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1. Introduction

Let (�,μ�) be a probability space. Given a measure-preserving flow Tt : � → �

and observables v,w ∈ L2(�), we define the correlation function ρv,w(t) = ∫

�
v w ◦

Tt dμ� −∫

�
v dμ�

∫

�
w dμ�. The flow is mixing if limt→∞ ρv,w(t) = 0 for all v,w ∈

L2(�).
Of interest is the rate of decay of correlations, or rate of mixing, namely the rate

at which ρv,w converges to zero. Dolgopyat [21] showed that geodesic flows on com-
pact surfaces of negative curvature with volume measure μ� are exponentially mixing
for Hölder observables v,w. Liverani [26] extended this result to arbitrary dimensional
geodesic flows in negative curvature and more generally to contact Anosov flows. How-
ever, despite ongoing progress [3,5,11,12,35], exponential mixing remains poorly un-
derstood in general.

Dolgopyat [22] considered theweaker notion of rapid mixing (superpolynomial decay
of correlations) where ρv,w(t) = O(t−q) for sufficiently regular observables for any
fixed q � 1, and showed that rapid mixing is ‘prevalent’ for Axiom A flows: it suffices
that the flow contains two periodic solutions with periods whose ratio is Diophantine.
Field et al. [23] introduced the notion of good asymptotics and used this to prove that
amongst Cr Axiom A flows, r � 2, an open and dense set of flows is rapid mixing.

In [28], results on rapidmixingwere obtained for nonuniformlyhyperbolic semiflows,
combining the rapid mixing method of Dolgopyat [22] with advances by Young [36,
37] in the discrete time setting. First results on polynomial mixing for nonuniformly
hyperbolic semiflows (ρv,w(t) = O(t−q) for some fixed q > 0) were obtained in [29].
Under certain assumptions the results in [28,29] were established also for nonuniformly
hyperbolic flows. However, for polynomially mixing flows, the assumptions in [29] are
overly restrictive and exclude many examples including infinite horizon Lorentz gases.

In this paper, we develop the tools required to cover systematically large classes of
nonuniformly hyperbolic flows. The recent review article [30] describes the current state
of the art for rapid and polynomial decay of correlations for nonuniformly hyperbolic
semiflows and flows and gives a complete self-contained proof in the case of semiflows.
Here we provide the arguments required to deal with flows. Our results cover all of the
examples in [30].

By [28], rapid mixing holds (at least typically) for nonuniformly hyperbolic flows
that are modelled as suspensions over Young towers with exponential tails [36]. See
also Remark 8.5. Here we give a different proof that has a number of advantages as dis-
cussed in the introduction to [30]. Flows are modelled as suspensions over a uniformly
hyperbolic map with an unbounded roof function (rather than as suspensions over a
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nonuniformly hyperbolic map with a bounded roof function). It then suffices to con-
sider twisted transfer operators with one complex parameter rather than two as in [28],
reducing from four to three the number of periodic orbits that need to be considered in
Proposition 6.6. Also, the proof of rapid mixing only uses superpolynomial tails for the
roof function, whereas [28] requires exponential tails.

Examples covered by our results on rapid mixing include finite Lorentz gases (in-
cluding those with cusps, corner points, and external forcing), Lorenz attractors, and
Hénon-like attractors. We refer to [30] for references and further details.

Examples discussed in [29,30] for which polynomial mixing holds include nonuni-
formly hyperbolic flows that are modelled as suspensions over Young towers with poly-
nomial tails [37]. This includes intermittent solenoidal flows, see also Remark 8.6.

The key example of continuous time planar periodic infinite horizon Lorentz gases is
considered at length inSect. 9. In thefinite horizon case, exponential decayof correlations
for the flowwas proved in [5]. In the infinite horizon case it has been conjectured [24,27]
that the decay rate for the flow is O(t−1). (An elementary argument in [6] shows that this
rate is optimal; the argument is reproduced in the current context in Proposition 9.14.)
We obtain the conjectured decay rate O(t−1) for planar infinite horizon Lorentz flows
in Theorem 9.1.

Remark 1.1. (a) In [29], the decay rate O(t−1) was proved for infinite horizon Lorentz
gases at the semiflow level (after passing to a suspension over a Markov extension and
quotienting out stable leaves as in Sects. 3 and 6). It was claimed in [29] that this result
held also in certain special cases for the Lorentz flow, and that the decay rate O(t−(1−ε))

held for all ε > 0 in complete generality. The spurious factor of tε was then removed in
an unpublished preprint “Decay of correlations for flows with unbounded roof function,
including the infinite horizon planar periodic Lorentz gas” by the first and third authors.
Unfortunately these results for flows do not apply to Lorentz gases since hypothesis (P1)
in [29] is not satisfied. The situation is rectified in the current paper. (The unpublished
preprint also contained correct results on statistical limit laws such as the central limit
theorem for flows with unbounded roof functions. These aspects are completed and
extended in [8].)
(b) A drawback of the method in this paper, already present in [22] and inherited by [28–
30], is that at least one of the observables v orw is required to beCm in the flow direction.
Here m can be estimated, with difficulty, but is likely to be quite large. In the case of the
infinite horizon Lorentz gas, this excludes certain physically important observables such
as velocity. A reasonable project is to attempt to combine methods in this paper with the
methods for (stretched) exponential decay in [5,15] to obtain the decay rate O(t−1) for
Hölder observables v and w (cf. the second open question in [30, Section 9]).

In Part I of this paper,we consider results on rapidmixing and polynomialmixing for a
class of suspension flows over infinite branch uniformly hyperbolic transformations [36].
In Part II, we show how these results apply to important classes of nonuniformly hyper-
bolic flows including those mentioned in this introduction. The methods of proof in this
paper, especially those in Part I, are fairly straightforward adaptations of those in [30].
The main new contribution of the paper (Sect. 6 together with Part II) is to develop a
general framework whereby large classes of nonuniformly hyperbolic flows, including
fundamental examples such as the infinite horizon Lorentz gas, are covered by these
methods.

Remark 1.2. The paper has been structured to be as self-contained as possible. It does
not seem possible to reduce the results on flows in Part I of this paper to the results on
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semiflows in [30]. Instead, it is necessary to start from scratch and to emulate, rather
than apply directly, the methods in [30]. Some of the more basic estimates in [30]
are applicable and are collected together at the beginning of Sect. 4 (Lemma 4.2 to
Proposition 4.10) and Sect. 5 (Propositions 5.1 to 5.3), as well as in Sect. 5.2 (Proposi-
tions 5.8, 5.12 and 5.13). Also, results on nonexistence of approximate eigenfunctions
in [30] are recalled in Sects. 6.2 and 8.4.

Notation We use the “big O” and � notation interchangeably, writing an = O(bn) or
an � bn if there is a constant C > 0 such that an � Cbn for all n � 1. There are various
“universal” constants C1, . . . , C5 � 1 depending only on the flow that do not change
throughout.

Part I
Mixing rates for Gibbs–Markov flows

In this part of the paper, we state and prove results on rapid and polynomial mixing for a
class of suspension flows that we call Gibbs–Markov flows. These are suspensions over
infinite branch uniformly hyperbolic transformations [36]. In Sect. 2, we recall material
on the noninvertible version, Gibbs–Markov semiflows (suspensions over infinite branch
uniformly expanding maps). In Sect. 3, we consider skew product Gibbs–Markov flows
where the roof function is constant along stable leaves and state our main theorems for
such flows, namely Theorem 3.1 (rapid mixing) and Theorem 3.2 (polynomial mixing).
These are proved in Sects. 4 and 5 respectively. In Sect. 6, we consider an enlarged class
ofGibbs–Markovflows that can be reduced to skewproducts and forwhichTheorems 3.1
and 3.2 remain valid.

We quickly review notation associated with suspension semiflows and suspension
flows. Let (Y, μ) be a probability space and let F : Y → Y be a measure-preserving
transformation. Let ϕ : Y → R

+ be an integrable roof function. Define the suspension
semiflow/flow

Ft : Y ϕ → Y ϕ, Y ϕ = {(y, u) ∈ Y × [0,∞) : u ∈ [0, ϕ(y)]}/ ∼, (1.1)

where (y, ϕ(y)) ∼ (Fy, 0) and Ft (y, u) = (y, u + t) computed modulo identifications.
An Ft -invariant probability measure on Y ϕ is given by μϕ = μ × Lebesgue/

∫

Y ϕ dμ.

2. Gibbs–Markov Maps and Semiflows

In this section, we review definitions and notation from [30, Section 3.1] for a class
of Gibbs–Markov semiflows built as suspensions over Gibbs–Markov maps. Standard
references for background material on Gibbs–Markov maps are [1, Chapter 4] and [2].

Suppose that (Y , μ̄) is a probability space with an at most countable measurable
partition {Yj , j � 1} and let F : Y → Y be a measure-preserving transformation. For
θ ∈ (0, 1), define dθ (y, y′) = θ s(y,y′) where the separation time s(y, y′) is the least
integer n � 0 such that Fn y and Fn y′ lie in distinct partition elements in {Yj }. It is
assumed that the partition {Yj } separates trajectories, so s(y, y′) = ∞ if and only if
y = y′. Then dθ is a metric, called a symbolic metric.

