in Y , by{

D(B) =
{
u ∈ D(A) : Au ∈ Y

}
Bu = Au ∀u ∈ D(B).

Prove that B is the infinitesimal generator of a C0-semigroup on Y .

Solution. R(λ,A)(Y ) ⊂ D(B) for all λ ∈ C such that <λ > ω. Indeed, owing
to (1.5.1) for all u ∈ D(A) we have that

lim
n→∞

nR(n,A)u = lim
n→∞

{
R(n,A)Au+ u

}
= u. (1.9.2)

Since ‖nR(n,A)‖ is bounded, (1.9.2) holds true for all u ∈ Y . Hence, D(B)
is dense in Y . So, B satisfies in Y all the assumptions of Theorem 6. �
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Exercise 19 Let X be a Banach space and let A : D(A) ⊂ X → X be the
infinitesimal generator of a uniformly bounded semigroup. Define, for n > 1,

D(An) :=
{
u ∈ D(An−1) : An−1u ∈ D(A)}.

(i) Prove the following extension of the Landau-Kolmogorov inequality (1.3.1):

|Aku| 6 (2M)k(n−k) |Anu|
k
n |u|

n−k
n ∀u ∈ D(An), ∀0 6 k 6 n (1.9.3)

Solution: proceed by induction. The conclusion is trivial for n = 1.
Assume (1.9.3) holds true for n and let u ∈ D(An+1). Then, in view of
(1.3.1), we have that

|Anu| 6 2M |An+1u|
1
2 |An−1u|

1
2

6 2M |An+1u|
1
2

(
(2M)n−1|Anu|

n−1
n |u|

1
n

) 1
2

= (2M)
n+1
2 |An+1u|

1
2 |Anu|

n−1
2n |u|

1
2n .

Therefore,

|Anu| 6 (2M)n |An+1u|
n
n+1 |u|

1
n+1 , (1.9.4)

which is (1.9.3) for n + 1 with k = n. Now, suppose 0 6 k < n. Then,
by our inductive assumption and (1.9.4),

|Aku| 6 (2M)k(n−k) |Anu|
k
n |u|

n−k
n

6 (2M)k(n−k)
(

(2M)n |An+1u|
n
n+1 |u|

1
n+1

) k
n |u|

n−k
n

= (2M)k(n+1−k)|An+1u|
k
n+1 |u|

n+1−k
n+1 .

The proof is complete. �

(ii) Using (1.9.3), prove that for every n > 1:

(a) An is a closed operator.

Solution: proceed by induction. The conclusion is trivial for n = 1.
Assume it holds true for n and let {uk} ⊂ D(An+1) be such that

uk → u & An+1uk → v (k →∞).

Applying (1.9.4) to wk := Anuk ∈ D(A) we obtain

|wk−wh| 6 (2M)n |An+1(uk−uh)|
n
n+1 |uk−uh|

1
n+1 → 0 (h, k →∞)

Therefore, for some w ∈ X,

wk → w & Awk → v (k →∞).
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Since A is closed, we conclude that

w ∈ D(A) & Aw = v (k →∞).

Then, by our inductive assumptiom, u ∈ D(An) and Anu = w,
which implies in turn

u ∈ D(An+1) & An+1u = Aw = v (k →∞). �

(b) D(An) is dense in X for every n > 1.

Solution of (ii)(b): for n = 1 the conclusion follows from Theo-
rem 3. Let the conclusion be true for some n > 1 and fix any
v ∈ X. Then, for any ε > 0 there exists uε ∈ D(An) such that
|uε − v| < ε. Moreover, recalling point (a),

An
(1

t

∫ t

0
S(s)uε ds

)
=

1

t

∫ t

0
S(s)Anuε ds

Since
1

t

∫ t

0
S(s)Anuε ds ∈ D(A) ∀t > 0

we conclude that

1

t

∫ t

0
S(s)uε ds ∈ D(An+1) ∀t > 0.

Moreover, there exists tε > 0 such that∣∣∣ 1

tε

∫ tε

0
S(s)uε ds− v

∣∣∣ 6 ∣∣∣ 1

tε

∫ tε

0
S(s)uε ds−uε

∣∣∣+ |uε− v| < 2ε. �

Generalize to the infinitesimal generator of a C0-semigroup of bounded
linear operators on X.

Exercise 20 Let p > 2. On X = Lp(0, π) consider the operator defined by{
D(A) = W 2,p(0, π) ∩W 1,p

0 (0, π)

Af(x) = f ′′(x) x ∈ (0, π) a.e.
(1.9.5)

where

W 1,p
0 (0, π) =

{
f ∈W 1,p(0, π) : f(0) = 0 = f(π)

}
.

Since C∞c (0, π) ⊂ D(A), we have that D(A) is dense in X. Show that A
is closed and satisfies condition (a′) of Remark 2 with M = 1 and ω = 0.
Theorem 6 will imply that A generates a C0-semigroup of contractions on X.

Solution. Step 1: σ(A) = {−n2 : n ∈ N}.
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Fix any g ∈ X. We will show that, for all λ 6= n2(n > 1), the Sturm-Liouville
system {

λf(x)− f ′′(x) = g(x), 0 < x < π

f(0) = 0 = f(π)
(1.9.6)

admits a unique solution f ∈ D(A). Denoting by

g(x) =
∞∑
n=1

gn sin(nx) (x ∈ [0, π])

the Fourier series of g, we seek a candidate solution f of the form

f(x) =
∞∑
n=1

fn sin(nx) (x ∈ [0, π]).

In order to satisfy (1.9.6) one must have

(λ+ n2)fn = gn ∀n > 1.

So, for any λ 6= −n2, (1.9.6) has a unique solution given by

f(x) =

∞∑
n=1

gn
λ+ n2

sin(nx) (x ∈ [0, π]).

From the above representation it follows that f ∈ H2(0, π)∩H1
0 (0, π). In fact,

returning to the equation in (1.9.6) one concludes that f ∈ D(A).

Step 2: resolvent estimate.
By multiplying both members of the equation in (1.9.6) by |f |p−2f and inte-
grating over (0, π) one obtains, for all λ > 0,

λ

∫ π

0
|f(x)|pdx+ (p− 1)

∫ p

0
|f(x)|p−2|f ′(x)|2dx =

∫ π

0
g(x)|f(x)|p−2f(x) dx

which yields

|f |p 6
1

λ
|g|p ∀λ > 0.

Step 3: conclusion.
By Proposition 6 we conclude that for each f ∈ W 2,p(0, π) ∩W 1,p

0 (0, π) the
unique solution of

∂u
∂t (t, x) = ∂2u

∂x2
(t, x) (t, x) ∈ R+ × (0, π)

u(t, 0) = 0 = u(t, π) t > 0

u(0, x) = f(x) x ∈ (0, π)

is given by u(t, x) = (S(t)f)(x). �
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Exercise 21 Let S(t) be the C0-semigroup generated by operatorA in (1.9.5).
Prove that, for any f ∈ Lp(0, π),

(S(t)f)(x) =

∫ π

0
K(t, x, y)f(y) dy , ∀t > 0, x ∈ (0, π) a.e.

where

K(t, x, y) =
2

π

∞∑
k=1

e−k
2t sin(kx) sin(ky).

Exercise 22 On X = {f ∈ C([0, π]) : f(0) = 0 = f(π)} with the uniform
norm, consider the linear operator A : D(A) ⊂ X → X defined by{

D(A) =
{
f ∈ C2([0, 1]) : f(0) = f(π) = 0 = f ′′(0) = f ′′(π)}

Af = f ′′, ∀f ∈ D(A).

Show that A generates a C0-semigroup of contractions on X and derive the
initial-boundary value problem which is solved by such semigroup.

Solution. We only prove that ‖R(λ,A)‖ 6 1/λ for all λ > 0. Fix any g ∈ X
and let f = R(λ,A)g. Let x0 ∈ [0, π] be such that |f(x0)| = |f |∞. If f(x0) > 0,
then x0 ∈ (0, π) is a maximum point of f . So, f ′′(x0) 6 0 and we have that

λ|f |∞ = λf(x0) 6 λf(x0)− f ′′(x0) = g(x0) 6 |g|∞.

On the other hand, if f(x0) < 0, then x0 ∈ (0, π) once again and x0 is a
minimum point of f . Thus, f ′′(x0) > 0 and

λ|f |∞ = −λf(x0) 6 −λf(x0) + f ′′(x0) = −g(x0) 6 |g|∞.

In any case, we have that λ|f |∞ 6 |g|∞. �

Exercise 23 Let
(
X, | · |

)
be a separable Banach space and let A : D(A) ⊂

X → X be a closed operator with ρ(A) 6= ∅. Prove that
(
D(A), | · |D(A)

)
is

also separable.

Solution. Let {un}n∈N be dense in X and let λ0 ∈ ρ(A). Fix any v ∈ D(A) and
set w = λ0v−Av. For arbitrary ε > 0 let uε = unε be such that |w− uε| < ε.
Then

|v −R(λ0, A)uε| = |R(λ0, A)(w − uε)| 6 ‖R(λ0, A)‖ε.

Moreover,

|Av −AR(λ0, A)uε| = |AR(λ0, A)(w − uε)|
6 |λ0R(λ0, A)(w − uε)|+ |w − uε| 6

(
|λ0|‖R(λ0, A)‖+ 1

)
ε.

This shows that {R(λ0, A)un}n∈N is dense in D(A). �
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2 Dissipative operators

2.1 Definition and first properties

Let H be a Hilbert space with scalar product 〈·, ·〉.

Definition 13 We say that an operator A : D(A) ⊂ H → H is dissipative if

< 〈Au, u〉 6 0 ∀u ∈ D(A). (2.1.1)

Example 13 In H = L2(R+;C) consider the operator{
D(A) = H1(R+;C)

Af(x) = f ′(x) x ∈ R+ a.e.

Then

2< 〈Af, f〉 = 2<
(∫ ∞

0
f ′(x)f(x) dx

)
=

∫ ∞
0

d

dx
|f(x)|2 dx = −|f(0)|2 6 0.

So, A is dissipative.

Proposition 10 An operator A : D(A) ⊂ H → H is dissipative if and only
if for any u ∈ D(A)

|(λI −A)u| > λ|u| ∀λ > 0. (2.1.2)

Proof. Let A be dissipative. Then, for every u ∈ D(A) we have that

|(λI −A)u|2 = λ2|u|2 − 2λ<〈Au, u〉+ |Au|2 > λ2|u|2 ∀λ > 0.

