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Notation

R = (—00, 00) stands for the real line, R for [0, c0), and R* for (0, c0).
N* =N\ {0} ={1,2,...} and Z* = Z\ {0} = {=1,+2,...}.

For any 7 € R we denote by [7] and {7} the integer and the fractional
part of 7, respectively, defined as

[T] =max{m €Z : m <71} (ry=7-[r].

For any A € C, R\ and S\ denote the real and imaginary parts of A,
respectively.

| - | stands for the norm of a Banach space X, as well as for the absolute
value of a real number or the modulus of a complex number.

Generic elements of X will be denoted by u,v,w. ..

L(X) is the Banach space of all bounded linear operators A : X — X
equipped with the uniform norm [|A|| = supy, <1 [Aul.

For any metric space (X,d), Cy(X) denotes the Banach space of all
bounded uniformly continuous functions f : X — R with norm

[ flloo,x = sup | f(2)]-
ueX

For any f € Cp(X) and § > 0 we call
oscy(d) =sup {|f(z) — f(y)| : v,y € X, d(z,y) <}
the oscillation of f over sets of diameter J.

Given a Banach space (X,|-|) and a closed interval I C R (bounded
or unbounded), we denote by Cp(I; X) the Banach space of all bounded
uniformly continuous functions f : I — X with norm

[flloo,r = sup | f(s)]
sel
We denote by C} (I; X) the subspace of Cy(I; X ) consisting of all functions
f such that the derivative

P (O ()

s—t s—1t

exists for all ¢ € I and belongs to Cp(I; X).
D(A) denotes the domain of a linear operator A: D(A) C X — X.
Hw:{)\EC : %)\>w} for any w € R.



1 Semagroups of bounded linear operators

Preliminaries

Let (X,]|-]) be a (real or complex) Banach space. We denote by £(X) the
Banach space of all bounded linear operators A : X — X with norm

IAll = sup [Au.

ul<1

We recall that, for any given A, B € L(X), the product AB remains in £(X)
and we have that
IAB|| < Al ]| B]]- (1.0.1)

So, L£(X) ia a Banach algebra.

Proposition 1 Let A € £L(X) be such that ||A|| < 1. Then (I - A)~! € L(X)
and

(I-A)~'= i A" (1.0.2)
n=0

Proof. We observe that the series on the right-hand side of (1.0.2) is totally
convergent in £(X). So,

A=) A" e L(X).
n=0
Moreover,

(I—A)A:i(I—A)A”:I:iA”([—A):A(I—A). O
n=0 n=0

1.1 Uniformly continuous semigroups
Definition 1 A semigroup of bounded linear operators on X is a map
S:[0,00) = L(X)
with the following properties:
(a) 5(0) =1,
(b) S(t+s)=S5(t)S(s) for allt,s > 0.
We will use the equivalent notation {S(¢)}:>0 and the abbreviated form S(t).
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Definition 2 The infinitesimal generator of a semigroup of bounded linear
operators S(t) is the map A : D(A) C X — X defined by

D(A):{UEX : HlimuO %} (111)

Au = lim, o SWu=v Yu € D(A)

Exercise 1 Let A : D(A) € X — X be the infinitesimal generatorof a
semigroup of bounded linear operators S(t). Prove that

(a) D(A) is a subspace of X,
(b) A is a linear operator.

Definition 3 A semigroup S(t) of bounded linear operators on X is uniformly
continuous if

lim ||S(t) — I|| = 0.

im (¢) 1

Proposition 2 Let S(t) be a uniformly continuous semigroup of bounded lin-
ear operators. Then there exists M > 1 and w € R such that

ISH)|| < Me¥t vt > 0.
Proof. Let 7 > 0 be such that ||S(t) — I|| < 1/2 for all ¢t € [0, 7]. Then
3
ISOI < I+ 150 ~ Il <5 vtelor].
Since every ¢ > 0 can be represented as t = [t/7|7 + {¢/7}7, we have that

()< ()" < () e

with M = 3/2 and w = log(3/2)/7. O

IS@I < IS¢/

Corollary 1 A semigroup S(t) is uniformly continuous if and only if

lim[|S(s) — S(t)| =0  Vt>0.

s—t

Example 1 let A € £(X). Then

X n
et = — A"
n!

n=0

is a uniformly continuous semigroup of bounded linear operators on X. More
precisely, the following properties hold.
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(a) S0° o LA™ converges for all t > 0 and e € L(X).

Proof. Indeed, the series is totally convergent in £(X) because

ZH

(b) eltt9)A = tAesA for all 5.t > 0.

Proof. We have that

QA Z t+3 Z ( >tk n—k)
k=0

n=0

Z —!HAH” < 0. O

n=0

n tkAk (n— k)A(n k)

-y

k)
n=0 k=0 )'

where the last term coincides with the Cauchy product of the two series

giving e and e*4, O

(c) Aetd = et4 A for all t > 0.
(@) fle = I = I 202 S A" < tl|AllefIA for all ¢ > 0.

etA 1l on
(e) 151 — Al = [ 3202, S An|| < tf| Al 2etI1 for all ¢ > 0.

Notice that property (e) shows that A is the infinitesimal generator of ¢4

Theorem 1 For any linear operator A : D(A) C X — X the following prop-
erties are equivalent:

(a) A is the infinitesimal generator of a uniformly continuous semigroup,

(b) D(A) =X and A € L(X).

Proof. Example 1 shows that (b) = (a). Let us prove that (a) = (b). Let

7 > 0 be fixed such that
1 T
- / S(t)dt” <1.
T Jo

Then the bounded linear operator fo t)dt is invertible. For all A > 0 we
have that

S(hz_l /TS(t)dt: :L(/TS(t—i—h)dt—/TS(t)dt)
0 0 0
_ }ll(/hTJrhS(t)dt—/OT S(tydt) = ;(/TTMS(t)dt—/OhS(t)dt).



Hence

Sh-I - %([f" S(tydt — [ S(t)dt) (fOT S(t)dt)il
L R0 \ »
A = (8(r) = 1) (Jy Styar) .

This shows that A € £(X). O

Let A € £(X). For any ug € X, a solution of the Cauchy problem

(1.1.2)

is a function u € C*([0, co[; X') which satisfies (1.1.2) pointwise.

Proposition 3 Problem (1.1.2) has a unique solution given by u(t) = e*ug.

Proof. The fact that u(t) = e‘dug solves (1.1.2) follows from Example 1.
Let v € C1([0,00[; X) be another solution of (1.1.2). Fix any ¢t > 0 and set
U(s) = e(t=*)4y(s) for all s € [0,#]. Then

U'(s) = —Ae=5)4(s) + =4 Au(s) = 0 Vs € [0, 1].
Therefore, U is constant on [0,¢] by Corollary 6 of Appendix A. So, v(t)

U(t) = U(0) = ettuy. E

Example 2 Consider the integral equation

{gg(t, z) = [} k(z,y)ut,y)dy t>0 (1.1.3)

u(0,z) = up(x)

where k € L*([0,1] x [0,1]) and ug € L*(0,1). Problem (1.1.3) can be recast
in the abstract form (1.1.2) taking X = L?(0,1) and

Au(z) = /0 E(x,y)u(t,y)dy  Vre X.

Then Proposition 3 insures that (1.1.3) has a unique solution u € C*([0, co[; X)

given by u(t) = etuy.



1.2 Strongly continuous semigroups

Example 3 (Translations on R) Let Cy(R) be the Banach space of all bounded
uniformly continuous functions f : R — R with the uniform norm

| floor = sup | f()].
z€eR

For any ¢t € R define
(SON@) = f@+t)  VfeGR).
The following holds true.
1. S(t) is a semigroup of bounded linear operators on Cy(R).

2. S(t) fails to be uniformly continuous.

Proof. For any n € N the function
fnlx) = e’ (r € R)
belongs to Cy(R) and has norm equal to 1. Therefore, for any ¢ > 0

IS(t) — I]| > [S(t) fn — faloor = sup [ "EF* —e7m2%| > 1 — e,
z€eR

Since this is true for any n, we have that ||S(¢) — I|| > 1. O

3. For all f € Cy(R) we have that [S(t)f — floor — 0 ast | 0.

Proof. Indeed,

|S(t)f — floog = sup |f(z +1t) — f(x)| < oscy(t) 0 0
z€R

Definition 4 A semigroup S(t) of bounded linear operators on X 1is called
strongly continuous (or of class Cy, or even a Cy-semigroup) if

li = X. 1.2.1
tlﬁ)lS(t)u u Yu € ( )

Theorem 2 Let S(t) be a Co-semigroup of bounded linear operators on X.
Then there exist w > 0 and M > 1 such that

IS@H)|| < Me¥t vt > 0. (1.2.2)
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Proof. We first prove the following:
Ir>0 and M >1 suchthat |S(t)| <M Vtel0,7]. (1.2.3)

We argue by contradiction assuming there exists a sequence t,, | 0 such that

|S(tn)|| = n for all n > 1. Then, the principle of uniform boundedness implies

that, for some u € X, ||S(tn)ul| — 0o as n — oo, in contrast with (1.2.1).
Now, given t € Ry, let n € N and ¢ € [0, 7] be such that

t=nt+0.
Then, in view of (1.2.3),
IS0 = IS@E)S()™ || < M- M" = M- (MY7)"" < M - (MV/7)!
which yields (1.2.2) with w = 2 O

Corollary 2 Let S(t) be a Cy-semigroup of bounded linear operators on X.
Then for every u € X the map t — S(t)u is continuous from Ry into X.

Definition 5 A Cy-semigroup of bounded linear operators on X is called uni-
formly bounded if S(t) satisfies (1.2.2) with w = 0. If, in addition, M = 1,
we say that S(t) is a contraction semigroup.

Exercise 2 Prove that the translation semigroup of Example 3 satisfies
ISt)] =1 vt > 0.
So, S(t) is a contraction semigroup.
Exercise 3 For any fixed p > 1, let X = LP(R) and define, Vf € X,
(S(t)f)(z) = f(z+t) VzeR,Vt>0. (1.2.4)

Prove that S is Cp-semigroup which fails to be uniformly continuous.

Solution. Suppose S is uniformly continuous and let 7 > 0 be such that
|S(t) — I|| < 1/2 for all t € [0, 7]. Then by taking f,(z) = nl/px[o,l/n] (x) for
p < oo and n > 1/7 we have that |f,| =1 and

3=

IS(T) fr — ful = </Rn|X[O,1/n] (T +7) = X[0,1/n] ($)|pd$) =27 O

Exercise 4 Given a uniformly bounded Cy-semigroup, [|S(t)|| < M, define
luls = sup |[S(t)u|, Yue X. (1.2.5)
>0

Show that:
(a) | -|s is a norm on X,
(b) |ul < |ulsg < M|u| for all u € X, and

(c) S is a contraction semigroup with respect to | - |s.
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1.3 The infinitesimal generator of a Cy-semigroup

Theorem 3 Let A : D(A) C X — X be the infinitesimal generator of a
Co-semigroup of bounded linear operators on X, denoted by S(t). Then the
following properties hold true.

(a) For allt >0

1 t+h
1}5101 ) S(s)uds = S(t)u Vu € X.

(b) Forallt>0 andue X
¢ ¢
/ S(s)uds € D(A) and A/ S(s)uds = S(t)u — u.
0 0

(¢) D(A) is dense in X.

(d) For alluw € D(A) and t > 0 we have that S(t)u € D(A), t — S(t)u is
continuously differentiable, and

d

p S(t)u = AS(t)u = S(t)Au.

(e) For allu € D(A) and all 0 < s <t we have that

S(t)u — S(s)u =

S

S(r)Audr = /t AS(T)udr.

Proof. We remind the reader that all integrals are to be understood in the
Cauchy sense.

(a) This point is an immediate consequence of the strong continuity of .S.

(b) For any t > h > 0 we have that
— t t
I(/ S(s)uds) —1/ (S(h+s)—S(s))uds
0
1 +h
h</ uds—/ S(s uds

:h(/t uds—/S uds
Therefore, by (a),

lﬁlgs(h})l_l(/otS(s)xd8> =S{t)r —x

which proves (b).



(¢) This point follows from (a) and (b).
(d) For all w € D(A), t >0, and h > 0 we have that

TS(t)u =5(t) —u S(t)Au as h 0.

Therefore, S(t)u € D(A) and AS(t)u = S(t)Au = % S(t)u. In order to
prove the existence of the left derivative, observe that for all 0 < h <t

S(t—h)u—St)u S(h) -1
— =S(t—h) —
Moreover, by (1.2.2),
se—nSW =1, _ S(t)Au’
< st —m)|- )S(hzl Lo S()Au
< Me“’t‘ S(hz d u— S(h)Au‘ M
Therefore
S(t—h)u—S(t)u

~ — S(t)Au = AS(t)u as h 0,

showing that the left and right derivatives coincide.
(e) This point follows from (d).
The proof is complete. O

Exercise 5 Show that the infinitesimal generator of the Cy-semigroup of left
translations on R we introduced in Exampe 3 is given by

{D@UZC%R)
Af = f' Vf € D(A).

Solution. For any f € C}(R) we have that

SOf-f V@+ﬂ—f@)
t t

f/

= sup - f’(w)‘ < oscpr(t) g

oo,R z€R

Therefore, C}(R) C D(A) and Af = f' for all f € C{(R). Conversely, let
f € D(A). Then, Af € Cp(R) and

sup ’f(x =) Af(x)‘ 0.
z€R t
So, f'(x) exists for all z € R and equals Af(z). Thus, D(A4) C CL(R). O
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Exercise 6 Let A : D(A) C X — X be the infinitesimal generator of a
uniformly bounded semigroup ||S(¢)|| < M. Prove the Laundau-Kolmogorov
inequality:

|Aul> < 4M? |u| |A%u|  Yu € D(A?), (1.3.1)

where

{D(A?) ={ue D(4) : Aue D(A)} (1.3.2)

A%y = A(Au), Yu € D(A?).

Solution. Assume M = 1. For any u € D(A?) and all t > 0 we have

/ (t —5)S(s)A%uds = [(t — 5)S(s)Au] Zié + / S(s)Auds
0 0
= —tAu+ [S(s)u] zzg = —tAu+ S(t)u — u.

Therefore, for all t > 0,
1 I 5
|Au| < n |S(t)u — u| + n (t —9)|S(s)A%u|ds
0
2 t
< Sl g | A%u). (1.3.3)

If A%y = 0, then the above inequality yields Au = 0 by letting t — 0o. So,
(1.3.1) is true in this case. On the other hand, for A%u # 0 the function of ¢
on the right-hand side of (1.3.3) attains its minimum at

B 2|u|1/2
07 |AZy|12

By taking ¢t = ¢y in (1.3.3) we obtain (1.3.1) once again.
(Question: how to treat the case of M # 17 Hint: remember Exercise 4.) O

Exercise 7 Use the Landau-Kolmogorov inequality to deduce the interpola-
tion inequality

1 2or < 41flor |flcr VS €CR).