A function v : Y → R is dθ -Lipschitz if |v|θ = supy 	=y′ |v(y) − v(y′)|/dθ (y, y′)
is finite. Let Fθ (Y ) be the Banach space of Lipschitz functions with norm ‖v‖θ =
|v|∞ + |v|θ .

More generally (andwith a slight abuse of notation),we say that a function v : Y → R

is piecewise dθ -Lipschitz if |1Yj
v|θ = supy,y′∈Yj , y 	=y′ |v(y) − v(y′)|/dθ (y, y′) is finite
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for all j . If in addition, sup j |1Yj
v|θ < ∞ then we say that v is uniformly piecewise

dθ -Lipschitz. Note that such a function v is bounded on partition elements but need not
be bounded on Y .

Definition 2.1. The map F : Y → Y is called a (full branch) Gibbs–Markov map if

• F |Yj
: Yj → Y is a measurable bijection for each j � 1, and

• The potential function log(dμ̄/dμ̄ ◦ F) : Y → R is uniformly piecewise dθ -
Lipschitz for some θ ∈ (0, 1).

Definition 2.2. A suspension semiflow Ft : Y
ϕ → Y

ϕ
as in (1.1) is called a Gibbs–

Markov semiflow if there exist constants C1 � 1, θ ∈ (0, 1) such that F : Y → Y is a
Gibbs–Markov map, ϕ : Y → R

+ is an integrable roof function with inf ϕ > 0, and

|1Yj
ϕ|θ � C1infYj

ϕ for all j � 1. (2.1)

(Equivalently, logϕ is uniformly piecewise dθ -Lipschitz.) It follows that supYj
ϕ �

2C1infYj
ϕ for all j � 1.

For b ∈ R, we define the operators

Mb : L∞(Y ) → L∞(Y ), Mbv = eibϕv ◦ F .

Definition 2.3. Asubset Z0 ⊂ Y is a finite subsystem ofY if Z0 = ⋂

n�0 F−n Z where Z

is the union of finitelymany elements from the partition {Yj }. (Note that F |Z0 : Z0 → Z0
is a full one-sided shift on finitely many symbols.)

We say that Mb has approximate eigenfunctions on Z0 if for any α0 > 0, there exist
constants α, ξ > α0 and C > 0, and sequences |bk | → ∞, ψk ∈ [0, 2π), uk ∈ Fθ (Y )

with |uk | ≡ 1 and |uk |θ � C |bk |, such that setting nk = [ξ ln |bk |],
|(Mnk

bk
uk)(y) − eiψk uk(y)| � C |bk |−α for all y ∈ Z0, k � 1. (2.2)

Remark 2.4. For brevity, the statement “Assume absence of approximate eigenfunctions”
is the assumption that there exists at least one finite subsystem Z0 such that Mb does not
have approximate eigenfunctions on Z0.

3. Skew Product Gibbs–Markov Flows

In this section, we recall the notion of skew product Gibbs–Markov flow [30, Section 4.1]
and state our main results on mixing for such flows.

Let (Y, d) be a metric space with diam Y � 1, and let F : Y → Y be a piecewise
continuous map with ergodic F-invariant probability measure μ. Let Ws be a cover of
Y by disjoint measurable subsets of Y called stable leaves. For each y ∈ Y , let W s(y)

denote the stable leaf containing y. We require that F(W s(y)) ⊂ W s(Fy) for all y ∈ Y .
Let Y denote the space obtained from Y after quotienting byWs , with natural projec-

tion π̄ : Y → Y . We assume that the quotient map F : Y → Y is a Gibbs–Markov map
as in Definition 2.1, with partition {Yj }, separation time s(y, y′), and ergodic invariant
probability measure μ̄ = π̄∗μ.

Let Y j = π̄−1Yj ; these form a partition of Y and each Y j is a union of stable leaves.
The separation time extends to Y , setting s(y, y′) = s(π̄ y, π̄ y′) for y, y′ ∈ Y .
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Next, we require that there is a measurable subset ˜Y ⊂ Y such that for every y ∈ Y
there is a unique ỹ ∈ ˜Y ∩ W s(y). Let π : Y → ˜Y define the associated projection
πy = ỹ. (Note that ˜Y can be identified with Y , but in general π∗μ 	= μ̄.)

We assume that there are constants C2 � 1, γ ∈ (0, 1) such that for all n � 0,

d(Fn y, Fn y′) � C2γ
n for all y, y′ ∈ Y with y′ ∈ W s(y), (3.1)

d(Fn y, Fn y′) � C2γ
s(y,y′)−n for all y, y′ ∈ ˜Y . (3.2)

Let ϕ : Y → R
+ be an integrable roof function with inf ϕ > 0, and define the

suspension flow1 Ft : Y ϕ → Y ϕ as in (1.1) with ergodic invariant probability measure
μϕ .

In this section, we suppose that ϕ is constant along stable leaves and hence projects to
a well-defined roof function ϕ : Y → R

+. It follows that the suspension flow Ft projects
to a quotient suspension semiflow Ft : Y

ϕ → Y
ϕ
. We assume that Ft is a Gibbs–

Markov semiflow (Definition 2.2). In particular, increasing γ ∈ (0, 1) if necessary, (2.1)
is satisfied in the form

|ϕ(y) − ϕ(y′)| � C1infY j ϕ γ s(y,y′) for all y, y′ ∈ Yj , j � 1. (3.3)

We call Ft a skew product Gibbs–Markov flow, and we say that Ft has approximate
eigenfunctions if Ft has approximate eigenfunctions (Definition 2.3).

Fix η ∈ (0, 1]. For v : Y ϕ → R, define

|v|γ = sup
(y,u),(y′,u)∈Y ϕ, y 	=y′

|v(y, u) − v(y′, u)|
ϕ(y){d(y, y′) + γ s(y,y′)} , ‖v‖γ = |v|∞ + |v|γ ,

|v|∞,η = sup
(y,u),(y,u′)∈Y ϕ, u 	=u′

|v(y, u) − v(y, u′)|
|u − u′|η , ‖v‖γ,η = ‖v‖γ + |v|∞,η.

(Here |u − u′| denotes absolute value, with u, u′ regarded as elements of [0,∞).) Let
Hγ (Y ϕ) and Hγ,η(Y ϕ) be the spaces of observables v : Y ϕ → R with ‖v‖γ < ∞ and
‖v‖γ,η < ∞ respectively.

We say that w : Y ϕ → R is differentiable in the flow direction if the limit ∂tw =
limt→0(w ◦ Ft − w)/t exists pointwise. Note that ∂tw = ∂w

∂u on the set {(y, u) : y ∈
Y, 0 < u < ϕ(y)}. Define Hγ,0,m(Y ϕ) to consist of observables w : Y ϕ → R that
are m-times differentiable in the flow direction with derivatives in Hγ (Y ϕ), with norm

‖w‖γ,0,m = ∑m
j=0 ‖∂ j

t w‖γ .
We can now state the main theoretical results for skew product Gibbs–Markov flows.

Theorem 3.1. Suppose that Ft : Y ϕ → Y ϕ is a skew product Gibbs–Markov flow such
that ϕ ∈ Lq(Y ) for all q ∈ N. Assume absence of approximate eigenfunctions.

Then for any q ∈ N, there exists m � 1 and C > 0 such that

|ρv,w(t)| � C‖v‖γ ‖w‖γ,0,m t−q for all v ∈ Hγ (Y ϕ), w ∈ Hγ,0,m(Y ϕ), t > 1.

Theorem 3.2. Suppose that Ft : Y ϕ → Y ϕ is a skew product Gibbs–Markov flow
such that μ(ϕ > t) = O(t−β) for some β > 1. Assume absence of approximate
eigenfunctions.

Then there exists m � 1 and C > 0 such that

|ρv,w(t)| � C‖v‖γ,η‖w‖γ,0,m t−(β−1) for all v ∈ Hγ,η(Y
ϕ), w ∈ Hγ,0,m(Y ϕ), t > 1.

1 Strictly speaking, Ft is not always a flow since F need not be invertible. However, Ft is used as a model
for various flows, and it is then a flow when ϕ is the first return to Y , so it is convenient to call it a flow.



Polynomial Decay of Correlations for Flows 61

Remark 3.3. Our result on polynomial mixing, Theorem 3.2, implies the result on rapid
mixing, Theorem 3.1 (for a slightly more restricted class of observables). However, the
proof of Theorem 3.1 plays a crucial role in the proof of Theorem 3.2, justifying the
movement of certain contours of integration to the imaginary axis after the truncation step
in Sect. 5.2. Hence, it is not possible to bypass Theorem 3.1 even when only polynomial
mixing is of interest.

These results are proved in Sects. 4 and 5 respectively. For future reference, we
mention the following estimates. Define ϕn = ∑n−1

j=0 ϕ ◦ F j .