Conversely, suppose A satisfies (2.1.2). Then for every λ > 0 and u ∈ D(A)

λ2|u|2 − 2λ<〈Au, u〉+ |Au|2 = |(λI −A)u|2 > λ2|u|2

So, 2λ<〈Au, u〉 6 |Au|2 which in turn yields (2.1.1) as λ→∞. �

The above characterization can be used to extend the notion of dissipative
operators to a Banach space X.

Definition 14 We say that an operator A : D(A) ⊂ X → X is dissipative if

|(λI −A)u| > λ|u| ∀u ∈ D(A) and ∀λ > 0. (2.1.3)

Remark 5 It follows from (2.1.3) that, if A is dissipative then

λI −A : D(A)→ X

is injective for all λ > 0.

37



Proposition 11 Let A : D(A) ⊂ X → X be dissipative. If

∃λ0 > 0 such that (λ0I −A)D(A) = X, (2.1.4)

then the following properties hold:

(a) λ0 ∈ ρ(A) and ‖R(λ0, A)‖ 6 1/λ0,

(b) A is closed,

(c) (λI −A)D(A) = X and ‖R(λ,A)‖ 6 1/λ for all λ > 0.

Proof. We observe that point (a) follows from Remark 5 and inequality (2.1.3).
As for point (b), we note that, since R(λ0, A) is closed, λ0I −A is also closed,
and therefore A is closed.

Proof of (c). By point (a) the set

Λ =
{
λ ∈]0,∞[ : (λI −A)D(A) = X

}
is contained in ρ(A) which is open in C. This implies that Λ is also open. Let
us show that Λ is closed: let Λ 3 λn → λ > 0 and fix any v ∈ X. There exists
un ∈ D(A) such that

λnun −Aun = v. (2.1.5)

From (2.1.2) it follows that |un| 6 |v|/λn 6 C for some C > 0. Again by
(2.1.2),

λm|un − um| 6 |λm(un − um)−A(un − um)|
6 |λm − λn| |un|+ |λnun −Aun − (λmum −Aum)|
6 C|λm − λn|.

Therefore {un} is a Cauchy sequence. Let x ∈ X be such that un → u. Then
Aun → λu− v by (2.1.5). Since A is closed, u ∈ D(A) and λu−Au = v. This
show that λI − A is surjective and implies that λ ∈ Λ. Thus, Λ is both open
and closed in ]0,∞[. Moreover, Λ 6= ∅ because λ0 ∈ Λ. So, Λ =]0,∞[. The
inequality ‖R(λ,A)‖ 6 1/λ is a consequence of dissipativity. �

2.2 Maximal dissipative operators

Definition 15 A dissipative operator A : D(A) ⊂ X → X is called maximal
dissipative if λ0I −A is surjective for some λ0 > 0 (hence, for all λ > 0).

Remark 6 Let A : D(A) ⊂ X → X be a maximal dissipative operator and
let A ⊃ A be a dissipative extension of A. Then:

(i) A is maximal dissipative (λI −A is surjective since so is λI −A);
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(ii) A = A (since both ρ(A) and ρ(A) contain ]0,∞[).

Theorem 8 Let X be a reflexive Banach space. If A : D(A) ⊂ X → X is a
maximal dissipative operator, then D(A) is dense in X.

We give the proof for a Hilbert space. The case of a reflexive Banach space is
treated in exercises 24 to 27.

Proof. Let v ∈ X be such that 〈v, u〉 = 0 for all u ∈ D(A). We will show that
v = 0, or

〈v, w〉 = 0 ∀w ∈ X.

Since (I −A) is surjective, the above is equivalent to

0 = 〈v, u−Au〉 ∀u ∈ D(A).

So, we need to prove that

〈v, u〉 = 0 ∀u ∈ D(A) =⇒ 〈v,Au〉 = 0 ∀u ∈ D(A). (2.2.1)

Let u ∈ D(A). Since nI − A is onto, there exists a sequence {un} ⊂ D(A)
such that

nu = nun −Aun ∀n > 1. (2.2.2)

Since Aun = n(un − u) ∈ D(A), we have that un ∈ D(A2) and

Au = Aun −
1

n
A2un or Aun =

(
I − 1

n
A
)−1

Au.

Since ‖(I − 1
n A)−1‖ 6 1 by (2.1.2), the above identity yields |Aun| 6 |Au|.

So, by (2.2.2) we obtain

|un − u| 6
1

n
|Au|.

Therefore, un → u. Moreover, since {Aun} is bounded, there is a subsequence
Aunk such that Aunk ⇀ w. Since A is closed, graph(A) is a closed subspace
of X ×X. Then, graph(A) is also weakly closed and we have that w = Au.
Therefore,

〈v,Au〉 = lim
k→∞
〈v,Aunk〉 = lim

k→∞
nk〈v, unk − u〉

and (2.2.1) follows from the vanishing of the rightmost term above. �

Example 14 We now show that the above density may be fail in a general
Banach space. On X = C([0, 1]) with the uniform norm ‖ · ‖∞ = ‖ · ‖∞,[0,1],
consider the linear operator A : D(A) ⊂ X → X defined by{

D(A) =
{
u ∈ C1([0, 1]) : u(0) = 0

}
Au(x) = −u′(x) ∀x ∈ [0, 1].
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Then, for all λ > 0 and f ∈ X we have that the equation λu − Au = f has
the unique solution u ∈ D(A) given by

u(x) =

∫ x

0
eλ(y−x)f(y) dy (x ∈ [0, 1])

Therefore, λI −A is onto. Moreover,

λ|u(x)| 6
∫ x

0
λeλ(y−x)‖f‖∞ dy = (1− e−λx)‖f‖∞ 6 ‖λu−Au‖∞.

So, A is dissipative. On the other hand, D(A) is not dense in X because all
functions in D(A) vanish at x = 0.

Exercise 24 We recall that the duality set of a point x ∈ X is defined as

Φ(x) =
{
φ ∈ X∗ : 〈x, φ〉 = |x|2 = ‖φ‖2

}
. (2.2.3)

Observe that the Hahn-Banach theorem ensures Φ(x) 6= ∅.
We also recall that, for all x ∈ X,

∂|x| =
{
φ ∈ X∗ : |x+ h| − |x| > 〈h, φ〉 , ∀x, h ∈ X

}
. (2.2.4)

Prove that

Φ(x) = x∂|x| =
{
ψ ∈ X∗ : ψ = |x|φ , φ ∈ ∂|x|

}
.

Exercise 25 Prove that, for any operator A : D(A) ⊂ X → X the following
properties are equivalent:

(a) A is dissipative,

(b) for all x ∈ D(A) there exists φ ∈ Φ(x) such that < 〈Ax, φ〉 6 0.

Exercise 26 Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of contractions. Prove that, for all x ∈ D(A),

< 〈Ax, φ〉 6 0 ∀φ ∈ Φ(x).

Exercise 27 Mimic the proof of Theorem 8 to treat the general case of a
reflexive Banach space.

Theorem 9 (Lumer-Phillips 1) Let A : D(A) ⊂ X → X be a densely
defined linear operator. Then the following properties are equivalent:

(a) A is the infinitesimal generator of a C0-semigroup of contractions,

(b) A is maximal dissipative.
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Proof of (a)⇒ (b) In view of Theorem 5, we have that ]0,∞[⊂ ρ(A). So,

(λI − A)D(A) = X for all λ > 0. Moreover, by the Hille-Yosida theorem for
all λ > 0 and v ∈ X we have that λ|R(λ,A)v| 6 |v| or, setting u = R(λ,A)v,

λ|u| 6 |(λI −A)u| ∀u ∈ D(A).

So, A is maximal dissipative. �

Proof of (b)⇒ (a) We have that:

(i) D(A) is dense by hypothesis,

(ii) A is closed by Proposition 11-(b),

(iii) ]0,∞[⊂ ρ(A) and ‖R(λ,A)‖ 6 1/λ for all λ > 0 by Proposition 11-(c).

The conclusion follows by the Hille-Yosida theorem. �

Example 15 (Wave equation in L2(Ω)) Let Ω ⊂ Rn be a bounded do-
main with boundary of class C2. For any given f ∈ H2(Ω) ∩ H1

0 (Ω) and
g ∈ H1

0 (Ω), consider the problem
∂2u
∂t2

(t, x) = ∆u in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = f(x) , ∂u
∂t (0, x) = g(x) x ∈ Ω

(2.2.5)

Let H be the Hilbert space H1
0 (Ω)× L2(Ω) with the scalar product〈( u

v

)
,
( ū
v̄

)〉
=

∫
Ω

(
Du(x) ·Dū(x) + v(x)v̄(x)

)
dx.

Define A : D(A) ⊂ H → H by
D(A) =

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω)

A
( u

v

)
=
( 0 1

∆ 0

)( u

v

)
=
( v

∆u

) (2.2.6)

We will show that A is the infinitesimal generator of a C0-semigroup of con-
tractions on H by checking that A is maximal dissipative.

Let
( u
v

)
∈ D(A). Then, integrating by parts we obtain

〈
A
( u
v

)
,
( u
v

)〉
=

∫
Ω

(
Du(x) ·Dv(x) + v(x)∆u(x)

)
dx = 0 . (2.2.7)

So, A is dissipative.
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Now, consider the resolvent equation
( u

v

)
∈ D(A)

(I −A)
( u

v

)
=
( f

g

)
∈ H

(2.2.8)

which is equivalent to the system
u ∈ H2(Ω) ∩H1

0 (Ω), v ∈ H1
0 (Ω)

u− v = f ∈ H1
0 (Ω)

v −∆u = g ∈ L2(Ω).

(2.2.9)

Using elliptic theory (see, for instance, [3]) one can show that the boundary
value problem {

u ∈ H2(Ω) ∩H1
0 (Ω),

u−∆u = f + g ∈ L2(Ω)

has a unique solution. Then, taking v = u− f ∈ H1
0 (Ω) we obtain the unique

solution of problem (2.2.9). So, A is maximal dissipative and therefore A is
the infinitesimal generator of a C0-semigroup of contractions, S(t).

For any f ∈ H2(Ω) ∩ H1
0 (Ω) , g ∈ H1

0 (Ω), let u(t) (t ∈ R+) be the first
component of

S(t)
( f
g

)
Then u is the unique solution of problem (3.2.4) in the space

C2
(
R+;L2(Ω)

)
∩ C1

(
R+;H1

0 (Ω)
)
∩ C
(
R+;H2(Ω) ∩H1

0 (Ω)
)
.

