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Abstract
We study the spectrum of transfer operators associated to various dynami-
cal systems. Our aim is to obtain precise information on the discrete spec-
trum. To this end we propose a unitary approach. We consider various settings
where new information can be obtained following different branches along
the proposed path. These settings include affine expanding Markov maps, uni-
formly expanding Markov maps, non-uniformly expanding or simply monotone
maps, hyperbolic diffeomorphisms. We believe this approach could be greatly
generalised.

Keywords: transfer operators, resonances, spectral gap

Mathematics Subject Classification numbers: 37A25.

(Some figures may appear in colour only in the online journal)

1. Introduction

Transfer operators are used widely in dynamical systems. Their first manifestations going back,
at least, to the Koopman operator, and its use by John von Neumann to prove the mean ergodic
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theorem. Next, the Russian school developed the spectral theory for the Koopman operator
acting on L2 and its relation to the statistical properties of the system (such as ergodicity, mix-
ing, . . . ), [27]. Later attention concentrated on the adjoint of the Koopman operator, now called
the Frobenius–Perron or the Ruelle–Frobenius–Perron transfer operator. First such an opera-
tor appeared after coding the system [13]. Subsequently, starting with [58, 73], the direct study
of the transfer operator acting on functions and, more recently, starting with [12], acting on
spaces of distributions, acquired progressively more importance3. This is the current focus.

Historically research was mostly focussed on the study of the peripheral spectrum (which
encodes sharp, quantitative, information on ergodicity and mixing), on establishing a spectral
gap (which yields the rate of mixing) (e.g. [6, 60]), and on estimates of the essential spectrum
and relations with the Ruelle zeta function (which encodes information on the spectrum of
periodic orbits), see [7] for a recent review. For flows or systems with a neutral direction the
study is often more involved but there is still the possibility of some type of spectral gap, e.g.
[16, 17, 19, 23, 29, 80].

However, recently it has become apparent the need of a much deeper and detailed under-
standing of the point spectrum [18, 34, 35, 37, 40, 48–50, 57]. Possibilities include identifying
the point spectrum by understanding the connection to the action of the dynamics on coho-
mology [37] or obtaining results related to bands of spectrum for transfer operators associated
to systems with a neutral direction [18, 36, 38–40]. Additionally various works investigated
the possibility of an explicit description of the spectrum for analytic expanding or hyperbolic
maps [10, 76, 78] (using Blaschke products), or perturbative and generic results [1, 11, 56, 68].
Clearly, a more explicit description of the spectrum is important also in applications as it pro-
vides precise quantitative information on the invariant measures, entropy, decay of correlation,
variance in the CLT and so on.

Unfortunately,no general theory exists to address this issue. One exception being the Hilbert
metric technique, see [60], however such an approach can yield results only for the spectral
gap and they are often far from optimal (see remarks 3.2, 3.7 and 4.9), hence the need for
an alternative approach. The special cases in which some results have been obtained seem to
point to a general philosophy: to study the commutator between some type of differentiation
and the transfer operator (e.g. see [33, 37, 50]). Although this idea is rather vague, we believe it
can give rise to a general theory. In fact, it is surprising that this approach has not been explored
in any systematic way, in spite of the vast literature devoted to transfer operators. Hence, the
first step to substantiate our claim is an investigation of several concrete examples. This is the
task of the present work.

We apply the above philosophy to different classes of dynamical system, starting from very
simple ones and increasing progressively in complexity. For each example we obtain nontrivial
results that illustrate the power of this approach to the problem. Although our results fall short
of a general theory, we believe they suffice to argue that walking further along this path is likely
to yield interesting results in a much more general setting. Let us describe our results more in
detail.

In section 2 we discuss the point spectrum for a family of transfer operators of Markov
piecewise affine expanding maps. This is the simplest possible, nontrivial, example. Yet, it
goes a long way in illustrating our strategy.

In section 3 we address similar questions in the case of full branch piecewise smooth expand-
ing maps of the interval. The simplest non-linear case. This is a class of maps which has been

3 But see [75] for precursors of this point of view.
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extensively studied and for which one could expect that all has been said already. Yet, we are
able to obtain new interesting information. In particular, we concentrate on two transfer oper-
ators. The one associated to the SRB measure for which we obtain effective bounds on the
spectral gap and fine informations about the spectra. The other is the operator associated to the
measure of maximal entropy for which we establish a spectral gap of size at least ehtop − 1.
This illustrates the fact, seen also later in other examples, that the transfer operator associated
to the measure of maximal entropy enjoys surprisingly large gaps.

In section 4 we study the spectral gap for the operator associated to the measure of maximal
entropy for full branch monotone maps. This includes the case of maps with attracting periodic
orbits. We show that the measures of maximal entropy are exponentially mixing with a rate,
at least, htop. We are not aware of similar results. Apart from the case of intermittent maps
(when only neutral fixed points are present) for which it is known to exist a unique measure of
maximal entropy which is exponentially mixing. However, even in this special case, nothing
quantitatively precise was known on the speed of mixing.

Finally, in section 5, we study hyperbolic maps. We start, as an illustration, with automor-
phisms of the torus. This sheds some light on the difficulties involved in extending the approach
to the general hyperbolic case. Next, we propose a possible solution to such difficulties: to study
the spectrum of the action of the pushforward, for hyperbolic maps, on forms. This allows, for
example, to study, again, the measure of maximal entropy. Once more we obtain a large gap. In
particular, our approach provides alternative proofs, and a slight strengthening, of recent results
by Baladi [8, theorem 2.1] and Forni [41], moreover we establish a topological interpretation
of the point spectrum which should hold in more generality.

2. Affine expanding Markov maps

In this section we discuss the simplest possible case: one dimensional piecewise affine Markov
maps. This allows us to show our approach in the simplest possible form and it is presented
mainly for didactical purposes. Indeed, the results of this section are essentially not new (for
prior results see [21, 66] [77, section 2 and appendix], and also remark 2.6).

In this setting the invariant densities can be computed easily since the Frobenius–Perron
operator can be represented by a finite-dimensional matrix (see [14, chapter 9] for full details).
Here we go beyond the peripheral spectrum and show that studying a particular family of matri-
ces yields the full Ruelle–Pollicott spectrum. To this end, the smoothness of the observables is
relevant. This will be a leitmotiv in the following and it is essential since it is known that even
the point spectrum of the transfer operator may change drastically if one considers a class of
observables that allow discontinuities (e.g. see [12, 15] and also remark 2.3).

Let I := [0, 1] and let f : I → I be a piecewise affine expanding Markov map in the following
sense: there exists a collection of disjoint open intervals {I j}N

j=1 = {(pj, pj+1)}N
j=1 which form

a partition of a full measure subset of I and, for all i, j,

either f (Ii) ∩ I j = ∅, or I j ⊆ f (Ii).

Moreover, we suppose that f ′ is constant on each Ii. Finally we suppose that there exists λ > 1
such that4 f ′(x) � λ for all x ∈ ∪iIi.

The partition {Ii}N
i=1 is called a Markov partition. Let I = ∪N

i=1Ii be the disjoint union of
the partition elements. The N × N matrix A defined by

4 We consider only the transformations f which are orientation preserving. See remark 2.8 concerning the general
case | f ′| � λ.
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A[i, j] = 1, if I j ⊆ f (Ii) and A[i, j] = 0, if f (Ii) ∩ I j = ∅,

is called the adjacency matrix5 of the Markov map f . For convenience let λ j := f ′|I j and
λ = min j λ j. For any6 k ∈ N0, let Bk be the N × N matrix defined by

Bk[i, j] :=λ−k
j A[ j, i]. (2.1)

If partition elements are equally sized then B1 is left stochastic, i.e.
∑

i B1[i, j] = 1 for each j.
In general there exists a diagonal matrix D such that D−1B1D is left stochastic [14, section 9.3].

For simplicity, in the following theorem we additionally suppose that f is topologically
transitive. This means that there exists7 a unique f -invariant probability measure which is
absolutely continuous with respect to Lebesgue (denoted μSRB) and a unique measure of max-
imal entropy (also known as the Bowen–Margulis measure) (denoted μBM). We let htop denote
the topological entropy.

Also, we use C∞(I) denote the set of functions on I which are C∞ when restricted to
each I j.

Finally, we use σ to denote the spectrum of a matrix and σB(L) for the spectrum of an
operator L acting on a Banach space B.

We can now state a result concerning Ruelle–Pollicott resonances.

Theorem 2.1. There exists a set of complex numbers Ξ1 = {ξ1, ξ2, . . .} and, for each ξi ∈
Ξ1, an associated integer8 mi such that, for any φ,ϕ ∈ C∞(I) and ε > 0 there is an asymptotic
expansion

∫
I
φ · ϕ ◦ f n dμSRB =

∑
ξi∈Ξ1:|ξi|�ε

mi−1∑
k=0

ξn
i nkCi,k(φ,ϕ) + o(εn)

where Ci,k(φ,ϕ) are finite rank and non-zero bilinear functions of φ,ϕ.
The set Ξ1 is equal (as a subset of C) to

⋃∞
l=1 σ(Bl) and the equality holds also for the total

multiplicity of each eigenvalue9.
Similarly there exists a set of complex numbers Ξ0 = {ξ1, ξ2, . . .} and for each ξi ∈ Ξ0

an associated integer mi such that, for any φ,ϕ ∈ C∞(I) and ε > 0 there is an asymptotic
expansion

∫
I
φ · ϕ ◦ f n dμBM = e−nhtop

∑
ξi∈Ξ0:|ξi|�ε

mi−1∑
k=0

ξn
i nkC′

i,k(φ,ϕ) + o(εn)

where C′
i,k(φ,ϕ) are finite rank and non-zero bilinear functions of φ,ϕ. The set Ξ0 is equal

(as a subset of C) to
⋃∞

l=0 σ(Bl) and the equality holds also for the total multiplicity of each
eigenvalue.

5 It is also called the incidence matrix [14].
6 We use throughout the convention N := {1, 2, . . .} and N0 := {0, 1, 2, . . .}.
7 The existence of these invariant measures is well known in this context and also follows from the results later in this
section.
8 The integer mi is the Jordan block dimension. A given ξi might be repeated in Ξ1 according to the geometric
multiplicity.
9 More can be said about the multiplicities and Jordan blocks, see theorem 2.4 and remark 2.12.
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The proof of the above theorem is included towards the end of the section and follows from
a significantly stronger result (theorem 2.4), described in terms of transfer operators, that needs
some further preliminaries to be properly stated.

Remark 2.2. The assumption of topological transitivity means that B1 is irreducible. Since
also D−1B1D is left stochastic for some diagonal matrix D it follows that 1 is the leading
eigenvalue of B1 and this eigenvalue has multiplicity 1. Moreover C1,0(φ,ϕ) =∫
φ dμSRB

∫
ϕ dμSRB.

Remark 2.3. In the case where f has the form x �→ κx mod 1 for some κ ∈ {2, 3, . . .} we
could consider f as a smooth map of the circle. In this case, restricting our attention to observ-
ables which are smooth on the circle, the set of Ruelle–Pollicott resonances would reduce10

to {0}. However, studying these same systems for observables that are smooth on the interval,
we see a much more interesting spectrum, see remark 2.13.

Observe that for any r � 0, the Sobolev space Wr,1(I) is the set of all h ∈ L1(I) such that
h and all of its weak derivatives up to the rth belong to L1(I). Consider, for any r � 0, the
space Wr,1(I) which is the set of all h ∈ L1(I) such that, for each i, the restriction of h to Ii is in
Wr,1(Ii). For convenience we write h′ and h(l) to mean the weak derivative and l weak derivative
respectively of h restricted to I. For each r ∈ N0 the space Wr,1(I) is a Banach space equipped
with the norm

‖h‖r,1 =

r∑
l=0

∫
I
|h(l)(x)|dx.

In the following, to simplify notation, we will write Wr for Wr,1(I) and we will write ‖ · ‖r for
‖ · ‖r,1. Observe that W0 coincides with L1(I).

Since, by assumption, f |I j is invertible on its range, let us call gj its inverse (g j := f |I j
−1).

The domain of gj is the interval f (I j) which might not be equal to the unit interval. If
f (I j) = (0, 1) for all j then f is said to be a full branch map. We can now define our main
objects of investigation: the transfer operators. For all k ∈ N0, h ∈ L1(I) and x ∈ Ii we define11

Lkh(x) :=
∑

y∈ f−1(x)

h(y)
[ f ′(y)]k

=
∑

j

Bk[i, j] h ◦ g j(x).

Since f preserves the Markov partition, composition with an affine transformation preserves
Sobolev space and the sum consists of a finite number of terms it follows that these operators are
well defined as operators Lk : Wr → Wr. Similarly they are well defined, by this same formula,
on Cr(I) =

⊕
iCr(Ii).

Observe that L1 coincides with the usual transfer operator: the dual of the Koopman
operator.

10 This can be seen by considering the action of the dynamics on Fourier series.
11 The second sum here is understood in the sense that, when the summands are defined on a subset of the full integral,
they are extended to the full interval by taking the value zero where not defined.
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We define Pr(I) to be the set of polynomial functions12 of degree r on each interval I j.
Since f is piecewise affine, the space Pr(I) is invariant under Lk for each r, k ∈ N0. Thus, it
is natural to consider the finite rank operator Lk|Pr(I).

Theorem 2.4. Let k ∈ N0, r ∈ N. There exists a projector Πk,r : Wr →Pr(I) ⊂ Wr such
that the spectral radius of Lk(1 −Πk,r) on Wr is not greater than λ−(k+r−1). Moreover

σ
(
Lk|Pr(I)

)
=

r⋃
l=0

σ(Bk+l)

and the multiplicity of each eigenvalue ξ ∈ σ
(
Lk|Pr(I)

)
is equal to the sum of the multiplicities

of ξ as eigenvalues of Bk+l, l ∈ {0, . . . , r}.

The remainder of this section is devoted to the proofs of the two above theorems.

Remark 2.5. This result tells nothing about the spectrum of Lk within the disk
{|z| � λ−(k+r−1)}more than the fact that the essential spectrum is contained somewhere within.
Indeed a full disk of essential spectrum is expected (see [26]).

Remark 2.6. As mentioned earlier, the results of this section are essential not new although
our strategy differs substantially. Indeed theorem 2.4 can be deduced [77, proposition A.5] by
the following argument13. First observe that the space H in [77] (which is a space of holo-
morphic functions) is densely and continuously embedded in Wr. Consequently the part of the
spectrum of Lk on Wr with modulus greater that the essential spectral radius coincides with
the spectrum of Lk on H with modulus greater that the essential spectral radius. Note also that
the result in the reference [77, proposition A.5] doesn’t require f to be orientation preserving.

The next equality is our key observation. Albeit very simple, the rest of the paper relies on
it and variants thereof.

Lemma 2.7. For all k, r ∈ N0, h ∈ Wr and l ∈ {0, . . . , r},

(Lkh)(l) = Lk+lh
(l).

Proof. Fix k, r ∈ N0. The claimed equality holds trivially in the case l = 0. Observe that, by
chain rule, for all x ∈ Ii, h ∈ C∞(I),

(Lkh)′(x) =
∑

j

λ j Bk[i, j]h′ ◦ g j(x) =
∑

j

Bk+1[i, j]h′ ◦ g j(x) = Lk+1h′(x).

If we assume that, for some l � 0, the claimed equality holds, i.e. for all h ∈ C∞(I),

(Lkh)(l)(x) = Lk+lh
(l)(x),

then, using the previous observation,

(Lkh)(l+1)(x) = (Lk+lh
(l))′(x) = (Lk+l+1h(l+1))(x).

The equality for all l follows by induction. Using the density of C∞(I) in Wr we obtain the
result for h ∈ Wr. �

12 Studying the action on polynomials was also used for the vertical direction in the pseudo Anosov case [37].
13 We are grateful to the anonymous referee who brought the relevant references to our attention and who suggested
this argument.
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Remark 2.8. In general we could allow the λ j to be positive or negative. If L1 coincides
with the operator associated to the SRB measure the derivative λ j occurs with absolute value
in the formula. However, as is clear from the proof of the above lemma, when the derivative
occurs as a result of differentiating the sign of the derivative remains. This means that, if we
are interested in μBM then we should consider Bk[i, j] :=λ−k

j A[ j, i] but, if we are interested in

μSRB, then we should consider Bk[i, j] :=λ−(k−1)
j |λ j|−1A[ j, i].

To proceed we now prove a set of Lasota–Yorke inequalities for the operatorsLk : Wr → Wr.
Let Γ0 := ‖ f ′‖L∞ and, for all k ∈ N, let Γk :=λ−(k−1).

Lemma 2.9. Let k ∈ N0, r ∈ N. For all h ∈ Wr,

‖Lkh‖r � Γk‖h‖r

‖Lkh‖r � λ−(k+r−1)‖h‖r + Γk‖h‖r−1.

The first inequality also holds in the case r = 0.

Proof. We start by considering the case k ∈ N. Let h ∈ Wr. By definition of ‖ · ‖r and
lemma 2.7,

‖Lkh‖r =

r∑
l=0

∫
I
|(Lkh)(l)(x)|dx =

r∑
l=0

∫
I
|Lk+lh

(l)(x)|dx

�
r∑

l=0

λ−(k+l−1)
∫
I
L1|h(l)(x)|dx.

Since, by the obvious change of variables,
∫
I L1|h(l)(x)|dx =

∫
I |h(l)(x)|dx the above implies

that, for all r ∈ N0,

‖Lkh‖r �
r∑

l=0

λ−(k+l−1)
∫
I
|h(l)(x)|dx. (2.2)

That is, ‖Lkh‖r � λ−(k−1)‖h‖r as required to prove the first inequality. Moreover, when r � 1,
the above (2.2) implies that (here we separate the term l = r from the rest of the sum)

‖Lkh‖r � λ−(k+r−1)
∫
I
|h(r)(x)|dx + λ−(k−1)

r−1∑
l=0

∫
I
|h(l)(x)|dx

� λ−(k+r−1)‖h‖r + λ−(k−1)‖h‖r−1

as required by the second estimate.
To conclude we must consider the case k = 0. First observe that, for any h ∈ C∞(I),∫

I
|L0h|(x)dx =

∫
I
|L1 f ′h|(x) �

∫
I

[
L1| f ′| |h|

]
(x) � ‖ f ′‖L∞

∫
I
|h|(x)dx.