1.4 The Cauchy problem with a closed operator
We recall that X x X is a Banach space with norm
[(w, o) = [ul + o] V(u,v) € X x X.
Definition 6 An operator A: D(A) C X — X is said to be closed if its graph
graph(A) == {(u,v) € X x X : ue D(A), v= Au}

is a closed subset of X x X.

11



The following characterisation of closed operators is straightforward.
Proposition 4 The linear operator A : D(A) C X — X is closed if and only
if, for any sequence {x,} C D(A), the following holds:

n —
{u " = wu€D(A) and Au=v. (1.4.1)
Au,, — v

Example 4 In the Banach space X = C,(R), the linear operator
D(4) = Cy(R)
Af = f' Vf € D(A).
is closed. Indeed, for any sequence {f,} C C{(R) such that
fn— f in Cp(R)
Il =g in Cy(R),

we have that f € C}(R) and f' = g.

Example 5 In the Banach space X = C([0,1]) with the uniform norm, the
linear operator

{D(A) = C'([0,1])
(Af) (=) = f(0) Vo el0,1]
fails to be closed. Indeed, for any n > 1 let

fa(z) = Sin(nm) z € [0,1].

Then

D(A) 5 f, — 0 in Gy(R)
Af, =1 Vn > 1,

in contrast with (1.4.1).

Exercise 8 Prove that if A : D(A) € X — X is a closed operator and
B e L(X), then A+ B: D(A) C X — X is also closed. What about BA?

Exercise 9 Prove that, if A : D(A) € X — X is a closed operator and
1 € C(la, b); D(A)), then

A/U@ﬁ:/ﬂﬁ@ﬁ. (1.4.2)
12



Solution. Let m, = {t?}i", € TI(a,b) be such that diam(r,) — 0 and let
on = {sP}", € ¥(m,). Then fff(t)dt € D(A) and

{D(A) > 57(F) = i S — t10) = f, F(t)ae

; b (n — 00)
ASTH(f) = 2 AF (st — ty) — [, Af(t)dt
Therefore, by Proposition 4, fabf(t)dt € D(A) and (1.4.2) holds true. O

Proposition 5 The infinitesimal generator of a Co-semigroup S(t) is a closed
operator.

Proof. Let A: D(A) C X — X be the infinitesimal generator of S(t) and let
{un} € D(A) be as in (1.4.1). By Theorem 3—(d) we have that, for all ¢ > 0,

t
S(t)up — up = / S(s)Aupdx.
0
Hence, taking the limit as n — oo and dividing by ¢, we obtain

Sthu—u 1 [
— =3 /0 S(s)vdu.

Passing to the limit as ¢ | 0, we conclude that Au = v. O

Remark 1 From Proposition 5 it follows that the domain D(A) of the in-
finitesimal generator of a Cy-semigroup is a Banach space with the graph norm

[ulpay = |ul + [Aul YVu € D(A).

Exercise 10 Let  C R” be a bounded domain with boundary of class C2.
Define

D(A) = H*(Q) N HL()
Au = Au Vu € D(A).

Prove that A is a closed operator on the Hilbert space X = L?().
Solution. Let u; € H%(Q) N H}(2) be such that

Ui — U . 9
in L°(Q).
Au; — v
By elliprtic regularity, we have that
[ui = ujlla0 < CllAui — Auglloo
for some constant C' > 0. Hence, {u;} is a Cauchy sequence in the Hilbert

space H?(2) N H (). So, u € H2(Q) N H(Q) and Au = v. O
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Given a closed operator A : D(A) C X — X, let us consider the Cauchy
problem with initial datum ug € X

(0) = 1, (1.4.3)

Definition 7 A classical solution of problem (1.4.3) is a function
u € C(Ry; X) NCHRY: X) NC(RY; D(A))!
such that u(0) = ug and u'(t) = Au(t) for all t > 0.

Our next result ensures the existence and uniqueness of a classical solution
0 (1.4.3) for initial data in D(A), provided A is the infinitesimal generator of
a Cp-semigroup of bounded linear operators on X.

Proposition 6 Let A: D(A) C X — X be the infinitesimal generator of a
Co-semigroup of bounded linear operators on X, S(t).
Then, for every uy € D(A), problem (1.4.3) has a unique classical solution

u € CHRy; X)NC(Ry; D(A)) given by u(t) = S(t)ug for all t > 0.

Proof. The fact that u(t) = S(t)uo satisfies (1.4.3) is point (d) of Theorem 3.
To show that u is the unique solution of the problem let v € C'(Ry; X) N
C(Ry;D(A)) be any solution of (1.4.3), fix t > 0, and set

U(s) =S(t—s)v(s), Vsel0,t].

Then, for all s €]0,¢[ we have that

U(s+ hf)L U(s) — S(t — s)v'(s) + AS(t — s)v(s)
=S({t—s— h)(s—i_h})L_U(S) —S(t—s)v'(s)
+<S(t —5— h})L —S(t—s) +AS(t — 3)>v(s).

Now, point (d) of Theorem 3 immediately yields

lim S(t—s—h)—S(t—s)
h—0 h

v(s) = —AS(t — s)v(s).
Moreover,

v(s+ h) —v(s) ,
- S(t —s)v'(s)

=S({t—s— h)<—v(s + h})l —v(s) - v’(s))

+(S(t—s—h) = S(t—s))v'(s),

"Here D(A) is ragarded as a Banach space with the graph norm.

S(t—s—h)

14



where

(S(t—s—h)—S(t—s))'(s) =20

by the strong continuity of S(¢), while

S(t—s—h) (W ()]

in view of (1.2.2). Therefore,
U'(s) = —AS(t — s)v(s) + S(t — s)Av(s) =0, Vs €]0,T].
So, U is constant and u(t) = U(t) = U(0) = v(t). O
Exercise 11 Let S(t) and T'(¢) be Cp-semigroups with infinitesimal generators
A:D(A)C X - X and B: D(B) C X — X, respectively. Show that
A=B = S(t)=T(t) Vt=0.

Example 6 (Transport equation in C3(R)) Returning to the left-trans-
lation semigroup on Cy(R) of Example 3, by Proposition 6 and Exercise 5
we conclude that for each f € C}(R) the unique solution of the problem

flren-th) (o cnxs
u(0,2) = f(x) reR

is given by u(t,z) = f(z +1t).

1.5 Resolvent and spectrum of a closed operator

Let A: D(A) C X — X be a closed operator on a complex Banach space X.

Definition 8 The resolvent set of A, p(A), is the set of all A € C such that
M — A : D(A) — X is bijective. The set o(A) = C\ p(A) is called the
spectrum of A. For any A € p(A) the linear operator

RMA) =M -A)"1: X=X
is called the resolvent of A.

Example 7 On X = (C([0,1]) with the uniform norm consider the linear
operator A : D(A) C X — X defined by

D(A) = c*([0,1])
Af=f, VfeD(A)

15



is closed (compare to Example 4). Then o(A) = C because for any A € C the
function f(z) = e satisfies

Ma@) = fiz) =0 ¥z e[o,1]
On the other hand, for the closed operator Ag defined by

D(Ag) = {f €C'([0,1]) : f(0) =0}
Aof = f', Vfe D(A),

we have that o(A4p) = @. Indeed, for any g € X the problem

{Af(w — f'(5) = g(x) we€[01]
f(0) =0

admits the unique solution
fo) == [ @ g)de (e 0.1)
0
which belongs to D(Ay).

Proposition 7 (properties of R(\, A)) Let A: D(A) C X — X be a closed
operator on a complex Banach space X. Then the following holds true.

(a) R(\, A) € L(X) for any X € p(A).

(b) For any X € p(A)
AR(M A) = AR(A, A) — 1. (1.5.1)

(c) The resolvent identity holds:

R(MA)—R(u,A) = (u—NR(N, A)R(p, A) VA € p(A). (1.5.2)

(d) For any A\, € p(A)

RO\ A)R(u, A) = R(u, A)R(N, A). (1.5.3)

Proof. Let A\, u € p(A).

(a) Since A is closed, so is A\ — A and aslo R(A\, A) = (A — A)~!. So,
R(X, A) € L(X) by the closed graph theorem.

(b) This point follows from the definition of R(A, A).

16



(c) By (1.5.1) we have that
AR(N, A) — AR, A)|R(p, A) = R(u, A)

and
Since AR(A\, A) = R(\, A)A on D(A), (1.5.2) follows.
(d) Apply (1.5.2) to compute

R(AA) = R(u, A) = (n—A)R(NA)R(u, A)
R(p, A) = RN, A) = (A= p)R(p, A)R(A, A).

Adding the above identities side by side yields the conclusion.

The proof is complete. O

Theorem 4 (analiticity of R(\, A)) Let A: D(A) C X — X be a closed
operator on a complex Banach space X. Then the resolvent set p(A) is open
in C and for any \g € p(A) we have that

1

and the resolvent R(\, A) is given by the (Neumann) series

R\ A) = i(xo — A)"R(Ag, A", (1.5.5)

n=0
Consequently, A — R(\, A) is analytic on p(A) and

d?’L
T B A) = (=1)"nl R(\, ATt vn eN. (1.5.6)

Proof. For all A € C and )¢ € p(A) we have that
M—-—A=X I —A4+A=X0)I=[I—-(Ao—ANR(No,A)](No — A).

This operator is bijective if and only if [I — (A9 — A\)R(Xo, 4)] is invertible,
which is the case if A satisfies (1.5.4). Then

R(A\,A) = R(ho, AT — (A — MR, A7 =3 (A — N)"R(Ao, A+
n=0
The analyticity of R(A, A) and (1.5.6) follows from (1.5.5). O
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Theorem 5 (integral representationof R(\, A)) Let A: D(A) C X — X
be the infinitesimal generator of a Cy-semigroup of bounded linear operators
on X, S(t), and let M > 1 and w € R be such that

ISH)|| < Me¥t vt > 0. (1.5.7)
Then p(A) contains the half-plane
I,={ eC : RA>w} (1.5.8)

and

R\, A)u = / e MS(tudt  VYue X, VAT, (1.5.9)
0

Proof. We have to prove that, given any A € I, and u € X, the equation
A —Av=u (1.5.10)

has a unique solution v € D(A) given by the right-hand side of (1.5.9).

Existence: observe that v := [ e *S(t)udt € X because R\ > w. More-

over, for all h > 0,
S(h)v —v

. { /OO e MS(t + h)udt — /000 e MS(tu dt}

1
R UJy
1 Ah/oo Y /Oo M
= e e MS(tudt — e M"S(tudt
e [ e sudr— | e NS (@uar

Y 1 \h h
= ¢ U % ; e MS(t)udt.
So S(h
lim m =Av—u
hl0 h

which in turn yields that v € D(A) and (1.5.10) holds true.
Uniqueness: let v € D(A) be a solution of (1.5.10). Then

/ e MS(tudt = / e MS(t) (W — Av) dt
0 0
o0 o d
= )\/ e MS(t)vdt — / e M S(twdt=v
which implies that v is given by (1.5.9). O

Proposition 8 Let A: D(A) C X — X and B: D(B) C X — X be closed
linear operators in X and suppose B C A, that is,

D(B) Cc D(A) and Au= Bu Vz € D(B).
If p(A) N p(B) # @, then A = B.
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Proof. 1t suffices to show that D(A) C D(B). Let u € D(A), A € p(A)Np(B),
and set
v=MA—Au and w = R(\ B)v.

Then w € D(B) and A\w— Bw = Au— Au. Since B C A, A\w—Bw = Aw— Aw.
Thus, (A — A)(u —w) =0. So, u=w € D(B). O

Example 8 (Right-translation semigroup on R;) On the real Banach
space

X ={feC®Ry) : f(0)=0}

with the uniform norm, consider the right-translation semigroup

flx—t) z>t

Vx,t > 0.
0 x € [0,1]

(S)f)(x) = {

It is easy to check that S is a Cp-semigroup on X with ||S(¢)|| = 1 for all
t > 0. In order to characterize its infinitesimal generator A, let us consider
the operator B : D(B) C X — X defined by

{D(B ={fex : fex)}
Bf =—f', VfeD(B).
We claim that:
(1) BC A
Proof. Let f € D(B). Then, for all z,¢ > 0 we have

(SWf)@) - fa) [T ==F@),  o0<w<t

t f(x*t%*f(x) — _f/(xt) >t

with 0 < 2 — ¢ < t. Therefore

(S f)(x) — f(x)
b ¢

+ f(x)]| < sup |f'(z) = f(y)] =0 as tl0O

x>0 lx—y|<t

because f’ is uniformly continuous. O

(it) 1€ p(B)
Proof. For any g € X the unique solution f of the problem

{f € D(B)
f@)+ f'(x) =g(x) Yo=0

is given by

xX
f(z) = / e’ g(s)ds (x = 0). O
0
Since 1 € p(A) by Proposition 5, Proposition 8 yields that A = B.
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1.6 The Hille-Yosida generation theorem

Theorem 6 Let M > 1 andw € R. For a linear operator A : D(A) C X — X
the following properties are equivalent:

(a) A is closed, D(A) is dense in X, and

p(A) DI, ={AeC : RA>w} (1.6.1)
M
g — > 6.

(b) A is the infinitesimal generator of a Co-semigroup, S(t), such that

1S(H)]| < Me*t ¥t > 0. (1.6.3)

‘ Proof of (b) = (a) ‘ The fact that A is closed, D(A) is dense in X, and (1.6.1)
holds true has already been proved, see Theorem 3-(c), Proposition 5, and
Theorem 5. In order to prove (1.6.2) observe that, by using (1.5.9) to compute
the k-th derivative of the resolvent of A, we obtain

dk S
i RO Ay = (—1)’“/ the ™ MS(tudt  Yu e X, VYA eIl
0
Therefore,
dk o0 MEk!
—R(\ A ‘ <M [ thePFA-wtgp— &
HdAkR( ’ )‘ /O © (RX — w)k

where the integral is easily computed by induction. The conclusion follows
recalling (1.5.6). O
Lemma 1 Let A: D(A) C X — X be as in (a) of Theorem 6. Then:
(i) For allu € X
lim nR(n, A)u = u. (1.6.4)

n—oo
(ii) The Yosida Approximation A, of A, defined as
A, =nAR(n,A) (n>1) (1.6.5)

s a sequence of bounded operator on X which satisfies

Ap Ay = AnA, Vn,m > 1 (1.6.6)
and
ILm Apu = Au Yu € D(A). (1.6.7)
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(i1i) For all m,n > 2w, u € D(A), t > 0 we have that

let4n| < Men-s < Me*t (1.6.8)
letAny — etmy| < M*te®™ Ayu — Apul. (1.6.9)

tA

Consequently, for all u € D(A) the sequence uy(t) := e“ru is Cauchy

in C([0,T]; X) for any T > 0.
Proof of (i): owing to (1.5.1), for any u € D(A) we have that

an,Au—u:ARn,Au:Rn,AAuéw(njf)O,
[nR(n, Aju —u| = |AR(n, A)u| = |R(n, ) Au| < ——

where we have used (1.6.2) with & = 1. Moreover, again by (1.6.2) ,

M
InR(n, A)|| <~ <2M  ¥n > 2w.
n—w

We claim that the last two inequalities yield the conclusion because D(A) is
dense in X. Indeed, let u € X and fix any € > 0. Let u. € D(A) be such that
|ue —u| < e. Then

InR(n, A)u —u| < [nR(n, A)(u —ue)| + [nR(n, A)ue — ue| + |ue — ul

MA n o0
< (2M +1)e + n_t‘j’ "2%) (oM 4 1)e.