Proposition 3.4. Let η ∈ (0, β). Then
(a)

∫

Y ϕη ◦ Fi1{ϕn>t} dμ � (n + 1)
∫

Y ϕη1{ϕ>t/n} dμ for all i � 0, n � 1, t > 0.
(b) If μ(ϕ > t) = O(t−β) for some β > 1, then

∫

Y ϕη1{ϕ>t} dμ = O(t−(β−η)).

Proof. Writing ϕη ◦ Fi = ϕη ◦ Fi1{ϕ◦Fi >t/n} + ϕη ◦ Fi1{ϕ◦Fi �t/n}, we compute that
∫

Y
ϕη ◦ Fi1{ϕn>t} dμ

=
∫

Y
ϕη ◦ Fi1{ϕ◦Fi >t/n}1{ϕn>t} dμ +

∫

Y
ϕη ◦ Fi1{ϕ◦Fi �t/n}1{ϕn>t} dμ

�
∫

Y
ϕη ◦ Fi1{ϕ◦Fi >t/n} dμ +

n−1
∑

j=0

∫

Y

( t

n

)η

1{ϕ◦F j >t/n} dμ

=
∫

Y
ϕη1{ϕ>t/n} dμ + n

∫

Y

( t

n

)η

1{ϕ>t/n} dμ � (n + 1)
∫

Y
ϕη1{ϕ>t/n} dμ,

proving part (a). Part (b) is standard (see for example [30, Proposition 8.5]). ��

4. Rapid Mixing for Skew Product Gibbs–Markov Flows

In this section, we consider skew product Gibbs–Markov flows Ft : Y ϕ → Y ϕ for
which the roof function ϕ : Y → R

+ lies in Lq(Y ) for all q � 1. For such flows, we
prove Theorem 3.1, namely that absence of approximate eigenfunctions is a sufficient
condition for rapid mixing.

First, we introduce an auxiliary roof function ϕ̆ : Y → R
+ satisfying inf ϕ̆ > 0 and

ϕ̆ � ϕ. Let Ft : Y ϕ̆ → Y ϕ̆ denote the corresponding Gibbs–Markov semiflow. Through-
out, the notation Hγ (Y ϕ̆ ), Hγ,η(Y ϕ̆) and Hγ,0,m(Y ϕ̆) represents spaces of observables
on Y ϕ̆ with finite norms ‖v‖γ < ∞, ‖v‖γ,η < ∞ and ‖v‖γ,0,m , but with the norms
weighted by the original roof function ϕ. In particular, we now have

|v|γ = sup
(y,u),(y′,u)∈Y ϕ̆ , y 	=y′

|v(y, u) − v(y′, u)|
ϕ(y){d(y, y′) + γ s(y,y′)} .

Remark 4.1. As far as the arguments needed for Theorem 3.1 are concerned, we could
assume ϕ ≡ ϕ̆. In fact, the only situation where ϕ and ϕ̆ differ is in Sect. 5. There we
work with a bounded roof function ϕ̆ = ϕ(N ), yet keep the original roof function as a
weight in the definition of the norm. Distinguishing ϕ and ϕ̆ provides a formalism that
extends our estimates immediately to the case of the bounded roof function.

Throughout this section, we suppose thatμ(ϕ > t) = O(t−β) (and thusμ(ϕ̆ > t) =
O(t−β)) where β > 1. For notational convenience, we suppose that inf ϕ̆ � 1.
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4.1. Some notation and results from [30]. Let H = {s ∈ C : Re s > 0} and H = {s ∈
C : Re s � 0}. The Laplace transform ρ̂v,w(s) = ∫ ∞

0 e−stρv,w(t) dt of the correlation
function ρv,w is analytic on H.

Lemma 4.2 ([30, Lemma 6.2]). Consider a skew product Gibbs–Markov flow with ϕ ≡
ϕ̆. Let v ∈ L1(Y ϕ), ε > 0, r � 1. Suppose that

(i) s �→ ρ̂v,w(s) is continuous on {Re s ∈ [0, ε]} and b �→ ρ̂v,w(ib) is Cr on R for all
w ∈ Hγ (Y ϕ).

(ii) There exist constants C, α > 0 such that

|ρ̂v,w(s)| � C(|b| + 1)α‖w‖γ and |ρ̂( j)
v,w(ib)| � C(|b| + 1)α‖w‖γ ,

for all w ∈ Hγ (Y ϕ), j � r , and all s = a + ib ∈ C with a ∈ [0, ε].
Let m = �α� + 2. Then there exists a constant C ′ > 0 depending only on r and α, such
that

|ρv,w(t)| � CC ′‖w‖γ,0,m t−r for all w ∈ Hγ,0,m(Y ϕ), t > 1.

��
Remark 4.3. Since ρ̂v,w is not a priori well-defined on H, the conditions in this lemma
should be interpreted in the usual way, namely that ρ̂v,w : H → C extends to a function
g : H → C satisfying the desired conditions (i) and (ii). The conclusion for ρv,w then
follows from a standard uniqueness argument.

For completeness, we provide the uniqueness argument. By [30, Corollary 6.1], the
inverse Laplace transform of ρ̂v,w can be computed by integrating along a contour in
H. Since g ≡ ρ̂v,w on H, we can compute the inverse Laplace transform f of g using
the same contour, and we obtain ρv,w ≡ f . Hence ρ̂v,w ≡ g is well-defined on H and
satisfies conditions (i) and (ii), so the conclusion follows from [30, Lemma 6.2].

Define vs(y) = ∫ ϕ̆(y)

0 esuv(y, u) du and ŵ(s)(y) = ∫ ϕ̆(y)

0 e−suw(y, u) du.

Proposition 4.4 ([30, Proposition 6.3 and Corollary 8.6]). Let v, w ∈ L∞(Y ϕ̆ ) with
∫

Y ϕ̆ v dμϕ̆ = 0. Then ρ̂v,w = ∑∞
n=0

̂Jn on H where ̂Jn is the Laplace transform of an
L∞ function Jn : [0,∞) → R for n � 0, and

̂Jn(s) = |ϕ|−1
1

∫

Y e−sϕ̆n vs ŵ(s) ◦ Fn dμ for all s ∈ H, n � 1.

Moreover, |J0(t)| = O(|v|∞|w|∞ t−(β−1)).2 ��
Let R : L1(Y ) → L1(Y ) denote the transfer operator corresponding to the Gibbs–

Markov quotient map F : Y → Y . So
∫

Y v w ◦ F dμ̄ = ∫

Y Rv w dμ̄ for all v ∈ L1(Y )

and w ∈ L∞(Y ). Also, for s ∈ H, define the twisted transfer operators

̂R(s) : L1(Y ) → L1(Y ), ̂R(s)v = R(e−sϕ̆v).

Proposition 4.5. Let θ ∈ (0, 1) be as in Definition 2.1. There is a constant C > 0 such
that

‖Rnv‖θ � C
∑

d μ̄(d)‖1dv‖θ for v ∈ Fθ (Y ), n � 1,

where the sum is over n-cylinders d = ⋂

i=0,...,n−1 F−i Y ji , j0, . . . , jn−1 � 1.

2 All series that we consider on H are absolutely convergent for elementary reasons. Details are given in
Lemma 4.12 but are generally omitted.
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Proof. This follows from [30, Corollary 7.2]. ��
Fix q > 0 with

max{1, β − 1} < q < β.

Let η ∈ (0, 1], γ ∈ (0, 1) be as in Sect. 3. Shrinking η if needed, we may suppose
without loss that

q + 2η < β,

Let γ1 = γ η and increase θ if needed so that θ ∈ [γ 1/3
1 , 1).

A function f : R → R is said to be Cq if f is C [q] and f ([q]) is (q − [q])-Hölder.
Moreover, given g : R → [0,∞) and E ⊂ R, we write | f (q)(b)| � g(b) for b ∈ E if
for all b, b′ ∈ E ,

| f (k)(b)| � g(b), k = 0, 1, . . . , [q], and

| f ([q])(b) − f ([q])(b′)| � (g(b) + g(b′))|b − b′|q−[q].

For f : H → R and E ⊂ H, we write | f (q)(s)| � g(s) for s ∈ E if | f (q)(ib)| � g(b)

in the sense just given for ib ∈ E and | f (k)(s)| � g(s) for s ∈ E , k = 0, . . . , [q]. The
same conventions apply to operator-valued functions on H.

Remark 4.6. Restricting to q as above enables us to obtain estimates for the rapid mixing
and polynomially mixing situations simultaneously hence avoiding a certain amount of
repetition. The trade off is that the proof of Theorem 3.1 is considerably more difficult.
The reader interested only in the rapid mixing case can restrict to integer values of q
with greatly simplified arguments [30, Section 7] (also see version 3 of our preprint on
arxiv).