Similar to the proof in the case k ∈ N, by definition of the norm and lemma 2.7,

‖L0h‖r =

r∑
l=0

∫
I
|(L0h)(l)(x)|dx =

r∑
l=0

∫
I
|Llh

(l)(x)|dx.
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This means that, for all r ∈ N0 (recall that Γ0 = ‖ f ′‖L∞),

‖L0h‖r �
r∑

l=0

λ−l

∫
I
|L0h(l)(x)|dx � Γ0

r∑
l=0

∫
I
|h(l)(x)|dx

and so proves the first inequality. On the other hand, now assuming that r � 1,

‖L0h‖r =

∫
I
|Lrh

(r)(x)|dx +

r−1∑
l=0

∫
I
|Llh

(l)(x)|dx

� λ−(r−1)
∫
I
|L1h(r)(x)|dx +

r−1∑
l=0

∫
I
|L0h(l)(x)|dx.

Consequently

‖L0h‖r � λ−(r−1)
∫
I
|h(r)(x)|dx + Γ0

r−1∑
l=0

∫
I
|h(l)(x)|dx.

Thus, ‖L0h‖r � λ−(r−1)‖h‖r + Γ0
∑r−1

l=0‖h‖r−1, as required. �

Lemma 2.10. Let k ∈ N0, r ∈ N. The operatorLk acting on Wr has spectral radius bounded
by Γk and essential spectral radius bounded by λ−(k+r−1).

Proof. The first inequality of lemma 2.9 implies that the spectral radius is bounded by Γk.
For all r ∈ N, Wr is compactly embedded in Wr−1. This means the Lasota–Yorke inequalities
of lemma 2.9 imply, by the argument of Hennion [51], based on the formula of Nussbaum [69]
(see [28, appendix B] for a pedagogical illustration of the Hennion–Nussbaum theory), that
the essential spectral radius of Lk is bounded by λ−(k+r−1). �

For convenience we use the notationD : h �→ h′. For any k ∈ N, ν ∈ C, let Ek(ν) denote the
generalised eigenspace for Lk associated to the eigenvalue ν. I.e. Ek(ν) is the set of h such that
(Lk − ν)mh = 0 for some m ∈ N. An immediate consequence of lemma 2.7 is the following
commutation relation: For any l, k, m ∈ N0, ν ∈ C, h ∈ Wr

Dl ◦ (Lk − ν)mh = (Lk+l − ν)m ◦ Dlh.

This in turn means that

DlEk(ν) ⊂ Ek+l(ν). (2.3)

Proof of the first statement of theorem 2.4. Let k ∈ N0, r ∈ N. According to lemma
2.10 the essential spectral radius of Lk : Wr → Wr is not greater that λ−(k+r−1). Fix some arbi-
trarily small ε > 0 and define Hk,r := {ν ∈ σWr (Lk), |ν| > λ−(k+r−1) + ε}. For each ν ∈ Hk,r

let Pν denote the associated spectral projector and hence let Πk,r :=
∑

ν∈Hk,r
Pν . Consequently

Lk − Lk ◦Πk,r : Wr → Wr has spectral radius not greater than λ−(k+r−1) + ε. For any l ∈ N

lemma 2.10 gives an upper bound of λ−(l−1) for the spectral radius of Ll : W1 → W1 and so
El(ν) = {0} whenever |ν| > λ−(l−1). As observed above (2.3), differentiating r times takes the
generalised eigenspace Ek(ν) to the generalised eigenspace Ek+r(ν) of the operatorLk+r. How-
ever Ek+r(ν) = {0} since |ν| > λ−(k+r−1). This means that Ek(ν) ⊂ Pr(I) whenever ν ∈ Hk,r

and so we have shown that the image of Πk,r is contained in ∪ν∈Hk,r Ek(ν) ⊂ Pr(I). The claim
follows by the arbitrariness of ε. �
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We can identify RN with P0(I), the set of functions that are constant on each partition
element, in the sense that we associate the function

∑
i ai1Ii ∈ P0(I) to each a = (ai) ∈ RN

(1A denotes the characteristic function of the set A).
Let r ∈ N. The space (RN)(r+1) is identified with Pr(I) as follows. We use the notation

(a0, a1, . . . , ar) ∈ (RN)(r+1) where a j = (a j
1, a j

2, . . . , a j
N) for each j. Let14 J : RN(r+1) →Pr(I),

J (a0, . . . , ar) : x �→
r∑

l=0

xl
N∑

j=1

al
j1I j(x).

Observe that J : RN(r+1) →Pr(I) is onto and invertible.
For any k ∈ N0, r ∈ N we define the N(r + 1) × N(r + 1) matrix

Tk,r :=J −1 ◦ Lk|Pr(I) ◦ J .

In order to understand the spectrum of Lk|Pr(I) it suffices to study the spectrum of the matrix
Tk,r .

Lemma 2.11. Let k ∈ N0, r ∈ N. Then Tk,r has lower block triangular form

Tk,r =

⎛⎜⎜⎜⎝
Bk 0

F1,0 Bk+1

...
...

. . .

Fr,0 Fr,1 . . . Bk+r

⎞⎟⎟⎟⎠ ,

where the matrices on the diagonal are the ones previously introduced in (2.1).

Proof. Fix k ∈ N0, r ∈ N. For any l ∈ {0, . . . , r} we consider (a0, a1, . . . , ar) ∈ RN(r+1) and
suppose that aj = 0 for all j �= l. This means that J (a0, a1, . . . , ar) = xla. We wish to compute
J −1 ◦ Lk ◦ J (a0, a1, . . . , ar) = J −1 ◦ Lk(xla). For each j let q j := f (p+j ) (i.e. limε→0 f (pj +
ε)). Observe that, for all x ∈ I j, f (x) = λ j(x − pj) + qj. Consequently, for all x ∈ f (I j),

g j(x) = (x − q j)λ−1
j + pj. (2.4)

Using this inverse,

Lk(xla)(x) =
∑

i, j

1Ii(x)Bk[i, j]a j

(
xλ−1

j − q jλ
−1
j + pj

)l
=
∑

i, j

1Ii(x)Bl+k[i, j]a jx
l + ρ(x), (2.5)

where ρ ∈ Pl−1(I). I.e. Lk(xlal) = xlBk+lal + ρ, where ρ ∈ Pl−1(I). This proves that Tk,r has
lower diagonal block form and that the diagonal elements of the block matrix are the Bk+l. The
exact form of the matrices Fi, j which appear below the diagonal are superfluous to our present
argument and we will not identify them further. �

Proof of theorem 2.4. The first statement of the theorem was proven above, it remains
to prove the second statement. Recall the lower triangular block form of Tk,r as shown in

14 Abusing notation we will often write the same symbol for a ∈ RN and the corresponding a ∈ P0(I) with the
interpretation given by context.
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lemma 2.11. We can assume without loss of generality that each Bk+l is in lower triangu-
lar form. If a matrix is in triangular form then the values on the diagonal are the eigenval-
ues repeated according to multiplicity. That each Bk+l is in triangular form means that the
N(r + 1) × N(r + 1) matrix Tk,r is in triangular form. Moreover the diagonal is the union of the
diagonals of the Bk+l. This implies the claimed correspondence of the eigenvalues of Tk,r and
the union of the set of eigenvalues of the {Bk+l}r

l=0, including correspondence in multiplicity.
�

Remark 2.12. The lower triangular block form shown in lemma 2.11 and the argument of
the above proof further implies that, if some Bk+l has a Jordan block of dimension m ∈ N, then
Tk,r has a corresponding Jordan block of dimension m or greater. Indeed Tk,r has the possibility
to have a Jordan block of greater dimension if a given eigenvalue appears in more than one of
the Bk+l.

Proof of theorem 2.1. Fix k ∈ N0. For each r ∈ N consider the finite set of eigenvalues

{ξ j}Kr
j=0 = σWr (Lk)\{|z| � λ−(k+r−1)}

described by theorem 2.4. We define as usual the corresponding eigen projectors
{Π j : Wr → Wr}Kr

j=0 and eigen nilpotents {Q j : Wr → Wr}Kr
j=0 which satisfy the commuta-

tion relations: Π jΠk = δ j,k, Π jQk = QkΠ j = δ j,kQk. Let Sr := 1 − (Π1 +Π2 + · · ·+ΠKr ) and
observe that LkSr has spectral radius not greater than λ−(k+r−1). This means that the operator
Lk : Wr → Wr satisfies the decomposition

Lk =

Kr∑
j=1

(
ξ jΠ j + Q j

)
+ LkSr. (2.6)

Further observe that each operator we define remains defined by the same formula on Wr for
any r sufficiently large.

Now let us recall the connection between the transfer operators and invariant measures (see
[61] or [6] for full details). For each k ∈ {0, 1} there exists hk ∈ Wr (the invariant density), a
probability measure νk (the conformal measure), γk > 0 (the spectral radius) and a probability
measure μk defined as μk(ϕ) := νk(hkϕ) (the invariant measure). Moreover νk(Lkϕ) = γkνk(ϕ)
and μk(ϕ ◦ f ) = μk(ϕ).

In our present setting μ0 is the measure of maximal entropy μBM and μ1 is the SRB mea-
sure μSRB. Furthermore ln γ0 is equal to the topological entropy, γ1 = 1 and ν1 coincides with
Lebesgue measure.

Continuing for k ∈ {0, 1} we observe that∫
I
φ · ϕ ◦ f n dμk =

∫
I
(φ · hk)(x) · ϕ ◦ f n(x)dνk(x)

= γ−n
k

∫
I
Ln

k(φ · hk)(x) · ϕ(x)dνk(x).

We then combine this formula with the spectral decomposition above (2.6) to produce the
asymptotic expansion required. �

Remark 2.13. If f is full branch, the matrices Bk+l are such that all the entries in any column
j is equal to λ−(k+l)

j . The spectrum of this type of matrix is the union of zero and the sum of
entries on different columns. Consequently theorem 2.4 implies that, outside of the disk {|ν| �
λ−(k+r−1)}, the spectrum of Lk : Wr → Wr is equal to {ξ0, . . . , ξr−1} where ξl :=

∑N
j=1 λ

−(k+l)
j .
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• In the case k = 0 we obtain ξ0 =
∑N

j=1 λ
0
j = N;

• In the case k = 1 we see that ξ0 =
∑N

j=1 λ
−1
j =

∑N
j=1|I j| = 1.

A comprehensive investigation of the resonances of x �→ 2x mod 1 can be found in [31,
section 3]). The eigenfunctions for this map are the Bernoulli polynomials.

Remark 2.14. Observe that B0 is the transpose of A and that, for any Markov map as consid-
ered in the present section, the logarithm of the spectral radius of B0 is equal [20, section 2.1]
to the topological entropy.

Remark 2.15. In this section we used Sobolev spaces Wr but, with a slightly more complex
argument, we could equally well have worked with Cr(I) =

⊕
iCr(Ii).

2.1. A Jordan block example

In the following we construct an example of a Markov expanding map such that B1 has a Jor-
dan block of dimension two. Previously Driebe [30] presented an example of a linear Markov
expanding map such that, for each n ∈ N, the eigenvalue 3−2n has a Jordan block of dimen-
sion two. However the example is not orientation-preserving and the mechanism giving rise to
the Jordan blocks appears to depend on this. On the contrary, the example constructed here is
orientation-preserving.

Let I1 = (0, 1
4 ), I2 = ( 1

4 , 1
2 ), I3 = ( 1

2 , 3
4 ), I4 = ( 3

4 , 1) and let f : I → I be as shown in figure 1,
defined by

f (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x +
1
4

if x ∈ I1

3

(
x − 1

4

)
if x ∈ I2

2

(
x − 1

2

)
if x ∈ I3

3

(
x − 3

4

)
if x ∈ I4.

This means that

A =

⎛⎜⎜⎝
0 1 1 1
1 1 1 0
1 1 0 0
1 1 1 0

⎞⎟⎟⎠ , B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
3

1
2

1
3

1
3

1
3

1
2

1
3

1
3

1
3

0
1
3

1
3

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix B1 has the eigenvalues {− 1
3 , 0, 1} and the eigenvalue − 1

3 has a Jordan block of
dimension two. If we let

a1 :=

⎛⎜⎜⎜⎜⎝
−1

0

0

1

⎞⎟⎟⎟⎟⎠ , a2 :=

⎛⎜⎜⎜⎜⎝
3

3

−6

0

⎞⎟⎟⎟⎟⎠ , a3 :=

⎛⎜⎜⎜⎜⎝
0

−1

0

1

⎞⎟⎟⎟⎟⎠ , a4 :=

⎛⎜⎜⎜⎜⎝
9

12

8

3

⎞⎟⎟⎟⎟⎠ ,
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Figure 1. An orientation-preserving Markov map with Jordan block.

then B1a1 = − 1
3 a1, (B1 +

1
3 1)a2 = a1, B1a3 = 0 and B1a4 = a4. In particular {a1, a2} span the

generalised eigenspace associated to the eigenvalue − 1
3 . Since the essential spectral radius of

L1, when acting on Wr, r � 2, is smaller than 1/4, then L1, on such spaces, has a Jordan block
in the point spectrum.

Remark 2.16. Another interesting example of an affine expanding Markov map is the Baladi
map studied in [25]. This is a system which exhibits non-trivial complex resonances. In the
reference the connection between resonances and decay of correlation was considered and the
outer set of resonances identified. Our results give a description of the full set of resonances
for this system and the connection to the decay of correlations.

3. Piecewise smooth full branch expanding maps

In this section we discuss the simplest non-linear case: full branch maps. For such maps there
exists already some general quantitative results on the spectral gap, e.g. [60, section 2], however
they are not optimal, we will comment about the comparison case by case.

Let f ∈ Cr([0, 1], [0, 1]), r � 2, be a full branched piecewise expanding map, f ′ > λ > 1.
For k ∈ N0 let us consider the transfer operator

Lkh(x) =
∑

y∈ f−1(x)

h(y)
[ f ′(y)]k

. (3.1)

Observe that L0 is the operator associated to the measure of maximal entropy while L1 is the
operator associated to the SRB measure [6].15

For convenience, throughout this section, we denote the distortion by16

D f =

(
1
f ′

)′
.

The key fact we wish to leverage on, in analogy with lemma 2.7, is the formula

(Lkh)′ = Lk+1h′ + kLk(h · D f ) (3.2)

15 For the measure of maximal entropy see also the beginning of section 4 where it is explained in a more general
setting.
16 Here, as in the previous section, the derivative is taken only at the smoothness points of f .
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which is obtained simply by differentiating (3.1). Notice that the distortion D f is 0 when the
map is piecewise affine and this is the reason why the treatment in section 3 is more complicated
than in section 2 (see lemma 2.7). Amazingly, the above formula yields several nontrivial facts.
To illustrate its power we start discussing the operator L0.

3.1. Measure of maximal entropy

Lemma 3.1. If f is a N covering, then σC1 (L0) ⊂ {N} ∪ {z ∈ C : |z| � 1}. Moreover,
σC2 (L0) ∩ {z ∈ C : |z| � λ−1} = {N} ∪ (σC1 (L1) ∩ {z ∈ C : |z| � λ−1}).

Proof. Note that L01 = N, so N ∈ σ(L0). Since

(
1

( f n)′

)′
=

n−1∑
k=0

D f ◦ f k

( f n−k−1)′ ◦ f k+1
,

|
(

1
( f n)′

)′
|� C = ‖D f‖∞(1 − λ−1)−1. In particular we may use (3.2) for f n, rather than for f

and ‖L1‖∞ � C. Using these estimates, (3.2) and a direct computation

‖L0h‖∞ � N‖h‖∞,

‖(Ln
0h)′‖∞ � ‖Ln

1h′‖∞ � C‖h′‖∞.

By the usual arguments the above inequalities imply that the essential spectral radius of L0,
acting on C1, is at most one. On the other hand if L0h = νh, with |ν| > 1 we have, for all
n ∈ N,

νnh′ = (Ln
0h)′ = Ln

1h′

which, since ‖Ln
1‖L1 = 1, implies |h′| = 0, that is, h must be constant.

To conclude observe that on the one hand, if L0H = νH, H ∈ C2, then L1H′ = νH′. On the
other hand, if L1h = νh, h ∈ C1, let H0(x) =

∫ x
0 h(y)dy and observe that H0 ∈ C2 and

((ν − L0)H0)′ = (ν − L1)h = 0.

Thus (ν − L0)H0 is a constant function. Let α denote this constant value and let c = −(ν −
N)−1α. Now let Hc(x) =

∫ x
0 h(y)dy + c and observe that

(ν − L0)Hc = (ν − L0)H0 + (ν − L0)c = α+ (ν − N)c = 0.

The result follows since the essential spectrum of L1, when acting on C1, is bounded
by λ−1. �

Remark 3.2. Note that the proof of lemma 3.1 implies that L0h =
∫

h dμBM + Qh, where
μBM is the measure of maximal entropy, and ‖Qn‖C1 � C. That is, L0 has a spectral gap N − 1
while the Hilbert metric technique can yield, at the very best, a spectral gap N − λ, see [60].

The above shows that the spectrum of L0 is largely determined by the spectrum of L1.
Hence, before continuing our investigation of the spectrum of L0, it is necessary to undertake
an investigation of the spectrum of L1.
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3.2. The SRB measure

Note that the vector space V = {h ∈ C1 :
∫ 1

0 h = 0} is invariant under L1, we can thus restrict
L1 to V. If we define

φ(g)(x) =
∫ x

0
g(y)dy −

∫ 1

0
(1 − y)g(y)dy =

∫ x

0
yg(y)dy +

∫ 1

x
(y − 1)g(y)dy, (3.3)

then φ : C0 → V and φ(h′) = h for all h ∈ V. Thus, for each h ∈ V,

(L1h)′ = L2h′ + L1(φ(h′)D f ) =: L�(h′). (3.4)

The relevance of the operator L� rests in the next lemma.