Since ¢ is arbitrary, (1.6.4) follows.
Proof of (ii): observe that A, € L(X) because

A, =n*R(n,A) —nl  ¥n>1. (1.6.10)
Moreover, in view of (1.5.3) we have that

ApAnm = [n*R(n, A) — nI] [m*R(m, A) — ml]
[m?R(m, A) —mI]| [n*R(n, A) — nl] = A, A,.

Finally, owing to (1.6.4), for all w € D(A) we have that

(n—00)

Apu =nAR(n,A)u = nR(n, A)Au " — " Au.

Proof of (iit): recalling (1.6.10) we have that

o0 2k 1k k
etAn — ot Z M vt > 0.

k! ’
k=0
Therefore, in view of (1.6.2),
et || < Me_"ti thk — Menss < Me2t
— El(n —w)k
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for all t > 0 and n > 2w. This proves (1.6.8).
Next, observe that, for any u € D(A), u,(t) := etAnu satisfies

{(un — ) (8) = Ap(tn — um)(t) + (An — Ap)um(t) YVt >0
(Up, — um)(0) = 0.

Therefore, for all ¢ > 0 we have that

t
etAny — etAmy = / =94 (A, — Ap)emuds
0

t
= /e(t_s)A"eSAm(AnAm)uds (1.6.11)
0

because A, and e*4my commute in view of (1.6.6). Thus, by combining
(1.6.11) and (1.6.8) we obtain

|€tA”u . etAm

N

u|

t
M2/ 29295\ Ay — Apul, ds
0
< M?te®t Ayu — Anul.

In view of (1.6.7), the last inequality shows that e!47u is a Cauchy sequence
in C([0,T]; X) for any T > 0, thus completing the proof. O

Exercise 12 Use a density argument to prove that e'A»u is a Cauchy se-
quence on all compact subsets of Ry for all u € X.

Solution. Let u € X and fix any ¢ > 0. Let u. € D(A) be such that
|ue — u| < e. Then for all m,n > 2w we have that

|etAny, — etA’"u] < ]etA" (u — ue)|
+|(etAn - etAm)us| + ‘etAm (uz-: - u)|
< (e — eAmyug| 4+ 2M e e

Since ¢ is arbitrary, recalling point (iiz) above the conclusion follows. O

‘Pmof of (a) = (b)‘ On account of Lemma 1 and Exercise 12, we have that

et4ny is a Cauchy sequence on all compact subsets of Ry for all v € X.

Consequently, the limit (uniform on all [0,7] C Ry)

S(tyu = lim eru, Vue X, (1.6.12)

n—oo

defines a Cyp-semigroup of bounded linear operators on X. Moreover, passing
to the limit as n — oo in (1.6.8), we conclude that ||S(¢)|| < Me*t, Vt > 0.
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Let us identify the infinitesimal generator of S(¢). By (1.6.8), for u € D(A)
we have that

%em”u — S(t)Au| < e Ayu — e Au| + [ Au — S(t) Au)

< Me® Ayu — Au| + | Au — S(t) Aul )

uniformly on all compact subsets of Ry by (1.6.12). Therefore, for all 7' > 0
and u € D(A) we have that

tA,, ( )

etAny " S(t)u

oo uniformly on [0, 7.
% etAng M2) S(t)Au

This implies that
S'"(tyu = S(t)Au, Yu e D(A), Vt > 0. (1.6.13)

Now, let B : D(B) C X — X be the infinitesimal generator of S(¢). Then
A C B in view of (1.6.13). Moreover, II,, C p(A) by assumption (a) and
I1, C p(B) by Proposition 5. So, on account of Proposition 8, A = B. O

Remark 2 The above proof shows that condition (a) in Theorem 6 can be
relaxed as follows:

(a') A is closed, D(A) is dense in X, and

p(A) DJw, 00| (1.6.14)
M

|R(n, A)¥|| < (n—w)F

Vk>1,Yn > w. (1.6.15)

Remark 3 When M = 1, the countably many bounds in condition (a) follow
from (1.6.2) for k = 1, that is,

1
IR(A, Al <

< E>1, VAell,.
TN v VA e

Example 9 (parabolic equations in L?(f2)) Let @ C R" be a bounded
domain with boundary of class C2. Define

{D(A) = H2(Q) N HL(Q)
Au=37" Dj(aiDj)u+ 371 biDiu+cu Vu € D(A).
where

(H1) a;; € CL() satisfies a;; = aj; for all i, =1,...,n and

n

D a(a)g& = 0lEP VEER", e

i,7=1
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(H2) b, € L>*(Q2) for alli =1,...,n and ¢ € L*°(Q).

In order to apply the Hille-Yosida theorem to show that A is the infinitesimal
generator of a Cop-semigroup S(t) on L?(£2), one can check that the following
assumptions are satisfied.

1. D(A) is dense in L?(Q).
[This is a known property of Sobolev spaces (see, for instance, [3].)

2. A is a closed operator.

Proof. Let up € D(A) be such that

k— k—
up, — uw and  Aup — f.

Then, for all A,k > 1 we have that vy := up — uy satisfies

ZZj:l Dj(aiij)vhk + Z?:l b;Dijvpi + copr =: frr  in Q
vpe =0 on 0f).

So, elliptic regularity insures that

lvrkllz.e < C (| farlloe + llonkllon)

for some constant C' > 0. The above inequality implies that {uz} is a
Cauchy sequence in D(A) and this yields f = Au. O

3. Jw € R such that p(A) D]w, oo

[This follows from elliptic theory (see, for instance, [3]).]

4. [[RINA)|| < 52 forall k> 1 and A > w.

[This follows from elliptic theory (see, for instance, [3]).]

Then, for any ug € H*(2) N H{ (), the function u(t,z) = (S(t)uo)(z) is the
unique solution of the initial-boundary value problem

% =1 iz1 DjlaiiDj)u+ 370 biDiu+cu  in J0,00[xQ

u=0 on |0, co[x 02
u(0,x) = up(z) x € €.

in the class
C ([0, 00); L)) N€([0, 00); HA(©) N HY ().
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1.7 Asymptotic behaviour of Cy-semigroups

Let S(t) be a Cp-semigroup of bounded linear operators on X.

Definition 9 The number

. log ||S(t
wo(S) = %r>1(f) gHt()’ (1.7.1)

is called the type or growth bound of S(t).

Proposition 9 The growth bound of S satisfies

_ i s lSOI
wo(S) = tliglo . (1.7.2)
Moreover, for any € > 0 there exists M. > 0 such that
1S(t)]] < Mee@o STty > 0, (1.7.3)

Proof. The fact that wy(S) < oo is a direct consequence of (1.7.1). In order
to prove (1.7.2) it suffices to show that

lim sup log ISl < wo(9). (1.7.4)
t—00 t
For any € > 0 let t- > 0 be such that
log ||S(t
Og”t(s)” < wo(S) +e. (1.7.5)
3

Let us write any ¢ > t. as t = nt. + 6 with n = n(e) € Nand 6 = §(¢) € [0, t.].
Then, by (1.2.2) and (1.7.5),

IS@I < ISO)IISEI™ < Mes? emelen(S)+e) = ppeamen(S)-2Iiglun(S) o)

which proves (1.7.3) with M, = Me&~«0(5)=€)d  Moreover, taking the loga-
rithm of both sides of the above inequality we get

logHS( )H log M + (w — wp(S) —¢€)d
; wo(S) + ¢+ "

and (1.7.4) follows as t — oo. O

Definition 10 For any operator A : D(A) C X — X we define the spectral
bound of A as
s(A) =sup{RX : Aeo(A)}.

Corollary 3 Let S(t) be a Cy-semigroup on X with infinitesimal generator
A. Then
—00 < $(A) < wp(S) < 4o0.
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Proof. By combining Theorem 5 and (1.7.3) we conclude that
Hwo(S)Jrs C p(4) Ve > 0.

Therefore, s(A) < wo(S) + € for all € > 0. The conclusion follows. O

Example 10 For fixed 7> 0 and p > 1 let X = LP(0,T) and

flx—1t) ze€lt,T]

vV € [0,T], Vit > 0.
0 z € [0,1)

(S(t)f)(x) = {

Then S is a Cyg-semigroup of bounded linear operators on X which satisfies
|S(®)|| <1 for all ¢ > 0. Moreover, observe that S is nilpotent, that is, we
have S(t) = 0, V¢t > T. Deduce that wo(S) = —oo. So, the spectral bound of
the infinitesimal generator of S(¢) also equals —oo.

Example 11 (—oco < s(A) = wp(S)) In the Banach space
X =C(R4;C),
with the uniform norm, the left-translation semigroup
(S f)(z) = f(x+t) Vz,t>0

is a Cyp-semigroup of contractions on X which satisfies ||S(t)|| = 1 (Exercise).
Therefore

wo(S) =0.

The infinitesimal generator of S(t) is given by

D(A) = C;(R4;C)
Af = f' Vf € D(A).

By Theorem 5 we have that
p(A)>{XeC : RX>0}.

We claim that
o(A)>{reC : RALO}.

Indeed, for any A € C the function fy(z) := e’ satisfies \f — f' = 0. Moreover,
fa € D(A) for R < 0. Therefore

s(A) =0.
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Example 12 (s(A) < wo(S)) Let us denote by Co(R4; C) the Banach space
of all continuous functions f : Ry — C such that

lim f(z) =0

T—00

with the uniform norm. Let X be the space of all functions f € Cy(R4;C)
such that

IfIl :== sup |f(z)] —l—/ooo |f(z)|e"dr < .

z€R,
Exercise 13 Prove that (X, | - ||) is a Banach space.
Once again, the left-translation semigroup

(SO f)(z) = f(z+t)  Va,t>0

is a Cg-semigroup of contractions on X. Indeed, for all ¢t > 0

ISOF = sup |f(e+ 1)+ / @+ Dl da

zeR

< swp |f(@)] - /0 (@) dz.

(EER+
Exercise 14 Prove that ||S(¢)|| =1 for all ¢t > 0

Therefore
wo (S ) = 0.

The infinitesimal generator of S(t) is given by

DA)={feX : feX}
Af =f' Vf e D(A).

For any A € C the function f(z) := e satisfies \f — f' = 0 and f\ € D(A)
for RA < —1. So,

s(A) > —1. (1.7.6)

We claim that
p(A) D {AeC : RA>—1}. (1.7.7)

Indeed, a change of variables shows that, for any g € X, the function

f@) = [T (s0g) @ = [N rna @20)

0 0
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satisfies A\f — f' = g. Consequently, if we show that f € X, then f € D(A)
follows and so A € p(A). To check that f € X observe that, for all z > 0,

£ ()]

N

/1 e gz + 1)]dt
0
_ / e g(z + 1) |e" e~ tdt
0
_ e_x/ e tAHIN) okt g (o 4 1)t (1.7.8)
0

e’ /00 e®|g(s)|ds

N

which insures that f € Cy(R4;C). Furthermore, by (1.7.8) we compute

/ \f(x)\exdx < / da:/ eft(lJr?R)\)emﬂt‘g(x + t)|dt
0 0 0
= / et(Hm)dt/ e"g(z +t)|da
0 0
< / e_t(Hw‘)dt/ eT‘g(T)|dT < 00.
0 0
From (1.7.6) and (1.7.7) it follows that s(A) = —1 < 0 = wy(S).

Exercise 15 Let S(t) be a Cyp-semigroup of bounded linear operators on X.
Prove that w(S) < 0 if and only if

t_l}eroo |S(t)] = 0. (1.7.9)

Solution. One only needs to show that (1.7.9) implies that wo(S) < 0. Let

to > 0 be such that ||S(t)|| < 1/e. For any t > 0 let n € N be the unique
integer such that

ntg <t < (n+1)to. (1.7.10)

Then

w(t—ntp) wt
1S = [|S(nto)S(t — nto)|| < 2 < M

e en

Therefore, on account of (1.7.9), we conclude that

log||S()| _ log (Me*™)
t = t t
log (Me®t 1 1
< leMER) LDy v
t to ©
Taking the limit as t — 400 we conclude that wg(S) < 0. O
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Exercise 16 Let S(t) be the Cyp-semigroup on L?(Q) associated with the
initial-boundary value problem

%—?:Au in ]0, 0o[xQ
u=0 on |0, co[x 0N (1.7.11)
u(0,2) = up(z) x€Q

Show that wy(S) < 0.

Solution. We know from Example 9 that the infinitesimal generator of S(t) is
the operator A defined by

D(A) = H?(Q) N H(Q)
Au = Au Vu € D(A).

For ug € D(A), let u(t,z) = (S(t)uo)(z). Then u satisfies (1.7.11). So

d /1 2oy 1 ,
dt(2/9|u(t,ﬂc)| dr) = 2/Q|Du(t,:c)| de V>0,

Moreover, by Poincaré’s inequality we have that

2 2
/Q|u(t,x)| dz < C(Q)/Q|Du(t,z)| dzx.

Therefore,
d 2 2 2
t)° < — t
G HOF < — s (o)

which ensures, by Gronwall’s lemma, that
lu(t)] < eV Djug| Ve 0.