Following [30, Section 7.4], there exist constants M0, M1 and a scale of equivalent
norms

‖v‖b = max
{

|v|∞,
|v|θ

M0(|b| + 1)

}

, b ∈ R,

on Fθ (Y ) such that

‖̂R(s)n‖b � M1 for all s = a + ib ∈ C with a ∈ [0, 1] and all n � 1. (4.1)

Proposition 4.7. There is a constant C > 0 such that

‖̂R(q)(s)‖b � C for all s = a + ib ∈ C with 0 � a � 1.

Proof. It is shown in [30, Proposition 8.7] that ‖̂R(q)(s)‖θ � C(|b| + 1). Using the
definition of ‖ ‖b, the desired estimate follows by exactly the same argument. ��
Remark 4.8. Estimates such as those for ̂R(q) in Proposition 4.7 hold equally for ̂R(q ′)

for all q ′ < q. We use this observation without comment throughout.

Define Hδ = H ∩ Bδ(0) for δ > 0. Let ̂T = (I − ̂R)−1. We have the key Dolgopyat
estimate:
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Proposition 4.9. Assume absence of approximate eigenfunctions. Then ̂T (s) : Fθ (Y ) →
Fθ (Y ) is a well-defined bounded operator for s ∈ H\{0}. Moreover, for any δ > 0, there
exists α, C > 0 such that

‖̂T (q)(s)‖θ � C |b|α for all s = a + ib ∈ C\Hδ with 0 � a � 1.

��
Proof. For the region 0 � a � 1, |b| � δ, this is explicit in [30, Corollary 8.10].
The remaining region A = ([0, 1] × [−δ, δ])\Hδ is bounded. Also, 1 	∈ spec ̂R(s) for
s ∈ H\{0} by [30, Proposition 7.8(b) and Theorem 7.10(a)]. Hence ‖̂T (q)‖θ is bounded
on A by Proposition 4.7. ��
Proposition 4.10 ([30, Proposition 7.8 and Corollary 7.9]). There exists δ > 0 such that
̂R(s) : Fθ (Y ) → Fθ (Y ) has a Cq family of simple eigenvalues λ(s), s ∈ Hδ , isolated
in spec ̂R(s), with λ(0) = 1, λ′(0) = −|ϕ|1, |λ(s)| � 1. The corresponding spectral
projections P(s) form a Cq family of operators on Fθ (Y ) with P(0)v = ∫

Y v dμ̄. ��

4.2. Approximation of vs and ŵ(s). The first step is to approximate vs, ŵ(s) : Y → C

by functions that are constant on stable leaves and hence well-defined on Y .
For k � 0, define �k : L∞(Y ) → L∞(Y ),

�kw = w ◦ Fk ◦ π − w ◦ Fk−1 ◦ π ◦ F, k � 1, �0w = w ◦ π.

Proposition 4.11. Let w ∈ L∞(Y ). Then

(a) �kw is constant along stable leaves.
(b)

∑n
k=0(�kw) ◦ Fn−k = w ◦ Fn ◦ π .

Proof. Part (a) is immediate from the definition and part (b) follows by induction. ��
Define

̂Vj (s) = e−sϕ̆◦F j
� jvs, ̂Wk(s) = e−sϕ̆k �kŵ(s).

By Proposition 4.11(a), these can be regarded as functions Vj , Wk on Y . Similarly we
write �kw ∈ L∞(Y ).

Also, for k � 0, we define Ek : L∞(Y ) → L∞(Y ),

Ekw = w ◦ Fk − w ◦ Fk ◦ π.

Lemma 4.12. Let v,w ∈ L∞(Y ϕ̆). Then

ρ̂v,w = ̂J0 + |ϕ|−1
1

(
∞
∑

n=1

̂An +
∞
∑

n=1

n−1
∑

k=0

̂Bn,k +
∞
∑

j=0

∞
∑

k=0

̂C j,k

)

,

on H, where

̂An(s) =
∫

Y
e−sϕ̆n vs (En−1ŵ(s)) ◦ F dμ,

̂Bn,k(s) =
∫

Y
e−sϕ̆n◦Fn

Envs (�kŵ(s)) ◦ F2n−k dμ,

̂C j,k(s) =
∫

Y

̂R(s)max{ j−k−1,0}
̂T (s)R j+1Vj (s) Wk(s) dμ̄.

All of these series are absolutely convergent exponentially quickly, pointwise on H.
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Proof. Since this result is set in the right-half complex plane, the final statement is
elementary.We sketch the arguments. Let s ∈ Cwith a = Re s > 0. It is clear that |vs | �
a−1|v|∞eaϕ̆ and |ŵ(s)|∞ � a−1|w|∞. Hence |̂An(s)| � 2a−2|v|∞|w|∞e−a(n−1) and
|̂Bn,k(s)| � 4a−2|v|∞|w|∞e−a(n−1). Similarly, |̂Vj (s)|∞ � 2a−1|v|∞ and | ̂Wk(s)|∞ �
2a−1|w|∞e−ak . As an operator on L∞(Y ), we have |̂R(s)|∞ � e−a . Hence |̂C j,k(s)| �
4a−2(1 − e−a)−1|v|∞|w|∞e−a max( j−1,k).

By Proposition 4.4, ρ̂v,w(s) = ̂J0(s) + |ϕ|−1
1

∑∞
n=1

∫

Y e−sϕ̆n vs ŵ(s) ◦ Fn dμ for
s ∈ H. By Proposition 4.11(b), for each n � 1,
∫

Y
e−sϕ̆n vs ŵ(s) ◦ Fn dμ =

∫

Y
e−sϕ̆n vs ŵ(s) ◦ Fn−1 ◦ π ◦ F dμ

+
∫

Y
e−sϕ̆n vs (ŵ(s) ◦ Fn−1 − ŵ(s) ◦ Fn−1 ◦ π) ◦ F dμ

=
n−1
∑

k=0

∫

Y
e−sϕ̆n vs (�kŵ(s)) ◦ Fn−k−1 ◦ F dμ + ̂An(s).

Also, by Proposition 4.11(b), for each n � 1, 0 � k � n − 1,
∫

Y
e−sϕ̆n vs (�kŵ(s)) ◦ Fn−k−1 ◦ F dμ =

∫

Y
e−sϕ̆n◦Fn

vs ◦ Fn (�kŵ(s)) ◦ F2n−k dμ

=
n

∑

j=0

∫

Y
e−sϕ̆n◦Fn

(� jvs) ◦ Fn− j �kŵ(s) ◦ F2n−k dμ + ̂Bn,k(s)

=
n

∑

j=0

∫

Y
e−sϕ̆n◦F j

� jvs �kŵ(s) ◦ Fn−k+ j dμ̄ + ̂Bn,k(s).

Next,
∫

Y
e−sϕ̆n◦F j

� j vs �kŵ(s) ◦ Fn−k+ j dμ̄ =
∫

Y
e−sϕ̆n R j � j vs �kŵ(s) ◦ Fn−k dμ̄

=
∫

Y
e−sϕ̆n−k R j � j vs (e−sϕ̆k �kŵ(s)) ◦ Fn−k dμ̄ =

∫

Y
̂R(s)n−k R j � j vs Wk(s) dμ̄

=
∫

Y
̂R(s)n−k−1R j+1(e−sϕ̆◦F j

� j vs) Wk(s) dμ̄ =
∫

Y
̂R(s)n−k−1R j+1V j (s) Wk(s) dμ̄.

Altogether,

∞
∑

n=1

∫

Y
e−sϕ̆n vs ŵ(s) ◦ Fn dμ =

∞
∑

n=1

̂An(s) +
∞
∑

n=1

n−1
∑

k=0

̂Bn,k(s) + C(s)

where

C(s) =
∞
∑

n=1

n−1
∑

k=0

n
∑

j=0

∫

Y

̂R(s)n−k−1R j+1Vj (s) Wk(s) dμ̄.

Now
∞
∑

n=1

n−1
∑

k=0

n
∑

j=0

̂R(s)n−k−1a j bk =
∑

0� j�k

∞
∑

n=k+1

̂R(s)n−k−1a j bk +
∑

j>k�0

∞
∑

n= j

̂R(s)n−k−1a j bk
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=
∞
∑

k=0

k
∑

j=0

̂T (s)a j bk +
∞
∑

j=1

j−1
∑

k=0

̂R(s) j−k−1
̂T (s)a j bk =

∞
∑

j,k=0

̂R(s)max{ j−k−1,0}
̂T (s)a j bk .

This completes the proof. ��
For w ∈ L∞(Y ϕ̆), we define the approximation operators

˜�kw(y, u) =
{

w(Fkπy, u) − w(Fk−1π Fy, u) k � 1
w(πy, u) k = 0

,

˜Ekw(y, u) = w(Fk y, u) − w(Fkπy, u), k � 0,

for y ∈ Y , u ∈ [0, ϕ̆(Fk y)].
Proposition 4.13. (a) Let w ∈ Hγ (Y ϕ̆), k � 0. Then for all y ∈ Y , u ∈ [0, ϕ̆(Fk y)],
|˜�kw(y, u)| � 2C2γ

k−1
1 ‖w‖γ ϕ(Fk y)η and |˜Ekw(y, u)| � 2C2γ

k
1 |w|γ ϕ(Fk y)η.