Lemma 3.3. If f ∈ C2([0, 1], [0, 1]), then the spectrum of L1 : C1 →C1 satisfies

σC1 (L1) ∩ {z ∈ C : |z| > λ−1} = {1} ∪ σC0 (L�) ∩ {z ∈ C : |z| > λ−1}.

Proof. It is well known that the essential spectral radius of L1, when acting on C1 is bounded
by λ−1, hence we can restrict ourselves to the point spectrum.

Since
∫ 1

0 ϕL1h =
∫ 1

0 (ϕ ◦ f ) · h, it follows that the Lebesgue measure is an eigenvector,
with eigenvalue one, of the dual operator, and hence 1 ∈ σC1 (L1). In addition, V = {h ∈
C1 :

∫ 1
0 h = 0} is invariant under L1. It follows that if L1h = νh, |ν| > λ−1 and h ∈ C1, then

h′ ∈ C0 and (3.4) implies L�h′ = νh′. On the other hand if g ∈ C0 and L�g = νg, |ν| > λ−1,
then h = φ(g) ∈ V and

(L1h − νh)′ = L�g − νg = 0.

Hence, there exists a constant C such that L1h − νh = C, but integrating we have C = 0, thus
h is an eigenvector of L1. �

Remark 3.4. Note that the above lemma holds verbatim with W1,1 substituted to C1. In the
following, we find more convenient to consider the spectrum of L1 when acting on W1,1.

Let

τ = λ−1 +

∫ 1

0

∣∣∣∣( 1
f ′(y)

)′∣∣∣∣ dy = λ−1 + ‖D f‖L1 .

Lemma 3.5. The norm of L2 on L1 is bounded by λ−1. The operator Lc(g) = L1(φ(g)D f ),
acting on L1, is a compact operator. In addition, for all g ∈ L1

‖φ(g)‖L1 � 1
2
‖g‖L1

‖φ(g)‖L∞ � ‖g‖L1

‖φ(g)‖W1,1 � 3
2
‖g‖L1 .

In particular L∗ : L1 → L1 is a well-defined operator and ‖L∗‖L1 � τ .

Proof. Since

‖L2h‖L1 � λ−1‖L1h‖L1 � λ−1‖h‖L1,
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the first statement follows. Moreover,∫ 1

0
|φ(g)(x)|dx � 2

∫ 1

0
|g(y)|y(1 − y)dy � 1

2
‖g‖L1 ,

|φ(g)(x)| �
∫ 1

0
|g(y)|dy = ‖g‖L1 .

Finally, ‖φ(g)′‖L1 � ‖g‖L1 implies the last of the three inequalities and also that φ is compact,
the compactness of Lc follows. �
Theorem 3.6. Let us consider L1 as an operator acting on W1,1, then σess(L1) ⊂ {z ∈ C :
|z| � λ−1}. Moreover σ(L1)\{1} ⊂ {z ∈ C : |z| � τ}.

Proof. If ν ∈ C is such that |ν| > λ−1 and L1h = νh, for some h ∈ W1,1 with
∫

h = 0, then
L�g = νg, for g = h′. Then, recalling lemma 3.5,

|ν|‖g‖L1 � λ−1‖g‖L1 +

∫ 1

0

∣∣∣∣( 1
f ′(y)

)′∣∣∣∣ dy ‖φ(g)‖L∞

�
[
λ−1 + ‖D f‖L1

]
‖g‖L1 .

This proves the theorem since h′ = 0 implies h = 0. �
The above lemma provides an upper bound for the spectral gap, but it is very unsatisfactory.

First, such a bound is of interest only if τ < 1 (for example, in the counterexample of Keller
and Rugh [56] τ > 1). Second, even if τ < 1, it is unclear if there exists other point spectrum
outside {z ∈ C : |z| � λ−1}.

Remark 3.7. For L1 the Hilbert metric approach yields a bound of the spectral gap given
by a rather cumbersome formula. However, if one considers the limit of large λ and small D f ,
then, using [60, lemma 2.3], one can check that the bound of the spectral gap cannot be better
than λ−1(1 + 2‖D f ‖∞) + ‖D f ‖∞, which is worse than the one provided, in the same limit, by
theorem 3.6. However, for large D f the bound of theorem 3.6 is useless while [60, lemma 2.3]
provides an explicit, although rather poor, bound.

Very few results are known on the existence of point spectrum with the notable excep-
tion of cases when the map has been explicitly constructed to exhibit point spectrum [56] or
when one restricts the map to the class of holomorphic maps, often of a special nature, as in
[10, 76, 78]. No analytical technique is available to treat C2 open classes of maps. On the con-
trary a lot of work exists on the side of numerical computation, mainly of the invariant measure
but also, to some extent, of the spectrum, e.g. see [63] and references therein. While most of the
numerical work does not track round off errors and hence it is unsatisfactory from the rigorous
point of view, some notable exceptions use interval arithmetic and hence have the status of a
proof, e.g. [3, 44, 52].

Hence, it is interesting to note that the present approach offers an alternative, possibly much
more convenient, route to a numerical computation of the spectrum.

Remark 3.8. We conclude the section with a remark on how the above discussion can pro-
vide a numerical scheme to locate eigenvalues. Let K :=L1(φ(g)D f ), φ being defined in (3.3).
Also, let α > 0 and {ϕi}∞i=1 be a Schauder base of W1,1 such that, calling ΠN the projection
onto span {ϕi}N

i=1 along span {ϕi}∞i=N+1, we have ‖ΠN‖L1 � C� and

‖1 −ΠN‖W1,1→L1 � C�N
−α.
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Then, to study the spectrum of ν − L�, 1 > |ν| > λ−1 when acting on L1, write

ν − L� = (ν − L2)
[
1 − (ν − L2)−1K

]
= (ν − L2)

[
1 −ΠN(ν − L2)−1ΠNK −ΔN

]
= (ν − L2)

[
1 −ΠN(ν − L2)−1KΠN

] (
1 −
[
1 −ΠN(ν − L2)−1KΠN

]−1
ΔN

)
,

ΔN = (1 −ΠN)(ν − L2)−1K +ΠN(ν − L2)−1(1 −ΠN)K.

Note that lemma 3.5 implies ‖K‖L1 + ‖K‖L1→W1,1 � C�, hence

‖ΔN‖L1 � C�(λ−1 − |ν|)−1N−α.

Thus ν belongs to the resolvent of L� if

‖
[
1 −ΠN(ν − L2)−1KΠN

]−1
ΔN‖L1 � C�

‖
[
1 −ΠN(ν − L2)−1ΠNK

]−1‖L1

(λ−1 − |ν|)Nα
� 1.

Since ΠN(ν − L2)−1ΠNK is a finite rank operator,
[
1 −ΠN(ν − L2)−1ΠNK

]−1
its norm can

be evaluated numerically. In fact, by Neumann series, we have, for ζ small and setting
RN = ΠN(ν − L2)−1ΠN ,

[1 − ζRNK]−1 = 1 + ζ[1 − ζRNKΠN]−1RNK,

thus, by analyticity, the same holds for ζ = 1. Hence, the spectrum of L� is close to the values
of ν for which RNKΠN has eigenvalue one. Since RNKΠN is a N × N matrix, this provides a
rather quick way to determine rigorously if L1 has point spectrum outside the spectral radius
of L2, aside from one.

3.3. Point spectrum

If we consider class of maps with some special features, it is possible use arguments like the
ones put forward in remark 3.8 to obtain relevant information about the point spectrum without
any computer assisted method.

As an example, the next theorem provides more precise information on the spectrum in a
special class of maps. Note that the following approach can be generalised, here we present
only the simplest application to illustrate the logic of the argument.

Theorem 3.9. Let I := [0, 1] and f : I → I. Consider the partition {(pi, pi+1)}N
i=1 to be a

partition of a full-measure subset of [0, 1] such that for any 1 � i � N, f([pi, pi+1]) = [0, 1],
f ∈ C3([pi, pi+1], [0, 1]), and f ′(p+i ) = f ′(p−i ), i ∈ {2, . . . , N}.17 Also assume that Df ≡/ 0 and
Df � 0. Then18, for L1 : W2,1([0, 1]) → W2,1([0, 1])

σ(L1) ⊂
{

z ∈ C : |z| � min

{
1,

2
f ′(1)

− 1
f ′(0)

}}
∪ {1}

σess(L1) ⊂
{

z ∈ C : |z| � 1
f ′(1)2

}
.

17 By g(p+), g(p−) we mean the right and left limit, respectively, of the function g at the point p. Since f ′(p+i ) = f ′(p−i )
there is no need to distinguish between p−i and p+i , so we will not do it anymore.
18 Note that the following provides a spectral gap if f ′(1) � 2.
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Moreover, {1} is a simple eigenvalue of L1. In addition, there exists μ2 < 1
f ′(1) such that,

setting Δ = 1
f ′(1) −

1
f ′(0) , μ∗ =

1
f ′(1) , Γ =

(
1 −
∑N

i=1
1

f ′(pi)

)
and

A0 = {a ∈ R : μ2 < a < 1}

A1 =

{
a + ib ∈ C : a > μ∗, b2 <

(a − μ∗)Δ
2(1 + a−1Γ)

[√
1 + 4

(1 + a−1Γ)2(a − μ∗)2

Δ2 − 1

]}

A2 =

{
a + ib ∈ R : a < −μ∗, b2 <

(|a| − μ∗)2(a2 − μ2
∗ −Δ|a|)

a2 − μ2
∗ +Δ|a|

}

A3 =

⎧⎨⎩a + ib ∈ C : a � 0, |a + ib − μ∗|2 > μ2
∗ + μ∗

Δ+
√

4μ2
∗ +Δ2

2

⎫⎬⎭
A4 =

{
a + ib ∈ C : a < 0, b2 > μ∗Δ+ μ2

∗ + 2|a|μ∗ − a2
}

we have (
∪3

i=0Ai

)
∩ [σ(L1)\{1}] = ∅.

The proof of the above theorem is a boring computation using the ideas illustrate in the pre-
vious section, so we postpone it to appendix A. Here we provide an application of the theorem
to show what can be achieved with some, moderately lengthy, hand made computations. Much
more could be obtained using the assistance of a computer as mentioned in remark 3.8.

Remark 3.10. Note that if D f ≡ 0, then f ′(1) = N and L1 has eigenvalue N−1 with
eigenfunction g(x) = x − 1

2 . Indeed,

L1g(x) =
N∑

i=1

N−1g

(
x + i − 1

N

)
=

N∑
i=1

(x + i − 1)
N2

− 1
2N

= N−1

(
x +

N − 1
2

− N
2

)
= Ng(x).

By perturbation theory, see [55], it follows that such an eigenvalue survives for small distortion.
However, the above theorem implies that, for perturbations satisfying theorem 3.9, one cannot
make it increase more than 2

f ′(1) −
1

f ′(0) .

Remark 3.11. As an example consider f (x) = 4x − x2 mod 1. In this case theorem 3.9
applies with D f =

2
(4−2x)2 > 0, f ′(0) = 4, f ′(1) = 2, Δ = 1

4 , μ∗ =
1
2 and some μ2 < 1

2 .

Moreover p1 = 0, p2 = 2 −
√

3, p3 = 2 −
√

2, hence f ′(p2) = 2
√

3, f ′(p3) = 2
√

2 and
Γ = 1 − 1

4 − 1
2
√

3
− 1

2
√

2
. Consequently, for L1 : W2,1([0, 1]) → W2,1([0, 1]),

σ(L1) ⊂
{

z ∈ C : |z| � 3
4

}
∪ {1}

σess(L1) ⊂
{

z ∈ C : |z| � 1
4

}
.
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Figure 2. Spectrum of the example. Theorem 3.9 implies that the disk of radius 1/4
(central shaded region) contains the essential spectrum while the eigenvalues, except for
1, cannot belong to the exterior shaded region.

Moreover, the sets

A0 = {a ∈ R : μ2 < a < 1}

A1 =

⎧⎨⎩a + ib ∈ C : a >
1
2

, b2 <

(
a − 1

2

)
8(1 + a−1Γ)

⎡⎣√1 + 64(1 + a−1Γ)2

(
a − 1

2

)2

− 1

⎤⎦⎫⎬⎭
A2 =

{
a + ib ∈ R : a < −1

2
, b2 <

(
|a| − 1

2

)2
(4a2 − 1 − |a|)

4a2 − 1 + |a|

}

A3 =

{
a + ib ∈ C : a � 0, |a + ib − 1

2
|2 >

5 +
√

17
16

}

A4 =

{
a + ib ∈ C : a < 0, b2 >

3
8
+ |a| − a2

}

contain no spectrum of L1 except 1. These regions are illustrated in figure 2.

3.3.1. Different operators. As a last comment on the present approach to the study of the spec-
trum of L1, let us remark that it is possible to investigate the commutation relations with differ-
ent operators. As an example, let us consider the operator A(h) = h′ + αh for some functionα.
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Then

AL1h = L2h′ + L1(D f h) + L1((α ◦ f )h) = L2(Ah) + L1

[(
D f −

α

f ′
+ α ◦ f

)
h

]
.

(3.5)

In general, is not obvious what the best choice ofα could be. To keep the discussion short let us
consider only the special, well known, case in which ln f ′ is C1 cohomologous to a constant.19

That is, there exists a C1 function B such that

ln f ′ + B − B ◦ f = c.

Then we can choose α = B′ and obtain

AL1h = L2(Ah).

Accordingly, if there exists h ∈ W1,1 such that L1h = νh, |ν| > λ−1, then L2(Ah) = νAh, thus
Ah = 0 (since the spectral radius of L2 on L1 is bounded by λ−1). This implies that h = e−Ba,
a ∈ C, hence

L1e−B = L0e−c−B◦ f = e−c−BL01 = e−cNe−B.

Integrating yields e−cN = 1, hence ν = 1. It follows that

σW1,1 (L1) ⊂ {1} ∪ {z ∈ C : |z| � λ−1},

hence, as expected, the existence of a large spectral gap.
In the general case, one could try to minimise D f − α

f ′ + α ◦ f in order to produce estimates
that improve theorem 3.9.

4. Piecewise monotone maps

Up to now we have considered uniformly expanding systems. However much of our arguments
were rather general, it is then natural to ask if one can apply the present philosophy also to non-
uniformly expanding maps or even maps that expand only in some part of the phase space. We
believe the answer to be affirmative and to justify such a belief we discuss one of the simplest
possibilities: one dimensional piecewise monotone map. Note however that we will develop
the full theory only for one dimensional full branch monotone maps (see [64] for full details
on the related theory). Of course, for such more general systems one cannot expect to prove as
many results as in the previous section. Yet, some interesting and novel results can be obtained.
To illustrate such a fact we will discuss the operator associated to the measures of maximal
entropy.

Let P = {I1, . . . , IN}, N ∈ N, be a partition of [0, 1] in the sense that the Ii are open dis-
joint sets and ∪N

i=1Ii = [0, 1]. Let f : [0, 1] → [0, 1] be a map such that f |Ii is strictly monotone
and f |Ii ∈ C1. Thus each point in (0, 1) has at most N preimages. Suppose that Λ = ‖ f ′‖∞ <
∞. We write M∗ for the set of maps satisfying the above properties.

19 This happens if f is C2 conjugated to a map f�(x) = �x mod 1, � ∈ Z with |�| � 2.
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Remark 4.1. Note that maps in M∗ can have attracting fixed points or attracting periodic
orbits and can be multimodal.

Remark 4.2. Note that we ask only f |Ii ∈ C1, rather than f |Ii ∈ C1+α as is necessary when
studying the SRB measure.

We start by studying the spectral and essential spectral radius of L0. For each h ∈ L1,

‖L0h‖L1 �
∫ 1

0
L1| f ′h| =

∫
| f ′||h| � Λ‖h‖L1 . (4.1)

On the other hand, for h ∈ BV and ϕ ∈ C1 we have, calling φi the inverse of f |Ii ,∫ 1

0
ϕ′(x)L0h(x)x =

N∑
i=1

∫ 1

0
ϕ′(x)1 f (Ii)(x)h(φi(x))dx

=

N∑
i=1

∫
Ii

ϕ′( f (x))| f ′(x)|h(x)dx

=

N∑
i=1

∫
Ii

d
dx

[
sign( f ′(x)) · ϕ ◦ f (x)

)]
h(x)dx.

We can then define the counterm, recall that Ii = (pi, pi+1),

ψ(x) =
n∑

i=1

1Ii(x) sign( f ′(x))

{
ϕ( f (pi)) +

ϕ( f (pi+1)) − ϕ( f (pi))
pi+1 − pi

(x − pi)

}

and ϕ∗(x) = sign( f ′(x))ϕ( f (x)) − ψ(x). Note that, by construction, ϕ∗ is Lipschitz, ‖ϕ‖C0 �
2‖ϕ‖C0 and

∫ 1

0
ϕ′(x)L0h(x)x =

∫ 1

0
ϕ′
∗(x)h(x)dx +

N∑
i=1

∫
Ii

sign( f ′(x))
ϕ( f (pi+1)) − ϕ( f (pi))

pi+1 − pi
h(x)dx.

(4.2)

Accordingly, there exists C > 0 such that

‖L0h‖BV � 2‖h‖BV + C‖h‖L1 . (4.3)

If we apply the above to the map f n, rather than f , we have, since also f ∈ M∗, the
Lasota–Yorke inequality

‖L0h‖L1 � Λ‖h‖L1,

‖Ln
0h‖BV � 2‖h‖BV + Cn‖h‖L1 ,

(4.4)

for each n ∈ N and some constants Cn > 0.
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From (4.4) and Hennion’s theorem [51] (see also [28, appendix B]) it follows that the spec-
tral radius, on BV, of L0 is bounded by Λ while the essential spectral radius is bounded by
one20.