By a density argument, one concludes that the above inequality holds true for
any ug € L%(9), so that wo(S) < —1/¢(Q). O

1.8 Strongly continuous groups

Definition 11 A strongly continuous group, or a Co-group , of bounded linear
operators on X is a map G : R — L(X) with the following properties:

(a) G(0) =1 and G(t + s) = G(t)G(s) for all t,s € R,
(b) for allu e X

lim G(t)u = u. (1.8.1)

t—0
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Definition 12 The infinitesimal generatorof a Co-group of bounded linear
operators on X, G(t), is the map A: D(A) C X — X defined by

D(A)={ue X : Ilim,o T}

Au = lim,_, SHu=v Yu € D(A)

Theorem 7 Let M > 1 andw > 0. For a linear operator A : D(A) C X — X
the following properties are equivalent:

(a) A is the infinitesimal generator of a Co-group, G(t), such that
IG@)] < Me*l vt eR. (1.8.2)

(b) A and —A are the infinitesimal generators of Co-semigroups, Sy (t) and
S_(t)) respectively, satisfying

[SL(@®)] < Me*® ¥t > 0. (1.8.3)

(¢) A is closed, D(A) is dense in X, and

p(A) D {AeC : RN >w} (1.8.4)
M
RN, A)E|| < TN —a)F Vk > 1LV[RA| > w (1.8.5)

Remark 4 Let A and S1(t) be as in point (b) above. We claim that
(i) S+(t)S—(s) = S_(s)S4(t) for all s,t >0,
(i) Sy (t)~t=S_(t) for all t > 0.

Indeed, recall that

1 tAn 1 tBn
Si(t) = nh—>Holo€ , S_(t) = nh_)rroloe

where
A, =nAR(n,A), B, = —nAR(n,—A) =nAR(—n, A)

are the Yosida approximations of A and —A, respectively. Since A,, and B,
commute in view of (1.5.3), so do e*4» and e!Pm and (i) holds true.
Consequently,
S() = S:(S-(t)  (t>0)

is also a Cyp-semigroup and, for all u € D(A) = D(—A), we have that

S(t);‘ —Y 5.t S(t)t” —u o Seumu e s,
So, % S(t)u = 0 for all ¢ > 0. Hence, S(t)u = u for all t > 0 and u € D(A).
By density, S(t)u = u for all x € X, which yields S, (t)~! = S_(¢). O
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‘Proof of (a) = (b) ‘ Define, for all ¢ > 0,

Si(t) = G(t) and S_(t) = G(-t).

Then it can be checked that Sy (t) is Cy-semigroup satisfying (1.8.3). More-
over, observing that

S_(thu—u _ G(—t)u—u _ G-t G(t)u — u’
t t t
it is easy to show that +£A is the infinitesimal generator of Sy (t). O

‘ Proof of (b) = (c) ‘By the Hille-Yosida theorem we conclude that A is closed,
D(A) is dense in X, and

p(A) DI, ={AeC : RA>w}
M

IR(A, A)F|| < Rr—w)F

Vk > 1, VA ell,.

Since
M4+ A) = (A - A7 (1.8.6)

we have that —p(A4) = p(—A) D 11, or
p(A) D —II, ={ e C : R < —w},

and

M

1RO, A = IRCA =41 < ey =

Vk>1,VAe -1, O

‘Proof of (¢) = (a) ‘ Recalling (1.8.6), by the Hille-Yosida theorem it follows

that +A is the infinitesimal generator of a Cy-semigroup, Si(t), satisfying
(1.8.3). For all u € X define

GmU:{&ﬁw (t>0)

S_(—t)u (t<0).
Then, it follows that (1.8.1) and (1.8.2) hold true, and A is the infinitesimal
generator of G(t). Let us check that G(t + s) = G(t)G(s) for all t > 0 and all
s < 0 such that t + s > 0. Recalling point (ii) of Remark 4, we have that
G()G(s) = S ()S-(=5) = Si(t +5)S4(~5)S4 (=)' = G(t+5). O
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1.9 Additional exercises

Exercise 17 Let S be Cy-semigroup of bounded linear operators on X and
let K C X be compact. Prove that for every ¢y > 0

lim sup |S(t)u— S(to)u| =0. (1.9.1)

t—=to weK

Solution. We may assume S € G(M,0) for some M >) without loss of gener-
ality. Let o > 0 and fix any € > 0. Since K is totally bounded, there exist
Uy, ...,un. € X such that

Moreover, there exists 7 > 0 such that
t—to] <7 = [S@t)un—S(to)un|<e  Vn=1,...,N..

Thus, for all |t — ty| < 7 we have that, if u € K is such that u € B(un, %),
then

‘S(t)u — S(tg)u‘
< |S®)u— St un| + [S(E)un — S(to)un| + |S(to)un — S(to)ul
< 2Mu — up| + € < 3e.

So, the limit of |S(t)u — S(to)u| as t — to is uniform on K. O

Exercise 18 Let A: D(A) C X — X be a closed operator satisfying (1.6.2)

but suppose D(A) fails to be dense in X. In the Banach space Y := D(A),
define the operator B, called the part of A in'Y, by

D(B)={ueD(A) : AueY}
Bu = Au Vu € D(B).

Prove that B is the infinitesimal generator of a Cp-semigroupon Y.

Solution. R(A, A)(Y) C D(B) for all A € C such that A > w. Indeed, owing
to (1.5.1) for all u € D(A) we have that

lim nR(n, A)u = h_)m {R(n, A)Au+u} = u. (1.9.2)

n—oo

Since ||[nR(n, A)|| is bounded, (1.9.2) holds true for all v € Y. Hence, D(B)
is dense in Y. So, B satisfies in Y all the assumptions of Theorem 6. O
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Exercise 19 Let X be a Banach space and let A : D(A) C X — X be the
infinitesimal generator of a uniformly bounded semigroup. Define, for n > 1,

D(A") :={ue D(A" ) : A" 'ue D(A)}.
(7) Prove the following extension of the Landau-Kolmogorov inequality (1.3.1):

| AFu| < (2M)FOR) | Ay [u] " Yu € D(A™), YO <k <n (1.9.3)
Solution: proceed by induction. The conclusion is trivial for n = 1.
Assume (1.9.3) holds true for n and let u € D(A™*1). Then, in view of
(1.3.1), we have that

|A™u| < 2M |A™ )2 | AT )2

N

< 2M | A"y ((QM)"*1|A%|”T’1|U|%)
= (2M)"F | A" L3 | A5 Ju] 2
Therefore,
n 1
|A™u| < (2M)™ | A"y | 7T |7 (1.9.4)

which is (1.9.3) for n + 1 with £ = n. Now, suppose 0 < k < n. Then,
by our inductive assumption and (1.9.4),

| AFul < 2M)ROE) | Ar a5
k —
< @MYM D (M) | AT ] T ) ) S

_ (2M)k(n+1—k) |An+1u‘ nLH |u‘ ’ﬂj;i—k

The proof is complete. O

(77) Using (1.9.3), prove that for every n > 1:

(a) A™is a closed operator.

Solution: proceed by induction. The conclusion is trivial for n = 1.
Assume it holds true for n and let {u;z} C D(A™!) be such that

Up — U & A"y — v (k — 00).
Applying (1.9.4) to wy := A"uy, € D(A) we obtain
ok —wn| < (2M)" [A" (w—up)| 757 [ug—up | 7T =0 (b, k = o0)
Therefore, for some w € X,

W, — w & Awp — v (k — ).
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Since A is closed, we conclude that
w € D(A) & Aw = v (k — 0).

Then, by our inductive assumptiom, u € D(A™) and A"u = w,
which implies in turn

u € D(A™) & Ay = Aw = (k—o00). O

b) D(A™) is dense in X for every n > 1.
( y

Solution of (ii)(b): for n = 1 the conclusion follows from Theo-
rem 3. Let the conclusion be true for some n > 1 and fix any
v € X. Then, for any € > 0 there exists u. € D(A™) such that
|ue — v| < e. Moreover, recalling point (a),

A (t/o S(S)ugds> _75/0 S(s)A"ue ds

1 t
t/ S(s)A™ucds € D(A) vVt >0
0

Since

we conclude that
1 t
t/ S(s)ueds € D(A™*1) vt > 0.
0

Moreover, there exists t. > 0 such that

1 [*
— S(s)ugds—v‘ <
te Jo

1 [
- S(s)ue ds —ue| +|us —v| < 2e. O
e Jo

Generalize to the infinitesimal generator of a Cyg-semigroup of bounded
linear operators on X.

Exercise 20 Let p > 2. On X = LP(0,m) consider the operator defined by

{D(A) = W2P(0,7) N Wy ™(0, ) (1.9.5)

Af(z) = f"(2) z € (0,7) a.e.
where
WoP(0,m) = {f e W'P(0,7) : f(0)=0=f(m)}.

Since C°(0,7) C D(A), we have that D(A) is dense in X. Show that A
is closed and satisfies condition (a’) of Remark 2 with M = 1 and w = 0.
Theorem 6 will imply that A generates a Cyo-semigroup of contractions on X.

Solution. Step 1: o(A) = {-n? : n € N}.

34



Fix any g € X. We will show that, for all A # n?(n > 1), the Sturm-Liouville
system

{ f@) = f"(@) = g(x), 0<z<n 196
1

0)=0=f(m)
admits a unique solution f € D(A). Denoting by

x) = Zgn sin(nx) (x € [0,7])
n=1
the Fourier series of g, we seek a candidate solution f of the form
= Z fnsin(nx) (x € [0,7]).
n=1

In order to satisfy (1.9.6) one must have
()‘+n2)fn:gn Vn > 1.

So, for any A # —n?, (1.9.6) has a unique solution given by

From the above representation it follows that f € H?(0,7)NH(0, 7). In fact,
returning to the equation in (1.9.6) one concludes that f € D(A).

5 sin(nx) (x €10,7]).

Step 2: resolvent estimate.
By multiplying both members of the equation in (1.9.6) by |f|P~2f and inte-
grating over (0, 7) one obtains, for all A > 0,

. Pdx — pxp_z'asQ:U:Wx 2)|P2f(x) dx
A/O (@) Pz + (p 1)/0f( P2 () /Og< @) P2 () d

which yields
1
< sl VASO.

Step 3: conclusion.
By Proposition 6 we conclude that for each f € W2P(0,7) N W, (0,7) the
unique solution of

%1; (t,x) = g (t,z) (t,x) € Ry x (0,7)
u(t,0) =0=u(t,7) t>0
w(0,z) = f(z) x € (0,m)
is given by u(t,x) = (S(t)f)(x). -
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Exercise 21 Let S(t) be the Cy-semigroup generated by operator A in (1.9.5).
Prove that, for any f € LP(0,7),

:/ K(t,z,y)f(y)dy, Vt=0, z€ (0,7)a.e
0

where

>Hl\>

Z bsin(kax) sin(ky).
k=1

K(t,z,y) =

Exercise 22 On X = {f € C([0,7]) : f(0) =0 = f(m)} with the uniform
norm, consider the linear operator A : D(A) C X — X defined by

{D(A) ={fec(0,1)) : f(0) = f(m) =0=f"(0) = f"(m)}
f=1" VfeDA).

Show that A generates a Cyp-semigroup of contractions on X and derive the
initial-boundary value problem which is solved by such semigroup.

Solution. We only prove that |R(A, A)|| < 1/A for all A > 0. Fix any g € X
and let f = R(\, A)g. Let xg € [0, 7] be such that | f(zo)| = | fleo. If f(z0) >0,
then zg € (0,7) is a maximum point of f. So, f”(xg) < 0 and we have that

Mfloo = Af(x0) < Af(x0) — f"(20) = g(20) < |gloo-

On the other hand, if f(z¢) < 0, then zy € (0,7) once again and xg is a
minimum point of f. Thus, f”(z¢) > 0 and

Al floo = =Af(z0) < =Af(xo) + f(w0) = —g(20) < |9]oo-

In any case, we have that A|f|eo < |¢]co- O

Exercise 23 Let (X,|-|) be a separable Banach space and let A : D(A) C
X — X be a closed operator with p(A) # 0. Prove that (D(A),] - [pay) is
also separable.

Solution. Let {u, }nen be dense in X and let Ao € p(A). Fix any v € D(A) and
set w = A\gv — Av. For arbitrary € > 0 let u. = u,_ be such that |w —u.| < €.
Then

[0 = R(Mo, A)ue| = [R(Ao, A)(w —ue)| < [[R(Ao, A)le-

Moreover,

[Av — AR(No, A)ue| = |AR(No, A)(w — )|
< ‘)\OR()\O,A)(U} - U6)| + \w - u5’ < (’)\O‘HR()\O?A)H + 1)8.

This shows that {R(Ag, A)un fnen is dense in D(A). O
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2 Dassipative operators

2.1 Definition and first properties
Let H be a Hilbert space with scalar product (-, ).
Definition 13 We say that an operator A : D(A) C H — H 1is dissipative if
R (Au,u) <0 Vu € D(A). (2.1.1)
Example 13 In H = L?(R;C) consider the operator
D(4) = H'(R,5C)
{Af(x) = f'(z) r €RL ae.

Then
00 7 © 4
mrf) =2 ( [ r@iwa) = [ L@k = o <o
So, A is dissipative.

Proposition 10 An operator A : D(A) C H — H s dissipative if and only
if for any uw € D(A)

(AL — A)u| > Au| VA > 0. (2.1.2)
Proof. Let A be dissipative. Then, for every u € D(A) we have that
(AT — A)ul® = NJu|® = 2AR(Au, u) + [Aul* > N2|ul* VYA > 0.
Conversely, suppose A satisfies (2.1.2). Then for every A > 0 and u € D(A)
N ul? — 2XR(Au, u) + |Aul? = |(M — A)ul? > N2|ul?

So, 2AR(Au, u) < |Au|? which in turn yields (2.1.1) as A — oo. O

The above characterization can be used to extend the notion of dissipative
operators to a Banach space X.

Definition 14 We say that an operator A : D(A) C X — X is dissipative if
(AT — A)u| = Mu| Vu € D(A) and YA > 0. (2.1.3)
Remark 5 It follows from (2.1.3) that, if A is dissipative then
A — A:D(A) = X
is injective for all A > 0.
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Proposition 11 Let A: D(A) C X — X be dissipative. If
N >0  such that (Aol —A)D(A) =X, (2.1.4)
then the following properties hold:
(a) Ao € p(A) and |R(o, A)]| < 1/20,
(b) A is closed,
(¢) (A —A)D(A) =X and | R\, A)|| < 1/ for all A > 0.

Proof. We observe that point (a) follows from Remark 5 and inequality (2.1.3).
As for point (b), we note that, since R(\g, A) is closed, A\gI — A is also closed,
and therefore A is closed.

Proof of (¢). By point (a) the set
A={X€J0,00[: (\[—A)D(A) =X}

is contained in p(A) which is open in C. This implies that A is also open. Let
us show that A is closed: let A 5 A\, = A > 0 and fix any v € X. There exists
un, € D(A) such that

Ay, — Aty = 0. (2.1.5)

From (2.1.2) it follows that |u,| < |v|/A, < C for some C' > 0. Again by
(2.1.2),

| A (un, — um) — Aup — um)’
A — Al [un| + [Anun — Aup — (At — Aug,)|
C|Am — Anl.