(b) Let w ∈ Hγ (Y ϕ̆), k � 0. Then for all y, y′ ∈ Y , u ∈ [0, ϕ̆(Fk y)] ∩ [0, ϕ̆(Fk y′)],

|˜�kw(y, u) − ˜�kw(y′, u)| � 4C2γ
s(y,y′)−k
1 |w|γ ϕ(Fk y)η.

(c) Let w ∈ Hγ,η(Y ϕ̆), k � 0. Then for all y ∈ Y , u, u′ ∈ [0, ϕ̆(Fk y)],
|˜�kw(y, u) − ˜�kw(y, u′)| � 2|w|∞,η|u − u′|η.

Proof. (a) Clearly |˜�0w(y, u)| � |w|∞. By (3.1), for k � 1,

|˜�kw(y, u)| � |w|γ ϕ(Fk y)(d(Fkπy, Fk−1π Fy) + γ s(Fkπy,Fk−1π Fy))

= |w|γ ϕ(Fk y)d(Fkπy, Fk−1π Fy) � C2γ
k−1|w|γ ϕ(Fk y).

Also, |˜�kw| � 2|w|∞, so

|˜�kw(y, u)| � 2C2‖w‖γ min{1, γ k−1ϕ(Fk y)} � 2C2γ
k−1
1 ‖w‖γ ϕ(Fk y)η.

This proves the estimate for ˜�kw, and the estimate for ˜Ekw is similar.
(b) First suppose that k � 1 and note by (3.2) that

d(Fkπy, Fkπy′) � C2γ
s(y,y′)−k, d(Fk−1π Fy, Fk−1π Fy′) � C2γ

s(y,y′)−k .

It follows that

|w(Fkπy, u) − w(Fkπy′, u)| � |w|γ ϕ(Fk y)(d(Fkπy, Fkπy′) + γ s(Fkπy,Fkπy′))

� |w|γ ϕ(Fk y)(C2γ
s(y,y′)−k + γ s(y,y′)−k) � 2C2γ

s(y,y′)−k |w|γ ϕ(Fk y).

Similarly, |w(Fk−1π Fy, u) − w(Fk−1π Fy′, u)| � 2C2γ
s(y,y′)−k |w|γ ϕ(Fk y). Hence

|˜�kw(y, u) − ˜�kw(y′, u)| � |w(Fkπy, u) − w(Fkπy′, u)|
+ |w(Fk−1π Fy, u) − w(Fk−1π Fy′, u)|

� 4C2γ
s(y,y′)−k |w|γ ϕ(Fk y).
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Also, |˜�kw(y, u) − ˜�kw(y′, u)| � 4|w|∞, so

|˜�kw(y, u) − ˜�kw(y′, u)| � 4C2γ
s(y,y′)−k
1 |w|γ ϕ(Fk y)η.

The case k = 0 is the same with one term omitted.
(c) For k � 1,

|˜�kw(y, u)−˜�kw(y, u′)| � |w(Fkπy, u) − w(Fkπy, u′)|
+ |w(Fk−1π Fy, u) − w(Fk−1π Fy, u′)| � 2|w|∞,η|u − u′|η.

The case k = 0 is the same with one term omitted. ��
We end this subsection by noting for all k � 0 the identities

�kvs(y) =
∫ ϕ̆(Fk y)

0
esu

˜�kv(y, u) du, �kŵ(s)(y) =
∫ ϕ̆(Fk y)

0
e−su

˜�kw(y, u) du,

Ekvs(y) =
∫ ϕ̆(Fk y)

0
esu

˜Ekv(y, u) du, Ekŵ(s)(y) =
∫ ϕ̆(Fk y)

0
e−su

˜Ekw(y, u) du.

4.3. Estimates for An and Bn,k . We continue to suppose that μ(ϕ > t) = O(t−β)

where β > 1, and that q, η, γ1, θ are as in Sect. 4.1. Let c′ = 1/(2C1). As shown in
the proofs of Propositions 4.15 and 4.16 below, ̂An and ̂Bn,k are Laplace transforms of
L∞ functions An, Bn,k : [0,∞) → R. In this subsection, we obtain estimates for these
functions An, Bn,k .

Proposition 4.14. There is a constant C > 0 such that
∫

Y ϕ ϕ ◦ Fn1{ϕn+1>t} dμ � Cn
∫

Y ϕ1{ϕ>c′t/n} dμ for all n � 1, t > 0.

Proof. Since F is Gibbs–Markov, there is a constant C0 (called C2 in [30]) such that

|R(ϕ1{ϕ>c})|∞ � C0

∑

μ(Y j )|1Y j ϕ|∞1{|1Y j ϕ|∞>c}

� 2C0C1

∑

μ(Y j )infY j ϕ1{infY j ϕ>c′c} � K
∫

Y ϕ1{ϕ>c′c} dμ,

where K = 2C0C1. Similarly, |Rϕ|∞ � K |ϕ|1 and |R1{ϕ>c}|∞ � Kμ(ϕ > c′c).
Now

∫

Y
ϕ ϕ ◦ Fn1{ϕn+1>t} dμ �

n
∑

j=0

∫

Y
ϕ ◦ Fn ϕ1{ϕ◦F j >t/n} dμ

=
n

∑

j=0

∫

Y
ϕ Rn(ϕ1{ϕ◦F j >t/n}) dμ =

n
∑

j=0

∫

Y
ϕ Rn− j (1{ϕ>t/n} R jϕ) dμ.

For 1 � j � n − 1,
∣

∣

∣

∫

Y ϕ Rn− j (1{ϕ>t/n} R j ϕ) dμ

∣

∣

∣ � |ϕ|1|Rn− j (1{ϕ>t/n} R j ϕ)|∞
� |ϕ|1|R j ϕ|∞|Rn− j1{ϕ>t/n}|∞ � |ϕ|1|Rϕ|∞|R1{ϕ>t/n}|∞ � K 2|ϕ|21μ(ϕ > c′t/n).
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For j = n,

| ∫Y ϕ Rn− j (1{ϕ>t/n} R jϕ) dμ| � |Rϕ|∞
∫

Y ϕ 1{ϕ>t/n} dμ � K |ϕ|1
∫

Y ϕ1{ϕ>c′t/n} dμ.

Finally for j = 0,

| ∫Y ϕ Rn− j (1{ϕ>t/n} R jϕ) dμ| � |ϕ|1|R(ϕ 1{ϕ>t/n})|∞ � K |ϕ|1
∫

Y ϕ1{ϕ>c′t/n} dμ,

completing the proof. ��
Proposition 4.15. There is a constant C > 0 such that

|An(t)| � Cnβγ n
1 |v|∞|w|γ (t + 1)−(β−1) for all v ∈ L∞(Y ϕ̆ ), w ∈ Hγ (Y ϕ̆ ), n � 1, t > 0.

Proof. We compute that

̂An(s) =
∫

Y
e−sϕ̆n vs (En−1ŵ(s)) ◦ F dμ

=
∫

Y

∫ ϕ̆(y)

0
v(y, u)

∫ ϕ̆(Fn y)

0
e−s(ϕ̆n(y)−u+u′)

˜En−1w(Fy, u′) du′ du dμ

=
∫

Y

∫ ϕ̆(y)

0
v(y, u)

∫ ϕ̆n+1(y)−u

ϕ̆n(y)−u
e−st

˜En−1w(Fy, t − ϕ̆n(y) + u) dt du dμ.

Hence

An(t) =
∫

Y

∫ ϕ̆(y)

0
v(y, u)1{ϕ̆n(y)−u<t<ϕ̆n+1(y)−u} ˜En−1w(Fy, t − ϕ̆n(y) + u) du dμ.

By Proposition 4.13(a), |˜En−1w(Fy, t − ϕ̆n(y) + u)| � 2C2γ
n−1
1 |w|γ ϕη(Fn y) and so

|An(t)| � 2C2γ
n−1
1 |v|∞|w|γ

∫

Y ϕ̆ ϕη ◦ Fn1{ϕ̆n+1>t} dμ � γ n
1 |v|∞|w|γ

∫

Y ϕ ϕ ◦ Fn1{ϕn+1>t} dμ.

The result follows from Propositions 3.4(b) and 4.14. ��
Proposition 4.16. There is a constant C > 0 such that

|Bn,k(t)| � Cnβγ n
1 |v|γ |w|∞ (t + 1)−(β−1) for all v ∈ Hγ (Y ϕ̆), w ∈ L∞(Y ϕ̆ ),

n � 1, k � 0, t > 0.