Example 16 Consider the age-structured population model
∂u
∂t (t, a) + ∂u

∂a (t, a) + µ(a)u(t, a) = 0, a ∈ [0, a1], t > 0

u(t, 0) =
∫ a1

0 β(a)u(t, a) da, t > 0

u(0, a) = u0(a). a ∈ [0, a1] .

(2.2.10)

which was proposed in [5]. Here, u(t, a) is the population density of age a at
time t, µ is the mortality rate, β the birth rate, and a1 > 0 is the maximal
age. We assume that µ, β ∈ C

(
[0, a1]

)
, µ, β > 0, and∫ a1

0
β(a)e−

∫ a
0µ(ρ) dρ da < 1 . (2.2.11)
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In order to recast problem (2.2.10) as an evolution equation in H = L2(0, a1),
we define the linear operator{

D(A) =
{
u ∈ H1(0, a1) : u(0) =

∫ a1
0 β(a)u(a) da

}
Au(a) = −u′(a)− µ(a)u(a)

(
a ∈ [0, a1] a.e.

)
.

(2.2.12)

We now proceed to show the following:

1. A is the infinitesimal generator of a C0-semigroup on H.

2. ρ(A) ⊃ [0,+∞) and, for any λ > 0,

R(λ,A)u(a) =
U(a, 0)

1−
∫ a1

0 β(a)U(a, 0)da

∫ a1

0
β(a) da

∫ a

0
U(a, s)u(s) ds

+

∫ a

0
U(a, s)u(s) ds, a ∈ [0, a1], u ∈ H, (2.2.13)

where

U(a, s) = e−λ(a−s)−
∫ a
s µ(ρ) dρ, a, s ∈ [0, a1] . (2.2.14)

Proof. Given λ > 0 and v ∈ H we consider the equation

λu−Au = v, (2.2.15)

which is equivalent to{
(λ+ µ)u+ u′ = v,

u(0) =
∫ a1

0 β(a)u(a) da .
(2.2.16)

If u is a solution of Eq. (2.2.15), then

u(a) = U(a, 0)u(0) +

∫ a

0
U(a, s)v(s) ds, (2.2.17)

where U is given by Eq. (2.2.14). Multiplying Eq. (2.2.17) by β and
integrating with respect to a over [0, a1] yields

u(0) =

∫ a1

0
β(a)u(a) da

=
(∫ a1

0
β(a)U(a, 0) da

)
u(0) +

∫ a1

0
β(a) da

∫ a

0
U(a, s)v(s) ds . (2.2.18)

From Eq. (2.2.11), we have∫ a1

0
β(a)U(a, 0) da < 1, ∀ a ∈ [0, a1], (2.2.19)
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then, also from Eq. (2.2.17),

u(0) =
1

1−
∫ a1

0 β(a)U(a, 0) da

∫ a1

0
β(a) da

∫ a

0
U(a, s)v(s) ds. (2.2.20)

Consequently, u(a) = R(λ,A)v(a) is given by Eq. (2.2.13).

Conversely, given v ∈ H, the function

u(a) =
U(a, 0)

1−
∫ a1

0 β(a)U(a, 0) da

∫ a1

0
β(a) da

∫ a

0
U(a, s)v(s) ds

+

∫ a

0
U(a, s)v(s) ds, a ∈ [0, a1],

fulfills Eq. (2.2.15). �

3. For all u ∈ D(A)

〈Au, u〉 6 −1

2

∫ a1

0
u2(a)

(
2µ(a)−

∫ a1

0
β2(s)ds

)
da− 1

2
u(a1)2. (2.2.21)

Consequently, if

2µ(a) >
∫ a1

0
β2(s)ds, ∀ a ∈ [0, a1], (2.2.22)

then A is the infinitesimal generator of a C0-semigroup of contractions
on H.

Proof. To show Eq. (2.2.21), we observe that, for all u ∈ D(A),

〈Au, u〉 = −
∫ a1

0 u
′(a)u(a) da−

∫ a1
0 µ(a)u2(a) da

= 1
2 u(0)2 − 1

2 u(a1)2 −
∫ a1

0 µ(a)u2(a) da

= 1
2

(∫ a1
0 β(a)u(a) da

)2 − 1
2 u(a1)2 −

∫ a1
0 µ(a)u2(a) da.

So, by Hölder’s inequality,

〈Au, u〉 6 1

2

∫ a1

0
β2(a) da

∫ a1

0
u2(s) ds− 1

2
u(a1)2 −

∫ a1

0
µ(a)u2(a) da

= −1

2

∫ a1

0
u2(a)

(
2µ(a)−

∫ a1

0
β2(s)ds

)
da− 1

2
u(a1)2 .

This shows that A is maximal dissipative if (2.2.22) is satisfied. In
this case, the Lumer-Phillips theorem insures that A is the infinitesimal
generator of a C0-semigroup of contractions. �

When A and −A are maximal dissipative a stronger conclusion holds true.
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Corollary 4 Let A : D(A) ⊂ X → X be a densely defined linear operator. If
both A and −A are maximal dissipative, then A is the infinitesimal generator of
a C0-group, G(t), which satisfies ‖G(t)‖ = 1 for all t ∈ R.

Proof. By the Lumer-Phillips theorem, A and −A are infinitesimal generators
of C0-semigroups of contractions, S+(t) and S−(t) respectively. Therefore,
Theorem 7 ensures that A is the infinitesimal generator of a C0-group, G(t).
Moreover, 1 = ‖G(t)G(−t)‖ 6 ‖S+(t)‖ ‖S−(t)‖ 6 1. Hence, ‖G(t)‖ = 1. �

Example 17 (Wave equation continued) We return to the wave equa-
tion that was studied in Example 15. We proved that operator A, defined in
(2.2.6), is maximal dissipative. We claim that −A is maximal dissipative as
well. Indeed, equation (2.2.7) implies that −A is dissipative. Moreover, the
resolvent equation for −A takes the form

u ∈ H2(Ω) ∩H1
0 (Ω), v ∈ H1

0 (Ω)

u+ v = f ∈ H1
0 (Ω)

v + ∆u = g ∈ L2(Ω) ,

which can be uniquely solved arguing exactly as we did for system (2.2.9).

Then, by Corollary 4, A is the infinitesimal generator of a C0-group, G(t),
which satisfies ‖G(t)‖ = 1 for all t ∈ R. So, for any f ∈ H2(Ω) ∩H1

0 (Ω) , g ∈
H1

0 (Ω), the first component u(t) (t ∈ R+) of

G(t)
( f
g

)
is the unique solution of problem (3.2.4) in the space

C2
(
R;L2(Ω)

)
∩ C1

(
R;H1

0 (Ω)
)
∩ C
(
R;H2(Ω) ∩H1

0 (Ω)
)
.

2.3 The adjoint semigroup

In this section, we consider the special case when
(
X, 〈·, ·〉

)
is a Hilbert space.

We denote by jX : X∗ → X the Riesz isomorphism, which associates with any
φ ∈ X∗ the unique element jX(φ) ∈ X such that

φ(u) = 〈u, jX(φ)〉 ∀u ∈ X.

We refer the reader to [4] for the treatment of a general Banach space.

Adjoint of a linear operator

Let A : D(A) ⊂ X → X be a densely defined linear operator.
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Exercise 28 Prove that the set

D(A∗) =
{
v ∈ X

∣∣ ∃C > 0 : u ∈ D(A) =⇒ |〈Au, v〉| 6 C|u|
}

(2.3.1)

is a subspace of X and, for any v ∈ D(A∗), the linear map u 7→ 〈Au, v〉 can
be uniquely extended to a bounded linear functional φv ∈ X∗.

Solution. The fact that D(A∗) is a subspace of X is easy to show. Let
v ∈ D(A∗), fix any u ∈ X, and let un ∈ D(A) be such that un

n→∞−→ u. Then
|〈A(un − um), v〉| 6 C|un − um| which implies that {〈Aun, v〉} is a Cauchy
sequence in R and therefore converges as n → ∞. Moreover, if u′n ∈ D(A) is
another sequence such that u′n

n→∞−→ u, then |〈A(un − u′n), v〉| 6 C|un − u′n|.
Therefore, the map

φv(u) = lim
n→∞

〈Aun, v〉 (u ∈ X),

where {un} is any sequence in D(A) converging to u is well defined. Moreover,
φv is linear and |φv(u)| 6 C|u| for all u ∈ X. So, φv ∈ X∗. �

Definition 16 The adjoint of A is the map A∗ : D(A∗) ⊂ X → X defined by

A∗v = jX(φv) ∀v ∈ D(A∗)

where D(A∗) is given by (2.3.1) and φv ∈ X∗ is the functional extending
u 7→ 〈Au, v〉 to X (see Exercise 28).

Exercise 29 Prove that, if A ∈ L(X), then A∗ ∈ L(X) as well and

‖A‖ = ‖A∗‖. (2.3.2)

Solution. Since A ∈ L(X) we have that D(A∗) = X and

〈Au, v〉 = 〈u,A∗v〉 ∀u, v ∈ X.

So, by the definition of A∗ we have that ‖A∗‖ 6 ‖A‖. Moreover, taking v = Au
in the above identity, we obtain |Au|2 6 |u| ‖A∗‖ |Au|. So, ‖A‖ 6 ‖A∗‖. �

Proposition 12 (properties of A∗) Let A : D(A) ⊂ X → X be a densely
defined linear operator. Then the following properties hiold.

(i) A satisfies the adjoint identity

〈Au, v〉 = 〈u,A∗v〉 ∀u ∈ D(A),∀v ∈ D(A∗). (2.3.3)

(ii) A∗ : D(A∗) ⊂ X → X is a closed linear operator.

(iii) If λ ∈ ρ(A), then λ ∈ ρ(A∗) and R(λ,A∗) = R(λ,A)∗.
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(iv) If, in addition, A is closed then D(A∗) is dense in X.

Proof of (i). Let u ∈ D(A), v ∈ D(A∗) and let φv ∈ X∗ be the functional
extending u 7→ 〈Au, v〉 to X. Then

〈Au, v〉 = φv(u) = 〈u, jX(φv)〉 = 〈u,A∗v〉 �

Proof of (ii). Now, to prove that A∗ is closed, let {vn} ⊂ D(A∗) and v, w ∈ X
be such that {

vn → v

A∗vn → w
(n→∞)

Then {A∗vn} is bounded, say |A∗vn| 6 C. So, recalling (2.3.3), we have that

|〈Au, vn〉| = |〈u,A∗vn〉| 6 C|u| ∀u ∈ D(A)

This yields
|〈Au, v〉| 6 C|u| ∀u ∈ D(A)

which in turn implies that v ∈ D(A∗). Moreover

〈Au, v〉 = lim
n→∞

〈Au, vn〉 = 〈u,w〉 ∀u ∈ D(A).