This establishes the first step of our strategy. Next we have to consider the commutation
between the derivative and L0. Since BV functions have weak derivatives that are measures,
this makes sense, however such measures can be rather singular. To simplify matters it seems
convenient to restrict our functions to SBV (special bounded variation) functions, that is func-
tions for which the singular part of the weak derivative is supported at most on countably many
point, not a Cantor set. Recall that SBV is a closed subspace of BV [2, corollary 4.3].

Lemma 4.3. It holds true L0(SBV) ⊂ SBV. The essential spectrum of L0 is bounded by one.
Moreover, the eigenvectors associated to eigenvalues of modulus strictly larger than one have
zero absolutely continuous part. Hence, if a power of f is a Markov map, then the eigenvectors
associated to eigenvalues of modulus strictly larger than one are constant on the elements of
the Markov partition.

Proof. Let h ∈ SBV, then we can write the weak derivative, seen as a measure, as Dh =∑
a∈Aαaδa + 𝕙 dx, for some 𝕙 ∈ W1,1, a countable set A and numbers αa ∈ C such that∑
a∈A|αa| < ∞, see [2, corollary 3.33]. Then (4.2) implies, setting A0 = A\{pi}N

i=1 and
εi = sign( f ′(x)) for x ∈ Ii,∫ 1

0
ϕ′(x)L0h(x)dx = −

∫ 1

0
ϕ∗(x)Dh(dx) +

N∑
i=1

εi
ϕ( f (pi+1)) − ϕ( f (pi))

pi+1 − pi

∫
Ii

h(x)dx

= −
∑
a∈A0

αa[sign( f ′(a))ϕ( f (a))− ψ(a)]

−
∫ 1

0
ϕ ◦ f (x) sign( f ′(x))𝕙(x)dx

+

∫ 1

0
ψ(x)𝕙(x)dx +

N∑
i=1

εi
ϕ( f (pi+1)) − ϕ( f (pi))

pi+1 − pi

∫
Ii

h(x)dx.

Hence

DL0h = L1𝕙(x)dx +
∑
a∈A0

αa sign( f ′(a))δ f (a)

−
N∑

i=1

∑
a∈A0

1Ii(a)εi

{
pi+1 − a
pi+1 − pi

δ f (pi) +
a − pi

pi+1 − pi
δ f (pi+1)

}

−
N∑

i=1

εi

{
δ f (pi)

∫
Ii

pi+1 − x
pi+1 − pi

𝕙(x)dx + δ f (pi+1)

∫
Ii

x − pi

pi+1 − pi
𝕙(x)dx

}

−
N∑

i=1

εi
δ f (pi+1) − δ f (pi)

pi+1 − pi

∫
Ii

h(x)dx

20 In (4.4) choose n0 such that 21/n0 � Λ and iterate with steps n0.
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= L1𝕙(x)dx −
N∑

i=1

εiδ f (pi+1)

∫
Ii

𝕙(x)dx +
∑
a∈A0

αa sign( f ′(a))δ f (a)

+

N∑
i=1

∑
a∈A0

1Ii(a)εi

{
pi+1 − a + αa

pi+1 − pi
δ f (pi) +

a − pi − αa

pi+1 − pi
δ f (pi+1)

}
∈ SBV.

Thus L0 is well defined on SBV.
The bound on the essential spectral radius follows from (4.4) and Hennion’s theorem [51]

(see also [28, appendix B]).
Next, assume that ν ∈ σSBV(L0) and |ν| > 1. Then ν must be point spectrum and there

exists h ∈ SBV such that L0h = νh. But, differentiating, this would imply that the absolutely
continuous part of Dh, call it 𝕙, satisfies L1𝕙 = ν𝕙 and, since the spectral radius of L1 is one,
this implies 𝕙 = 0.

Finally, assume that f admits a Markov partition. Then we can assume, without loss of
generality, that {Ii = (pi, pi+1)}N

i=1 is the Markov partition hence, f (pi) = pj for some j. Let
A be the set of jumps of h, {αa}a∈A the size of the jumps and set A∗ = A\{pi}N

i . By the
Markov property if a ∈ A∗ then f −1(a) /∈ {pi}N

i . Hence, the above formula implies that if
βn(a) = {b ∈ A∗ : f n(b) = a} then, for each n ∈ N,

|ν|n|αa| �
∑

b∈βn(a)

|αb| � ‖h‖SBV.

which is possible only if αp = 0. Hence h can jump only at the boundaries of the partition and
it is constant inside. �

The above theorem shows that, for Markov maps, the study of the eigenvalues larger than
one is reduced, as in section 2, to the study of the finite dimensional matrix B0 defined in (2.1).
However, in the general case identifying all the measures of maximal entropy requires some
work that, in this generality, exceeds our scopes. To give an idea of what can be done let us
restrict ourselves to the simplest Markov example: full branch maps.

4.1. Full branch monotone maps

Let M = { f ∈ M∗ : f (Ii) = (0, 1)}. In this case, the previous computations show that
L0W1,1 ⊂ W1,1 and d

dxL0 = L1
d

dx . From now on we will thus work in W1,1. For this maps
we want to investigate the measure of maximal entropy. To start, note that, in this case, Λ � N
since

N =

N∑
i=1

| f (Ii)| =
N∑

i=1

∫
Ii

| f ′(x)|dx � Λ

N∑
i=1

|Ii| = Λ,

where the inequality is strict if f ′ is not constant.
Next, let us recall some well known facts (see [20] for a review).

Lemma 4.4 ([65, theorem 1]). For f ∈ M holds the variational principle

htop = ln N = sup
μ∈M

hμ( f )

where M is the set of invariant measures of f and hμ( f ) is the Kolmogorov–Sinai entropy.
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Theorem 4.5. The operator L0 when acting on W1,1 has the spectral decomposition
L0h = N · μBM(h) + Q(h) where Q1 = 0, μBM(Q(h)) = 0, for all h ∈ W1,1, σW1,1 (Q) ⊂ {z ∈
C : |z| � 1}, and μBM is a measure of maximal entropy.

Proof. We know that if ν ∈ σ(L0) and |ν| > 1, then ν is point spectrum. That is, there exist
h ∈ W1,1 such that L0h = νh. But then, differentiating, we have L1h′ = νh′ where h′ ∈ L1.
However, L1 is a contraction on L1, hence it must be either |ν| � 1, contrary to the hypothesis,
or h′ = 0. The latter implies that h is constant, hence, we can always normalise it so that h = 1.
On the other hand L01(x) =

∑
y∈ f−1(x) 1 = N. Hence ν = N and has geometric multiplicity

one. Indeed, if the geometric multiplicity is not one, then there must exists h ∈ W1,1 such that
L0h = Nh + c for some constant c. But then, differentiating,L1h′ = Nh′, so h must be constant
again.

In addition, note that for each h ∈ W1,1 we have

‖N−nLn
0h‖W1,1 �

∫ 1

0
N−nLn

0|h|+
∫ 1

0
N−nLn

1|h′| � ‖h‖C0 + N−n‖h‖W1,1

� (1 + N−n)‖h‖W1,1.

Hence N−nLn
0 is uniformly bounded on W1,1 and thus, by [32, lemma 8.8.1], N is semi-simple.

It follows that the maximal eigenvalue is simple.
Accordingly, we have the spectral decomposition L0 = N1 ⊗ μ+ Q where Q has spectral

radius smaller or equal one, Q1 = 0, μ(Qh) = 0 for all h ∈ W1,1, μ(1) = 1, and μ belongs to
the dual of W1,1. It remains to prove that μ is a measure and, indeed, a measure of maximal
entropy μBM.

Note that, for each h ∈ W1,1,

|μ(h)| = lim
n→∞

∣∣∣∣∫ 1

0
N−nLn

0h

∣∣∣∣ � lim
n→∞

‖h‖∞
∫ 1

0
N−nLn

01 = ‖h‖∞.

Thus μ is a measure. In addition, for each h ∈ C1 such that h � 0, we have

μ(h) = lim
n→∞

∫ 1

0
N−nLn

0h � 0

thus μ is a positive measure and, since it is normalised, it is a probability measure. Next, note
that

μ(L0h) = lim
n→∞

∫ 1

0
N−nLn+1

0 h = N lim
n→∞

∫ 1

0
N−nLn

0h = N · μ(h).

It follows

μ(h ◦ f ) = N−1μ(L0h ◦ f ) = N−1μ(hL01) = μ(h).

That is μ is an invariant measure. In addition, by the above considerations, ([0, 1], f , μ) is
ergodic.

The proof is concluded if we show hμ( f ) � htop. Let Pn denote the nth canonical dynamical
refinement of the partition P . Let p ∈ Pn and p−, p+ ∈ Pn be the elements on the left and the
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right of p, respectively, if they exist. Let J = p− ∪ p∪ p+. Let h ∈ C1(R, [0, 1]) be supported
in J and such that h|p = 1. Then Ln

0h(x) � 3 and

μ(p) � μ(h) = lim
m→∞

∫ 1

0
N−m−nLm+n

0 h � lim
m→∞

3
∫ 1

0
N−m−nLm

0 1

= 3N−nμ(1) = 3N−n.

Accordingly, calling pn(x) the element of Pn which contains x, the Shannon–
McMillan–Breiman theorem (e.g. see [70, section 6.2, theorem 2.3]) states that for μ
almost every point

hμ( f ) � hμ(P , f ) = lim
n→∞

− 1
n

ln μ(pn(x)) � lim
n→∞

ln N1−1/n = ln N,

which concludes the proof by lemma 4.4. �

Remark 4.6. We do not know if μBM is unique in this case, we have just constructed a
measure of maximal entropy. Look at subsection 4.2 for a case where it is easy to prove that
the measure of maximal entropy is unique.

Remark 4.7. The monotone interval maps and transfer operators studied in this section fit
into the framework considered in [9]. In [9] the essential spectral radius (as operators acting
on BV) is obtained and consequently a spectral decomposition. Here we show that the spectral
gap is large for the operator associated to the measure of maximal entropy.

We have finally the announced mixing rate estimate

Corollary 4.8. For any ν > 1
N there exists Cν > 0 such that, for each h ∈ W1,1 and ϕ ∈

L1(μBM) ∣∣∣∣∫ h ϕ ◦ f n dμBM −
∫

h dμBM

∫
ϕ ◦ f n dμBM

∣∣∣∣ � Cνν
n‖h‖W1,1‖ϕ‖L1(μBM).

Proof. We start assuming that ϕ ∈ C1. Then, using theorem 4.5,∣∣∣∣∫ h ϕ ◦ f n dμBM −
∫

h dμBM

∫
ϕ dμBM

∣∣∣∣
=

∣∣∣∣ lim
m→∞

∫ 1

0
N−m(Lm

0 h ϕ ◦ f n)(x) dx −
∫

hdμBM

∫
ϕ dμBM

∣∣∣∣
=

∣∣∣∣ lim
m→∞

∫ 1

0
[N−m+nLm−n

0 ϕN−nLn
0h](x) dx −

∫
h dμBM

∫
ϕ dμBM

∣∣∣∣
=

∣∣∣∣∫ ϕN−nLn
0h dμBM −

∫
h dμBM

∫
ϕ dμBM

∣∣∣∣
=

∣∣∣∣∫ ϕN−nQnh dμBM

∣∣∣∣ � Cνν
n‖h‖W1,1

∫
|ϕ| dμBM.

The corollary follows by a simple approximation argument. �
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4.2. Non-uniformly expanding maps

Let E ⊂ M the set of maps such that f ′ � 1, f ′ = 1 at finitely many points and Λ = ‖ f ′‖∞
< ∞.

This class of maps includes the well known Manneville–Pomeau map [62, 71].

Remark 4.9. In [24] non-uniformly expanding systems are studied and the existence of a
spectral gap (and hence decay of correlations) is proven for a class of equilibrium states which
includes the measure of maximal entropy. The approach in [24] is based on Hilbert metrics
and, although not stated explicitly, it provides a poor estimate of the spectral gap (see remark
3.7 for similar considerations) whereas our present approach provides an explicit and close to
optimal estimate.

Here, we limit ourselves to the one dimensional case to present the idea in its simpler form.
It is likely that similar results can be obtained for more general non-uniformly expanding maps,
e.g. the higher dimensional examples treated in [24].

Note that the maps in E have a basic property.

Lemma 4.10. Any map f ∈ E is expansive.

Proof. Let κ = minI∈P|I|. For each δ > 0 let Iδ = {[a, b] ⊂ [0, 1] : [a, b] ⊂ Ī, I ∈ P ; |b −
a| � δ} and, for each [a, b] ∈ Iδ , define ϕ(a, b) := 1

|b−a|
∫ b

a f ′(ξ)dξ. Note that, by hypothesis,
ϕ(a, b) > 1, and since it depends continuously from a, b (which vary in a compact set) there
must be τ δ > 1 such ϕ(a, b) � τδ . Accordingly, f n(x) and f n(y) always belong to the same
partition element we have | f n(x) − f n(y)| � κ for all n ∈ N which is possible only for x = y.
On the other hand, if for some f n(x) and f n(y) belong to two different partition element, then
either | f n(x) − f n(y)| � κ or they belong to contiguous elements of P . In such a case it is easy
to see that there exists δ such that either | f n(x) − f n(y)| � δ or | f n+1(x) − f n+1(y)| � δ, hence
the expansivity. �

The above fact allows to prove that the measure of maximal entropy is unique.

Lemma 4.11. For f ∈ E the measure of maximal entropy μBM is unique.

Proof. Since the map is expansive, there exists a map Φ : [0, 1] → {1, . . . , d}N =: Σ which
is well defined and invertible, apart from countably many points, that conjugates f with the
full shift σ. Hence, Φ induces a measurable isomorphism for each non-atomic measure. On the
other hand for (Σ, σ) holds the variational principle, hence the sup of the metric entropies is the
topological entropy, which is ln N, and there exists a unique measure of maximal entropy. Since
atomic measures have zero entropy, and since the entropy is an affine function of the measures,
it follows that the sup on the measure entropies is achieved on non-atomic measures. Thus, via
the isomorphism Φ and since the entropy is an invariant for measure-preserving conjugacy, it
follows that measure of maximal entropy for f is unique. �
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5. Hyperbolic maps

For hyperbolic, or partially hyperbolic maps the situation is less clear than in the expanding
case and much more remains to be understood. Yet, the ghost of a general theory seems to be
present. Let us start with the simplest possible case: linear maps.

In this case it is possible to study the problem using Fourier series (see [59]), however it is
interesting to develop an alternative approach that does not rely on the algebraic structure of
the map and thus has the potential to be applicable in greater generality.

5.1. Automorphisms of the torus

Here we consider a linear map f : Tn → Tn defined by f (x) = Ax mod 1 where A ∈ SL(d,Z),
i.e. a matrix with integer coefficient and det A = 1. Let us call Eu the unstable subspace, Es the
stable one and Ec the central one.

Note that, by hypothesis f preserves the volume, thus the volume is the SRB measure. We
are interested in its statistical properties, hence in the transfer operator

Lh = h ◦ f −1.

Next we introduce a norm. Let {vs
i }, ‖vs

i ‖ = 1, be a basis of Es and {vu
i }, ‖vu

i ‖ = 1, be a
basis of Eu and define, for each h,ϕ ∈ C∞ and p, q ∈ N0, ∂s/u

i h = 〈vs/u
i ,∇h〉, and

|ϕ|sq = sup
0�k�q

sup
i1,...,ik

‖∂s
i1
. . . ∂s

ik
ϕ‖∞

‖h‖p,q =
∑

0�k�p

sup
i1,...,ik

sup
|ϕ|sk+q�1

∫
Tn
ϕ∂u

i1
. . . ∂u

ik
h.

(5.1)

We call Bp,q the completion of C∞ with respect to the norms ‖ · ‖p,q.
In the following we assume Eu �= {0}. In addition, to simplify the exposition, we assume

that A has no Jordan blocks. The general case can be treated with a slight sophistication of the
following arguments. We can thus choose the vu

i such that Avu
i = λiv

u
i , with λi � λ > 1. Also

let λ be such that ‖A|Es‖ � λ−1.

Remark 5.1. The above norms are inspired by [4]. They are one of the many possible con-
structions of anisotropic Banach spaces adapted to hyperbolic maps or flows, see [7] for an
extensive discussion. Given the linear structure of the invariant foliations, the norms (5.1) turn
out to be especially convenient and simple to deal with, hence allowing a completely self-
contained discussion. In the next section, we will use instead the norms defined in [47] in
order to avoid having to redevelop the all theory (e.g. the Lasota–Yorke inequality) in the style
of [4], which would certainly be possible.

The following is the equivalent of [4, proposition 3.2].

Proposition 5.2. For each p, q ∈ N0, n ∈ N, and ν ∈ (λ− min{p+1,q}, 1), there exist A, B > 0
such that,

‖Lh‖p,q � ‖h‖p,q

‖Lnh‖p+1,q � Aνn‖h‖p+1,q + B‖h‖p,q+1.

538



Nonlinearity 35 (2022) 513 O Butterley et al

Proof. Since 〈v,∇(h ◦ f −1)〉 = 〈D f −1v,∇h〉 ◦ f −1. We have

∫
Tn
ϕ∂u

i1
. . . ∂u

ik
Lh =

k∏
j=1

λ−1
i j

∫
Tn
ϕ ◦ f ∂u

i1
. . . ∂u

ik
h.

Since |ϕ ◦ f |sk+q � |ϕ|sk+q, the first inequality follows.
Next, note that

‖h‖p,q = sup
i1,...,ip

sup
|ϕ|sp+q�1

∫
Tn
ϕ∂u

i1
. . . ∂u

ip
h + ‖h‖p−1,q.

Thus, by the above computations,

‖Lnh‖p,q � λ−pn‖h‖p,q + ‖Lh‖p−1,q.