Proof. We compute that

̂Bn,k(s) =
∫

Y
e−sϕ̆n◦Fn

Envs (�kŵ(s)) ◦ F2n−k dμ

=
∫

Y

∫ ϕ̆(F2n y)

0

∫ ϕ̆(Fn y)

0
e−s(ϕ̆n(Fn y)−u′+u)

˜Env(y, u′)˜�kw(F2n−k y, u) du′ du dμ

=
∫

Y

∫ ϕ̆(F2n y)

0

∫ ϕ̆n(Fn y)+u

ϕ̆n−1(Fn+1y)+u
e−st

˜Env(y, ϕ̆n(Fn y) − t + u)˜�kw(F2n−k y, u) dt du dμ.

Hence

Bn,k(t) =
∫

Y

∫ ϕ̆(F2n y)

0
1{ϕ̆n−1(Fn+1y)+u<t<ϕ̆n(Fn y)+u}
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× ˜Env(y, ϕ̆n(Fn y) − t + u)˜�kw(F2n−k y, u) du dμ.

By Proposition 4.13(a), |˜Env(y, ϕ̆n(Fn y) − t + u)| � 2C2γ
n
1 |v|γ ϕη(Fn y). Also |˜�k

w(F2n−k y, u)| � 2|w|∞. Hence

|Bn,k(t)| � 2C2γ
n
1 |v|γ |w|∞

∫

Y
ϕ̆ ◦ F2n ϕη ◦ Fn1{ϕ̆n+1◦Fn>t} dμ

� γ n
1 |v|γ |w|∞

∫

Y
ϕ ϕ ◦ Fn1{ϕn+1>t} dμ.

The result follows from Propositions 3.4(b) and 4.14. ��

4.4. Estimates for ̂C j,k . For the moment, we suppose that μ(ϕ > t) = O(t−β) where
β > 1, and that q, η, γ1, θ are as in Sect. 4.1. We fix some notation. Recall that the
function ̂Wk(s) : Y → C can be regarded as a function Wk(s) : Y → R. The inverse
Laplace transformof ̂Wk(s)will be denoted asWk(t) : Y → C, while the inverseLaplace
transform of Wk(s) will be denoted as qWk(t) : Y → R. The same notational convention
applies to different functions associated to ̂Vj (s). First, we estimate qWk(t) : Y → R.

Proposition 4.17. There is a constant C > 0 such that

| qWk(t)|1 � C(k + 1)β+1γ k
1 ‖w‖γ (t + 1)−q for all w ∈ Hγ (Y ϕ̆ ), k � 0, t > 0.

Proof. For all k � 0,

̂Wk(s)(y) = e−sϕ̆k (y)�kŵ(s)(y) =
∫ ϕ̆(Fk y)

0
e−s(ϕ̆k (y)+u)

˜�kw(y, u) du

=
∫ ϕ̆k+1(y)

ϕ̆k (y)

e−st
˜�kw(y, t − ϕ̆k(y)) dt.

Hence

Wk(t)(y) = 1{ϕ̆k (y)<t<ϕ̆k+1(y)}˜�kw(y, t − ϕ̆k(y)),

and |Wk(t)| � 2C2γ
k−1
1 ‖w‖γ (ϕ ◦ Fk)η1{ϕk+1>t} by Proposition 4.13(a). It follows that

| qWk(t)|1 = |Wk(t)|1 � 2C2(k + 1)γ k−1
1 ‖w‖γ

∫

Y ϕη1{ϕ>t/(k+1)} dμ

� (k + 1)β+1−ηγ k−1
1 ‖w‖γ (t + 1)−(β−η) � (k + 1)β+1γ k−1

1 ‖w‖γ (t + 1)−q ,

by Proposition 3.4. ��
Proposition 4.18. There exists C > 0 such that

‖(̂R�)(q)(s)‖θ � C�q(|s| + 1) for all s = a + ib ∈ C with a ∈ [0, 1] and all � � 1.
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Proof. By Proposition 4.7, there exists a constant M > 0 such that ‖̂R(p)(s)‖b � M
for all p � q. Also ‖̂R(s)n‖b � M1 by (4.1).

For q � 1, note that (̂R�)(q) consists of �q terms (counting repetitions) of the form

̂Rn1 ̂R(p1) · · · ̂Rnk ̂R(pk ) ̂Rnk+1,

where ni � 0, 1 � pi � q, n1 + · · · + nk+1 + k = �, p1 + · · · + pk = q. Since k � q,

‖̂Rn1 ̂R(p1) · · · ̂Rnk ̂R(pk ) ̂Rnk+1‖b � Mq+1
1 Mq .

Hence ‖(̂R�)(q)(s)‖θ � (M0 + 1)(|s| + 1)‖(̂R�)(q)(s)‖b � �q(|s| + 1). ��
Proposition 4.19. Let v ∈ Hγ (Y ϕ̆). Define I0(s) = ∫

Y

∫ ϕ̆(y)

0 e−s(ϕ̆(y)−u)v(y, u) du dμ.
Then

∑∞
j=0

∫

Y
̂Vj dμ = I0 on H.

Proof. For j � 1,

∫

Y

̂Vj (s) dμ =
∫

Y

∫ ϕ̆(F j y)

0
e−s(ϕ̆(F j y)−u)(v(F jπy, u) − v(F j−1π Fy, u) du dμ

=
∫

Y

∫ ϕ̆(F j y)

0
e−s(ϕ̆(F j y)−u)v(F jπy, u) du dμ

−
∫

Y

∫ ϕ̆(F j−1y)

0
e−s(ϕ̆(F j−1y)−u)v(F j−1πy, u) du dμ,

while
∫

Y
̂V0(s) dμ = ∫

Y

∫ ϕ̆(y)

0 e−s(ϕ̆(y)−u)v(πy, u) du dμ. Hence

J
∑

j=0

∫

Y

̂Vj (s) dμ =
∫

Y

∫ ϕ̆(F J y)

0
e−s(ϕ̆(F J y)−u)v(F J πy, u) du dμ

= Z J (s) +
∫

Y

∫ ϕ̆(F J y)

0
e−s(ϕ̆(F J y)−u)v(F J y, u) du dμ = Z J (s) + I0(s),

where

Z J (s) =
∫

Y

∫ ϕ̆(F J y)

0
e−s(ϕ̆(F J y)−u)(v(F J πy, u) − v(F J y, u)) du dμ.

By (3.1),

|v(F J πy, u) − v(F J y, u)| � |v|γ ϕ(F J y)d(F J πy, F J y) � C2γ
J |v|γ ϕ(F J y).

Also, |v(F J πy, u) − v(F J y, u)| � 2|v|∞, so

|v(F J πy, u) − v(F J y, u)| � 2C2γ
J
1 ‖v‖γ ϕ(F J y)η.

Hence |Z J (s)| � 2C2γ
J
1 ‖v‖γ

∫

Y (ϕ ◦ F J )1+η dμ = 2C2γ
J
1 ‖v‖γ

∫

Y ϕ1+η dμ → 0 as
J → ∞. ��
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The remaining estimates in this section are not needed in Sect. 5 (except in the proof
of Proposition 5.10 as explained at the time). Hence, in the remainder of the section we
specialize to the rapid mixing case, so q and β are arbitrary, ϕ = ϕ̆, and all functions
previously regarded as Cq are now C∞.

Note that

min{γ j
1 , γ

s(y,y′)− j
1 } � γ

1
3 j
1 γ

1
3 s(y,y′)
1 � γ

1
3 j
1 θ s(y,y′). (4.2)

Proposition 4.20. For each r ∈ N, there exists C > 0 such that

‖R j+1V
(r)

j (s)‖θ � C(|s| + 1)γ j/3
1 ‖v‖γ for all v ∈ Hγ (Y ϕ), s ∈ H, j � 0.

Proof. For j � 0,

̂Vj (s)(y) = e−sϕ(F j y)� jvs(y) =
∫ ϕ(F j y)

0
e−s(ϕ(F j y)−u)

˜� jv(y, u) du.

Hence

̂V (r)
j (s)(y) = (−1)r

∫ ϕ(F j y)

0
e−s(ϕ(F j y)−u)(ϕ(F j y) − u)r

˜� jv(y, u) du.

By Proposition 4.13(a), |˜� jv(y, u)| � 2C2γ
j−1
1 ‖v‖γ ϕ(F j y)η. Hence |̂V (r)

j (s)| �
2C2γ

j−1
1 ‖v‖γ ϕr+2 ◦ F j .

Fix a ( j + 1)-cylinder d for the Gibbs–Markov map F : Y → Y . Since F j d is a
partition element,

|1d V
(r)

j (s)|∞ � C2γ
j−1
1 ‖v‖γ |1F j d ϕr+2|∞ � (2C1)

r+2C2γ
j−1
1 ‖v‖γ infF j d ϕr+2.