Thus, 〈u,A∗v − w〉 = 0 for all u ∈ D(A). Since D(A) is dense, A∗v = w. �

Proof of (iii). Let λ ∈ ρ(A). From the definition of the adjoint we have that

(λI −A)∗ = λI −A∗.

Aiming to prove that λ ∈ ρ(A∗), first we show that λI − A∗ is injective. If
(λI −A∗)v = 0 for some v ∈ D(A∗), then

0 = 〈u, (λI −A∗)v〉 = 〈(λI −A)u, v〉 ∀u ∈ D(A).

Since λI −A is surjective, the above identity implies that v = 0. So, λI −A∗
is injective. Next, observe that, for all v ∈ X and u ∈ D(A),

〈u, v〉 = 〈R(λ,A)(λI −A)u, v〉 = 〈(λI −A)u,R(λ,A)∗v〉,

yielding R(λ,A)∗v ∈ D((λI −A)∗) = D(λI −A∗) = D(A∗) and

(λI −A∗)R(λ,A)∗v = v ∀v ∈ X. (2.3.4)

On the other hand, if u ∈ X and v ∈ D(A∗), then

〈u, v〉 = 〈(λI −A)R(λ,A)u, v〉 = 〈R(λ,A)u, (λI −A∗)v〉.

Therefore,
R(λ,A)∗(λI −A∗)v = v ∀v ∈ D(A∗). (2.3.5)

47



(2.3.4) and (2.3.5) imply that λ ∈ ρ(A∗) and R(λ,A∗) = R(λ,A)∗. �

Proof of (iv). We argue by contradiction assuming the existence of u0 6= 0
such that 〈u0, v〉 = 0 for every v ∈ D(A∗). Then (0, u0) /∈ graph(A), which is
a closed subspace of X ×X. Fron the Hahn-Banach theorem it follows that
there exist v1, v2 ∈ X such that the associated hyperplane in X×X separates
graph(A) and the point (0, u0), that is,

〈u, v1〉 − 〈Au, v2〉 = 0 ∀u ∈ D(A) and 〈0, v1〉 − 〈u0, v2〉 6= 0

But the first identity implies that v2 ∈ D(A∗), which in turn yields 〈u0, v2〉 =
0, in contrast with the second equation above. So, D(A∗) = X. �

The Lumer-Phillips theorem

By introducing dissipativity of the adjoint of A we can replace maximality in
the Lumer-Phillips theorem.

Theorem 10 (Lumer-Phillips 2) Let A : D(A) ⊂ X → X be a densely
defined closed linear operator. If A and A∗ are dissipative, then A is the
infinitesimal generator of a contraction semigroup on X.

Proof. In view of Theorem 9, it suffices to show that ]0,∞[⊂ ρ(A). Since
λI −A is one-to-one for any λ > 0, one just has to check that

(λI −A)D(A) = X ∀λ > 0.

Step 1: (λI −A)D(A) is dense in X for every λ > 0.
Let v ∈ X be such that

〈λu−Au, v〉 = 0 ∀u ∈ D(A).

The identity 〈Au, v〉 = λ〈u, v〉 yields v ∈ D(A∗) and the fact that

〈u, λv −A∗v〉 = 0,

first for all u ∈ D(A) and then, by density, for all u ∈ X. So, λv − A∗v = 0.
Since, being dissipative, λI −A∗ is also one-to-one, we conclude that v = 0.

Step 2: λI −A is surjective for every λ > 0.
Fix any v ∈ X. By Step 1, there exists {un} ⊂ D(A) such that

λun −Aun =: vn → v as n→∞.

By (2.1.2) we deduce that, for all n,m > 1,

|un − um| 6
1

λ
|vn − vm|
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which insures that {un} is a Cauchy sequence in X. Therefore, there exists
u ∈ X such that {

un → u

Aun = λun − vn → λu− v
(n→∞)

Since A is closed, u ∈ D(A) and λu−Au = v. �

The adjoint semigroup

In order to make further progress we have to better understand the relationship
between the adjoint, S(t)∗, of a C0-semigroup of bounded linear operators on
X and the adjoint, A∗, of its infinitesimal generator.

Theorem 11 Let S(t) be a C0-semigroup of bounded linear operators on Xwith
infinitesimal generatorA : D(A) ⊂ X → X. Then S(t)∗ is a C0-semigroup of
bounded linear operators on X, called the adjoint semigroup, whose infinites-
imal generator is A∗, the adoint of A.

Proof. We observe first that properties (a) and (b) of the definition of a
semigroup are easy to check. Moreover, in view of the bound (1.2.2) and
Exercise 29 we have that S(t)∗ satisfies the growth condition

‖S(t)∗‖ 6Meωt ∀t > 0 (2.3.6)

with the same constants M,ω as S(t). Hereafter, we assume ω > 0.
Aiming to prove that S(t)∗ is strongly continuous we observe that, for all

u ∈ X and v ∈ D(A∗),

|〈u, S(t)∗v − v〉| = |〈S(t)u− u, v〉| =
∣∣∣ ∫ t

0
〈AS(s)u, v〉ds

∣∣∣
=
∣∣∣ ∫ t

0
〈S(s)u,A∗v〉ds

∣∣∣ =
∣∣∣ ∫ t

0
〈u, S(s)∗A∗v〉ds

∣∣∣. (2.3.7)

Therefore, on account of (2.3.6),

|S(t)∗v − v| 6Mteωt|A∗v| ∀v ∈ D(A∗).

This implies that limt↓0 S(t)∗v = v first for every v ∈ D(A∗) and then for all
v ∈ X thanks to (2.3.6) since D(A∗) is dense in X by Proposition12.

Finally, we show that A∗ is the infinitesimal generator of the adjoint semi-
group. Denote by B : D(B) ⊂ X → X the infinitesimal generator of S(t)∗.
Owing to (2.3.7), for every v ∈ D(A∗) we have that

S(t)∗v − v
t

=
1

t

∫ t

0
S(s)∗A∗v ds

t↓0−→ A∗v.

Therefore, A∗ ⊂ B. Moreover, ρ(A) ∩ ρ(B) 6= ∅ because Πω ⊂ ρ(A∗) by
Theorem 12 and Πω ⊂ ρ(B) by (2.3.6) and Proposition 5. So, A∗ = B. �
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Self-adjoint operators and Stone’s theorem

Definition 17 A densely defined linear operator A : D(A) ⊂ X → X is
called:

(a) symmetric if A ⊂ A∗, that is,

D(A) ⊂ D(A∗) and Au = A∗u ∀u ∈ D(A).

(b) self-adjoint if A = A∗.

Remark 7 1. Observe that a symmetric operator A is self-adjoint if and
only if D(A) ⊆ D(A∗).

2. In view of Proposition 12, any self-adjoint operator is closed.

3. If A ∈ L(X), then A is self-adjoint if and only if A is symmetric.

Example 18 In X = L2(0, 1;C), consider the linear operator{
D(A) = H1

0 (0, 1;C)

Au(x) = i u′(x) x ∈ [0, 1] a.e.

Then, A is densely defined and symmetric. Indeed, for all u, v ∈ D(A),

〈Au, v〉 = i

∫ 1

0
u′(x)v(x) dx (2.3.8)

=
[
iu(x)v(x)

]x=1

x=0
− i
∫ 1

0
u(x)v′(x) dx = 〈u,Av〉.

On the other hand, A fails to be self-adjoint because, as we show next,

D(A∗) ⊇ H1(0, 1;C),

so that D(A) ( D(A∗). Indeed, integrating by parts as in (2.3.8), for all
v ∈ H1(0, 1;C) and u ∈ H1

0 (0, 1;C) we have that

∣∣〈Au, v〉∣∣ =
∣∣∣− i∫ 1

0
u(x)v′(x) dx

∣∣∣ 6 |u|2|v′|2. �

Proposition 13 Let A : D(A) ⊂ X → X be a densely defined closed linear
operator such that ρ(A) ∩ R 6= ∅. If A is symmetric, then A is self-adjoint.

Proof. We prove that D(A∗) ⊂ D(A) in two steps. Fix any λ ∈ ρ(A) ∩ R.

Step 1: R(λ,A) = R(λ,A)∗
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Since R(λ,A) ∈ L(X), in view of Exercise 29 it suffices to show that

〈R(λ,A)u, v〉 = 〈u,R(λ,A)v〉 ∀u, v ∈ X.

Fix any u, v ∈ X and set

x = R(λ,A)u and y = R(λ,A)v

so that x, y ∈ D(A) and

λx−Ax = u and λy −Ay = v.

Since A is symmetric, we have that

〈R(λ,A)u, v〉 = 〈x, v〉 = 〈x, λy −Ay〉 = 〈λx−Ax, y〉 = 〈u,R(λ,A)v〉.

Step 2: D(A∗) ⊂ D(A)

Let u ∈ D(A∗) and set x = λu−A∗u. Observe that, for all v ∈ D(A),

〈x, v〉 = 〈λu−A∗u, v〉 = 〈u, λv −Av〉.

Now, take any w ∈ X and let v = R(λ,A)w. Then the above identity yields

〈x,R(λ,A)w〉 = 〈u,w〉 ∀w ∈ X.

So, by Step 1 we conclude that u = R(λ,A)∗x = R(λ,A)x ∈ D(A). �The

following is another interesting spectral property of self-adjoint operators.

Proposition 14 If A : D(A) ⊂ X → X is self-adjoint then

ρ(A) ⊃
{
λ ∈ C : =λ 6= 0

}
Consequently, σ(A) is real.

Proof. For every u ∈ D(A) we have that

〈Au, u〉 = 〈Au, u〉 ∈ R. (2.3.9)

Therefore, |〈λu−Au, u〉| > |=λ| |u|2 which in turn yields

|λu−Au| > |=λ| |u| ∀x ∈ D(A). (2.3.10)

The last inequality ensures that λI − A is an injective operator with closed
range for all λ ∈ C with =λ 6= 0. Let us show that (λI − A)D(A) is dense in
X for any such λ. Suppose there exists v 6= 0 such that

〈λu−Au, v〉 = 0 ∀u ∈ D(A).
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Then v ∈ D(A∗) = D(A) and we have that

〈u, λv −Av〉 = 0 ∀u ∈ D(A).

Since D(A) is dense in X, this implies that λv − Av = 0. Then, by (2.3.9),
λ = λ ∈ R contradicting =λ 6= 0. �

The following is an immediate consequence of Theorem 10.