)\m|un _um|

NN N

Therefore {uy} is a Cauchy sequence. Let z € X be such that u, — u. Then
Auy, — Au—v by (2.1.5). Since A is closed, u € D(A) and A — Au = v. This
show that A\I — A is surjective and implies that A € A. Thus, A is both open
and closed in |0, 00[. Moreover, A # @& because \g € A. So, A =]0,00[. The
inequality ||R(A, A)|| < 1/X is a consequence of dissipativity. O

2.2 Maximal dissipative operators

Definition 15 A dissipative operator A : D(A) C X — X is called maximal
dissipative if A\gI — A is surjective for some N\g > 0 (hence, for all A > 0).

Remark 6 Let A: D(A) C X — X be a maximal dissipative operator and
let A D A be a dissipative extension of A. Then:

(i) A is maximal dissipative (Al — A is surjective since so is A\ — A);
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(ii) A = A (since both p(A) and p(A) contain 0, o).

Theorem 8 Let X be a reflexive Banach space. If A: D(A) C X — X is a
mazximal dissipative operator, then D(A) is dense in X.

We give the proof for a Hilbert space. The case of a reflexive Banach space is
treated in exercises 24 to 27.

Proof. Let v € X be such that (v,u) = 0 for all u € D(A). We will show that
v =20, or
(v,w)y=0  VYwe X.

Since (I — A) is surjective, the above is equivalent to
0= (v,u— Au) Vu € D(A).
So, we need to prove that
(v,u)y =0 Vue D(A) = (v,Au)=0  Vue D(A). (2.2.1)

Let w € D(A). Since nl — A is onto, there exists a sequence {u,} C D(A)
such that
nu = nu, — Au, Vn > 1. (2.2.2)

Since Au,, = n(u, —u) € D(A), we have that u, € D(A?) and
~1
Au = Au,, — lA2un or Au, = (I— lA) Au.
n n

Since ||(I — L A)7!|| < 1 by (2.1.2), the above identity yields [Au,| < |Aul.
So, by (2.2.2) we obtain

1
i —u| < — |Aul.
n

Therefore, u,, — u. Moreover, since { Au,, } is bounded, there is a subsequence
Auy, such that Au,, — w. Since A is closed, graph(A) is a closed subspace
of X x X. Then, graph(A) is also weakly closed and we have that w = Au.
Therefore,
(v, Au) = lim (v, Auy,, ) = lim ng(v, up, —u)
k—o00 k—o0

and (2.2.1) follows from the vanishing of the rightmost term above. O

Example 14 We now show that the above density may be fail in a general
Banach space. On X = C([0,1]) with the uniform norm || - [[oc = || - [[oc,[0,1]5
consider the linear operator A : D(A) C X — X defined by

{D(A) = {uec'((0,1]) : u(0) =0}
Au(z) = —u/(2) vz € [0, 1].
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Then, for all A > 0 and f € X we have that the equation Au — Au = f has
the unique solution u € D(A) given by

u() = /O CAU f)dy (e [0,1])

Therefore, A\l — A is onto. Moreover,
Alu(z)| < /0 AT Flloo dy = (1= €| flloo < At — Auoo

So, A is dissipative. On the other hand, D(A) is not dense in X because all
functions in D(A) vanish at = 0.

Exercise 24 We recall that the duality set of a point x € X is defined as

O(z)={pe X" ¢ (x,9) = [z]” = ||¢]I*}. (2.2.3)

Observe that the Hahn-Banach theorem ensures ®(x) # @.
We also recall that, for all x € X,

Ozl ={pe X* : |[z+h|—|z| > (h,¢), Vz,h € X}. (2.2.4)
Prove that
P(z) =20lz| ={ve X" : ¢ =|z]¢, ¢ €dz|}.

Exercise 25 Prove that, for any operator A: D(A) C X — X the following
properties are equivalent:

(a) A is dissipative,
(b) for all x € D(A) there exists ¢ € ®(x) such that R (Az, ¢) < 0.

Exercise 26 Let A : D(A) C X — X be the infinitesimal generator of a
Co-semigroup of contractions. Prove that, for all z € D(A),

R(Az, ¢) <0 Vo € ().

Exercise 27 Mimic the proof of Theorem 8 to treat the general case of a
reflexive Banach space.

Theorem 9 (Lumer-Phillips 1) Let A : D(A) C X — X be a densely
defined linear operator. Then the following properties are equivalent:

(a) A is the infinitesimal generator of a Cy-semigroup of contractions,

(b) A is maximal dissipative.
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‘Proof of (a) = (b)‘ In view of Theorem 5, we have that ]0,c0[C p(A). So,
(M — A)D(A) = X for all A > 0. Moreover, by the Hille-Yosida theorem for
all A > 0 and v € X we have that \|R(\, A)v| < |v| or, setting u = R(\, A)v,

Mul < |(M— A)u|  Yu € D(A).

So, A is maximal dissipative. O

‘ Proof of (b) = (a) ‘ We have that:

(i) D(A) is dense by hypothesis,
(ii) A is closed by Proposition 11-(b),
(iii) ]0,00[C p(A) and ||R(A, A)|| < 1/ for all A > 0 by Proposition 11-(c).

The conclusion follows by the Hille-Yosida theorem. O

Example 15 (Wave equation in L?(Q)) Let @ C R" be a bounded do-
main with boundary of class C2. For any given f € H?(Q) N H}(Q) and
g € H} (), consider the problem

%(t,x) = Au in ]0, co[x 2
u=0 on ]0, co[x 92 (2.2.5)

U(O,JZ) :f(x>7 %(0,%) :g(.%') z €

Let H be the Hilbert space H}(Q2) x L*(Q) with the scalar product

()

Define A: D(A) C H — H by

IS

)> = /Q (Du(m) - Du(x) + v(m)@(x))dx_

]

D(A) = (H*(Q) N H(Q)) x Hy(Q)
u u v (2.2.6)
A(0)=(a ))=(4)

We will show that A is the infinitesimal generator of a Cp-semigroup of con-
tractions on H by checking that A is maximal dissipative.

Let < Z ) € D(A). Then, integrating by parts we obtain

<A( " )( " >> - /Q (Du(z) - Dv(z) + v(z)Au(z))dz = 0. (2.2.7)

So, A is dissipative.
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Now, consider the resolvent equation

<Z)6D(A)
(2.2.8)
()] en

which is equivalent to the system

u€ H?*(Q)NHHQ), ve HH Q)
u—v=fecH}) (2.2.9)
v—Au =g € L*(Q).

Using elliptic theory (see, for instance, [3]) one can show that the boundary
value problem

u € H*(Q) N HH (),

u—Au:f+g€L2(Q)
has a unique solution. Then, taking v =u — f € H}(Q) we obtain the unique
solution of problem (2.2.9). So, A is maximal dissipative and therefore A is

the infinitesimal generator of a Cy-semigroup of contractions, S(t).
For any f € H?(Q) N HY(Q), g € H(Q), let u(t) (t € R4) be the first

component of
s (1)

Then w is the unique solution of problem (3.2.4) in the space
C2(Rs I2(©)) N € (R HY)) N C(Rys HA() N ().
Example 16 Consider the age-structured population model

9u(t,a) + 94 (t,a) + pla)u(t,a) =0, a€[0,a1],t >0
u(t,0) = [;"B(a)u(t, a)da, t>0 (2.2.10)
u(0,a) = up(a). a € [0,a1].

which was proposed in [5]. Here, u(t,a) is the population density of age a at

time ¢, p is the mortality rate, 8 the birth rate, and a; > 0 is the maximal
age. We assume that p, 8 € C’([O,al]), i, 3 =0, and

a1 a
/ B(a)e JorO)dr go < 1 (2.2.11)
0
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In order to recast problem (2.2.10) as an evolution equation in H = L?(0, a),

we define the linear operator
D(A) = {uGHl(O a1) : uw(0) = [ }
{ Au(a) = —/(a) — p(a)u(a) (a € [0, al] a.e.) .
We now proceed to show the following:
1. A is the infinitesimal generator of a Cy-semigroup on H.

2. p(A) D [0,+00) and, for any A > 0,

R(A, A)u(a) =

where

Ula,s) = e Mo=9)=Lu)de ¢ s c0,a4].

Proof. Given A > 0 and v € H we consider the equation
A — Au = v,
which is equivalent to
A+ pu+u =,
{ = Jy 'Bla)u(a) da

If u is a solution of Eq. (2.2.15), then

a

u(a) = U(a,0)u(0) + /0 U(a, s)v(s)ds,

(2.2.12)

T [, A [V st i

+/OU(a, s)u(s)ds, a€[0,a1], ue H,

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

where U is given by Eq. (2.2.14). Multiplying Eq. (2.2.17) by S and

integrating with respect to a over [0, a1] yields

= /Oalﬁ(a)u(a) da

:(/Oal/j(a) (a,0) da ) /5 da/( s)o(s) ds.

From Eq. (2.2.11), we have
/5 U(a,0)da <1, Vae€el0,a1],
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then, also from Eq. (2.2.17),

u(0) = = ["5a) U (@.0)da / B(a da/ U(a,s)v(s)ds. (2.2.20)

Consequently, u(a) = R(\, A)v(a) is given by Eq. (2.2.13).

Conversely, given v € H, the function

u(a) = U(a,0) /Oalﬁ(a) da /OaU(a, s)u(s)ds
—"_ a

1— [;"B8(a)U(a,0)da
/U(a, s)v(s)ds, a € [0,a1],
0
fulfills Eq. (2.2.15). O

3. For all u € D(A)

(Au,u) < —;/Oal W2(a) <2u(a) - /0a152(3)ds> da—% w(ar)?. (2.2.21)

Consequently, if

a) > /0a1,6’2(s)d5, Va € 0,a1], (2.2.22)

then A is the infinitesimal generator of a Cp-semigroup of contractions
on H.

Proof. To show Eq. (2.2.21), we observe that, for all u € D(A),

(Au,uy = — [/ (@) u(a) da — [3u(a) u?(a) da
= 5 u(0)* — % ’u(al)2 — J3 w(a) u*(a) da
=3 (Jo'Ba) ) — 1 u(a)? — [;"u(a) v*(a) da.

So, by Holder’s inequality,
2( “ 1 2 “ 2
(Au,u) < ﬁ ) da u“(s)ds — = u(al) — | pla)u(a)da
0

__2/0 u? ( /32 ) da— 3 u(a)?.

This shows that A is maximal dissipative if (2.2.22) is satisfied. In
this case, the Lumer-Phillips theorem insures that A is the infinitesimal
generator of a Cyp-semigroup of contractions. O

When A and —A are maximal dissipative a stronger conclusion holds true.
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Corollary 4 Let A: D(A) C X — X be a densely defined linear operator. If
both A and — A are mazimal dissipative, then A is the infinitesimal generator of
a Co-group, G(t), which satisfies ||G(t)|| =1 for all t € R.

Proof. By the Lumer-Phillips theorem, A and —A are infinitesimal generators
of Cp-semigroups of contractions, S;(¢) and S_(t) respectively. Therefore,
Theorem 7 ensures that A is the infinitesimal generator of a Cp-group, G(t).
Moreover, 1 = ||G(t)G(—t)|| < ||S+(t)]| [|S=(¢)|| < 1. Hence, ||G(t)||=1. O

Example 17 (Wave equation continued) We return to the wave equa-
tion that was studied in Example 15. We proved that operator A, defined in
(2.2.6), is maximal dissipative. We claim that —A is maximal dissipative as
well. Indeed, equation (2.2.7) implies that —A is dissipative. Moreover, the
resolvent equation for —A takes the form

u€ H* Q)N HHQ), wve HHQ)

u+v=fe€H)

v+ Au=g e L*(Q),

which can be uniquely solved arguing exactly as we did for system (2.2.9).

Then, by Corollary 4, A is the infinitesimal generator of a Cp-group, G(t),
which satisfies |G(¢)|| = 1 for all t € R. So, for any f € H2(Q)N H(Q), g €
H} (), the first component u(t) (t € Ry) of

co(])

9

is the unique solution of problem (3.2.4) in the space

C*(R; L*(Q)) N CH(R; Hy(Q2)) N C(R; H*(Q) N H(R)).

2.3 The adjoint semigroup

In this section, we consider the special case when (X s (- )) is a Hilbert space.
We denote by jx : X* — X the Riesz isomorphism, which associates with any
¢ € X* the unique element jx(¢) € X such that

o(u) = (u,jx(¢))  VueX.

We refer the reader to [4] for the treatment of a general Banach space.

Adjoint of a linear operator

Let A: D(A) C X — X be a densely defined linear operator.
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Exercise 28 Prove that the set

D(A*) = {v EX|IC>0: ueDA) = [(Auv)|< C\U\} (2.3.1)

is a subspace of X and, for any v € D(A*), the linear map u — (Au,v) can
be uniquely extended to a bounded linear functional ¢, € X*.

Solution. The fact that D(A*) is a subspace of X is easy to show. Let
n—oo

v € D(A¥), fix any u € X, and let u, € D(A) be such that u,, — u. Then
[{A(up, — um),v)| < Cluy — up| which implies that {(Au,,v)} is a Cauchy
sequence in R and therefore converges as n — oo. Moreover, if u), € D(A) is
another sequence such that u/, =% wu, then |[(A(u, — u)),v)| < Clun — u/,].
Therefore, the map

dp(u) = lim (Auy,,v) (ue X),

n—oo

where {u,,} is any sequence in D(A) converging to u is well defined. Moreover,
¢y is linear and |¢,(u)| < Clu| for all u € X. So, ¢, € X*. O

Definition 16 The adjoint of A is the map A* : D(A*) C X — X defined by
A*v = jx(¢py) Vv € D(A™)

where D(A*) is given by (2.3.1) and ¢, € X* is the functional extending
u > (Au,v) to X (see Ezercise 28).

Exercise 29 Prove that, if A € £(X), then A* € £(X) as well and
[A]l = [|A%]- (2.3.2)
Solution. Since A € L£(X) we have that D(A*) = X and
(Au,v) = (u, A*v) Vu,v € X.

So, by the definition of A* we have that |A*|| < ||A||. Moreover, taking v = Au
in the above identity, we obtain |Au|? < |u|[|A*|| |Au|. So, ||A]| < ||A*|. O
Proposition 12 (properties of A*) Let A: D(A) C X — X be a densely
defined linear operator. Then the following properties hiold.

(i) A satisfies the adjoint identity

(Au,v) = (u, A*v) Vu € D(A),Yv € D(A"). (2.3.3)

(1i) A*: D(A*) C X — X is a closed linear operator.

(iii) If X € p(A), then X € p(A*) and R(\, A*) = R(\, A)*.
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(1v) If, in addition, A is closed then D(A*) is dense in X.