It thus suffices to consider the case k < p. If |ϕ|sk+q � 1, then, for each ε > 0, letϕε be such that
|ϕ− ϕε|sk+q−1 � ε, |ϕ− ϕε|sk+q � 2 and |ϕε|sk+q+1 � Cε−1, for some fixed constant C > 2.21

∣∣∣∣∫
Tn
ϕ∂u

i1
. . . ∂u

ik
Lnh

∣∣∣∣ � k∏
j=1

λ−n
i j

{∣∣∣∣∫
Tn

(ϕ− ϕε) ◦ f n∂u
i1
. . . ∂u

ik
h

∣∣∣∣+ Cε−1‖h‖k,q+1

}

�
k∏

j=1

λ−n
i j

{
max{ε, 2λ−(k+q)n}‖h‖k,q + Cε−1‖h‖k,q+1

}
� 2λ−(2k+q)n‖h‖k,q +

C
2
λ(k+q)n‖h‖k,q+1

where, in the last line, we have chosen ε = 2λ−(k+q)n. Accordingly,

‖Lnh‖p,q � (λ−pn + 2λ−qn)‖h‖p,q + Cλ(q+p)n‖h‖k,q+1.

Next, choose n0 ∈ N such that 3λ−min{p,q}n0 � νn0 , write n = kn0 + m with m < n0 and iterate
the above equation to obtain

‖Lnh‖p,q � 3λ−min{p,q}n0

νn0
νn‖h‖p,q +

C
1 − ν

λ(q+p)n0‖h‖k,q+1,

which proves the proposition. �

Remark 5.3. Note that proposition 5.2 implies that the spectral radius of L when acting on
any space Bp,q is bounded by one. On the other hand, since L1 = 1, the spectral radius must
be exactly one.

The following is the equivalent of [4, lemma 4.1], although the proof follows a different
path, easier in this particular case.

21 Such a function can be constructed by convolving with a mollifier in the space Es.
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Lemma 5.4. If Ec = {0}, then, for each p, q ∈ N, {h ∈ Bp,q : ‖h‖p,q � 1} is relatively
compact in Bp−1,q+1.

Proof. Let ds = dim(Es) and du = dim(Eu). By hypothesis d = ds + du.
Let U : Rds → Rdu such that {vs(v) = (v, Uv)}v∈Rds = Es and V : Rdu → Rds such that

{vu(v) = (Vv, v)}v∈Rdu = Eu.22

Finally, consider mollifiers js/u
ε (x) = ε−ds/u j,s/u(ε−1x), where j,s/u ∈ C∞(Rds/u ,R+) such

that supp js/u ⊂ {‖x‖ � 1} and
∫
R

ds/u j,s/u(x)dx = 1. Then, for each |ϕ|p+q � 1 and h ∈ Bp,q,∫
Td

dx ϕ∂u
i1
. . . ∂u

ip−1
h =

∫
Td

dx
∫
Rds

dv ϕ(x + vs(v)) jsε(v)∂u
i1
. . . ∂u

ip−1
h(x) +O(ε‖h‖p,q)

=

∫
Td

dx
∫
Rds

dv
∫
Rdu

dwϕ(x + vs(v) − vu(w))

× jsε(v) juε(w)∂u
i1
. . . ∂u

ip−1
h(x) +O(ε‖h‖p,q)

=:
∫
Td

dx ϕε(x)∂u
i1
. . . ∂u

ip−1
h(x) +O(ε‖h‖p,q).

Note that ‖ϕε‖Cp+q+1 � Cε−p−1 and hence for each ε there is a set {φi}Nε
i=1 ⊂ C p+q such that,

for all ϕ we have ‖ϕε − φi‖Cp+q � ε for some φi. It follows that, for each ε,

‖h‖p−1,q+1 � C�ε‖h‖p,q + sup
i�Nε

∣∣∣∣∫
Td
φih

∣∣∣∣ .
From the above the wanted compactness follows by a standard diagonalisation argument. �

We can now define the operators Dih = ∂u
i h. Then

DiLh = 〈D f −1vu
i ,∇h ◦ f −1〉 = λ−1

i 〈vu
i , h〉 ◦ f −1 = λ−1

i LDih. (5.2)

The usefulness of these operators rests in the following lemma. This is the only place in
which we use Fourier series, however the result follows essentially from the accessibility
property although with a more cumbersome proof.

Lemma 5.5. The Di are bounded operators from Bp−1,q+1 to Bp,q. In addition, if we assume
that A has no eigenvalues that are roths of unity, then if h ∈ Bp,q, p � 1 and Dih = 0, for all i,
then h is constant.

Proof. The fact that the D j are bounded operators from Bp−1,q+1 to Bp,q is a direct
consequence of the definition of the norms in (5.1) and integration by parts.

Next, Katznelson lemma [54, lemma 3] (applied to A∗) implies that there exists C0 > 0 such
that, for each k ∈ Zn\{0},

dist(k, (Eu ⊕ Ec)⊥) � C0‖k‖−n, (5.3)

22 We can always choose coordinates in which this is possible.
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Let ĥk be the Fourier coefficient of h. Suppose tha ĥk �= 0 for some k �= 0. Since, by hypothesis
0 = D̂ jhk = i〈vu

j , k〉ĥk, we have 〈vs
j, k〉 = 0 for all j. Thus k ⊥ Eu, contradicting (5.3). Thus h

must be constant. �
We are now ready to draw our conclusions.

Lemma 5.6. If Ec = {0}, then for each ε > 0 and p, q large enough we have σBp,q(L) ⊂
{1} ∪ {z ∈ C : |z| � ε}.

Proof. By proposition 5.2 and lemma 5.4, together with Hennion argument [51] (or
[28, appendix B]) we have that the spectrum in the considered region is only point spectrum
provided λ− min{p,q} < ε. We thus require p, q to be such that λ− min{p,q} < ε.

Next, suppose that Lh = νh with |ν| > ε, then, for all j, (5.2) implies

L(Dq
j h) = λq

jν(Dq
j h).

But since |λq
jν| > 1 it cannot be an eigenvalue of L, thus it must be Dq

j h = 0. But, since
integrating by parts yields∫

Td
Dq

l h = 0,

for all 0 < l � j, lemma 5.5 implies that h must be a constant, which, in turn, implies
ν = 1. �

Remark 5.7. Lemma 5.6, by the usual arguments, implies that C∞ observables have a super-
exponential decay of correlations.

Remark 5.8. It seems reasonable to expect that a similar result should hold also if Ec is not
trivial, but the map is ergodic (A does not have eigenvalues that are roots of unity). However,
the proof of lemma 5.4 fails in this case. To overcome this problem it may be necessary to use
a different Banach space. Thus, at present, it is not clear how to apply this strategy to partially
hyperbolic systems, even in the simplest case.

The nonlinear case is much more subtle even in the Anosov setting. The obvious idea would
be to consider an unstable vector field w and the operatorD = 〈w,∇h〉. Unfortunately, in gen-
eral, unstable vector fields are only Hölder. Hence, it is not clear if D is a well defined bounded
operator fromBp,q toBp−1,q+1. To solve this problem one should probably use different Banach
spaces (for some appropriate version of such spaces such as the ones introduced in [46], see
[79] for some recent progress along these lines).

Indeed, on the one handw is smooth along unstable manifolds, on the other hand in the stable
direction is only Hölder so its derivatives must be regarded as distribution, like h, and multi-
plication of distributions is a rather touchy business. So the situation, although not hopeless, is
rather unclear.

Such issue needs further thought. Here we limit ourselves to explore an interesting alterna-
tive: considering the external derivative d as the appropriate differential operator. This simple
change of perspective yields interesting results since it seems to provide a connection with the
topology of the manifold. At least, this is the situation in the following where we discuss only
the simplest case: two dimensional Anosov maps.
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5.2. Anosov map on two dimensional manifolds

Let M be a smooth two dimensional compact and connected Riemannian manifold and
f ∈ Diff∞(M, M), be a transitive Anosov map. In other words, there exists λ > 1 and two
continuous strictly invariant cone fields Cs, Cu such that, for all x ∈ M,

‖dx f v‖ � λ‖v‖ ∀ v ∈ Cu(x)

‖dx f −1v‖ � λ‖v‖ ∀ v ∈ Cs(x).

Remark 5.9. According to the Franks–Newhouse theorem [43, 67], every Anosov diffeo-
morphism of a two-dimensional compact Riemannian manifold is topologically conjugate to
a hyperbolic toral automorphism. Hence, in our case, M must be homeomorphic to T2. Note
however that in the following the smoothness of the map plays a fundamental role, hence one
cannot in general reduce the discussion to the case T2 = R2\Z2. It is thus convenient to argue
considering M a general two dimensional manifold. This has also the advantage to emphasise
the possibility of a higher dimensional extension. Indeed, we will use the Franks–Newhouse
theorem only at the end of the argument (lemma 5.21), to characterise the cohomology groups.

In analogy with the previous sections, we will obtain results on the mixing properties of the
measure of maximal entropy μBM.

Theorem 5.10. The exists r ∈ N, C > 0 and κ ∈ (0, 1) such that for all g, h ∈ C∞ and
n ∈ N we have∣∣∣∣∫

M
g ◦ f nh dμBM −

∫
M

g dμBM

∫
M

h dμBM

∣∣∣∣ � C‖g‖Cr‖h‖Cr e−htopnκn.

This result is a corollary of the much more precise theorem 5.12 and it is proven in
section 5.6. To state theorem 5.12 we need to first introduce several objects.

5.3. The operators

The operator associated to the SRB measure is simply (e.g. see [45])

Lh(x) = (det D f−1(x) f )−1h ◦ f −1(x).

However, in the present context the interesting object to study seems to be the action of forms,
or rather currents.23 Recall that the pullback on a differential form ω by a map g is defined as

(g∗ω)x(v1, v2) = ωg(x)(dxg(v1), dxg(v2)).

If g is a diffeomorphism we can define the pushforward as g∗ω = (g−1)∗ω. It is then natural to
define the action of the dynamics on forms as the pushforward f∗.

Let ω0 be the Riemannian volume. Then any two form can be written as ω = hω0 for some
function h. Then

[ f∗ω(v1, v2)](x) = h ◦ f −1(x)ω0
(
(dx f −1(v1), dx f −1(v2))(x)

= h ◦ f −1(x) det (D f−1(x) f )−1ω0(v1, v2)(x)

= [(Lh · ω0) (v1, v2)] (x). (5.4)

23 The idea that currents are a relevant object to study in the context of the statistical properties of dynamical systems
goes back, at least, to [75]. See, for example, [5, 74] for further use of k-forms in the dynamical systems context.
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That is, the operator L is equivalent to the pushforward on two forms.
Recall that

d( f∗h) = f∗ dh. (5.5)

where, if h is a zero form, then f∗ dh(x) =
[
Dx f −1

]T
(∇h) ◦ f −1(x).

The scalar product in T∗M is canonically defined by using the canonical duality π : T∗M →
T∗M defined by ω(v) = 〈π(ω), v〉, for all v ∈ T∗M. That is,

〈ω1,ω2〉 = 〈π(ω1), π(ω2)〉 = ω1(π(ω2)). (5.6)

For each x ∈ M and v1, v2,w1,w2 ∈ T∗
x M we define

〈v1 ∧ v2,w1 ∧ w〉 = det(〈vi,w j〉). (5.7)

Assuming bilinearity, the above formula defines uniquely a scalar product among two-forms.
Also, we define a duality from � to 2 − � forms via (see [47, appendix A] for more details)

〈v,w〉ω0 = (−1)�(2−�)v ∧ ∗w = (−1)�(2−�)w ∧ ∗v = ∗v ∧ w. (5.8)

Since such a formula must hold for all �-forms, the (2 − �)-forms ∗w, ∗v are uniquely defined.
The operator ‘∗’ is the so called Hodge operator.

5.4. The Banach spaces and the main result

The operators f∗ have been studied for flows in [47] using appropriate Banach spaces. We use
the same notation and almost the same Banach spaces defined in [47, section 3]. However,
since here we consider maps rather than flows, we do not have the requirement that the forms
be null in the flow direction (see [47, equation (3.5)]). Here we provide some more detail but
we refer to [47] for the full story.

For any r ∈ N, we assume that there exists δ0 > 0 such that, for each δ ∈ (0, δ0) and ρ ∈
(0, 4), there exists an atlas {(Uα,Θα)}α∈A, where A is a finite set, such that24⎧⎪⎪⎪⎨⎪⎪⎪⎩

Θ(Uα) = B2(0, 30δ
√

1 + ρ2),

∪αΘ
−1
α (B2(0, 2δ)) = M,

‖(Θα)∗‖∞ + ‖(Θ−1
α )∗‖∞ � 2; ‖Θα ◦Θ−1

β ‖Cr � 2.

(5.9)

Fix L0 > 0. For any L > L0, let us define

Fr(ρ, L) := {F ∈ Cr(B1(0, 6δ),R) : F(0) = 0;

‖DF‖C0(B1(0,6δ)) � ρ; ‖F‖Cr(B1(0,6δ)) � L
}
.

Where the Cr is defined as usual, e.g. see [47, equation (3.6)]. For each F ∈ Fr(ρ, L), x ∈ R2,
ξ ∈ R1, let Gx,F(ξ) : B1(0, 6δ) → R2 be defined by Gx,F(ξ) := x + (ξ, F(ξ)). Let us also define

24 We use the notation Bd(x, r) = {y ∈ Rd : ‖y − x‖ < r}.
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Σ̃(ρ, L) := {Gx,F : x ∈ B1(0, 2δ), F ∈ Fr(ρ, L)}. For each α ∈ A and G ∈ Σ̃(ρ, L), we define the
leaf

Wα,G := {Θ−1
α ◦ G(ξ)}ξ∈B1(0,3δ).

For each α ∈ A, G ∈ Σ̃(ρ, L), note that Wα,G ⊂ Ûα :=Θ−1
α (Bd(0, 6δ

√
1 + ρ2)) ⊆ Uα. Finally,

we define Σα = ∪G∈Σ̃(ρ,L)Wα,G. This is the set of ‘almost stable’ leaves that we will use to
define our norms.

Given a curve Wα,G ∈ Σα, we consider Γ�,s
c (α, G) as the Cs sections of the fiber bundle on

Wα,G with fibers in ∧�(T∗M), as defined in [47, equation (3.8)], equipped with the Cs norm.
Following [47, section 3] let Vs(α, G) be the set of uniformly Cs(Uα,G) vector fields, where

Uα,G is any open set such that Uα ⊃ Uα,G ⊃ Wα,G.
Letωvol be the volume form induced on Wα,G by the push-forward of Riemannian volume via

the chart Θ−1
α . Write Lν for the Lie derivative along a vector field ν. For all α ∈ A, G ∈ Σα, g ∈

Γl,0
c (α, G), v̄p = (v1, . . . , vp) ∈ Vs(α, G)p, let us define the functionals Jα,G,g,ν̄p : Cp → C by25

Jα,G,g,ν̄ p(h) =
∫

Wα,G

〈g, Lv1 . . . Lvph〉ωvol. (5.10)

Next, for all p ∈ N, q ∈ R+, p + q < r − 1, l ∈ {0, 1, 2}, let

Uρ,L,p,q,� =
{

Jα,G,g,ν̄p|α ∈ A, G ∈ Σα(ρ, L), g ∈ Γ�,p+q
c , ν j ∈ V p+q,

‖g‖
Γ�,p+q

c (α,G)
� 1, ‖ν j‖Cp+q(Uα,G) � 1

}
.

where, for ν ∈ Vs(α, G), ‖ν‖Cs(Uα,G) = supα,i‖〈ν, eα,i〉 ◦Θ−1
α ‖Cs(Θα(Uα ,G).

For all p ∈ N, q ∈ R+, � ∈ {0, 1, 2}, we finally define the spaces Bp,q,� as the closure of the
C∞ � forms with respect to the norm

‖h‖p,q,� = sup
n�p

sup
J∈Uρ,L,n,q,�

J(h).

Note that Bp,q,� is contained in the space of � (p+ q smooth) currents (see [47]).

Remark 5.11. Note that (Θα)∗(Lvh) = L(Θα)∗v(Θα)∗h, thus, in coordinates, Lvh will have
the form

∑2
i=1αiLei h =:

∑2
i=1αi∂xi h, for some functions αi and where {ei}2

i=1 is the standard
basis of R2. If follows that restricting the vector fields in (5.10) to Θ∗

αei yields an equivalent
norm. Hence, to simplify notation, in the following we will use the notation ∂βh to designate
the application of |β| vector fields to h, where β are the usual multiindexes used in PDE.

The main result of this section consists in the following theorem which provides a rather
precise characterisation of the spectrum of the action on one forms, which is well known to be
related to the measure of maximal entropy and thus plays the same role of the operators L0 in
the previous sections.

25 By 〈·, ·〉 we mean the usual scalar product between forms.
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Theorem 5.12. For each ε > 0, for p, q large enough,

{e−htop , ehtop} ∪ (σBp+1,q−1,0( f∗)\{z ∈ C : |z| < ε}) ⊂ σBp,q,1 ( f∗)

σBp,q,1 ( f∗) ⊂ {z ∈ C : |z| < ε} ∪ {e−htop , ehtop} ∪ σBp+1,q−1,0( f∗) ∪ σBp−1,q+1,0(L),

moreover 1 /∈ σBp,q,1 ( f∗).
In addition, σBp+1,q−1,0( f∗)\{z ∈ C : |z| < ε} consists only of point spectrum and there

exists κ ∈ (0, 1) such that σBp+1,q−1,0( f∗) ⊂ {1} ∪ {z ∈ C : |z| < κ}. The same holds for
σBp−1,q+1,0(L).

Remark 5.13. In fact, we conjecture that, for λmin{p,q} > ε−1,

σBp,q,1 ( f∗)\{z ∈ C : |z| < ε} =
[
{e−htop , ehtop} ∪ σBp+1,q−1,0( f∗) ∪ σBp−1,q+1,0(L)

]
\{1},

see remark 5.23. This would be consistent with the fact that, by duality, the spectrum ofL equals
the spectrum of f −1

∗ and that the spectra of f∗ on forms determine the Ruelle zeta function, see
[72], and the latter is described in term of periodic orbits, which are the same for f and f −1.
Accordingly, one expects a symmetry between the spectra of f∗ and f −1

∗ .26

The next section is devoted to the proof of the above theorem, while in section 5.7 we
present a minimalistic discussion of cohomology in the spaces Bp,q,1 and section 5.8 is devoted
to comments on the implications of such a Theorem and a comparison with existing results.