(4.3)
Let y, y′ ∈ d with ϕ(F j y) � ϕ(F j y′). Then

V
(r)

j (s)(y) − V
(r)

j (s)(y′) = (−1)r (I1 + I2 + I3 + I4),

where

I1 =
∫ ϕ(F j y)

ϕ(F j y′)
e−s(ϕ(F j y)−u)(ϕ(F j y) − u)r

˜� jv(y, u) du,

I2 =
∫ ϕ(F j y′)

0
{e−s(ϕ(F j y)−u) − e−s(ϕ(F j y′)−u)}(ϕ(F j y) − u)r

˜� jv(y, u) du,

I3 =
∫ ϕ(F j y′)

0
e−s(ϕ(F j y′)−u){(ϕ(F j y) − u)r − (ϕ(F j y′) − u)r }˜� jv(y, u) du,

I4 =
∫ ϕ(F j y′)

0
e−s(ϕ(F j y′)−u)(ϕ(F j y′) − u)r {˜� jv(y, u) − ˜� jv(y′, u)} du.

By (3.3),

|ϕ(F j y) − ϕ(F j y′)| � C1infF j d ϕ γ s(F j y,F j y′) = C1γ
s(y,y′)− j infF j d ϕ.
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Hence by Proposition 4.13(a,b),

|V (r)

j (s)(y) − V
(r)

j (s)(y′)| � (|s| + 1)γ s(y,y′)− j
1 ‖v‖γ infF j d ϕr+3.

At the same time, the supnorm estimate (4.3) yields

|V (r)

j (s)(y) − V
(r)

j (s)(y′)| � γ
j
1 ‖v‖γ infF j d ϕr+3.

Combining these estimates and using (4.2) we obtain that

|V (r)

j (s)(y) − V
(r)

j (s)(y′)| � (|s| + 1)γ j/3
1 θ s(y,y′)‖v‖γ infF j d ϕr+3.

In other words,

|1d V
(r)

j (s)|θ � (|s| + 1)γ j/3
1 ‖v‖γ infF j d ϕr+3.

Using this and (4.3), it follows by Proposition 4.5 that

‖R j+1V
(r)

j (s)‖θ � (|s| + 1)γ j/3
1 ‖v‖γ

∑

d μ̄(d)infd ϕr+3 ◦ F j

� (|s| + 1)γ j/3
1 ‖v‖γ

∫

Y ϕr+3 ◦ F j dμ̄ = (|s| + 1)γ j/3
1 ‖v‖γ

∫

Y ϕr+3 dμ,

completing the proof. ��
Define D j,� = ̂R�

̂T R j+1Vj , j, � � 0. Let δ and λ be as in Proposition 4.10, and
recall that Hδ = H ∩ Bδ(0).

Proposition 4.21. For each r ∈ N, there exists α, C > 0 such that for all v ∈ Hγ (Y ϕ),
j, � � 0, and all s = a + ib ∈ C with a ∈ [0, 1],

(a) |D(r)
j,�(s)|∞ � C(� + 1)rγ

j/3
1 (|b| + 1)α‖v‖γ for s 	∈ Hδ ,

(b) | dr

dsr {D j,�(s) − (1 − λ(s))−1
∫

Y
̂Vj (s) dμ}|∞ � C(� + 1)r+1γ

j/3
1 ‖v‖γ for s ∈ Hδ .

Proof. Let p ∈ N, p � r . By Propositions 4.18 and 4.20, ‖R j+1V(p)
j (s)‖θ � γ

j/3
1 (|b|+

1)‖v‖γ , and ‖(̂R�)(p)(s)‖θ � (� + 1)r (|b| + 1).
For s 	∈ Hδ , it follows from Proposition 4.9 that ‖̂T (p)(s)‖θ � (|b| + 1)α for some

α > 0. Combining these estimates,

|(̂R�
̂T R j+1Vj )

(r)(s)|∞ � ‖(̂R�
̂T R j+1Vj )

(r)(s)‖θ � (� + 1)rγ
j/3
1 (|b| + 1)α+2‖v‖γ ,

completing the proof of (a).
Next, suppose that s ∈ Hδ . By Proposition 4.10, ̂R = λP + ̂RQ where P(s) is the

spectral projection corresponding to λ(s) and Q(s) = I − P(s). By Proposition 4.10,
λ(s) is a C∞ family of isolated eigenvalues with λ(0) = 1, λ′(0) 	= 0 and |λ(s)| � 1,
and P(s) is a C∞ family of operators on Fθ (Y ) with P(0)v = ∫

Y v dμ̄. Also

̂T = (1 − λ)−1P + Q1 on Hδ\{0},
where Q1 = ̂T Q is C∞ on Hδ . Hence

̂R�
̂T = (1 − λ)−1λ� P + ̂R�Q1 = (1 − λ)−1λ� P(0) + λ�Q2 + ̂R�Q1 on Hδ\{0},
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where Q2 = (1 − λ)−1(P − P(0)) is C∞ on Hδ . Also, (1 − λ)−1λ� = (1 − λ)−1 −
(λ�−1 + · · · + 1), so

D j,� − (1 − λ)−1P(0)R j+1Vj = Q j,� on Hδ,

where

Q j,� = ( − (λ�−1 + · · · + 1)P(0) + λ�Q2 + ̂R�Q1
)

R j+1Vj .

It follows from the estimates for R j+1Vj and ̂R� that |(̂R�Q1R j+1Vj )
(r)(s)|∞ � (� +

1)rγ
j/3
1 ‖v‖γ for s ∈ Hδ . Since |λ(s)| � 1, the proof of Proposition 4.18 applies equally

to λ�, so |Q(r)
j,�(s)|∞ � (� + 1)r+1γ

j/3
1 ‖v‖γ for s ∈ Hδ .

Finally P(0)R j+1Vj = ∫

Y Vj dμ̄ = ∫

Y
̂Vj dμ completing the proof of part (b). ��

By Lemma 4.12, ̂C = ∑∞
j,k=0

̂C j,k is analytic on H. As shown in the next result, ̂C

extends smoothly to H.

Corollary 4.22. Assume absence of eigenfunctions and let r ∈ N. There exists α, C > 0
such that

|̂C (r)(s)| � C(|b| + 1)α‖v‖γ ‖w‖γ ,

for all s = a + ib ∈ H with a ∈ [0, 1], and all v,w ∈ Hγ (Y ϕ) with
∫

Y ϕ v dμϕ = 0.

Proof. Let � = max{ j −k −1, 0}. Recall from Lemma 4.12 that ̂C j,k = ∫

Y D j,�Wk dμ̄.

Let p ∈ N, p � r . By Proposition 4.17, | qWk(t)|1 � (k + 1)β+1γ k
1 ‖w‖γ (t + 1)−q , so

|W(p)
k (s)|1 � (k + 1)β+1γ k

1 ‖w‖γ . Combining this with Proposition 4.21(a),

|̂C (r)
j,k(s)| � |b|α(k + 1)rγ

j/3
1 (k + 1)β+1γ k

1 ‖v‖γ ‖w‖γ for |b| � δ,

and the proof for |b| � δ is complete.
For |b| � δ, we use Proposition 4.19 to write

̂C = ∑

j,k

∫

Y

{

D j,� − (1 − λ)−1
∫

Y
̂Vj dμ

}

Wk dμ + (1 − λ)−1 I0
∑

k

∫

Y Wk dμ.

Proposition 4.21(b) takes care of the first term on the right-hand side, and it remains to
estimate g = (1 − λ)−1 I0. Now

I0(0) =
∫

Y

∫ ϕ(y)

0
v(y, u) du dμ = |ϕ|1

∫

Y ϕ

v dμϕ = 0, (4.4)

so it follows from Proposition 4.10 that g is C∞ with |g(r)(s)| � |v|∞ on Hδ . ��
Proof of Theorem 3.1. Recall that β and q can be taken arbitrarily large. Hence it fol-
lows from Proposition 4.4 that sup

H
|̂J (r)

0 | � |v|∞|w|∞ for all r ∈ N. Similarly,

by Propositions 4.15 and 4.16, sup
H

|̂A(r)
n | � nr+3γ n

1 |v|∞|w|γ and sup
H

|̂B(r)
n,k | �

nr+3γ n
1 |v|γ |w|∞. Combining thesewithCorollary 4.22 and substituting intoLemma4.12,

we have shown that ρ̂v,w : H → C extends to ρ̂v,w : H → C. Moreover, we have shown
that for every r ∈ N there exists C, α > 0 such that

|ρ̂(r)
v,w(s)| � C(|b| + 1)α‖v‖γ ‖w‖γ for s = a + ib ∈ C with a ∈ [0, 1],

for all v,w ∈ Hγ (Y ϕ) with
∫

Y ϕ v dμϕ = 0. The result now follows from Lemma 4.2
and Remark 4.3. ��
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5. Polynomial Mixing for Skew Product Gibbs–Markov Flows

In this section, we consider skew product Gibbs–Markov flows Ft : Y ϕ → Y ϕ for which
the roof function ϕ : Y → R

+ satisfies μ(ϕ > t) = O(t−β) for some β > 1. For such
flows, we prove Theorem 3.2, namely that absence of approximate eigenfunctions is a
sufficient condition to obtain the mixing rate O(t−(β−1)).

If f : R → R is integrable, we write f ∈ R(a(t)) if the inverse Fourier transform
of f is O(a(t)). We also write R(t−p) instead of R((t + 1)−p) for p > 0. We use the
same notation for Banach space valued functions f : R → B, writing ‖ f ‖B ∈ R(a(t))
if the B-norm of the inverse Fourier transform of f is O(a(t)).