Proof of (i). Let w € D(A),v € D(A*) and let ¢, € X* be the functional
extending u — (Au,v) to X. Then

(Au,v) = do(u) = (u, jx(¢v)) = (u, A™v) O

Proof of (i1). Now, to prove that A* is closed, let {v,} C D(A*) and v,w € X
be such that

Vp — U
(n — 00)
A*v,, = w

Then {A*v,} is bounded, say |A*v,| < C. So, recalling (2.3.3), we have that
|(Au, v,)| = |(u, A*vy)| < Clul Vu € D(A)

This yields
|(Au,v)| < Clu| Vu € D(A)

which in turn implies that v € D(A*). Moreover
(Au,v) = nan;O<Au,vn> = (u, w) Vu € D(A).
Thus, (u, A*v —w) =0 for all w € D(A). Since D(A) is dense, A*v =w. O
Proof of (iii). Let X € p(A). From the definition of the adjoint we have that
(M — A)* = I — A%,

Aiming to prove that A € p(A*), first we show that A\ — A* is injective. If
(M — A*)v = 0 for some v € D(A*), then

0 = (u, A — A*)v) = (M — A)u,v) Yu € D(A).

Since AI — A is surjective, the above identity implies that v = 0. So, A\ — A*
is injective. Next, observe that, for all v € X and u € D(A),

(u,v) = (R(A, A)(M — A)u,v) = (A — A)u, R(A, A)*v),
yielding R(\, A)*v € D((A — A)*) = D(AXI — A*) = D(A*) and
M - ARMNA)'v=v  WYveX. (2.3.4)
On the other hand, if u € X and v € D(A*), then
(u,v) = (AT — A)R(\, A)u,v) = (R(\, A)u, (N — A%)v).

Therefore,
R\, A)* (A — A*)v = v Vv € D(A™). (2.3.5)
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(2.3.4) and (2.3.5) imply that A € p(A*) and R(\, A*) = R(\, A)*. O

Proof of (iv). We argue by contradiction assuming the existence of uy # 0
such that (ug,v) = 0 for every v € D(A*). Then (0,ug) ¢ graph(A), which is
a closed subspace of X x X. Fron the Hahn-Banach theorem it follows that
there exist v1,v9 € X such that the associated hyperplane in X x X separates
graph(A) and the point (0, ug), that is,

(u,v1) — (Au,v9) =0 Vu € D(A) and (0,v1) — (ug,v2) #0

But the first identity implies that vo € D(A*), which in turn yields (ug, v2) =
0, in contrast with the second equation above. So, D(A*) = X. O

The Lumer-Phillips theorem

By introducing dissipativity of the adjoint of A we can replace maximality in
the Lumer-Phillips theorem.

Theorem 10 (Lumer-Phillips 2) Let A : D(A) C X — X be a densely
defined closed linear operator. If A and A* are dissipative, then A is the
infinitesimal generator of a contraction semigroup on X.

Proof. In view of Theorem 9, it suffices to show that |0,00[C p(A). Since
Al — A is one-to-one for any A > 0, one just has to check that

(M —A)D(A) =X VYA>0.

Step 1: (A — A)D(A) is dense in X for every A > 0.
Let v € X be such that

(A — Au,v) =0 Vu € D(A).
The identity (Au,v) = A(u,v) yields v € D(A*) and the fact that
(u, \v — A*v) =0,

first for all u € D(A) and then, by density, for all u € X. So, Av — A*v = 0.
Since, being dissipative, A\I — A* is also one-to-one, we conclude that v = 0.

Step 2: M — A is surjective for every A > 0.
Fix any v € X. By Step 1, there exists {u,} C D(A) such that

My, — Auy =: v, v as n — 0.

By (2.1.2) we deduce that, for all n,m > 1,



which insures that {u,} is a Cauchy sequence in X. Therefore, there exists
u € X such that

Up — U
(n — o)
Auy = Muy, — vy, = Au— v

Since A is closed, u € D(A) and A\u — Au = v. O

The adjoint semigroup

In order to make further progress we have to better understand the relationship
between the adjoint, S(t)*, of a Cyp-semigroup of bounded linear operators on
X and the adjoint, A*, of its infinitesimal generator.

Theorem 11 Let S(t) be a Cy-semigroup of bounded linear operators on X with
infinitesimal generator A : D(A) C X — X. Then S(t)* is a Cy-semigroup of
bounded linear operators on X, called the adjoint semigroup, whose infinites-
imal generator is A*, the adoint of A.

Proof. We observe first that properties (a) and (b) of the definition of a
semigroup are easy to check. Moreover, in view of the bound (1.2.2) and
Exercise 29 we have that S(t)* satisfies the growth condition

1S(H)*]| < Me¥t  Vt=0 (2.3.6)

with the same constants M,w as S(t). Hereafter, we assume w > 0.
Aiming to prove that S(¢)* is strongly continuous we observe that, for all
u€ X and v € D(A*),

(u, S()*v — v)] = (S (t)u — u,v)| = ‘ /t<AS(s)u,v>ds(
—‘/ s)u, A*v) ds—‘/uS A*)ds‘ (2.3.7)

Therefore, on account of (2.3.6),
|S(t)*v — v| < Mte*|A*v| Vv € D(AY).

This implies that limy o S(t)*v = v first for every v € D(A*) and then for all
v € X thanks to (2.3.6) since D(A*) is dense in X by Proposition12.

Finally, we show that A* is the infinitesimal generator of the adjoint semi-
group. Denote by B : D(B) C X — X the infinitesimal generator of S(¢)*.
Owing to (2.3.7), for every v € D(A*) we have that

S(t v—v_ /S A*vds A*

Therefore, A* C B. Moreover, p(A) N p(B) # & because I, C p(A*) by
Theorem 12 and II,, C p(B) by (2.3.6) and Proposition 5. So, A* = B. O
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Self-adjoint operators and Stone’s theorem

Definition 17 A densely defined linear operator A : D(A) € X — X is
called:

(a) symmetric if A C A*, that is,
D(A) Cc D(A*) and Au=A"w  Yue€ D(A).
(b) self-adjoint if A = A*.

Remark 7 1. Observe that a symmetric operator A is self-adjoint if and
only if D(A) C D(A*).

2. In view of Proposition 12, any self-adjoint operator is closed.

3. If Ae L(X), then A is self-adjoint if and only if A is symmetric.
Example 18 In X = L?(0,1;C), consider the linear operator

{D(A) = H}(0,1;C)
Au(z) =i/ (x) z € [0,1] a.e.

Then, A is densely defined and symmetric. Indeed, for all u,v € D(A),

1
(Auv) = i /O o (2)0() da (2.3.8)

1
= [zu(m)v(m)]zié —i/ u(x)v'(x) de = (u, Av).
0
On the other hand, A fails to be self-adjoint because, as we show next,
D(A*) D H(0,1;C),

so that D(A) € D(A*). Indeed, integrating by parts as in (2.3.8), for all
v € HY(0,1;C) and u € HE(0,1;C) we have that

1 [
|(Au, v)| = ) —z'/o u(x)v' (z) dz| < |ul2|v’]o- O

Proposition 13 Let A: D(A) C X — X be a densely defined closed linear
operator such that p(A) NR # @. If A is symmetric, then A is self-adjoint.

Proof. We prove that D(A*) C D(A) in two steps. Fix any A € p(4) NR.

Step 1: | R(\, A) = R(\, A)*
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Since R(A, A) € L(X), in view of Exercise 29 it suffices to show that
(R(\, A)u,v) = (u, R(\, A)v) Vu,v € X.
Fix any u,v € X and set
r=R\Au and y=R(\ A
so that z,y € D(A) and
At —Ar=u and Ay— Ay=w.
Since A is symmetric, we have that

(R(\, A)u,v) = (z,v) = (x,\y — Ay) = (\x — Az, y) = (u, R(\, A)v).

Step 2: ‘D(A*) C D(A)‘
Let u € D(A*) and set © = Au — A*u. Observe that, for all v € D(A),

(x,v) = (Au — Au,v) = (u, \v — Av).
Now, take any w € X and let v = R(\, A)w. Then the above identity yields
(x, R(\, A)w) = (u,w) Vw € X.

So, by Step 1 we conclude that u = R(\, A)*x = R(\, A)z € D(A). OThe
following is another interesting spectral property of self-adjoint operators.
Proposition 14 If A: D(A) C X — X is self-adjoint then
p(A) D {AeC : SA£0}

Consequently, o(A) is real.
Proof. For every u € D(A) we have that

(Au,u) = (Au,u) € R. (2.3.9)
Therefore, |(Au — Au,u)| > |SA| |u? which in turn yields

|Au — Aul| > |SA] |u Vo € D(A). (2.3.10)

The last inequality ensures that Al — A is an injective operator with closed
range for all A € C with S\ # 0. Let us show that (A — A)D(A) is dense in
X for any such A. Suppose there exists v # 0 such that

(Au— Au,v) =0 Vu € D(A).

51



Then v € D(A*) = D(A) and we have that
(u, v — Av) =0  VYu € D(A).

Since D(A) is dense in X, this implies that Av — Av = 0. Then, by (2.3.9),
A = X € R contradicting S\ # 0. g

The following is an immediate consequence of Theorem 10.

Corollary 5 (Lumer-Phillips 3) Let A : D(A) € X — X be a densely
defined linear operator. If A is self-adjoint and dissipative, then A is the
infinitesimal generator of a contraction semigroup on X.

Example 19 Let Q C R" be a bounded domain with boundary of class C2.
Define

{D(A) = H?N H(9;C) (2.3.11)

Au(z) = Au(z) — V(z)u(z) =€ Qae.
where we assume V € L*(Q,R). Let us check that A is self-adjoint in
L?(2;C). Indeed, integration by parts insures that A is symmetric. So, by

Proposition 13, it suffices to check that p(A) "R # @&. We claim that, for
A € R large enough, for any h € L?(€);C) the problem

(2.3.12)

{w € H2N HL(9;C)
A+ V(z))w(z) — Aw(z) = h(z) (x€Q ae.)

has a unique solution. Equivalently, by setting f = Rh, g = Sh € L?(Q)
and v = Rw, v = Sw, we have to prove solvability for the boundary value
problems

u€ H*N HLHQ) d ve H?NHEQ)
n
A+V)u—Au=f A+V)v—Av=g

The latter is a well-established fact in elliptic theory (see, e.g. [3]). On the
other hand, operator A fails to be dissipative, in general.

Exercise 30 Prove that operator A in Example 19 is dissipative if
[Vl < 1/Cq,
where Cq is the Poincaré constant of 2.

The following property of self-adjoint operators is very useful. We recall that
an operator U € L£(X) is unitary if UU* = U*U =1

Theorem 12 (Stone) Let X be a complex Hilbert space. For any densely
defined linear operator A : D(A) C X — X the following properties are
equivalent:
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(a) A is self-adjoint,

(b) iA is the infinitesimal generator of a Co-group of unitary operators.

‘ Proof of (a) = (b) ‘ Since A is self-adjoint, A is closed and we have that

(Au,u) = (u, A*u) = (u, Au) = (Au, u) Vu € D(A).
Thus, (Au,u) is real, so that
R(iAu,u) =0  Yu e D(A).

The above identity implies that both ¢4 and —iA are dissipative operators.
Since
(tAu,v) = i(u, Av) = (u, —iAv) Yu,v € D(A),

we have that (iA)* = —iA. So, by Theorem 10 we deduce that +iA is the
infinitesimal generator of a Cy-semigroup of contractions that we denote by
et Then, by Theorem 7, iA generates a Cy group, G(t). Such a group is
unitary because for any ¢t > 0 we have that

G(t)_l — G(*t) — e—iAt _ e(z’A)*t _ (eiAt)* _ G(t)*,
while, for any t < 0,
G(t)_l — 6iA|t| — ez’A*\t| _ 6(—z’A)*|t\ _ (e—iA\t|)* _ G(—|t|)* _ G(f)* m

‘Proof of (b) = (a)‘ Let iA be the infinitesimal generator of a Cy-group of
unitary operators on X, say G(t). Then, for all u € D(A), we have that
Ay — Tl COu-—w_ . Gtu—u L Gl)u—u

t—0 t t—0 t t—0 t

= —(iA)"u =iA"u.

Thus, u € D(A*) and Au = A*u. By running the above computation back-
wards, we conclude that D(A*) C D(A). Therefore, A is self-adjoint. O

Example 20 (Schrédinger equation in a bounded domain) Let us con-
sider the initial-boundary value problem
: %@‘ (t,z) = Au(t,z) — V(z)u(t,z) (t,x) e RxQ
u(t,z) =0 teR, z €00 (2.3.13)
u(0,2) = up(z) x e}
where © C R” is a bounded domain with boundary of class C> and V &
L>(Q). In Example 19, we have already checked that the operator A, defined

in (2.3.11), is self-adjoint on L?(£2; C). Therefore, by Theorem 12 we conclude
that, for any up € H? N HE(; C), problem (2.3.13) has a unique solution

u € C'(R; L*(2;C)) NC(R; H* N Hy (4 C)). O
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The Cauchy problem with a self-adjoint operator

In this section, we will see that the homogeneous Cauchy problem with initial

datum ug € X

'(t) = Au(t) t>0

w(t) = Au(t) (2.3.14)
u(0) = up.

can be solved in a strict sense without requiring ug to be in D(A) if A is a

self-adjoint and dissipative.
We begin with an interpolation result of interest in its own right.

Lemma 2 Let A: D(A) C X — X be a self-adjoint dissipative operator and
let we HY(0,T; X)NL*(0,T; D(A)) be such that u(0) = 0. Then the function

= (Au(t), u(t))
is absolutely continuous on [0,T] and

d

dt
Proof. Define Uy, (t) = (Apu(t),u(t)) (t € [0,T]), where A, = nAR(n,A) is
the Yosida approximation of A. Then U, is absolutely continuous on [0, 7]
and

(Au(t), u(t)) = 2R (' (t), Au(t))  (ae. t € [0,T)). (2.3.15)

d

7 (Apu(t), u(t)) = 2R (u'(t), Ayu(t)) (a.e. t€[0,T7)

or
(Anut), u(t)) = 2R / (s)ds Ve [0,T]. (2.3.16)
Now, since for a.e. t € [0, 7]

(n—)oo)

Apu(t) = nR(n,A)Au(t) —
[Anu(®)] < [Au(t)],

Au(t)

we can pass to the limit as n — oo in (2.3.16) by Lebesgue’s theorem to obtain
(Au(t), = 2R / ))yds  Vte[0,T].