5.5. Proof of theorem 5.12

We start with some preliminary results establishing minimal information about Hodge duality
and exterior differentials in our spaces of currents Bp,q,�.

Lemma 5.14. The Hodge duality mapΦh := � h = hω0, between zero forms and two forms,
extends to a bounded isomorphism between Bp,q,0 and Bp,q,2 and ΦL = f∗Φ. In particular,
σBp,q,2 ( f∗) = σBp,q,0 (L).

Proof. By equation (5.8), for each smooth zero form h, Φh = hω0. Thus equation (5.4)
implies ΦLh = f∗Φh for each smooth zero form. The injectivity follows since Bp,q,0,Bp,q,2

are isomorphic to a subspace of the space of currents, see [47, lemma 3.10], and the extension
of Φ to the current is an isomorphism. The result then follows by proving that Φ is a bounded
operator. For each multi-index α, |α| = p, smooth two form ω and zero form h we have∣∣∣∣∫

W
〈ω, ∂αΦ(h)〉

∣∣∣∣ � ∑
β+γ=α

∣∣∣∣∫
W
〈ω, ∂βω0〉∂γh

∣∣∣∣ � C�‖ω‖Cq+p(W)‖h‖p,q,0

from which the claim follows. �

Lemma 5.15. The exterior derivative d extends to a bounded operator Bp,q,� →
Bp−1,q+1,�+1.27 If h ∈ Bp,q,0, ψ ∈ C∞(M,R+), with the interior of supp(ψ) connected, and

26 Note that if f∗ acts on some Banach space, then here one considers f−1
∗ acting on its dual, so the relation is not

obvious a priori. Indeed, one does not necessarily expect f−1
∗ to be a bounded operator when acting on a Banach space

on which f∗ is bounded.
27 With a slight abuse of notation we will call such an extension d as well.
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ψ dh = 0, then there exists c ∈ C such that ψ(h − c) = 0.28 Finally, d(Bp,q,0) is closed in
Bp−1,q+1,1.
Proof. If h is an � form, then, for each �+ 1 formω and multi-indexα, |α| = p− 1, we have
that there exists a constant C� > 0 such that∣∣∣∣∫

W
〈ω, ∂α dh〉

∣∣∣∣ � C�‖ω‖Cp+q(W)‖h‖p,q,�

from which it follows that ‖dh‖p−1,q+1,�+1 � C�‖h‖p,q,�.
Next, let h,ψ be such that ψ dh = 0. Note that Bp,q,0 is isomorphic to a subspace of the space

of distributions (C p+q)′, see [47, lemma 3.10]. Let K = suppψ and U =
◦

K, note that U is con-
nected by hypothesis. Thus for each smooth local function ϕ, suppϕ ⊂ U, and disintegration
of ω along a smooth foliation {Wt} ⊂ Σ, we have29∫

M
ϕ∂xi h =

∫
dt
∫

Wt

〈ϕ
ψ

dxi,ψ dh〉 = 0. (5.11)

It follows that ∂xi h = 0 as a distribution on U, hence h = c on U, for some c ∈ C. That is
ψ(h − c) = 0 on M. From [47, lemma 3.10], again, it follows that ψ(h − c) = 0 as an element
of Bp,q,0.

To conclude the Lemma we want to prove that d(Bp,q,0) is closed in Bp−1,q+1,1. Let us sup-
pose that ωn → ω, in Bp−1,q+1,1, with ωn ∈ d(Bp,q,0). That is, there exists Ξn ∈ Bp,q,0 such that
ωn = dΞn. Let Ξ̂n = Ξn −

∫
MΞn. Then, for each function ϕ supported in a chart (Uα,Θα) we

can write ∫
ϕΞ̂n =

∫
M

(
ϕ−
∫

M
ϕ

)
Ξn.

Let x̄ be such that
∫

Mϕ = ϕ(x̄), then30

∫
ϕΞ̂n =

∫
Uα

dx
∫ 1

0
dt

d
dt
ϕ(x̄ + (x − x̄)t)Ξn(x)

= −
2∑

i=1

∫
M
ϕ(x̄ + (x − x̄)t)〈(xi − x̄i), ∂xiΞn(x)〉.

Hence, setting Ψt(x) = −
∑2

i=1ϕ(x̄ + (x − x̄)t)(xi − x̄i)dxi, we have, recalling equation (5.6),∫
ϕΞ̂n =

∫ 1

0
dt
∫

M
〈Ψt,ωn〉.

Arguing similarly for ∂αΞ̂n it follows that Ξ̂n is a Cauchy sequence. Let Ξ be the limit, then,
by the continuity of d, dΞ = ω, hence ω ∈ d(Bp,q,0). �

28 This essentially says that closed anisotropic zero currents are constant. Since for zero currents being closed and
being harmonic is the same, this is a little piece of Hodge theory, all that is presently needed. Yet, it would be clearly
useful to develop the Hodge theory in the context of anisotropic spaces.
29 Since the foliation is smooth the Jacobian J of the disintegration is a smooth function and ϕ̂ = Jϕ. Note that ϕ̂

ψ
is a

smooth function on Wt .
30 To simplify notation we do not write explicitly the change of coordinates Ξα.
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5.5.1. Spectral radius and essential spectral radius of f∗ and L. The first step in the study of
the operators f∗,L is the following.

Lemma 5.16. The action of f∗ on �-forms extends to a linear bounded operator from Bp,q,�

to itself. With a slight abuse of notation we use f∗ for the action on eachBp,q,�. Then, there exists
a constant C� > 0 such that

‖ f n
∗h‖0,q,0 � C�‖h‖0,q,0

‖ f n
∗h‖0,q,1 � C�e

htopn‖h‖0,q,1

‖ f n
∗h‖p,q,0 � C�λ

−np‖h‖p,q,0 + C�‖h‖p−1,q+1,0

‖ f n
∗h‖p,q,1 � C�e

htopnλ−np‖h‖p,q,1 + C�e
htopn‖h‖p−1,q+1,1

‖Lnh‖p,q,0 � C�λ
−np‖h‖p,q,0 + C�‖h‖p−1,q+1,0.

Proof. To start with let h ∈ C∞(M,C) be a function, then∫
W
〈ϕ, f n

∗h〉 =
∫

W
〈ϕ, h ◦ f −n〉 =

∫
f−nW

〈ϕ ◦ f n, hλs
n〉

where λs
n(x) is the contraction of f n in the direction T∗W at the point x. We can divide f −nW

in a collection {Wi} ⊂ Σ. Let {ϑi} be a smooth partition of unity subordinated to {Wi}. If
λs

n,i = minx∈Wi λ
s
n(x), then the usual distortion arguments implies, that for all x ∈ Wi, C�λ

s
n,i �

λs
n(s) � C�λ

s
n,i, thus, integrating | f n(Wi)| =

∫
Wi
λs

n,i � C�λ
s
n,iδ, where δ is the size of the man-

ifolds (see the beginning of section 5.4). In addition, for all q ∈ N, ‖λs
n(s)‖Cq(Wi) � C�λ

s
n,i.

Accordingly, ∣∣∣∣∫
W
〈ϕ, f n

∗h〉
∣∣∣∣ �∑

i

∣∣∣∣∫
Wi

〈ϑiλ
s
nϕ ◦ f n, h〉

∣∣∣∣
� C�

∑
i

| f n(Wi)|δ−1‖ϕ ◦ f n‖Cq(Wi)‖h‖0,q,0

� C�‖ϕ‖Cq(W)‖h‖0,q,0

which, by density, proves the first inequality of the lemma. Next, recalling (5.6), we have, for
each v = π(ω), h a C∞ one form,∣∣∣∣∫

W
〈ω, f n

∗h〉
∣∣∣∣ � ∣∣∣∣∫

W
f n
∗h(v)

∣∣∣∣ = ∣∣∣∣∫
W

h f−n(x)(dx f −nv(x))dx

∣∣∣∣ .
Setting vn(x) = d f n(x) f −nv( f n(x)), by the usual distortion arguments we have ‖vn‖Cq(Wi) �
C�(λs

n,i)
−1‖v‖Cq(W), hence∣∣∣∣∫

W
〈ω, f n

∗h〉
∣∣∣∣ � C�

∑
i

∣∣∣∣∫
Wi

h(ϑiλ
s
nvn)

∣∣∣∣ � C�

∑
i

|Wi|δ−1‖h‖0,q,1

� C�ehtopn‖ω‖Cq‖h‖0,q,1
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where, in the last line, we have used | f −nW| ∼ ehtopn, see [47, appendix D]. Taking the sup on
W and ω the second inequality of the lemma follows.

The next two inequalities are proven, similarly, as done in [47, lemma 4.7], while the last
follows by [45, lemma 2.2] taking into account lemma 5.14. �

We are now able to obtain a first information on the peripheral spectrum.

Lemma 5.17. For p, q large enough, the spectra of f∗ on Bp,q,0 and on Bp,q,2 are contained
in {1} ∪ {z ∈ C : |z| < κ} for some κ < 1. The eigenvectors associated to the eigenvalue 1
are the constant function 1 and the measure μSRB respectively.

Proof. By lemma 5.14 the action of f∗ onBp,q,2 is conjugated to the action ofL onBp,q,0, thus
they have the same spectrum. But [45] implies that there exists κ ∈ (0, 1) such that σBp,q,0 (L) ⊂
{1} ∪ {z ∈ C : |z| � κ} and one is a simple eigenvalue. This proves the Lemma for Bp,q,2.

Let us discuss Bp,q,0. Lemma 5.16 and Hennion’s theorem [51] (or see [28, appendix B])
imply that the radius of the essential spectrum of f∗ acting on Bp,q,0 is at most λ−1 while
the spectral radius is one, moreover the operator is power bounded. Accordingly, if f∗ has no
eigenvalue on the unit circle apart from 1 and 1 is a simple eigenvalue, then there exists a
κ that satisfies the Lemma. Thus, we need only study eigenvalues of the form eiθ. Since the
operator is power bounded, there cannot be a (non-trivial) Jordan block associated to such
a maximal eigenvalue, hence their geometric and algebraic multiplicity coincide. Hence, we
have the spectral decomposition

f∗ =
∑

j

eiθ jΠ j + Q

where θ j ∈ R, ΠiΠ j = δi jΠ j, Π jQ = QΠ j = 0 and ‖Qn‖p,q,0 � C�κ
n. Suppose that eiθ ∈

σBp,q,0 ( f∗), θ ∈ R\{0}, then there exists h ∈ Bp,q,0\{0} such that f∗h = eiθh, and, by the
spectral decomposition, there exists h0 ∈ C∞ such that

h = lim
n→∞

1
n

n−1∑
k=0

e−iθk f k
∗h0.

It follows that, for all ϕ ∈ C∞(M,C),31

∫
M
ϕhω0 = lim

n→∞

1
n

n−1∑
k=0

e−iθk
∫

M
ϕ f k

∗h0ω0 = lim
n→∞

1
n

n−1∑
k=0

e−iθk
∫

M
ϕ · h0 ◦ f −kω0.

But f −1 is also a transitive Anosov diffeomorphism with its SRB measure, call it μ−
SRB, then

lim
k→∞

∫
M
ϕ · h0 ◦ f −kω0 =

∫
M
ϕω0

∫
M

hμ−
SRB

which implies ∫
M
ϕhω0 = 0

31 Note that the integral on M can be decomposed as an integral over elements of Σ, which are continuous functionals
in the Bp,q norms, hence we can exchange the limit with the integral.
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and since Bp,q,0 is a space of distributions, see [47], it follows h = 0 contrary to the hypothesis.
We are left with the case θ = 0, that is the eigenvalue 1. Since 1 ◦ f −1 = 1, one is an eigenvalue,
we want to prove that it is simple. Let f∗h = h, and let h0 as before,∣∣∣∣∫

M
ϕhω0

∣∣∣∣ � lim
n→∞

1
n

n−1∑
k=0

∫
M
|ϕ| · |h0| ◦ f −kω0 � ‖ϕ‖L1(ω0)‖h0‖C0 .

Thus h ∈ L∞(ω0) (the dual of L1(ω0)), and h = h ◦ f −1, ω0-almost surely. On the other hand,
since ω0 is ergodic for the Anosov map, it follows that h is almost surely constant. Thus 1 is
simple point spectrum for f∗ acting on Bp,q,0. �

5.5.2. The peripheral spectrum of f∗ acting on Bp,q,1. Here, we start a more in depth study of
σBp,q,1 ( f∗).

Lemma 5.18. The spectrum of f∗ on Bp,q,1 contains ehtop , which is also the spectral radius.
In addition, the essential spectral radius is bounded by ehtopλ−min{p,q}. The eigenvector asso-
ciated to ehtop is the Margulis measure and, together with the dual eigenvector defines the
measure of maximal entropy.

Proof. The statement on the spectral radius and essential spectrum follows from lemma 5.16
and Hennion’s theorem [51] (see also [28, appendix B]). Next, if ν is an eigenvalue of f∗, |ν| =
ehtop , then, by lemma 5.16, ν−n f∗ is power bounded, hence it cannot be associated to a Jordan
block. Let h ∈ Bp,q,1 be an eigenvalue, then, by lemma 5.16 again, ‖h‖p,q,1 � C�‖h‖0,p+q,1.

Next, let v̄u(x) ∈ C(x) be a smooth normalised vector field. Then, for each ω ∈ C p+q, W ∈
Σ and n ∈ N let v = π(ω) and v = w + vu where v belongs to the tangent space of W and
vu(x) = α( f −n(x))d f n

f−n(x)v̄
u( f −n(x)). Note that ‖α‖Cp+q( f−n(W)) � λ−nC�‖ω‖Cp+q . Thus,∣∣∣∣∫

W
〈ω, h〉

∣∣∣∣ = ∣∣∣∣∫
W
〈ω, ν−n f n

∗h〉
∣∣∣∣ = ∣∣∣∣ν−n

∫
W

f n
∗h(v)

∣∣∣∣
�
∣∣∣∣∫

W
ν−nh f−n(x)(dx f −nw(x))dx

∣∣∣∣+ ∣∣∣∣∫
W
ν−nα( f −n(x))h f−n(x)

(
v̄u( f −n(x))dx

∣∣∣∣
� C�

∑
i

∫
Wi

ϑi(x)ν−nhx(w̄i(x))dx + C�λ
−n‖h‖0,p+q,1‖v‖Cp+q

where w̄i belongs to the tangent space of Wi and ‖w̄i‖Cp+q � ‖w‖C0 + λ−n‖w‖Cp+q . Thus,∣∣∣∣∫
W
〈ω, h〉

∣∣∣∣ � C�| f −nW|δ−1e−htopn‖h‖0,p+q,1‖w‖C0 + C�λ
−n‖h‖0,p+q,1‖v‖Cp+q

� C�δ
−1‖h‖0,p+q,1‖ω‖C0 + C�λ

−n‖h‖0,p+q,1‖ω‖Cp+q

where, in the last line, we have used the estimate on the growth of invariant manifolds, see [47,
appendix C] for details. Taking the limit n →∞ and the sup in W and ω yields

‖h‖0,0,1 � C�‖h‖p,q,1.

Next, let vs be the normalised stable direction. Then, setting φ̄(x) = ln |d f (x) f −1vs( f (x))|,

dx f −nvs(x) = e
∑n−1

k=0 φ̄◦ f−n+k(x)vs( f −n(x)).
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We can then define the transfer operator

L∗g(x) = g ◦ f −1(x)eφ̄(x). (5.12)

Defining the map Γ : B0,0,1 →M, the space of signed measures, by Γ(h) = h(vs)ω0, we have∫
M

f∗(h)(gvs) =
∫

M
gL∗Γ(h).

In [46] is proven that L∗ is has maximal eigenvalue e−htop and the associated eigenvector is the
Margulis measure. This concludes the lemma. �

5.5.3. Deeper in the spectrum of f∗ acting on Bp,q,1. By lemma 5.15 we can extend the de
Rham cohomology to the currents in the spaces Bp,q,�. In other words we can call closed the
elements ω ∈ Bp,q,� such that dω = 0 and exact the ones for which it exists α ∈ Bp+1,q−1,�−1

such that ω = dα.

Remark 5.19. By equation (5.5) and lemma 5.15 it follows that f∗ sends closed currents
into closed currents and exact currents into exact currents. Hence f∗ induces an action in
cohomology (of the Bp,q,� currents), let us call it f�.

The next result shows that such a cohomology (let us call it anisotropic cohomology) is
relevant to our problem.

Lemma 5.20. If ν ∈ σBp,q,1 ( f∗), and ω ∈ Bp,q,1 are such that f∗ω = νω and
|ν| > ehtopλ−min{p,q}, then either ω is not exact or ν ∈ σBp+1,q−1,0( f∗)\{1}. Moreover,
σBp+1,q−1,0( f∗)\{1} ⊂ σBp,q,1 ( f∗). If ν ∈ (σBp,q,1 ( f∗)\σBp−1,q+1,0(L)) ∪ {1}, then for each
ω ∈ Bp,q,1 such that f∗ω = νω we have dω = 0.

Proof. To start with note that, by lemma 5.18, ν must belong to the point spectrum.
Let ν ∈ (σBp,q,1 ( f∗)\σBp,q,0 ( f∗)) ∪ {1} and ω ∈ Bp,q,1 such that f∗ω = νω and suppose that

ω is exact. Thus, there exists h ∈ Bq−1,p+1,0 such that dh = ω. This implies

ν dh = f∗ dh = d f∗ h.