Corollary 5 (Lumer-Phillips 3) Let A : D(A) ⊂ X → X be a densely
defined linear operator. If A is self-adjoint and dissipative, then A is the
infinitesimal generator of a contraction semigroup on X.

Example 19 Let Ω ⊂ Rn be a bounded domain with boundary of class C2.
Define {

D(A) = H2 ∩H1
0 (Ω;C)

Au(x) = ∆u(x)− V (x)u(x) x ∈ Ω a.e.
(2.3.11)

where we assume V ∈ L∞(Ω,R). Let us check that A is self-adjoint in
L2(Ω;C). Indeed, integration by parts insures that A is symmetric. So, by
Proposition 13, it suffices to check that ρ(A) ∩ R 6= ∅. We claim that, for
λ ∈ R large enough, for any h ∈ L2(Ω;C) the problem{

w ∈ H2 ∩H1
0 (Ω;C)

(λ+ V (x))w(x)−∆w(x) = h(x) (x ∈ Ω a.e.)
(2.3.12)

has a unique solution. Equivalently, by setting f = <h, g = =h ∈ L2(Ω)
and u = <w, v = =w, we have to prove solvability for the boundary value
problems {

u ∈ H2 ∩H1
0 (Ω)

(λ+ V )u−∆u = f
and

{
v ∈ H2 ∩H1

0 (Ω)

(λ+ V )v −∆v = g

The latter is a well-established fact in elliptic theory (see, e.g. [3]). On the
other hand, operator A fails to be dissipative, in general.

Exercise 30 Prove that operator A in Example 19 is dissipative if

‖V ‖∞ 6 1/CΩ,

where CΩ is the Poincaré constant of Ω.

The following property of self-adjoint operators is very useful. We recall that
an operator U ∈ L(X) is unitary if UU∗ = U∗U = I.

Theorem 12 (Stone) Let X be a complex Hilbert space. For any densely
defined linear operator A : D(A) ⊂ X → X the following properties are
equivalent:
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(a) A is self-adjoint,

(b) iA is the infinitesimal generator of a C0-group of unitary operators.

Proof of (a)⇒ (b) Since A is self-adjoint, A is closed and we have that

〈Au, u〉 = 〈u,A∗u〉 = 〈u,Au〉 = 〈Au, u〉 ∀u ∈ D(A).

Thus, 〈Au, u〉 is real, so that

<〈iAu, u〉 = 0 ∀u ∈ D(A).

The above identity implies that both iA and −iA are dissipative operators.
Since

〈iAu, v〉 = i〈u,Av〉 = 〈u,−iAv〉 ∀u, v ∈ D(A),

we have that (iA)∗ = −iA. So, by Theorem 10 we deduce that ±iA is the
infinitesimal generator of a C0-semigroup of contractions that we denote by
e±iAt. Then, by Theorem 7, iA generates a C0 group, G(t). Such a group is
unitary because for any t > 0 we have that

G(t)−1 = G(−t) = e−iAt = e(iA)∗t = (eiAt)∗ = G(t)∗,

while, for any t < 0,

G(t)−1 = eiA|t| = eiA
∗|t| = e(−iA)∗|t| = (e−iA|t|)∗ = G(−|t|)∗ = G(t)∗. �

Proof of (b)⇒ (a) Let iA be the infinitesimal generator of a C0-group of

unitary operators on X, say G(t). Then, for all u ∈ D(A), we have that

iAu = lim
t→0

G(t)u− u
t

= − lim
t→0

G(−t)u− u
t

= − lim
t→0

G(t)∗u− u
t

=

= −(iA)∗u = iA∗u.

Thus, u ∈ D(A∗) and Au = A∗u. By running the above computation back-
wards, we conclude that D(A∗) ⊆ D(A). Therefore, A is self-adjoint. �

Example 20 (Schrödinger equation in a bounded domain) Let us con-
sider the initial-boundary value problem

1
i
∂u
∂t (t, x) = ∆u(t, x)− V (x)u(t, x) (t, x) ∈ R× Ω

u(t, x) = 0 t ∈ R , x ∈ ∂Ω

u(0, x) = u0(x) x ∈ Ω

(2.3.13)

where Ω ⊂ Rn is a bounded domain with boundary of class C2 and V ∈
L∞(Ω). In Example 19, we have already checked that the operator A, defined
in (2.3.11), is self-adjoint on L2(Ω;C). Therefore, by Theorem 12 we conclude
that, for any u0 ∈ H2 ∩H1

0 (Ω;C), problem (2.3.13) has a unique solution

u ∈ C1
(
R;L2(Ω;C)

)
∩ C
(
R;H2 ∩H1

0 (Ω;C)
)
. �
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The Cauchy problem with a self-adjoint operator

In this section, we will see that the homogeneous Cauchy problem with initial
datum u0 ∈ X {

u′(t) = Au(t) t > 0

u(0) = u0.
(2.3.14)

can be solved in a strict sense without requiring u0 to be in D(A) if A is a
self-adjoint and dissipative.

We begin with an interpolation result of interest in its own right.

Lemma 2 Let A : D(A) ⊂ X → X be a self-adjoint dissipative operator and
let u ∈ H1(0, T ;X)∩L2(0, T ;D(A)) be such that u(0) = 0. Then the function

t 7→ 〈Au(t), u(t)〉

is absolutely continuous on [0, T ] and

d

dt
〈Au(t), u(t)〉 = 2< 〈u′(t), Au(t)〉 (a.e. t ∈ [0, T ]). (2.3.15)

Proof. Define Un(t) = 〈Anu(t), u(t)〉 (t ∈ [0, T ]), where An = nAR(n,A) is
the Yosida approximation of A. Then Un is absolutely continuous on [0, T ]
and

d

dt
〈Anu(t), u(t)〉 = 2< 〈u′(t), Anu(t)〉 (a.e. t ∈ [0, T ])

or

〈Anu(t), u(t)〉 = 2<
∫ t

0
〈u′(s), Anu(s)〉ds ∀t ∈ [0, T ]. (2.3.16)

Now, since for a.e. t ∈ [0, T ]

Anu(t) = nR(n,A)Au(t)
(n→∞)−→ Au(t)

|Anu(t)| 6 |Au(t)| ,

we can pass to the limit as n→∞ in (2.3.16) by Lebesgue’s theorem to obtain

〈Au(t), u(t)〉 = 2<
∫ t

0
〈u′(s), Au(s)〉ds ∀t ∈ [0, T ].

This shows that t 7→ 〈Au(t), u(t)〉 is absolutely continuous on [0, T ] and yields
(2.3.15). �

Theorem 13 Let A : D(A) ⊂ X → X be a self-adjoint dissipative operator.
Then S(t)u ∈ D(A) for all u ∈ X and t > 0. Moreover, for every T > 0 the
following inequality holds

4

∫ T

0
t|AS(t)u|2dt−2T 〈AS(T )u, S(T )u〉+|S(T )u|2 6 |u|2 ∀u ∈ X. (2.3.17)
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Observe that all the terms on the left side of (2.3.17) are nonnegative, so that
each of them is bounded by |u|2.

Proof. For any n > 1 define

un = nR(n,A)u , vn(t) = S(t)un , v(t) = S(t)u.

Since un ∈ D(A), we have that v′n(t) = Avn(t) for all t > 0. So,

1

2

d

dt
|vn(t)|2 = 〈v′n(t), vn(t)〉 = 〈Avn(t), vn(t)〉

Therefore,

|vn(t)|2 − 2

∫ t

0
〈Avn(s), vn(s)〉 ds = |un|2 ∀t > 0. (2.3.18)

Similarly, for all t > 0 we have that

t|v′n(t)|2 = t〈Avn(t), v′n(t)〉 =
1

2

d

dt

(
t〈Avn(t), vn(t)〉

)
− 1

2
〈Avn(t), vn(t)〉.

Integrating the above identity over [0, T ] yields, by (2.3.18),

2

∫ T

0
t|v′n(t)|2 dt− T 〈Avn(T ), vn(T )〉 = −

∫ T

0
〈Avn(t), vn(t)〉 dt

=
1

2

(
|un|2 − |vn(T )|2

)
or

4

∫ T

0
t|Avn(t)|2 dt− 2T 〈Avn(T ), vn(T )〉+ |vn(T )|2 6 |u|2 (2.3.19)

since ‖nR(n,A)‖ 6 1. The last inequality implies that, for any ε ∈]0, T [, {vn}
is bounded in L2(ε, T ;D(A)). Therefore, there exists a weakly convergent
subsequence {vnk} in L2(ε, T ;D(A)). On the other hand, vnk → v uniformly
on [0, T ]. So, v ∈ L2(ε, T ;D(A)) for any ε ∈]0, T [, which in turn yields
S(t)u ∈ D(A) for a.e. t > 0—hence for all t > 0! Moreover,

Avn(t) = nR(n,A)AS(t)u
n→∞−→ AS(t)u ∀t > 0.

Taking the limit as n→∞ in (2.3.19), by Fatou’s lemma we get (2.3.17). �

The above result can be used to introduce an intermediate space betweenX
and D(A), namely the interpolation space [X,D(A)]1/2, such that t 7→ S(t)u0

belongs to H1(0, T ;X)∩L2(0, T ;D(A)) whenever u0 ∈ [D(A), X]1/2. We give
a brief account of such a construction, referring the reader to [1] for more.
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Proposition 15 Let A : D(A) ⊂ X → X be a self-adjoint dissipative opera-
tor. Then, for any u ∈ X, the functions

t 7→ −〈AS(t)u, S(t)u〉

and

t 7→ − 1

t

∫ t

0
〈AS(s)u, S(s)u〉 ds

are both nonincreasing on ]0,∞[.

Proof. Since S(t)u ∈ D(A) for every t > 0 by Theorem 13, we have that

0 6 2|AS(t)u|2 =
d

dt
〈AS(t)u, S(t)u〉 ∀t > 0.

This shows that t 7→ −〈AS(t)u, S(t)u〉 is nondecreasing on ]0,∞[. The other
conclusion is a consequence of the general fact which is proven below. �

Lemma 3 Let f be a nonnegative nonincreasing function on ]0,∞[. Then
t 7→ 1

t

∫ t
0 f(s) ds is nonincreasing on ]0,∞[.