This shows that ¢ — (Au(t), u(t)) is absolutely continuous on [0, 7] and yields
(2.3.15). 0

Theorem 13 Let A: D(A) C X — X be a self-adjoint dissipative operator.
Then S(t)u € D(A) for allu € X and t > 0. Moreover, for every T > 0 the
following inequality holds

4/Tt|AS(t)u|2dt—2T<AS(T)u,S(T)u>+yS(T)u|2 < Juf* Vu e X. (2.3.17)
0
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Observe that all the terms on the left side of (2.3.17) are nonnegative, so that
each of them is bounded by |u|?.

Proof. For any n > 1 define
Up, =nR(n, Au, vp(t) =SH)u,, v(t)=5(t)u.

Since u,, € D(A), we have that v],(t) = Av,(t) for all ¢ > 0. So,

1d , B
5 77 (B = (0 (), va (1)) = (Avn(t), va (1))

Therefore,
t
o ()% — 2/ (Avp(5), vn(5)) ds = |uy|? vt > 0. (2.3.18)
0

Similarly, for all ¢ > 0 we have that

(O = v (1), 0,(1)) = 5 (HAva (1), (1)) — 5 (Ava(t), v (1),

Integrating the above identity over [0, 7] yields, by (2.3.18),

T T
2/0 t (D)2 dt — T(Av(T), va(T)) = —/0 (Avp (1), vn(t)) dt
= 5 (unl® = Joa(DP)
T
4/ HAvn (D)2 dt — 2T (Avn(T), va(T)) + |on(T)|? < |uf? (2.3.19)
0

since [|[nR(n, A)|| < 1. The last inequality implies that, for any € €]0, T'[, {v,}
is bounded in L?(e,T; D(A)). Therefore, there exists a weakly convergent
subsequence {v,, } in L?(g,T; D(A)). On the other hand, v,, — v uniformly
on [0,7]. So, v € L%, T;D(A)) for any € €]0,T[, which in turn yields
S(t)u € D(A) for a.e. t > 0—hence for all ¢ > 0! Moreover,

Av,(t) = nR(n, A)AS(tu =3 AS(t)u ¥Vt > 0.

Taking the limit as n — oo in (2.3.19), by Fatou’s lemma we get (2.3.17). O

The above result can be used to introduce an intermediate space between X
and D(A), namely the interpolation space [X, D(A)]; /9, such that ¢ — S(t)ug
belongs to H(0,T; X) N L*(0,T; D(A)) whenever ug € [D(A), X]; /5. We give
a brief account of such a construction, referring the reader to [1] for more.
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Proposition 15 Let A: D(A) C X — X be a self-adjoint dissipative opera-
tor. Then, for any u € X, the functions

—(AS(t)u, S(t)u)
and
1 t
T / (AS(5)u, S(s)u) ds
0
are both nonincreasing on |0, col.

Proof. Since S(t)u € D(A) for every ¢ > 0 by Theorem 13, we have that

0 < 2[AS(t)ul* = 4 (AS(t)u, S(t)u) Vvt > 0.

dt
This shows that ¢t — —(AS(¢t)u, S(t)u) is nondecreasing on |0, co[. The other
conclusion is a consequence of the general fact which is proven below. O

Lemma 3 Let f be a nonnegative nonincreasing function on ]0,00[. Then
ts 1 fo s)ds is nonincreasing on |0, ool.

Proof. Observe that for any 0 < t < ¢’ we have that

ﬂw<@ﬁﬂtﬂﬁw<f®<1£fwm& (2.3.20)

This yields
% Ot/f(s)ds = /f d3+ t’_ /f tl,/t/f(s)ds
_ /f = t/f ds—/f )ds }

tAf@) t}<tAf@M&

where we have made repeated use of (2.3.20). The conclusion follows. O

N

In view of the above proposition, we have that, for any v € X,
1 /7 1 /7
lim — T / (AS(t)u, S(t)uydt = sup — — (AS(t)u, S(t)u)dt
0

T10 T>0 0
Definition 18 (interpolation space [D(A), X|;/5) For any u € u we set
ful?,, = lim — — /T<AS(t)u S(t)u)dt
27T T J, ’

and we define
[D(A), X)1jp={ucu : |uly< oo}. (2.3.21)
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It is easy to see that [D(A), X];/, is a subspace of X containing D(A) and
[l 2 =[] + []1/2
is a norm on [D(A), X]; /5.

Theorem 14 Let A: D(A) C X — X be a self-adjoint dissipative operator.
Then

o0 1
| asuPa < Sk, vue (D). XLy
Proof. Fix any € > 0 and let T, €]0, ¢[ be such that
—(AS(To)u, S(To)u) < [ulf)y + .

Set v(t) = S(t)u and integrate the identity |Av(y)|?> = (Av(t),v'(t)) over
[T, T] for any fixed T' > ¢ to obtain

T
/ | Av(t)|?dt = % (Av(T),v(T)) — % (Av(Ty),v(Ty)) < \uﬁ/Q +e.

5

This implies the conclusion as ¢ | 0 and T 1 oo. Il

Example 21 On X = L?(0,7) let A: D(A) C X — X be the operator

{D(A) = H2(0,7) N HL(0, )
Af(z) = f"(x) z € (0,7) a.e.

We know that A is self-adjoint and dissipative. We now show that
[D(A), X]1/2 = Hy(0, 7). (2.3.22)

Let us fix f € H}(0,7) and consider its Fourier series

f@)=> fasin(nz) (2 €[0,q]).
n=1

By Parseval’s identity we have that

— - 2 2 [T 2
Sonlhft = [ 1@

Moreover,
oo

St f(x)=> e fusin(nz)  (a € [0,7)).

n=1

o7



and

AS(t) f(z) = — Z nZe ", sin(nx) (x €[0,7]).
n=1
Therefore,

o0

(AS@)f,St)f) = —an 2"2t|]‘“n|2/ sin?(nx) dr

m _ 9,2
_ _§Zn26 2n t‘fn’2-
n=1

Hence, recalling that 1 — e™® < z for all x € R, we deduce that

1_ €—2n2T

1 T
— /0 (AS()f,S(t)f)2dt = —Z F2 (23.23)

T 210 2 _ 102
< Q;nrm - [ 1@

The last inequality implies that H}(0,7) C [D(A), X]i/2. The proof of the
converse inclusion is left to the reader as an Exercise.
Hint. Use (2.3.23) to give a lower bound for

1 (T
lim / (AS(8)f, S(6)f) 2dt. 0
0
Exercise 31 Use Theorem 13 to show that, for any self-adjoint dissipative
operator A : D(A) C X — X, the following holds:
(a) S(t)u € D(A™) for all t > 0, all w € X, and all n € N;
(b) for allu e X

Asul <L weso.

V2

Solution. To prove (a) it suffices to observe that for all ¢ > 0 and u € X,
AS(tyu = S(t/2)AS(t/2)u € D(A) = S(t)u € D(A?).

The general case follows by induction.
Next, using the dissipativity of A we obtain

%]AS(t)u!Q — 2(A2S(t)u, AS(t)u) < 0.
Thus, t + |AS(t)u|? is nonincreasing. So, (2.3.17) yields

t t
22 AS (£)ul? —4/ S| AS(tyul2ds < 4/ s|AS(s)ul2ds < Jul2. O
0
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3 The inhomogeneous Cauchy problem

In this chapter, we assume that (X , (- >) is a separable Hilbert space and
denote by {e;};en a complete orthonormal system in X.
We study the Cauchy problem

{umw::Auay+f@)

w(0) = 0. (3.0.1)

where f € L?(0,T;X) and A : D(A) C X — X is the infinitesimal generator
of a Cyp-semigroup on X, S(t), which satisfies the growth condition (1.6.3). For
the extension of this theory to a general Banach space, we refer the reader to
the classic monograph by Pazy [4] or the more recent text [2].

3.1 Notions of solution
Let v’ € X and f € L?(0,T; X).
Definition 19 (Mild solutions) The function u € C([O,T];X) defined by
t
u(t) = S(t)u’ + /0 S(t—s)f(s)ds (3.1.1)

is called the mild solution of (3.0.1).

Observe that the convolution term in formula (3.1.1) for the solution w is
well-defined in view of Proposition 22 in Appendix B.

Theorem 15 (Approximation of mild solutions) Letu € C([0,T]; X) be
the mild solution of (3.0.1) and suppose f € C([O,T]; X). Then, the sequence
Up = nR(n, A)u, defined for all n > w, satisfies

u, € H(0,T; X)N L*(0,T; D(A)) and u, ")y in C([0,T]; X).

Proof. Let u be given by (3.1.1) and define
fu(t) =nR(n, A)f(t) VneN, n>w

where w > 0 is such that (1.6.3) holds true. Then

t
%@zswﬁ+éswﬂmmms@emﬂy
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Since u? € D(A) and f,, € C([0,T]; D(A)), by Proposition 21 and 22 below
we conclude that
ULL — Aup = fn

u, € HY(0,T; X) N L?(0,T; D(A)) and
un(0) = ul.

Moreover, invoking Lemma 1 we conclude that 9 — u" as n — oo while

"2 b1 and ()] <

fu(t)

Therefore,

"w If()]  (for all t € [0,T])

n —

T
sup [un(t) = u(t)] < MeT (Juf ~ |+ [ 1(s) - 7] ds) "0,
te[0,7) 0

The conclusion follows. U
Definition 20 (Strict solutions) A functionu € H(0,T; X)NL?(0,T; D(A))
is a strict solution of (3.0.1) if u(0) = u® and

u'(t) = Au(t) + f(t) (t€10,T] a.e.)

Observe that Theorem 15 guarantees that the mild solution of (3.0.1) is the
uniform limit of the strict solutions of the approximate problems

ul, — Aup = fr
u, (0) = ul.
Let u’ € X and f € C([0,T]; X).

Definition 21 (Classical solutions) A classical solution of (3.0.1) is a func-
tion uw € C([0,T); X) such that

(a) uweCt(]0,T);X)NC(]0,T); D(A));

(b) u(0) = u’;

(c) u'(t) = Au(t) + f(t) for all t €]0,T].

We now show that any classical solution coincides with the mild solution.

Proposition 16 Let u be a classical solution of (3.0.1). Then u equals the
mild solution given by (3.1.1).

Proof. Let u be a classical solution of (3.0.1). Then, for any fixed t €]0,T] we
have that s — S(t — s)u(s) is continuous on [0, t], differentiable on |0, t[, and

% (S(t - s)u(s)) = S(t — s)f(s) (s €)0,1]).

By integrating over [0, ¢] we deduce that u is given by (3.1.1). O
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3.2 Regularity

Our first result guarantees that the mild solution of (3.0.1) is classical when
f has better “space regularity”.

Theorem 16 Let u’ € D(A) and let f € L?(0,T; D(A))NC(]0,T); X). Then
the mild solution u of problem (3.0.1) is classical. Moreover,

u e CH([0,7];X) NC([0,T]; D(A)). (3.2.1)
We begin the proof by studying the case of u® = 0.

Lemma 4 For any f € L?(0,T; D(A))NC(]0,T]; X) define
Fa(t) = / S(t—s)f(s)ds (tel0,T]). (3.2.2)
0
Then Fa € C([0,T]; X) NC([0,T]; D(A)) and

Fi(t) = AF4(t) + f(1) vt € 0,T). (3.2.3)

Proof. Since f € L?(0,T; D(A)) we have that, for any ¢ € [0, 7],

A/o S(t—s)f(s)ds:/o S(t—s)Af(s)ds.

So, Fa € C([0,T]; D(A)) on account of Proposition 22.
Next, in order to prove that Fy € Cl([O,T];X)7 fix t € [0,7] and let
0<h<T—t. Then

Fa(t+h) — Fa(t)

1 t+h t
_ h{/o S(t+hs)f(s)ds/0 S(t —5)f(s) ds}

h
_ t+h
= S(h;lIFA(t)—i—}lL/t S(t+h—s)f(s)ds.
Now,
. S(h)—1 B
im =L ) = ama0)

because Fa € C([0,T]; D(A)). Also,
t+h
1}3101% t S(t+h—s)f(s)ds = f(t)

because f € C(]0,T]; X). Therefore, Fy4 is of class C'([0,T]; X) and satisfies
(3.2.3). O
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Proof of Theorem 16. Let u be the mild solution of problem (3.0.1). Then
u(t) = S(t)ul + Fua(t)  Vte[0,T),

where F4 is defined in (3.2.2). The conclusion follows from Theorem 3 and
Lemma 4. O

We will now show a similar result if f has better “time regularity”.

Theorem 17 Let u® € D(A) and let f € H'(0,T; X). Then the mild solution
u of problem (3.0.1) is classical and satisfies (3.2.1).

The proof is similar to the one above. One has just to replace Lemma 4 with
the following one.

Lemma 5 For any f € H'(0,T;X) let Fa be defined as in (3.2.2). Then
FueC([0,T); X)NC([0,T]; D(A)) and

Fj(t) = AF4(t) + f(t) = S(t)f(0) + /Ot S(t—s)f'(s)ds (t€[0,T1).

Proof. Since F5 can be rewritten as

Fa(t) = /0 S(s)f(t—s)ds (t € [0,T)),

by differentiating the integral we conclude that
t
Fyt) = S50+ [ Sef(t-s)ds
0

= S(t)f(0) + /0 S(t—s)f'(s)ds ¥t e [0,T].

Now, Proposition 22 implies that F4 € C'([0,77]; X). Moreover, returning to
definition (3.2.2), for all ¢ € [0, 7] we also have that

Fit) = lim;{/loS(t—kh—s)f(s)ds—/OtS(t—s)f(s)ds}

= lim{S(h;l_I Fa(t) + }1L/tt+h S(t+h—s)f(s) ds}.
Since H(0,T; X) C C([0,T]; X), we have that
t+h
lﬁﬁ}ﬁ t S(t+h—s)f(s)ds = f(t).
The above identity implies that F4(t) € D(A) and
AFA(t) = Fiy(t) — f(t)  Vte[0,T].

Consequently, Fy € C’([(), TY; D(A)) and the proof is complete. O
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Example 22 In general, the mild solution of (3.0.1) fails to be classical as-
suming just f € C([0,7]; X). Indeed, let w € X\ D(A) and take f(t) = S(t)w.
Then the mild solution of (3.0.1) with u® = 0 is given by

u(t) = tS(t)w vVt >0

which fails to be differentiable for ¢ > 0. O

Exercise 32 Let 2 C R” be a bounded domain with boundary of class C2.
Give conditions on f € L2([0,T] xQ),u’ : @ — R, and u! : Q — R which guar-
antee the existence and uniqueness of the classical solution to inhomogeneous
wave equation

&% (t,7) = Au+ f(t,x) in 10, 00[x 2
w=0 on |0, co[x 99 (3.2.4)
u(0,z) = u’(z), % (0,2) =ul(z) z€Q

Solution. Let A be defined as in Example 15. Then, applying Theorem 16

and Theorem 17 we conclude that the above problem has a unique classical
solution if

(i) (u¥,ul) € D(A), that is, u® € H*(Q) N H}(Q) and u' € HL(Q);
(7i) f satisfies any of the following conditions
(CL) [ € C([O)T]vLQ(Q))a % € L2([0aT} x Q)a and f(t7 )\89 =0, or
(a) U e L*([0,T] x Q). O

For special classes of generators, one can show that mild solutions are strict
under rather weak conditions.