That is d( f∗h − νh) = 0. It follows by lemma 5.15 that f∗h = νh + c. By a change of variable it
follows that the dual ( f∗)′ of f∗ is given by the transfer operatorL f−1 associated to the map f −1.
Since f −1 is Anosov as well lemmata 5.16 and 5.17 apply and the measure μ−

SRB associated
to f −1 belongs to the dual of Bp,q,0. Since f∗1 = 1 and the space V = {h :

∫
Mh dμ−

SRB = 0}
is invariant for f∗, it is natural to write h = α+ g with α ∈ C and g ∈ V. Then, we have

c + να + νg = α+ f∗g.

Applying μ−
SRB to the above implies c = α(1 − ν), hence νg = f∗g. The only possibility

is then ν = 1 but the associated eigenvector would be 1 /∈ V, it follows g = 0. But then
ω = dh = dα = 0. Hence, ω cannot be exact. The inclusion of the spectra is obvious.

If f∗ω = νω and dω = hω0, by lemma 5.14 we have Lh = νh. Accordingly, either ν ∈
σBp−1,q+1,0(L) or h = 0, that is dω = 0. On the other hand, if ν = 1, then hω0 = μSRB. Hence,
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dω = μSRB and∫
M
μSRB =

∫
M

dω = 0

which is impossible since μSRB is a positive measure. Accordingly, it must be dω = 0, that is,
again, the form is closed. �

To conclude we need a theory of anisotropic de Rham cohomology, such a general theory
goes a beyond our present scopes so we will develop only the minimal version needed here.
This is contained in section 5.7, and in particular in lemma 5.26 which states that the anisotropic
cohomology of one forms is isomorphic to standard de Rham cohomology. In particular, this
implies that the vector space of the equivalence classes is finite dimensional, hence f�, defined
in remark 5.19, has only point spectrum, let us call Ω the spectrum of f� when acting on one
forms.

Next, we want to identify Ω. As stated in remark 5.9 this is the only place where we use that
our map is topologically conjugated to the linear model.

Lemma 5.21. We have Ω = {e−htop , ehtop}.

Proof. Lemma 5.26 implies that the anisotropic de Rham cohomology for one forms is a
topological invariant, hence so is f�. Since our map is conjugated to a linear model (see [53,
section 2.6]), f� is conjugated to the action of the linear model on homology.The lemma follows
by a direct computation, see [53, section 3.2-e] for details. �

The following lemma concludes the proof of theorem 5.12.

Lemma 5.22. For each ε > 0, if p, q are large enough, we have[
Ω ∪ σBp+1,q−1,0( f∗)\

(
{1} ∪ {z ∈ C : |z| < ε}

)]
⊂ σBp,q,1 ( f∗)

σBp,q,1 ( f∗) ⊂
[
{z ∈ C : |z| < ε} ∪Ω ∪ σBp+1,q−1,0( f∗) ∪ σBp−1,q+1,0(L)

]
\{1}.

Proof. Lemma 5.18 implies that if p, q are large enough we have to worry only about
point spectrum.

Thus, if ν ∈ σBp+1,q−1,0( f∗) then there exists θ ∈ Bp+1,q−1,0 such that f∗θ = νθ. This implies
that f∗ dθ = ν dθ so either dθ = 0, but then by lemma 5.15 we have h constant and ν = 1, or
ν ∈ σBp,q,1 ( f∗).

If ν ∈ Ω, the spectrum of f� (defined in remark 5.19), then it means that there exists ω ∈
Bp,q,1

0 and ψ ∈ Bp+1,q−1,0 such that f∗ω = νω + dψ, that is f�[ω] = ν[ω], where [ω] �= 0 is the
equivalence class of ω. If ν /∈ σBp+1,q−1,0( f∗), we can define θ = (ν − f∗)−1ψ and

(ν − f∗)dθ = dψ.

But then f∗(ω + dθ) = ν(ω + dθ) which implies ν ∈ σBp,q,1
0

( f∗) unless ω + dθ = 0. But the

latter possibility would imply that ω is exact, that is [ω] = 0, contrary to the assumption. This
proves the first inclusion of the lemma.

To prove the second inclusion note that if f∗ω = νω, ω ∈ Bp,q,1 and ν /∈ σBp−1,q+1,0(L)\{1},
then the last part of the lemma 5.20 implies dω = 0. Then f�[ω] = ν[ω], thus either ν ∈ Ω or
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[ω] = 0, i.e. ω is exact. But if ν /∈ σBp+1,q−1,0( f∗)\{1} the first part of lemma 5.20 implies that
ω is not exact, hence [ω] �= 0. Since lemma 5.21 implies 1 /∈ Ω, the Lemma follows. �

Remark 5.23. It is conceivable that lemma 5.22 could be upgraded to an equality. Indeed,
suppose that for a two current

∫
M ω = 0 implies that there exist a one current θ such that

ω = dθ.32 Then if f∗ω = νω, ν �= 1 and ω≡/ 0, we have
∫

M ω = 0 thus we can write ω = dθ
and d(νθ− f∗θ) = 0. Thus νθ− f∗θ=ψ with d66666ψ = 0. Hence, if ν /∈ σBp,q,1 ( f∗), we have
θ = (ν − f∗)−1ψ. Since d(z − f∗)−1ψ is a meromorphic function and for large z the von Neu-
mann expansion implies the it is zero, we have dθ = 0, a contradiction. Hence the second
inclusion of the lemma 5.22 would be an equality.

5.6. Application to the measure of maximal entropy

In this section we prove theorem 5.10.
Lemma 5.18 implies that there exists �� ∈ (Bp,q,1)′ and h� ∈ Bp,q,1 such that f∗h� = ehtoph�

and ��( f∗ω) = ehtop��(ω), for all ω ∈ Bp,q,1. In addition, ��(ϕh�) = μBM(ϕ). Lemmata 5.22 and
5.17 imply that the rest of the spectrum is contained in {z ∈ C : |z| < κ} for someκ ∈ (0, 1). It
follows that the spectral decomposition f∗ = ehtoph� ⊗ �� +Q with ��Q = 0, Qh� = 0, �(h) =
1 and ‖Qn‖p,q,1 � C�κ

n. Also note that the multiplication by a smooth function is a bounded
operator. Thus∫

M
g ◦ f nh dμBM = ��(g ◦ f nhh�) = e−nhtop��( f n

∗(g ◦ f nhh�)) = e−nhtop��(g f n
∗(hh�))

= ��(gh�)�∗(hh�) + e−nhtop��(gQn(hh�)).

It follows that, for r large enough,∣∣∣∣∫
M

g ◦ f nh dμBM −
∫

M
g dμBM

∫
M

h dμBM

∣∣∣∣ � C�‖g‖Cr‖h‖Cr e−nhtopκn.

5.7. Anisotropic de Rham cohomology

While to develop a theory of anisotropic de Rham cohomology as well as the relative Hodge
theory may certainly be of interest, in this section we will develop only the bare minimum
necessary to our needs and we will keep the arguments as elementary as possible.

Without loss of generality we can, and will, assume that there exist good covers {U+
α }, and

{Uα} such that U+
α ⊃ Uα, and a partition of unity {ψα} subordinated to {Uα}. Also let {ψ+

α }
be such that supp(ψ+

α ) ⊂ U+
α and ψ+

α |Uα = 1.33

Lemma 5.24. If h ∈ Bp,q,1 is closed then, for each α, there exists Hα, H+
α ∈ Bp+1,q−1,0 such

that dHα = hψα + H+
α dψα and Hα = H+

α ψα.
Proof. For each Uα let us choose xα ∈ Θα(U+

α \ supp ψ+
α ). We start assuming that h is a

smooth one form and we define, for all x ∈ Uα,

H̄α(x) =
∫ 1

0
Θα∗hxα(1−t)+tx(x − xα)dt. (5.13)

32 This is equivalent to studying the cohomology for two forms.
33 Recall that a good cover is a cover such that, for each collection A of indexes, ∩α∈AUα is contractible.
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Also, for simplicity of notation, we confuse h and Θα∗h=:
∑

ihi dxi and set γlin,x(t) = xα(1 −
t) + tx. Then

∂xi H̄α(x) =
2∑

k=1

∫ 1

0

[
t(∂xi hk) ◦ γlin,x(t)(x − xα)k + hi ◦ γlin,x(t)

]
=

2∑
k=1

∫ 1

0
t(∂xk hi) ◦ γlin,x(t)(x − xα)k + hi ◦ γlin,x(t)

−
∫ 1

0
t dh(x − xα, ei)

=

∫ 1

0

d
dt

[
thi ◦ γlin,x(t)

]
−
∫ 1

0
t dγlin,x (t)h(x − xα, ei)

= hi(x) −
∫ 1

0
t dγlin,x (t)h(x − xα, ei). (5.14)

Thus, if h is a closed form, then we have dH̄α = h.
Next, let γ ∈ Σα and ϕ ∈ Cq(γ), and set Hα = ψαH̄α, ϕα = ϕψα ◦ γ, then∫

γ

ϕ · Hα =
2∑

i=1

∫ b

a
ds
∫ 1

0
dtϕα(s)〈dxi,Θα,∗h〉(xα(1 − t) + tγ(s))

· (γ(s) − xα)i

=

2∑
i=1

∫ 1

0
dt t−1
∫ tb

ta
dsϕα(t−1s)〈dxi,Θα,∗h〉(xα(1 − t) + tγ(t−1s))

· (γ(t−1s) − xα)i.

If we define γt(s) = xα(1 − t) + tγ(t−1s), then γ ′
t (s) = γ ′(t−1s) ∈ Cs, and setting ϕ̄α,t =∑2

i=1ϕα(t−1s)(γ(t−1s) − xα)idxi, we have, for some cα ∈ (0, 1),∫
γ

ϕ · Hα =

∫ 1

cα

dt t−1
∫
γt

〈ϕ̄α,t, h〉. (5.15)

Equation (5.15) implies that Hα is a continuous functional of h hence it can be extended to
all h ∈ B0,q,1. By the same scheme we can define H+

α = ψ+
α H̄α when h ∈ B0,q,1. Next, setting

xt,s := xα(1 − t) + tγ(s) and using (5.14), we have∫
γ

ϕ∂xi Hα =

∫
γ

ϕψα〈dxi, h〉+
∫ 1

0
dt
∫
γt

〈ϕα,t, ∗dxi〉 ∗ dh +

∫
γ

〈ϕ dxi, dψα〉H+
α . (5.16)

Hence, if h is closed, dHα = ψαh + H+
α dψα. If h ∈ B1,q,1 is closed, then there exist smooth

forms hn that converge to h. Moreover, by lemmata 5.15 and 5.14 it follows that dhn → 0 in
B0,q+1,2, hence equation (5.16) implies

‖Hα,n − Hα,m‖1,q−1,0 � ‖hn − hm‖0,q,1 + C�‖dhn − dhm‖0,q+1,2,

thus Hα,n is a Cauchy sequence in B1,q−1,1. Analogously, one can prove that H+
α,n is Cauchy

and, calling Hα, H+
α the limits, we have dHα = ψαh + H+

α dψα.

553



Nonlinearity 35 (2022) 513 O Butterley et al

Similar arguments show that if h ∈ Bp,q,1 and closed then Hα, H+
α ∈ Bp+1,q−1,0 and dHα =

ψαh + H+
α dψα. �

Lemma 5.25. There exist constants cα,β ∈ C such that, for all α, β,

ψαψβ[H+
α − H+

β + cα,β] = 0.

Proof. By lemma 5.24 follows

d([H+
α − H+

β ]ψαψβ) = d(Hαψβ − Hβψα)

= H+
α ψβ dψα + Hα dψβ − H+

β ψα dψβ + Hβ dψα

= [H+
α − H+

β ]d(ψαψβ).

This implies ψαψβ d[H+
α − H+

β ] = 0 and the lemma follows thanks to the last assertion of
lemma 5.15. �

This fact allows to obtain our basic result.

Lemma 5.26. The anisotropic de Rham cohomology for one forms is isomorphic to the
standard de Rham cohomology.

Proof. The first task is to understand when h ∈ Bp,q,1 is exact. Let c̄ = (cα) ∈ CN , where
N = �{Uα}, and define H(c̄) =

∑
α(H+

α + cα)ψα. If h is exact, then there exists θ ∈ Bp+1,q−1,0

such that dθ = h but then34

ψα d(θ − H+
α ) = 0.

Then lemma 5.15 implies that there exists cα such that ψα(θ − H+
α − cα) = 0, hence for such

a collection of constants c̄ = {cα} we have θ = H(c̄). It follows h is exact if and only if it is
possible to choose c̄ so that dH(c̄) = h.

To start with we have thus to compute

dH(c̄) =
∑
α

ψαh +
∑
α

(H+
α + cα)dψα = h +

∑
α,β

(H+
α + cα)ψβ dψα. (5.17)

Accordingly, if

(H+
α + cα − H+

β − cβ)ψβ dψα = 0, (5.18)

then, ∑
α,β

(H+
α + cα)ψβ dψα =

∑
α,β

(H+
β + cβ)ψβ dψα

=
∑
β

(H+
β + cβ)ψβ d

(∑
α

ψα

)
= 0,

34 Note that lemma 5.24 implies that ψα dH+
α = hψα.
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and, recalling equation (5.17), dH(c̄) = h. To conclude note that the problem is now reduced
to the study of the Čech cohomology Ȟ1(U ,C) where U = {Uα}. Indeed, a one-cochain f is
a one-cocycle iff for each two-simplex (Uα0 , Uα1 , Uα2) holds:35

f (Uα1 , Uα2 ) − f (Uα0 , Uα2) + f (Uα0 , Uα1) = 0 (5.19)

while it is a coboundary if there exists a 0-cochain g such that for all one-simplex (Uα0 , Uα1)
holds

f (U0, U1) = g(U0) − g(U1). (5.20)

Accordingly, we can interpret the constants c̄ = {cα} as 0-cochain and the constants
C̄ = {cα,β}, in lemma 5.25, as a one-cochain. Then lemma 5.25 implies that C̄ must be a
one-cocycle. To see it, given any two-simplex {Uα0 , Uα1 , Uα2} consider any smooth function
ϕ such that its support is strictly contained in Uα0 ∩ Uα1 ∩ Uα2 , then, by lemma 5.25 and the
definition of {ψα},

0 =

∫
M
ϕ
[
H+

α1
− H+

α2
+ cα1,α2 − H+

α0
+ H+

α2
− cα0,α2 + H+

α0
− H+

α1
+ cα0,α1

]
=

∫
M
ϕ
[
cα1,α2 − cα0,α2 + cα0,α1

]
which implies cα1,α2 − cα0,α2 + cα0,α1 = 0 by the arbitrariness of ϕ.

On the other hand equation (5.18) is satisfied iff C̄ is a one-coboundary. To see this, let
{Uα0 , Uα1} be a one-simplex. We can assume w.l.o.g. that ψα0 dψα1 �= 0 otherwise ψα1 would
be constant different from zero and one on supp(ψα0). But then for each sufficiently small
θ such that supp(θ) ⊂ supp(ψα0) the set {ψ̃α} := {ψα}α/∈{α0,α1} ∪ {ψα1 − θ,ψα0 + θ} would
still be a partition of unity subordinated to U and one can choose θ such that ψ̃α0 dψ̃α1 �=
0. We can then find an open set U ⊂ Uα0 ∩ Uα1 such that ψα0 dψα1 �= 0 in U. Then, using
equation (5.18) multiplied by ϕ(ψα0 dψα1 )−1 and the statement of lemma 5.25 multiplies by
ϕ(ψα0ψα1 )−1, for each ϕ supported in U we have

0 =

∫
M
ϕ
[
H+

α0
+ cα0 − H+

α1
− cα1 − H+

α0
+ H+

α1
− cα0,α1

]
=

∫
M
ϕ
[
cα0 − cα1 − cα0,α1

]
which, by the arbitrariness of ϕ implies cα0,α1 = cα0 − cα1 .

The above discussion implies that h is exact if and only if C̄ is a one-coboundary. This
implies the Bp,q,1 cohomology is isomorphic to the Čech cohomology, which is isomorphic to
the de Rham cohomology. �

5.8. Conclusion and comparisons

While the results for the simple case studied in section 2 are fully satisfactory, the results in
sections 3–5 are still partial. Indeed, we show that the preset approach yields rather sharp
results for the operator associated to the measure of maximal entropy, but less information is
obtained, e.g. for the operator associated to the SRB measure. It is possible that considering
the commutation of different operators with the transfer operator more information can be
obtained, but this requires further work.

35 Recall that {Uα0 , . . . , Uαq} is a q-simplex if ∩q
i=0Uαi �= ∅ while a q-cochain is a function from the q-simplex to C.
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Also, in sections 3 and 4 we consider only one dimensional maps, yet the present approach
seems amenable to extension to the higher dimensional setting. In particular, the arguments of
section 5 should allow to considerably improve [24], at least for small potentials.

In the case of two dimensional hyperbolic maps, presented in section 5, our approach repro-
duces in a unified manned all the known results. Theorems 5.10 and 5.12 are a refinement of
[8, corollary 2.5], which contains slightly stronger results than [41]. In addition, for the appli-
cation to toral parabolic flows, we can obtain the exact equivalent of [8, corollary 2.3] which
is sharper than the corresponding results in [41]. Indeed, if ht is the unit speed flow along the
stable manifold of an Anosov map f then our results yield (see [48] for details)∣∣∣∣∫ T

0
g ◦ ht(x)dt − Tμtop(g)

∣∣∣∣ � C�‖g‖∞

which implies that the ergodic average either grows linearly, or g is a cocycle. (See also [22]
for a very recent and short proof of a logarithmic bound in a more general setting.)

We have thus seen that the present approach both reproduces the results in [8], and enlightens
the connection with the action in cohomology (already present, in some form, in [41, 42]).

In conclusion, the present strategy unifies and refines the existing results in all the cases
we have presented. In addition, it appears amenable to further generalisation. In particular, it
seems possible to extend it to the higher dimensional case.

Another promising direction would be to apply it to Anosov flows where some hints of the
relevance of some type of cohomology already exists (e.g. see [79]). Along the same lines, it is
reasonable that our ideas can yield relevant results if applied to pseudo-Anosov and partially
hyperbolic maps.