Proof. Observe that for any 0 < t < t′ we have that

f(t′) 6
1

(t′ − t)

∫ t′

t
f(s) ds 6 f(t) 6

1

t

∫ t

0
f(s) ds. (2.3.20)

This yields

1

t′

∫ t′

0
f(s) ds =

1

t

∫ t

0
f(s) ds+

( 1

t′
− 1

t

)∫ t

0
f(s) +

1

t′

∫ t′

t
f(s) ds

=
1

t

∫ t

0
f(s) ds+

t′ − t
t′

{ 1

(t′ − t)

∫ t′

t
f(s) ds− 1

t

∫ t

0
f(s) ds

}
6

1

t

∫ t

0
f(s) ds+

t′ − t
t′
{
f(t)− f(t)

}
6

1

t

∫ t

0
f(s) ds,

where we have made repeated use of (2.3.20). The conclusion follows. �

In view of the above proposition, we have that, for any u ∈ X,

lim
T↓0
− 1

T

∫ T

0
〈AS(t)u, S(t)u〉dt = sup

T>0
− 1

T

∫ T

0
〈AS(t)u, S(t)u〉dt

Definition 18 (interpolation space [D(A), X]1/2) For any u ∈ u we set

|u|21/2 = lim
T↓0
− 1

T

∫ T

0
〈AS(t)u, S(t)u〉dt

and we define

[D(A), X]1/2 =
{
u ∈ u : |u|1/2 <∞

}
. (2.3.21)
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It is easy to see that [D(A), X]1/2 is a subspace of X containing D(A) and

‖x‖1/2 = |x|+ |x|1/2

is a norm on [D(A), X]1/2.

Theorem 14 Let A : D(A) ⊂ X → X be a self-adjoint dissipative operator.
Then ∫ ∞

0
|AS(t)u|2dt 6 1

2
|u|21/2 ∀u ∈ [D(A), X]1/2.

Proof. Fix any ε > 0 and let Tε ∈]0, ε[ be such that

−〈AS(Tε)u, S(Tε)u〉 < |u|21/2 + ε.

Set v(t) = S(t)u and integrate the identity |Av(y)|2 = 〈Av(t), v′(t)〉 over
[Tε, T ] for any fixed T > ε to obtain∫ T

Tε

|Av(t)|2dt =
1

2
〈Av(T ), v(T )〉 − 1

2
〈Av(Tε), v(Tε)〉 < |u|21/2 + ε.

This implies the conclusion as ε ↓ 0 and T ↑ ∞. �

Example 21 On X = L2(0, π) let A : D(A) ⊂ X → X be the operator{
D(A) = H2(0, π) ∩H1

0 (0, π)

Af(x) = f ′′(x) x ∈ (0, π) a.e.

We know that A is self-adjoint and dissipative. We now show that

[D(A), X]1/2 = H1
0 (0, π). (2.3.22)

Let us fix f ∈ H1
0 (0, π) and consider its Fourier series

f(x) =
∞∑
n=1

fn sin(nx) (x ∈ [0, π]).

By Parseval’s identity we have that

∞∑
n=1

n2|fn|2 =
2

π

∫ π

0
|f ′(x)|2dx.

Moreover,

S(t)f(x) =

∞∑
n=1

e−n
2tfn sin(nx) (x ∈ [0, π]).
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and

AS(t)f(x) = −
∞∑
n=1

n2e−n
2tfn sin(nx) (x ∈ [0, π]).

Therefore,

〈AS(t)f, S(t)f〉 = −
∞∑
n=1

n2e−2n2t|fn|2
∫ π

0
sin2(nx) dx

= −π
2

∞∑
n=1

n2e−2n2t|fn|2.

Hence, recalling that 1− e−x 6 x for all x ∈ R, we deduce that

− 1

T

∫ T

0
〈AS(t)f, S(t)f〉 2dt =

π

2

∞∑
n=1

1− e−2n2T

2T
|fn|2 (2.3.23)

6
π

2

∞∑
n=1

n2|fn|2 =

∫ π

0
|f ′(x)|2dx.

The last inequality implies that H1
0 (0, π) ⊂ [D(A), X]1/2. The proof of the

converse inclusion is left to the reader as an Exercise.

Hint. Use (2.3.23) to give a lower bound for

lim
T↓0
− 1

T

∫ T

0
〈AS(t)f, S(t)f〉 2dt. �

Exercise 31 Use Theorem 13 to show that, for any self-adjoint dissipative
operator A : D(A) ⊂ X → X, the following holds:

(a) S(t)u ∈ D(An) for all t > 0, all u ∈ X, and all n ∈ N;

(b) for all u ∈ X

|AS(t)u| 6 |u|
t
√

2
∀t > 0.

Solution. To prove (a) it suffices to observe that for all t > 0 and u ∈ X,

AS(t)u = S(t/2)AS(t/2)u ∈ D(A) =⇒ S(t)u ∈ D(A2).

The general case follows by induction.
Next, using the dissipativity of A we obtain

d

dt
|AS(t)u|2 = 2〈A2S(t)u,AS(t)u〉 6 0.

Thus, t 7→ |AS(t)u|2 is nonincreasing. So, (2.3.17) yields

2t2|AS(t)u|2 = 4

∫ t

0
s|AS(t)u|2ds 6 4

∫ t

0
s|AS(s)u|2ds 6 |u|2. �
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3 The inhomogeneous Cauchy problem

In this chapter, we assume that
(
X, 〈·, ·〉

)
is a separable Hilbert space and

denote by {ej}j∈N a complete orthonormal system in X.

We study the Cauchy problem{
u′(t) = Au(t) + f(t)

u(0) = u0,
(3.0.1)

where f ∈ L2(0, T ;X) and A : D(A) ⊂ X → X is the infinitesimal generator
of a C0-semigroup on X, S(t), which satisfies the growth condition (1.6.3). For
the extension of this theory to a general Banach space, we refer the reader to
the classic monograph by Pazy [4] or the more recent text [2].

3.1 Notions of solution

Let u0 ∈ X and f ∈ L2(0, T ;X).

Definition 19 (Mild solutions) The function u ∈ C
(
[0, T ];X

)
defined by

u(t) = S(t)u0 +

∫ t

0
S(t− s)f(s) ds (3.1.1)

is called the mild solution of (3.0.1).

Observe that the convolution term in formula (3.1.1) for the solution u is
well-defined in view of Proposition 22 in Appendix B.

Theorem 15 (Approximation of mild solutions) Let u ∈ C
(
[0, T ];X

)
be

the mild solution of (3.0.1) and suppose f ∈ C
(
[0, T ];X

)
. Then, the sequence

un := nR(n,A)u, defined for all n > ω, satisfies

un ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) and un
(n→∞)−→ u in C

(
[0, T ];X

)
.

Proof. Let u be given by (3.1.1) and define
un(t) = nR(n,A)u(t)

fn(t) = nR(n,A)f(t)

u0
n = nR(n,A)u0

∀n ∈ N , n > ω

where ω > 0 is such that (1.6.3) holds true. Then

un(t) = S(t)u0
n +

∫ t

0
S(t− s)fn(s) ds (t ∈ [0, T ]).
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Since u0
n ∈ D(A) and fn ∈ C([0, T ];D(A)), by Proposition 21 and 22 below

we conclude that

un ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) and

{
u′n −Aun = fn

un(0) = u0
n.

Moreover, invoking Lemma 1 we conclude that u0
n → u0 as n→∞ while

fn(t)
(n→∞)−→ f(t) and |fn(t)| 6 Mn

n− ω
|f(t)| (for all t ∈ [0, T ])

Therefore,

sup
t∈[0,T ]

|un(t)− u(t)| 6MeωT
(
|u0
n − u0|+

∫ T

0
|fn(s)− f(s)| ds

)
(n→∞)−→ 0.

The conclusion follows. �

Definition 20 (Strict solutions) A function u ∈ H1(0, T ;X)∩L2(0, T ;D(A))
is a strict solution of (3.0.1) if u(0) = u0 and

u′(t) = Au(t) + f(t) (t ∈ [0, T ] a.e.)

Observe that Theorem 15 guarantees that the mild solution of (3.0.1) is the
uniform limit of the strict solutions of the approximate problems{

u′n −Aun = fn

un(0) = u0
n.

Let u0 ∈ X and f ∈ C
(
[0, T ];X

)
.

Definition 21 (Classical solutions) A classical solution of (3.0.1) is a func-
tion u ∈ C

(
[0, T ];X

)
such that

(a) u ∈ C1
(
]0, T ];X

)
∩ C
(
]0, T ];D(A)

)
;

(b) u(0) = u0;

(c) u′(t) = Au(t) + f(t) for all t ∈]0, T ].

We now show that any classical solution coincides with the mild solution.

Proposition 16 Let u be a classical solution of (3.0.1). Then u equals the
mild solution given by (3.1.1).

Proof. Let u be a classical solution of (3.0.1). Then, for any fixed t ∈]0, T ] we
have that s 7→ S(t− s)u(s) is continuous on [0, t], differentiable on ]0, t[, and

d

ds

(
S(t− s)u(s)

)
= S(t− s)f(s) (s ∈]0, t[).

By integrating over [0, t] we deduce that u is given by (3.1.1). �
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3.2 Regularity

Our first result guarantees that the mild solution of (3.0.1) is classical when
f has better “space regularity”.

Theorem 16 Let u0 ∈ D(A) and let f ∈ L2(0, T ;D(A))∩ C(]0, T ];X). Then
the mild solution u of problem (3.0.1) is classical. Moreover,

u ∈ C1
(
[0, T ];X

)
∩ C
(
[0, T ];D(A)

)
. (3.2.1)

We begin the proof by studying the case of u0 = 0.

Lemma 4 For any f ∈ L2(0, T ;D(A)) ∩ C(]0, T ];X) define

FA(t) =

∫ t

0
S(t− s)f(s) ds (t ∈ [0, T ]). (3.2.2)

Then FA ∈ C1
(
[0, T ];X

)
∩ C
(
[0, T ];D(A)

)
and

F ′A(t) = AFA(t) + f(t) ∀t ∈ [0, T ]. (3.2.3)

Proof. Since f ∈ L2(0, T ;D(A)) we have that, for any t ∈ [0, T ],

A

∫ t

0
S(t− s)f(s) ds =

∫ t

0
S(t− s)Af(s) ds.

So, FA ∈ C
(
[0, T ];D(A)

)
on account of Proposition 22.

Next, in order to prove that FA ∈ C1
(
[0, T ];X

)
, fix t ∈ [0, T [ and let

0 < h < T − t. Then

FA(t+ h)− FA(t)

h
=

1

h

{∫ t+h

0
S(t+ h− s)f(s) ds−

∫ t

0
S(t− s)f(s) ds

}
=

S(h)− I
h

FA(t) +
1

h

∫ t+h

t
S(t+ h− s)f(s) ds.