Theorem 18 Let A : D(A) C X — X be a densely defined self-adjoint dis-
sipative operator. Then, for any u® € [D(A), X]12 and f € C([0,T]; X), the
mild solution u of problem (3.0.1) is strict.

As above, we begin the proof by studying the case of u® = 0.

Lemma 6 Let A: D(A) C X — X be a densely defined self-adjoint dissipa-
tive operator. For any f € C(]0,T]; X) let Fa be defined as in (3.2.2). Then
Fa€ HY0,T;X)N L%0,T; D(A)) and

Fli(t) = AF4(t) + f(t) a.e. t€[0,T]. (3.2.5)
Moreover, t — (AF4(t), Fa(t)) is absolutely continuous
%(AFA(t),FA(t)) COR(FL(), AFA®)  ae te[0,T],  (3.2.6)

and

[AFAll2 < [I£]2- (3.2.7)
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Proof. Define
fn(t) =nR(n,A)f(t) and F,(t) = nR(n, A)Fa(t) vt € [0,T7.

Then f, € C(]0,T]; D(A)) for every n and
FA0) = [ St=9)p(o)ds (te0.1)
Owing to Lemma 4, we have that F,, € C*([0,7]; X) N C([0,7]; D(A)) and
Fo(t) = AF,(t) + fut) ¥t €[0,T). (3.2.8)
Moreover,
2 /t R(F) (), AF,(s))ds = (AF,(t), F,(t)) <0 Vte[0,T]
0

because A is dissipative. Therefore, by multiplying each member of (3.2.8) by
2AF,(t), taking real parts, and integrating over [0,7] we obtain

T T
2
2/0 AR, (0)2dt < —2/0 R (fo(t), AF, (£))dt

T
2 A 2 .
< [ (1508 + 14RO i
Hence T T -
AF,(t)]2dt < (H)2dt < 2dt.
/O AF,(8)] t</0 ) t</0 ()Pt

Thus, {F,}, is bounded in H'(0,T; X)NL%*(0,T; D(A)). Therefore, there ex-
ists a subsequence {F), }; and a function F,, such that

(n—00)
k

F, F in HY0,T;X)NL*0,T; D(A)).

Recalling that F),, (ni))O) Fain C([O, T X) by Theorem 15, we conclude that
Fo =Fa€ HY(0,T; X)N L0, T; D(A)).

Now, fix any g € L?(0,7T; X). Then, taking the product of each member
of (3.2.8)—for n = ny—with g we have that

T T
/ (FL (1), g(t)) dt = / (AF, (1) + fuy (£), g(2)) dt.
0 0

So, in the limit as n — oo,
T
| BA® ~ AFa0) - fO.9) dt =0 Vg€ 0.7 X)
0
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which in turn yields F'y(t) = AFa(t) + f(t) for a.e. t € [0,T]. O

Proof of Theorem 18. Let u be the mild solution of problem (3.0.1). Then
u(t) = u’(t) + Fu(t) vVt € 10,77,

where

(1) uO(t) := S(t)u® belongs to H'(0,T;X) N L*(0,T; D(A)) and satisfies

4 40(t) = Au®(t) for every t > 0 thanks to Theorem 13 and Theorem 14;

(ii) Fa, defined in (3.2.2), belongs to H(0,T; X) N L?(0,T; D(A)) and sat-
isfies (3.2.5) owing to Lemma 6.

The conclusion by combining (i) and (7). O

Example 23 We can use Therem 18 to study the problem

Bu — P4 | f(t,x) (t,x) € (0,T) x (0,7) ac.
u(t,0) =0=wu(t,7) te(0,7) (3.2.9)
(0, z) = u(x) x € (0,m).

Recalling Example 21 , we conclude that for all
fec(o,T]; L*(0,7)) and u° € H)(0,m)
problem (3.2.9) has a unique solution . In particular, such a solution satisfies:

o o

% 922 € L*((0,T) x (0,7)) and t~ u(t,-) € Hy(0,7) is continuous.
x
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4 Appendixz A: Cauchy integral on C([a,b]; X)

We recall the construction of the Riemann integral for a continuous function
f:]a,b] = X, where X is a Banach space and —0o < a < b < 0.
Let us consider the family of partitions of [a, b]

H(a,b):{ﬂz{ti}?zo : n}l,a:t0<t1<---<tn:b}
and define

diam(m) = max (t; — t;—1) (m € I(a,b)).

1<i<n

For any 7 € II(a,b), ™ = {t;}}, we set
Y(m) = {U = (81,--+,80) © 8 € [ti—1,ti], 1 <i < n}

Finally, for any © € II(a,b),m = {t;}]-, and 0 € ¥(7),0 = (s1,...,5n), We
define

ST(F) = fsi)(ti — tia).
i=1
Theorem 19 The limit

b
lim  S7(f) ::/f(t)dt

diam(m)0
exists uniformly for o € X(m).

Lemma 7 For any ¢ > 0 there exists 6 > 0 such that for all 7,7 € Il(a,b)
with m C @' we have that

diam(m) <6 = ‘Sfr(f) —S;:/(f)‘ <e
for all o € () and o’ € X(x').

Proof. Since f is uniformly continuous, for any € > 0 there exists § > 0 such
that for all ¢, s € [a, b]

€
b—a’

t—s|<d = |f(t)— f(s)| < (4.0.1)

Let
m={ti}l"y, o=(51,...,5n)
' ={t}", o' =(s],...,5)

be such that 7 C 7’ and diam(7) < 0. Then there exist positive integers
O=jo<pn<:-<jn=m
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such that t;i =t; for all = 0,...,n. For any such 1%, it holds that

Ji
ti—ti1 = ;z B t;'i—l = Z (t; o t;'—i)'

J=Jji—1+1
Then
ST =SU() = D fsa)lts—tia) = > F($H)E = 1))
i=1 j=1
n Ji
= > D (flsi) = F$&) () = thy)

i=1 j=j;_1+1

Since for all ¢ = 1,...,n we have that

Siy 85 € [tio1,i] Vji-1+1 <7 < ji
from (4.0.1) it follows that

n Ji
1S7(F) =SaHl < D D Ifsi) = F6IE =)
=1 j=gi—1+1

g
< b —a Z(ti_tifl) =c.

i=1

The proof is complete. U

Proof of Theorem 19. For any given € > 0 let § be as in Lemma 7. Let
m,m" € I(a,b) be such that diam(r) < ¢ and diam(n’) < 6. Finally, let
o € X(n) and ¢’ € X(n’). Define 7" = 7 U7’ and fix any ¢” € X(n”). Then

1S2(f) = SZ ()] < |ST(f) = ST (f)| + |59 (f) — S (f)] < 2.

This completes the proof since ¢ is arbitrary. U
Proposition 17 For any f,g € C([a,b]; X) and X € C we have that
b b b
/ (f() + g(t))dt = / f@t)dt + / g(t)dt
b b
/ Af(1)dt = )\/ oL

[0l < [
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Moreover, for any ¢ € X* we have that

b b
(o. [ sty = [0, 5ena (102)
and, for any A € L(X) we have that
A / " ity = / " Af(tydt. (4.0.3)
Proof. Fxercise. O

Proposition 18 For any f € C'([a,b]; X) we have that

b
| i = o) - @ (4.0.4)

Proof. By (4.0.2) above, for any ¢ € X* we have that

(0. [ 1y = [0 7 0a

On the other hand, the function ¢ — (¢, f(¢)) is continuously differentiable on
[a, b] with derivative equal to (¢, f'(¢)). Therefore, for any ¢ € X*,

b
[ 0. r o1t = (6,0 - f(a))
Since X* separates points, the above identity yields (4.0.4). (|

Corollary 6 Let f € C'([a,b]; X) be such that f'(t) = 0 for all t € [a,b].
Then f is constant.
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5 Appendixz B: Lebesgue integral on L*(a,b; H)

Let (H, (-, >) be a separable Hilbert space and let {e;};jeny be a complete
orthonormal system in H.

The Hilbert space L*(a,b; H)

Definition 22 A function f : [a,b] — H is said to be Borel (resp. Lebesgue)
measurable if so is the scalar function t — (f(t),u) for every u € H.

Remark 8 Let f:[a,b] — H.

1. Since, for any z € H,

[e.o]

(f(),) =D (f(t).eg) (woeg)  (t€ [ab]),

Jj=1

we conclude that f is Borel (resp. Lebesgue) measurable if and only if
so is the scalar function ¢t — (f(t),e;) for every j € N.

2. Since

FOP =3 [(f@0),e)]” (tea,b),
j=1

we have that, if f is Borel (resp. Lebesgue) measurable, then so is the
scalar function ¢ — || f(¢)]].

Definition 23 We denote by L?(a,b; H) the space of all Lebesgue measurable
functions f : [a,b] — H such that

b 1
1= ([ Ir0Par) < o,
where two functions f and g are identified if f(t) = g(t) for a.e. t € [a,b].

Proposition 19 L2(a,b; H) is a Hilbert space with the hermitian product

b
<ﬁmo:/kﬂwﬂaMﬁ (f.g € L*(a,b: H)).

Proof. We only prove completeness. Let {f,} be a Cauchy sequence in
L?*(a,b; H). Then {f,} is bounded:

p o0
IIfnléz/ STl ep))?dt <M WneN (5.0.1)
a le
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Moreover, for any € > 0 there exists v € N such that, for all m,n > v,
I fn = Fmll3 = / Z | (falt) ),ej)| dt < (5.0.2)

Therefore, t — (fn(t),e;) is a Cauchy sequence in L?(a,b) for all j € N. So,
there exists functions ¢; € L?(a,b) such that (f,(-),e;) — ¢; in L*(a,b) for
all 5 € N. Thus, by Fatou’s lemma,

b p o0
[l <ar and [73" [ty - 0,0 de < (v > 0),
a j=1 * =1

So, we conclude that
t) = iqu(t)ej eH t € [a,b] a.e.
=1
as well as f € L?(a,b; H) and
[ 1020 spar<e nz ),

or, fn — f in L?(a,b; H). O

Remark 9 For any f € L?(a,b; H) we have that

i ‘ /ab<f(t),ej>dt‘2 < (b— a)i/ab |<f(t),€j>|2dt < oo,

Therefore

Z €j / ),ej)dt € H.
Definition 24 For any f € L?*(a,b; H) we define

b o b
[ =3¢ [.ena
a j=1 a

Proposition 20 For any f € L?(a,b; H) the following properties hold true.

(a) For any x € H we have that

/f 1) /<m F(t))t
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) [ o] < [

(¢) For any A € L(H) we have that

A</abf(t)dt> - /abAf(t)dt

Proof. Exercise O

Proposition 21 Let A : D(A) C H — H be a closed linear operator with
p(A) # 0. Then for any f € L*(a,b; D(A)) we have that

/bf(t)dt € D(A) and A(/bf(t)dt> :/bAf(t)dt

Proof. Exercise (hint: recall that, in view of Exercise 23, D(A) is separable
with respect to the graph norm). O

Proposition 22 Let A: D(A) C H — H be the infinitesimal generator of a
Co-semigroup on H, S(t), which satisfies the growth condition (1.6.3). Then,
for any f € L?(a,b;H),

(a) for anyt € [a,b] the function s — S(t —s)f(s) belongs to L*(a,t; H), and

(b) the function

_/ S(t—s)f(s)ds  (t€ [ab])

belongs to C([a,b]; H).

Proof. In order to check measurability for s — S(t — s)f(s) it suffices to
observe that, for all uw € H and a.e. s € [0,¢],

o0

(S(t =) f(s),u) = (f(5), S(t = 8)"u) = Y _(f( S(t = s) u, ej).

Jj=1

Since s — (S(t — s)*u, e;) is continuous and s — (f(s),e;) is measurable for
all j € N, the measurability of s — S(t — s)f(s) follows. Moreover, by (1.6.3)
we have that

(= $)/(9)] < M9 f(s) (s € [a,1] ),
which completes the proof of (a).
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In order to prove point (b), fix ¢t €]a,b[ and let ¢, — ¢t. Fix 6 €]0,t — q
and let ns € N be such that ¢, > ¢t — d for all n > ns. Then we have that

|Fatn) = Fa(t)]

t—6
< / [[S(t — )7(s) = S(t - 5)] £(s)] ds
+/t5 |S(tn — 5)f(s)| ds + /té |S(t — s)f(s)|ds.
To complete the proof it suffices to observe that
t—4&
lim |[S(tn — ) f(s) = S(t —s)] f(s)|ds =0

n—oo a

by the dominated convergence theorem, while the remaining terms on the
right-hand side of the above inequality are small with 4. g

The Sobolev space H'(a,b; H)

Definition 25 H'(a,b; H) is the space of all functions u € C([a,b]; H) such
that

(a) u'(t) exists for a.e. t € [a,b];
(b) v’ € L*(a,b; H);
(¢) u(t) —u(a) = [*u/(s)ds  t€ab] ae

a

Remark 10 H'(a,b; H) is a Hilbert space with the scalar product

b
(ulv); = / [(u(t),v(t)) + (W' (t),v'(t))] dt (u,v € H' (a,b; H)).

72



Bibliography

1]

Alain Bensoussan, Giuseppe Da Prato, Michel C. Delfour, and Sanjoy K.
Mitter. Representation and control of infinite dimensional systems. 2nd
ed. Boston, MA: Birkhauser, 2nd ed. edition, 2007.

Klaus-Jochen Engel and Rainer Nagel. One-parameter semigroups for lin-
ear evolution equations, volume 194 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2000. With contributions by S. Brendle, M.
Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A.
Rhandi, S. Romanelli and R. Schnaubelt.

Lawrence C. Evans. Partial differential equations. 2nd ed., volume 19.
Providence, RI: American Mathematical Society (AMS), 2nd ed. edition,
2010.

A. Pazy. Semigroups of linear operators and applications to partial dif-
ferential equations. Applied Mathematical Sciences, 44. New York etc.:
Springer-Verlag. VIII, 279 p. DM 88.00; $ 34.20 (1983)., 1983.

G. F. Webb. Theory of nonlinear age-dependent population dynamics,
volume 89 of Monographs and Textbooks in Pure and Applied Mathematics.
Marcel Dekker, Inc., New York, 1985.

73