Appendix A. Proof of theorem 3.9

Before proving theorem 3.9 we need a few preliminary lemmata.
In this case it is convenient to define ψ(g)(x) =

∫ x
0 g(y)dy and

L+g = L2g + L1(D f · ψ(g)).

Note that L+ is a positive operator: if g � 0, then

L+g � L1(D f · ψ(g)) � 0 (A.1)

(here we use the assumption that D f � 0). This facilitates the study of its spectrum. There is
an obvious connection with the operator we are interested in:

L�g = L+g − (L1D f ) ·
∫ 1

0
(1 − y)g(y)dy, (A.2)

that is L� is a rank one perturbation of L+.
Before proceeding further we need some information on L+. Recall that, as defined in the

theorem, μ∗ =
1

f ′(1) .

Lemma A.1. The spectral radius of L+, acting on L1, is μ∗. Moreover, μ∗ is an eigenvalue
of L′

+ (the dual operator to L+), acting on L∞ with eigenvector given by the constant function
one.
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Proof. Note that, for all g ∈ L1,∫ 1

0
1 · L+g(y)dy =

∫ 1

0

[
g(y)
f ′(y)

+

(
1

f ′(y)

)′
ψ(g)(y)

]
dy =

∫ 1

0

(
ψ(g)

f ′

)′
(y) dy

=
1

f ′(1)
ψ(g)(1) − 1

f ′(0)
ψ(g)(0) =

1
f ′(1)

∫ 1

0
1 · g(y)dy. (A.3)

Hence, 1
f ′(1) is an eigenvalue of the dual of L+ and hence it belongs to the spectrum of L+.

The lemma follows since∫ 1

0
|L+g(y)| dy �

∫ 1

0
L+|g|(y)dy =

1
f ′(1)

∫ 1

0
|g(y)|dy. (A.4)

�
Note that the above lemma implies that the space V0 = {h ∈ L1 |

∫ 1
0 h = 0} is invariant

under L+. However, this does not give much information on the spectrum. To learn more it is
convenient to study the operator L+ acting on W1,1.

Lemma A.2. For all g ∈ W1,1 we have

‖L+g‖L1 � μ∗‖g‖L1

‖L+g‖W1,1 � μ2
∗‖g‖W1,1 + (3‖D f‖∞ + ‖D′

f‖L1 + ‖D2
f‖L1 + μ∗)‖g‖L1.

Proof. The first inequality follows from (A.4). Next, for each g ∈ W1,1, using again (3.2),
we have

(L+g)′ = L3g′ + 3L2D f g + L2D′
fψ(g) + L1D2

fψ(g). (A.5)

Thus (note that D f � 0 implies that f ′′ � 0 and so f ′(0) � f (x) � f ′(1)), using also the
estimates of lemma 3.5,

‖(L+g)′‖L1 � μ2
∗‖g′‖L1 + (3‖D f‖∞ + ‖D′

f‖L1 + ‖D2
f‖L1)‖g‖L1 .

The lemma follows using again (A.4). �

Lemma A.3. μ∗ is a simple eigenvalue of L+. Moreover, h+, the eigenvector associated to
μ∗, is strictly positive, i.e. h+ > 0. In addition, there exists μ1 < μ∗ such that σW1,1 (L+) ⊂
{μ∗} ∪ {z ∈ C : |z| � μ1}.

Proof. Lemma A.2 and [51] (see also [28, appendix B]) imply that the essential spectrum
of L+ is contained in a disk of size μ2

∗. Thus, since μ∗ is an eigenvalue of L′
+, μ∗ must be

an eigenvalue of L+. Moreover, lemma A.2 implies that {μn
∗Ln

+} is uniformly bounded when
acting on W1,1, hence by [32, lemma 8.8.1] μ∗ is a semi-simple eigenvalue (no Jordan blocks).

Let h+ ∈ W1,1\{0} ⊂ C0 be a corresponding eigenvector. Next, suppose thatL+g = μ∗eiθg,
then μ∗|g| � L+|g|, but then∫ 1

0
L+|g| − μ∗|g| = 0
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thus μ∗|g| = L+|g|. Accordingly, we can assume that h+ � 0. But then it must be h+ > 0.
Indeed, if there exists x̄ such that h+(x̄) = 0, then, calling y the maximal element in f −1(x̄),

0 = μ∗h+(x̄) � 1
f ′(y)

(
1
f ′

)′
(y)
∫ y

0
h+.

Hence h+(x) = 0 for all x � y. Iterating the argument we have that h+(x) = 0 for all x < 1,
and, by continuity, h+ ≡ 0, contrary to the assumption. Accordingly, if there exists another h
such that L+h = μ∗h, then it cannot be zero anywhere otherwise |h|, which is also an eigenvec-
tor, would be identically zero. But then there exists α ∈ R such that αh+ − |h| has a zero and
hence, since αh+ − |h| also is an eigenvalue, h = αh+. Hence, μ∗ is simple (the corresponding
eigenspace has dimension one).

Therefore, if eiθμ∗g = L+g then there must exist ϑ ∈ C0 such that g = eiϑh+. It follows

0 = μ∗h+ − e−iθ−iϑL+(eiϑh+) = L+h+ − e−iθ−iϑL+(eiϑh+)

= L2

[
1 − e−iθ−iϑ◦ f+iϑ

]
h+ + L1D f

[
ψ(g) − e−iθ−iϑ◦ fψ(eiϑh+)

]
.

Taking the real part and integrating yields

0 =

∫ 1

0

1 − cos[θ + ϑ ◦ f − ϑ]
f ′

h+ +

∫ 1

0
dx D f (x)

∫ x

0
dy
[
1 − cos [θ + ϑ ◦ f (x) − ϑ(y)] h+(y).

Since both terms are positive, the only possibility is θ + ϑ ◦ f (x) − ϑ(y) = kπ. This implies
that ϑ is constant and hence g is proportional to h+, hence it must be θ = 0. This proves that
μ∗ is the only peripheral eigenvalue and the spectral gap. �

We can now conclude our argument.

Proof of theorem 3.9. Equation (A.2) and lemma A.2 imply the bound on the essential
spectral radius.

Since f ′ is continuous on [0, 1] we know that∫ 1

0
|( 1

f ′(y)
)′|dy =

1
f ′(1)

− 1
f ′(0)

=: Δ.

This means that the first statement of the theorem follows from theorem 3.6 where

τ = λ−1 +

∫ 1

0

∣∣∣∣( 1
f ′(y)

)′∣∣∣∣ dy =
2

f ′(1)
− 1

f ′(0)
= Δ+ μ∗.

It remains to show the absence of eigenvalues in the sets A0, . . . , A4. By equation (A.2) we
have that if L�g = zg then

(z − L+)g = −L1D f

∫ 1

0
(1 − y)g(y)dy. (A.6)

Recall μ1 < μ∗ from lemma A.3. Let |z| > μ1 and suppose, for sake of contradiction, that the
right-hand side of the above equation is zero. This would mean, by lemma A.3, that g = h+
and z = μ∗. However this would then imply that the integral on the right was strictly positive
and, since D f ≡/ 0, would contradict the assumption. This means that the right-hand side of

the above equation cannot be zero. Moreover, z �= μ∗ since, if it were,
∫ 1

0 (μ∗ − L+)g = 0 by
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lemma A.1, and this would imply that the right-hand side of (A.6) is zero, contrary to what we
have seen.

It follows that, possibly after a normalisation, for |z| > μ1 we can write g =
(z − L+)−1L1D f , and substituting in (A.6) we have

(z − L+)−1L1D f (x) = −(z − L+)−1L1D f (x)
∫ 1

0
(1 − y)(z − L+)−1L1D f (y)dy.

Accordingly, if we define

Ξ(z) := 1 +

∫ 1

0
(1 − y)(z − L+)−1L1D f (y)dy (A.7)

we have that z is an eigenvalue of L� if and only if Ξ(z) = 0. In the following we will repeat-
edly use the following facts: By lemma A.1, the spectral radius of L+ is μ∗, and, for each
ϕ ∈ L1,

∫ 1
0 L+ϕ = μ∗

∫ 1
0 ϕ, while, by definition,

∫ 1
0 L1ϕ =

∫ 1
0 ϕ. Also, by (A.1),L+ is a positive

operator and so is, obviously, L1. Moreover we set
∫ 1

0 D f = Δ.
Since by lemma A.1 we have ‖L+‖L1 � μ∗, for |z| � μ∗ we can do the trivial estimate∣∣∣∣∫ 1

0
(1 − y)(z − L+)−1L1D f (y)dy

∣∣∣∣ � ∞∑
n=0

∫ 1

0
(1 − y)|z|−n−1Ln

+L1D f (y)dy

�
∞∑

n=0

∫ 1

0
|z|−n−1Ln

+L1D f (y)dy =
Δ

|z| − μ∗
. (A.8)

The above implies that Ξ(z) �= 0 for all |z| > τ , which we know already. Hence, to gain further
informations we have to analyse (A.8) more in depth.

For z > μ∗,∫ 1

0
(1 − y)(z − L+)−1L1D f (y)dy =

∞∑
n=0

∫ 1

0
(1 − y)z−n−1Ln

+L1D f (y)dy > 0.

which impliesΞ(z) > 1, hence non zero. Moreover, by lemma A.3 we get the spectral represen-
tation L+h = μ∗h+

∫ 1
0 h + Qh where for all μ ∈ (μ1, μ∗) there exists Cμ such that ‖Qn‖W1,1 �

Cμμ
n. Thus, for z ∈ (μ, μ∗),∫ 1

0
(1 − y)(z − L+)−1L1D f (y)dy =

∫ 1

0
(1 − y)(z − μ∗)−1h+(y)dy

(∫ 1

0
L1D f

)

+

∞∑
n=0

∫ 1

0
(1 − y)z−n−1QnL1D f (y)dy.

Thus, for some C > 0,∣∣∣∣Ξ(z) − 1 − (z − μ∗)−1

[
1

f ′(1)
− 1

f ′(0)

] ∫ 1

0
(1 − y)h+

∣∣∣∣ � CμC(|z| − μ)−1
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Hence, there exists μ2 ∈ (μ1, μ∗) such that Ξ(z) = 0 has no solution for z > μ2.36 This
establishes the fact that the set A0 does not belong to the spectrum.

To study non positive z, note that Ξ(z) = Ξ(̄z) and that (z − L+)−1 − (̄z − L+)−1 = (̄z −
z)(z − L+)−1(̄z − L+)−1. Hence, if z = a + ib, we have

I(Ξ(z)) = ib
∫ 1

0
(1 − y)(̄z − L+)−1(z − L+)−1L1D f (y)dy

= ib
∫ 1

0
(1 − y)([a − L+]2 + b2)−1L1D f (y)dy

R(Ξ(z)) = 1 +

∫ 1

0
(1 − y)(a − L+)([a − L+]2 + b2)−1L1D f (y)dy. (A.9)

Note that if a > μ∗, then, by lemma A.1 and (A.1), [a − L+]−1 =
∑∞

n=0a−n−1Ln
+ is a positive

operator. Hence, if b �= 0, Ξ(z) = 0 implies

0 = 1 +

∫ 1

0
(1 − y)(1 + [a − L+]−2b2)−1[a − L+]−1L1D f (y)dy

= 1 +

∫ 1

0
(1 − y)[a − L+]−1L1D f (y)dy

−
∫ 1

0
(1 − y)(1 + [a − L+]−2b2)−1[a − L+]−3b2L1D f (y)dy. (A.10)

Next we want to estimate the two integrals on the right-hand side of (A.10). Let us start with
the first integral, assuming a > μ∗,

37

∫ 1

0
(1 − y)[a − L+]−1L1D f (y)dy � a−1

∫ 1

0
(1 − y)L1D f (y)dy

= a−1
N∑

i=1

∫ pi+1

pi

(1 − f (y))

(
1

f ′(y)

)′
dy

= a−1

(
1 −

N∑
i=1

1
f ′(pi)

)
=: a−1Γ.

To estimate the second integral note that, for each g � 0 and |b| < a − μ∗, we can write

(1 + [a − L+]−2b2)−1g =

∞∑
n=0

(−1)n[a − L+]−2nb2ng

�
∞∑

n=0

[a − L+]−4nb4ng. (A.11)

36 With some further work one could estimate μ2, but we believe the above suffices to show how to proceed.
37 Note that in this computation we are sacrificing optimality of the result to the simplicity of the formulae.
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Hence ∫ 1

0
(1 − y)(1 + [a − L+]−2b2)−1[a − L+]−3b2L1D f (y)dy

�
∞∑

n=0

∫ 1

0
[a − L+]−4n−3b4n+2L1D f (y)dy

=
∞∑

n=0

[a − μ∗]−4n−3b4n+2Δ =
(a − μ∗)b2Δ

(a − μ∗)4 − b4
.

The above implies that Ξ(z) = 0 has no solution if a > μ∗, |b| < a − μ∗ and

1 + a−1Γ >
b2(a − μ∗)Δ

(a − μ∗)4 − b4

which is implied by a > μ∗ and

b2 <
(a − μ∗)Δ

2(1 + a−1Γ)

[√
1 + 4

(1 + a−1Γ)2(a − μ∗)2

Δ2 − 1

]
. (A.12)

This establishes that A1 is disjoint from the spectrum (apart from 1).
If a < −μ∗, we cannot easily use positivity arguments since

R(Ξ(z)) = 1 −
∫ 1

0
(1 − y)(|a|+ L+)([|a|+ L+]2 + b2)−1L1D f (y)dy.

We are thus left with the cruder estimate, |(|a|+ L+)−1g| �
∑∞

n=0|a|−n−1Ln
+|g| =

(|a| − L+)−1|g|. Hence, for |b| � |a| − μ∗ and recalling the computation for b = 0, we have∫ 1

0
(1 − y)(|a|+ L+)([|a|+ L+]2 + b2)−1L1D f (y)dy

�
∫ 1

0
(1 − y)(|a|+ L+)−1L1D f (y)dy +

∞∑
n=1

∫ 1

0
b2n[|a| − L+]−2n−1L1D f (y)dy.

The above decomposition allows to still use some positivity argument for the first term after
the inequality. Indeed,∫ 1

0
(1 − y)(|a|+ L+)−1L1D f (y)dy

=
∞∑

n=0

|a|−1−n(−1)n

∫ 1

0
(1 − y)Ln

+L1D f (y)dy

�
∞∑

n=0

|a|−1−2n

∫ 1

0
L2n
+L1D f (y)dy

�
∞∑

n=0

|a|−1−2nμ2n
∗ Δ =

|a|Δ
a2 − μ2

∗
.
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Accordingly, ∫ 1

0
(1 − y)(|a|+ L+)([|a|+ L+]2 + b2)−1L1D f (y)dy

� |a|Δ
a2 − μ2

∗
+

Δb2

(|a| − μ∗)[(|a| − μ∗)2 − b2]
.

which implies that Ξ(x) = 0 has no solutions if a < −μ∗ and

b2 <
(|a| − μ∗)2(a2 − μ2

∗ −Δ|a|)
a2 − μ2

∗ +Δ|a| . (A.13)

This establishes that A2 is disjoint from the spectrum.
On the other hand, for b �= 0, the equation (A.9) and Ξ(z) = 0 imply also

0 = 1 −
∫ 1

0
(1 − y)L+([a − L+]2 + b2)−1L1D f (y)dy. (A.14)

If |z|2 > 2|a|μ∗, then∫ 1

0
(1 − y)L+(|z|2 − 2aL+ + L2

+)−1L1D f (y)dy

=

∫ 1

0
(1 − y)L+(1 + (|z|2 − 2aL+)−1L2

+)−1(|z|2 − 2aL+)−1L1D f (y)dy.

Note that if a � 0, then (|z|2 − 2aL+)−1 is a positive operator, hence∫ 1

0
(1 − y)L+([a − L+]2 + b2)−1L1D f (y)dy

=

∞∑
n=0

(−1)n

∫ 1

0
(1 − y)L+(|z|2 − 2aL+)−n−1L2n

+L1D f (y)dy

�
∞∑

n=0

∫ 1

0
L+(|z|2 − 2aL+)−2n−1L4n

+L1D f (y)dy

=

∞∑
n=0

μ∗(|z|2 − 2aμ∗)−2n−1μ4n
∗ Δ =

μ∗Δ(|z|2 − 2aμ∗)
(|z|2 − 2aμ∗)2 − μ4

∗
.

It follows that equation (A.14) has no solution if a > 0, |z − μ∗| > μ∗ and

μ∗Δ(|z − μ∗|2 − μ2
∗) � (|z − μ∗|2 − μ2

∗)
2 − μ4

∗,

that is a > 0 and

|z − μ∗|2 > μ2
∗ + μ∗

Δ+
√

4μ2
∗ +Δ2

2
. (A.15)

This establishes that A3 is disjoint from the spectrum.
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If a < 0, again it is harder to take advantage of the positivity, hence, for simplicity, we
content ourselves with a cruder estimate∫ 1

0
(1 − y)L+(|z|2 − 2aL+ + L2

+)−1L1D f (y)dy

=

∞∑
n=0

|z|−2−2n

∫ 1

0
(1 − y)L+(2aL+ − L2

+)nL1D f (y)dy

�
∞∑

n=0

|z|−2−2n

∫ 1

0
L+(L2

+ + 2|a|L+)nL1D f (y)dy

=

∞∑
n=0

|z|−2−2nμ∗(μ2
∗ + 2|a|μ∗)nΔ =

μ∗Δ

|z|2 − μ2
∗ − 2|a|μ∗

.

It follows that equation (A.14) has no solution if

b2 > μ∗Δ+ μ2
∗ + 2|a|μ∗ − a2. (A.16)

Finally, this establishes that A4 is disjoint from the spectrum.
Collecting (A.12), (A.13), (A.15) and (A.16) completes the proof of theorem 3.9. �

Remark A.4. The previous proof it is not optimal. We refrain form walking this road further
as our purpose was only to show that the study of the spectrum can be reduced to the study of a
concrete function (A.7), which plays the role of a determinant but may be easier to study than
the dynamical determinant.
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