Now,

lim
h↓0

S(h)− I
h

FA(t) = AFA(t)

because FA ∈ C
(
[0, T ];D(A)

)
. Also,

lim
h↓0

1

h

∫ t+h

t
S(t+ h− s)f(s) ds = f(t)

because f ∈ C(]0, T ];X). Therefore, FA is of class C1
(
[0, T ];X

)
and satisfies

(3.2.3). �
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Proof of Theorem 16. Let u be the mild solution of problem (3.0.1). Then

u(t) = S(t)u0 + FA(t) ∀t ∈ [0, T ],

where FA is defined in (3.2.2). The conclusion follows from Theorem 3 and
Lemma 4. �

We will now show a similar result if f has better “time regularity”.

Theorem 17 Let u0 ∈ D(A) and let f ∈ H1(0, T ;X). Then the mild solution
u of problem (3.0.1) is classical and satisfies (3.2.1).

The proof is similar to the one above. One has just to replace Lemma 4 with
the following one.

Lemma 5 For any f ∈ H1(0, T ;X) let FA be defined as in (3.2.2). Then
FA ∈ C1

(
[0, T ];X

)
∩ C
(
[0, T ];D(A)

)
and

F ′A(t) = AFA(t) + f(t) = S(t)f(0) +

∫ t

0
S(t− s)f ′(s)ds (t ∈ [0, T ]).

Proof. Since FA can be rewritten as

FA(t) =

∫ t

0
S(s)f(t− s)ds (t ∈ [0, T ]),

by differentiating the integral we conclude that

F ′A(t) = S(t)f(0) +

∫ t

0
S(s)f ′(t− s))ds

= S(t)f(0) +

∫ t

0
S(t− s)f ′(s)ds ∀t ∈ [0, T ].

Now, Proposition 22 implies that FA ∈ C1
(
[0, T ];X

)
. Moreover, returning to

definition (3.2.2), for all t ∈ [0, T ] we also have that

F ′A(t) = lim
h↓0

1

h

{∫ t+h

0
S(t+ h− s)f(s) ds−

∫ t

0
S(t− s)f(s) ds

}
= lim

h↓0

{S(h)− I
h

FA(t) +
1

h

∫ t+h

t
S(t+ h− s)f(s) ds

}
.

Since H1(0, T ;X) ⊂ C([0, T ];X), we have that

lim
h↓0

1

h

∫ t+h

t
S(t+ h− s)f(s) ds = f(t).

The above identity implies that FA(t) ∈ D(A) and

AFA(t) = F ′A(t)− f(t) ∀t ∈ [0, T ].

Consequently, FA ∈ C
(
[0, T ];D(A)

)
and the proof is complete. �
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Example 22 In general, the mild solution of (3.0.1) fails to be classical as-
suming just f ∈ C([0, T ];X). Indeed, let w ∈ X \D(A) and take f(t) = S(t)w.
Then the mild solution of (3.0.1) with u0 = 0 is given by

u(t) = tS(t)w ∀t > 0

which fails to be differentiable for t > 0. �

Exercise 32 Let Ω ⊂ Rn be a bounded domain with boundary of class C2.
Give conditions on f ∈ L2([0, T ]×Ω), u0 : Ω→ R, and u1 : Ω→ R which guar-
antee the existence and uniqueness of the classical solution to inhomogeneous
wave equation

∂2u
∂t2

(t, x) = ∆u+ f(t, x) in ]0,∞[×Ω

u = 0 on ]0,∞[×∂Ω

u(0, x) = u0(x) , ∂u
∂t (0, x) = u1(x) x ∈ Ω

(3.2.4)

Solution. Let A be defined as in Example 15. Then, applying Theorem 16
and Theorem 17 we conclude that the above problem has a unique classical
solution if

(i) (u0, u1) ∈ D(A), that is, u0 ∈ H2(Ω) ∩H1
0 (Ω) and u1 ∈ H1

0 (Ω);

(ii) f satisfies any of the following conditions

(a) f ∈ C
(
[0, T ];L2(Ω)

)
, ∂f∂x ∈ L

2([0, T ]× Ω), and f(t, ·)|∂Ω = 0, or

(a) ∂f
∂t ∈ L

2([0, T ]× Ω). �

For special classes of generators, one can show that mild solutions are strict
under rather weak conditions.

Theorem 18 Let A : D(A) ⊂ X → X be a densely defined self-adjoint dis-
sipative operator. Then, for any u0 ∈ [D(A), X]1/2 and f ∈ C([0, T ];X), the
mild solution u of problem (3.0.1) is strict.

As above, we begin the proof by studying the case of u0 = 0.

Lemma 6 Let A : D(A) ⊂ X → X be a densely defined self-adjoint dissipa-
tive operator. For any f ∈ C(]0, T ];X) let FA be defined as in (3.2.2). Then
FA ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)) and

F ′A(t) = AFA(t) + f(t) a.e. t ∈ [0, T ]. (3.2.5)

Moreover, t 7→ 〈AFA(t), FA(t)〉 is absolutely continuous

d

dt
〈AFA(t), FA(t)〉 = 2< 〈F ′A(t), AFA(t)〉 a.e. t ∈ [0, T ], (3.2.6)

and
‖AFA‖2 6 ‖f‖2. (3.2.7)
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Proof. Define

fn(t) = nR(n,A)f(t) and Fn(t) = nR(n,A)FA(t) ∀t ∈ [0, T ].

Then fn ∈ C(]0, T ];D(A)) for every n and

Fn(t) =

∫ t

a
S(t− s)fn(s) ds (t ∈ [0, T ]).

Owing to Lemma 4, we have that Fn ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) and

F ′n(t) = AFn(t) + fn(t) ∀t ∈ [0, T ]. (3.2.8)

Moreover,

2

∫ t

0
< 〈F ′n(s), AFn(s)〉ds = 〈AFn(t), Fn(t)〉 6 0 ∀t ∈ [0, T ]

because A is dissipative. Therefore, by multiplying each member of (3.2.8) by
2AFn(t), taking real parts, and integrating over [0, T ] we obtain

2

∫ T

0
|AFn(t)|2dt 6 −2

∫ T

0
< 〈fn(t), AFn(t)〉dt

6
∫ T

0

(
|fn(t)|2 + |AFn(t)|2

)
dt.

Hence ∫ T

0
|AFn(t)|2dt 6

∫ T

0
|fn(t)|2dt 6

∫ T

0
|f(t)|2dt.

Thus, {Fn}n is bounded in H1(0, T ;X)∩L2(0, T ;D(A)). Therefore, there ex-
ists a subsequence {Fnk}k and a function F∞ such that

Fnk
(n→∞)
⇀ F∞ in H1(0, T ;X) ∩ L2(0, T ;D(A)).

Recalling that Fnk
(n→∞)−→ FA in C

(
[0, T ];X

)
by Theorem 15, we conclude that

F∞ = FA ∈ H1(0, T ;X) ∩ L2(0, T ;D(A)).
Now, fix any g ∈ L2(0, T ;X). Then, taking the product of each member

of (3.2.8)—for n = nk—with g we have that∫ T

0
〈F ′nk(t), g(t)〉 dt =

∫ T

0
〈AFnk(t) + fnk(t), g(t)〉 dt.

So, in the limit as n→∞,∫ T

0
〈F ′A(t)−AFA(t)− f(t), g(t)〉 dt = 0 ∀g ∈ L2(0, T ;X)
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which in turn yields F ′A(t) = AFA(t) + f(t) for a.e. t ∈ [0, T ]. �

Proof of Theorem 18. Let u be the mild solution of problem (3.0.1). Then

u(t) = u0(t) + FA(t) ∀t ∈ [0, T ],

where

(i) u0(t) := S(t)u0 belongs to H1(0, T ;X) ∩ L2(0, T ;D(A)) and satisfies
d
dt u

0(t) = Au0(t) for every t > 0 thanks to Theorem 13 and Theorem 14;

(ii) FA, defined in (3.2.2), belongs to H1(0, T ;X) ∩ L2(0, T ;D(A)) and sat-
isfies (3.2.5) owing to Lemma 6.

The conclusion by combining (i) and (ii). �

Example 23 We can use Therem 18 to study the problem
∂u
∂t = ∂2u

∂x2
+ f(t, x) (t, x) ∈ (0, T )× (0, π) a.e.

u(t, 0) = 0 = u(t, π) t ∈ (0, T )

u(0, x) = u0(x) x ∈ (0, π).

(3.2.9)

Recalling Example 21 , we conclude that for all

f ∈ C
(
[0, T ];L2(0, π)

)
and u0 ∈ H1

0 (0, π)

problem (3.2.9) has a unique solution u. In particular, such a solution satisfies:

∂u

∂t
,
∂2u

∂x2
∈ L2

(
(0, T )× (0, π)

)
and t 7→ u(t, ·) ∈ H1

0 (0, π) is continuous.
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4 Appendix A: Cauchy integral on C([a, b];X)

We recall the construction of the Riemann integral for a continuous function
f : [a, b]→ X, where X is a Banach space and −∞ < a < b <∞.

Let us consider the family of partitions of [a, b]

Π(a, b) =
{
π = {ti}ni=0 : n > 1, a = t0 < t1 < · · · < tn = b

}
and define

diam(π) = max
16i6n

(ti − ti−1) (π ∈ Π(a, b)).

For any π ∈ Π(a, b), π = {ti}ni=0, we set

Σ(π) =
{
σ = (s1, . . . , sn) : si ∈ [ti−1, ti], 1 6 i 6 n

}
.

Finally, for any π ∈ Π(a, b), π = {ti}ni=0, and σ ∈ Σ(π), σ = (s1, . . . , sn), we
define

Sσπ (f) =

n∑
i=1

f(si)(ti − ti−1).

Theorem 19 The limit

lim
diam(π)↓0

Sσπ (f) =:

∫ b

a
f(t)dt

exists uniformly for σ ∈ Σ(π).

Lemma 7 For any ε > 0 there exists δ > 0 such that for all π, π′ ∈ Π(a, b)
with π ⊆ π′ we have that

diam(π) < δ =⇒
∣∣Sσπ (f)− Sσ′π′ (f)

∣∣ < ε

for all σ ∈ Σ(π) and σ′ ∈ Σ(π′).

Proof. Since f is uniformly continuous, for any ε > 0 there exists δ > 0 such
that for all t, s ∈ [a, b]

|t− s| < δ =⇒ |f(t)− f(s)| < ε

b− a
. (4.0.1)

Let {
π = {ti}ni=0 , σ = (s1, . . . , sn)

π′ = {t′j}mj=0 , σ′ = (s′1, . . . , s
′
m)

be such that π ⊆ π′ and diam(π) < δ. Then there exist positive integers

0 = j0 < j1 < · · · < jn = m
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such that t′ji = ti for all i = 0, . . . , n. For any such i, it holds that

ti − ti−1 = t′ji − t
′
ji−1

=

ji∑
j=ji−1+1

(t′j − t′j−i).

Then

Sσπ (f)− Sσ′π′ (f) =

n∑
i=1

f(si)(ti − ti−1)−
m∑
j=1

f(s′j)(t
′
j − t′j−1)

=
n∑
i=1

ji∑
j=ji−1+1

(
f(si)− f(s′j)

)
(t′j − t′j−1)

Since for all i = 1, . . . , n we have that

si, s
′
j ∈ [ti−1, ti] ∀ji−1 + 1 6 j 6 ji,

from (4.0.1) it follows that

∣∣Sσπ (f)− Sσ′π′ (f)
∣∣ 6 n∑

i=1

ji∑
j=ji−1+1

∣∣f(si)− f(s′j)
∣∣(t′j − t′j−1)

6
ε

b− a

n∑
i=1

(ti − ti−1) = ε.

The proof is complete. �

Proof of Theorem 19. For any given ε > 0 let δ be as in Lemma 7. Let
π, π′ ∈ Π(a, b) be such that diam(π) < δ and diam(π′) < δ. Finally, let
σ ∈ Σ(π) and σ′ ∈ Σ(π′). Define π′′ = π ∪ π′ and fix any σ′′ ∈ Σ(π′′). Then∣∣Sσπ (f)− Sσ′π′ (f)

∣∣ 6 ∣∣Sσπ (f)− Sσ′′π′′ (f)
∣∣+
∣∣Sσ′′π′′ (f)− Sσ′π′ (f)

∣∣ < 2ε.

This completes the proof since ε is arbitrary. �

Proposition 17 For any f, g ∈ C([a, b];X) and λ ∈ C we have that∫ b

a

(
f(t) + g(t)

)
dt =

∫ b

a
f(t)dt+

∫ b

a
g(t)dt∫ b

a
λf(t)dt = λ

∫ b

a
f(t)dt∣∣∣ ∫ b

a
f(t)dt

∣∣∣ 6 ∫ b

a
|f(t)|dt.
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Moreover, for any φ ∈ X∗ we have that〈
φ,

∫ b

a
f(t)dt

〉
=

∫ b

a
〈φ, f(t)〉dt. (4.0.2)

and, for any Λ ∈ L(X) we have that

Λ

∫ b

a
f(t)dt =

∫ b

a
Λf(t)dt. (4.0.3)

Proof. Exercise. �

Proposition 18 For any f ∈ C1([a, b];X) we have that∫ b

a
f ′(t)dt = f(b)− f(a) (4.0.4)

Proof. By (4.0.2) above, for any φ ∈ X∗ we have that〈
φ,

∫ b

a
f ′(t)dt

〉
=

∫ b

a
〈φ, f ′(t)〉dt.

On the other hand, the function t 7→ 〈φ, f(t)〉 is continuously differentiable on
[a, b] with derivative equal to 〈φ, f ′(t)〉. Therefore, for any φ ∈ X∗,∫ b

a
〈φ, f ′(t)〉dt = 〈φ, f(b)− f(a)〉.

Since X∗ separates points, the above identity yields (4.0.4). �

Corollary 6 Let f ∈ C1([a, b];X) be such that f ′(t) = 0 for all t ∈ [a, b].
Then f is constant.
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5 Appendix B: Lebesgue integral on L2(a, b;H)

Let
(
H, 〈·, ·〉

)
be a separable Hilbert space and let {ej}j∈N be a complete

orthonormal system in H.

The Hilbert space L2(a, b;H)

Definition 22 A function f : [a, b]→ H is said to be Borel (resp. Lebesgue)
measurable if so is the scalar function t 7→ 〈f(t), u〉 for every u ∈ H.

Remark 8 Let f : [a, b]→ H.

1. Since, for any x ∈ H,

〈f(t), x〉 =
∞∑
j=1

〈f(t), ej〉 〈x, ej〉 (t ∈ [a, b]),

we conclude that f is Borel (resp. Lebesgue) measurable if and only if
so is the scalar function t 7→ 〈f(t), ej〉 for every j ∈ N.

2. Since

|f(t)|2 =

∞∑
j=1

∣∣〈f(t), ej〉
∣∣2 (t ∈ [a, b]),

we have that, if f is Borel (resp. Lebesgue) measurable, then so is the
scalar function t 7→ ‖f(t)‖.

Definition 23 We denote by L2(a, b;H) the space of all Lebesgue measurable
functions f : [a, b]→ H such that

‖f‖2 :=
(∫ b

a
|f(t)|2dt

) 1
2
<∞ ,

where two functions f and g are identified if f(t) = g(t) for a.e. t ∈ [a, b].

Proposition 19 L2(a, b;H) is a Hilbert space with the hermitian product

(f |g)0 =

∫ b

a
〈f(t), g(t)〉dt (f, g ∈ L2(a, b;H)).

Proof. We only prove completeness. Let {fn} be a Cauchy sequence in
L2(a, b;H). Then {fn} is bounded:

‖fn‖22 =

∫ b

a

∞∑
j=1

∣∣〈fn(t), ej〉
∣∣2dt 6M ∀n ∈ N (5.0.1)
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Moreover, for any ε > 0 there exists ν ∈ N such that, for all m,n > ν,

‖fn − fm‖22 =

∫ b

a

∞∑
j=1

∣∣〈fn(t)− fm(t), ej〉
∣∣2dt 6 ε (5.0.2)

Therefore, t 7→ 〈fn(t), ej〉 is a Cauchy sequence in L2(a, b) for all j ∈ N. So,
there exists functions φj ∈ L2(a, b) such that 〈fn(·), ej〉 → φj in L2(a, b) for
all j ∈ N. Thus, by Fatou’s lemma,∫ b

a

∞∑
j=1

∣∣φj(t)∣∣2dt 6M and

∫ b

a

∞∑
j=1

∣∣〈fn(t), ej〉 − φj(t)
∣∣2dt 6 ε (∀n > ν).

So, we conclude that

f(t) :=

∞∑
j=1

φj(t)ej ∈ H t ∈ [a, b] a.e.

as well as f ∈ L2(a, b;H) and∫ b

a
|fn(t)− f(t)|2dt 6 ε (∀n > ν),

or, fn → f in L2(a, b;H). �

Remark 9 For any f ∈ L2(a, b;H) we have that

∞∑
j=1

∣∣∣ ∫ b

a
〈f(t), ej〉dt

∣∣∣2 6 (b− a)

∞∑
j=1

∫ b

a

∣∣〈f(t), ej〉
∣∣2dt <∞.

Therefore
∞∑
j=1

ej

∫ b

a
〈f(t), ej〉dt ∈ H.

Definition 24 For any f ∈ L2(a, b;H) we define∫ b

a
f(t)dt =

∞∑
j=1

ej

∫ b

a
〈f(t), ej〉dt .

Proposition 20 For any f ∈ L2(a, b;H) the following properties hold true.

(a) For any x ∈ H we have that〈
x,

∫ b

a
f(t)dt

〉
=

∫ b

a
〈x, f(t)〉dt
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(b)
∣∣∣ ∫ b

a
f(t)dt

∣∣∣ 6 ∫ b

a
|f(t)|dt

(c) For any Λ ∈ L(H) we have that

Λ
(∫ b

a
f(t)dt

)
=

∫ b

a
Λf(t)dt .

Proof. Exercise �

Proposition 21 Let A : D(A) ⊂ H → H be a closed linear operator with
ρ(A) 6= ∅. Then for any f ∈ L2(a, b;D(A)) we have that∫ b

a
f(t)dt ∈ D(A) and A

(∫ b

a
f(t)dt

)
=

∫ b

a
Af(t)dt .

Proof. Exercise (hint: recall that, in view of Exercise 23, D(A) is separable
with respect to the graph norm). �

Proposition 22 Let A : D(A) ⊂ H → H be the infinitesimal generator of a
C0-semigroup on H, S(t), which satisfies the growth condition (1.6.3). Then,
for any f ∈ L2(a, b;H),

(a) for any t ∈ [a, b] the function s 7→ S(t− s)f(s) belongs to L2(a, t;H), and

(b) the function

FA(t) =

∫ t

a
S(t− s)f(s) ds (t ∈ [a, b])

belongs to C
(
[a, b];H

)
.

Proof. In order to check measurability for s 7→ S(t − s)f(s) it suffices to
observe that, for all u ∈ H and a.e. s ∈ [0, t],

〈S(t− s)f(s), u〉 = 〈f(s), S(t− s)∗u〉 =

∞∑
j=1

〈f(s), ej〉 〈S(t− s)∗u, ej〉.

Since s 7→ 〈S(t − s)∗u, ej〉 is continuous and s 7→ 〈f(s), ej〉 is measurable for
all j ∈ N, the measurability of s 7→ S(t− s)f(s) follows. Moreover, by (1.6.3)
we have that

|S(t− s)f(s)| 6Meω(t−s)|f(s) (s ∈ [a, t] a.e.),

which completes the proof of (a).
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In order to prove point (b), fix t ∈]a, b[ and let tn → t. Fix δ ∈]0, t − a[
and let nδ ∈ N be such that tn > t− δ for all n > nδ. Then we have that∣∣FA(tn)− FA(t)

∣∣
6

∫ t−δ

a

∣∣[S(tn − s)f(s)− S(t− s)
]
f(s)

∣∣ ds
+

∫ tn

t−δ

∣∣S(tn − s)f(s)
∣∣ ds+

∫ t

t−δ

∣∣S(t− s)f(s)
∣∣ ds.

To complete the proof it suffices to observe that

lim
n→∞

∫ t−δ

a

∣∣[S(tn − s)f(s)− S(t− s)
]
f(s)

∣∣ ds = 0

by the dominated convergence theorem, while the remaining terms on the
right-hand side of the above inequality are small with δ. �

The Sobolev space H1(a, b;H)

Definition 25 H1(a, b;H) is the space of all functions u ∈ C
(
[a, b];H

)
such

that

(a) u′(t) exists for a.e. t ∈ [a, b];

(b) u′ ∈ L2(a, b;H);

(c) u(t)− u(a) =
∫ t
a u
′(s)ds t ∈ [a, b] a.e.

Remark 10 H1(a, b;H) is a Hilbert space with the scalar product

(u|v)1 =

∫ b

a

[
〈u(t), v(t)〉+ 〈u′(t), v′(t)〉

]
dt (u, v ∈ H1(a, b;H)).
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