Proposition 5.1 ([30, Proposition 8.2]). Let g : R → R be an integrable function such
that g(b) → 0 as b → ±∞. If | f (q)| � g, then f ∈ R(|g|1 t−q). ��

The convolution f � g of two integrable functions f, g : [0,∞) → R is defined to
be ( f � g)(t) = ∫ t

0 f (x)g(t − x) dx .

Proposition 5.2 ([30, Proposition 8.4]). Fix b > a > 0 with b > 1. Suppose that
f, g : [0,∞) → R are integrable and there exist constants C, D > 0 such that | f (t)| �
C(t + 1)−a and |g(t)| � D(t + 1)−b for t � 0. Then there exists a constant K > 0
depending only on a and b such that |( f � g)(t)| � C DK (t + 1)−a for t � 0. ��
Proposition 5.3. Define f (b) = b−1(e−ibϕ −1) for b ∈ R\{0}. Then there exists C > 0
such that ‖1Yk

f (q)(b)‖θ � C infYk
ϕq+η|b|−(1−η) for all b ∈ R\{0}.

Proof. This is contained in the proof of [30, Proposition 8.13]. ��

5.1. Modified estimate for R j+1Vj . In this subsection, we improve the estimate obtained
in Proposition 4.20. No auxiliary roof function is required here, soϕ ≡ ϕ̆. As in Sect. 4.1,
q + 2η < β.

Proposition 5.4. There exists C > 0 such that

‖R j+1V(q)
j (ib)‖θ � Cγ

j/3
1 ‖v‖γ |b|−(1−η),

for all v ∈ Hγ (Y ϕ) such that v is independent of u, and all b 	= 0, j � 0.

Proof. Recall that

̂Vj (s) = e−sϕ◦F j
� jvs =

∫ ϕ◦F j

0
e−s(ϕ◦F j −u) du � jv =

∫ ϕ◦F j

0
e−su du � jv.

Hence R j V j (s) = ∫ ϕ

0 e−su du R j (� jv) = −s−1(e−sϕ − 1)R j (� jv). It follows that

R j+1Vj (ib) = i R
(

f (b)R j (� jv)
)

, (5.1)

where f (b) = b−1(e−ibϕ − 1).
Let d ∈ Y be a j-cylinder and let y, y′ ∈ d. Then the arguments in the proof of

Proposition 4.13(a,b) show that

|� jv(y)| � γ
j
1 ‖v‖γ ϕ(F j y)η, |� jv(y) − � jv(y′)| � γ

s(y,y′)− j
1 ‖v‖γ ϕ(F j y)η.
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On the other hand, |� jv(y) − � jv(y′)| � γ
j
1 ‖v‖γ ϕ(F j y)η, so by (4.2),

|� jv(y) − � jv(y′)| � γ
j/3
1 θ s(y,y′)‖v‖γ ϕ(F j y)η.

Using (3.3), it follows that

|1d(1Yk
◦ F j )� jv|∞ � γ

j
1 ‖v‖γ supYk

ϕη � 2C1γ
j
1 ‖v‖γ infYk

ϕη,

and similarly,

|1d(1Yk
◦ F j )� jv|θ � γ

j/3
1 ‖v‖γ infYk

ϕη, ‖1d(1Yk
◦ F j )� jv‖θ � γ

j/3
1 ‖v‖γ infYk

ϕη.

By Proposition 4.5,

‖1Yk
R j (� jv)‖θ = ‖R j ((1Yk

◦ F j )� jv
)‖θ � γ

j/3
1 ‖v‖γ infYk

ϕη.

Hence by Proposition 5.3,

‖1Yk
f (q)(b)R j (� jv)‖θ � infYk

ϕq+η|b|−(1−η)‖1Yk
R j (� jv)‖θ

� γ
j/3
1 ‖v‖γ infYk

ϕq+2η|b|−(1−η).

Applying Proposition 4.5 once more and using (5.1),

‖R j+1V(q)
j (ib)‖θ = ‖R

(

f (q)(b)R j (� jv)
)‖θ �

∑

k

μ̄(Yk)‖1Yk
f (q)(b)R j (� jv)‖θ

� γ
j/3
1 ‖v‖γ

∫

Y ϕq+2η dμ |b|−(1−η)

as required. ��
Recall that qVj (t) : Y → R denotes the inverse Laplace transform associated to

̂Vj (s) : Y → C.

Proposition 5.5. There is a constant C such that

‖R j+1
qVj (t)‖θ � Cγ

j/3
1 ‖v‖γ,η (t + 1)−q ,

for all v ∈ Hγ,η(Y ϕ) with v(y, 0) ≡ 0 and all j � 0, t > 0.

Proof. For j � 0,

̂Vj (s)(y) =
∫ ϕ(F j y)

0
e−s(ϕ(F j y)−u)

˜� j v(y, u) du =
∫ ϕ(F j y)

0
e−st

˜� j v(y, ϕ(F j y) − t) dt,

so

Vj (t)(y) = 1{ϕ(F j y)>t}˜� jv(y, ϕ(F j y) − t).

Recall that c′ = 1/(2C1). Fix a ( j +1)-cylinder d. By Proposition 4.13(a), for y ∈ d,

|Vj (t)(y)| � 2C2γ
j−1
1 ‖v‖γ ϕ(F j y)η1{|1F j d ϕ|∞>t}

� 4C1C2γ
j−1
1 ‖v‖γ infF j d ϕη1{infF j d ϕ>c′t}. (5.2)
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For y, y′ ∈ d,

|ϕ(F j y) − ϕ(F j y′)| � C1infF j d ϕ γ s(y,y′)− j .

so by Propositions 4.13(b,c), for t ∈ [0, ϕ(F j y)] ∩ [0, ϕ(F j y′)],
|˜� jv(y, ϕ(F j y) − t)−˜� jv(y′, ϕ(F j y′) − t)|

� 4C2γ
s(y,y′)− j
1 ‖v‖γ infF j d ϕη + 2|v|∞,η|ϕ(F j y) − ϕ(F j y′)|η

� γ
s(y,y′)− j
1 ‖v‖γ,η infF j d ϕη. (5.3)

Similarly, for t ∈ [ϕ(F j y′), ϕ(F j y)],
|˜� jv(y, ϕ(F j y) − t)| = |˜� jv(y, ϕ(F j y) − t) − ˜� jv(y, 0)| � 2|v|∞,η|ϕ(F j y) − t |η

� 2|v|∞,η|ϕ(F j y) − ϕ(F j y′)|η � γ
s(y,y′)− j
1 |v|∞,η infF j d ϕη. (5.4)

For y, y′ ∈ d with ϕ(F j y) � ϕ(F j y′),
Vj (t)(y) − Vj (t)(y′)

=

⎧

⎪

⎨

⎪

⎩

˜� jv(y, ϕ(F j y) − t) − ˜� jv(y′, ϕ(F j y′) − t), ϕ(F j y′) > t
˜� jv(y, ϕ(F j y) − t), ϕ(F j y) > t � ϕ(F j y′)
0, ϕ(F j y) � t.

If ϕ(F j y′) > t , then using (5.3),

|Vj (t)(y) − Vj (t)(y′)| � γ
s(y,y′)− j
1 ‖v‖γ,η1{|1F j d ϕ|∞>t}infF j d ϕη

� γ
s(y,y′)− j
1 ‖v‖γ,η1{infF j d ϕ>c′t}infF j d ϕη.

If ϕ(F j y) > t � ϕ(F j y′), then using (5.4),

|Vj (t)(y) − Vj (t)(y′)| � γ
s(y,y′)− j
1 |v|∞,η1{infF j d ϕ>c′t}infF j dϕη.

Hence in all cases,

|Vj (t)(y) − Vj (t)(y′)| � γ
s(y,y′)− j
1 ‖v‖γ,η1{infF j d ϕ>c′t}infF j d ϕη.

On the other hand, by (5.2), |Vj (t)(y)− Vj (t)(y′)| � γ
j
1 ‖v‖γ infF j d ϕη1{infF j d ϕ>c′t}.

Combining these estimates and using (4.2),

|Vj (t)(y) − Vj (t)(y′)| � γ
j/3
1 θ s(y,y′)‖v‖γ,η1{infF j d ϕ>c′t}infF j d ϕη.

Hence

‖1d Vj (t)‖θ � γ
j/3
1 ‖v‖γ,η1{infF j d ϕ>c′t}infF j d ϕη.

By Proposition 4.5,

‖R j+1
qVj (t)‖θ � γ

j/3
1 ‖v‖γ,η

∑

d μ̄(d)1{infd ϕ◦F j >c′t}(infd ϕ ◦ F j )η

� γ
j/3
1 ‖v‖γ,η

∫

Y
1{ϕ◦F j >c′t}(ϕ ◦ F j )η dμ = γ

j/3
1 ‖v‖γ,η

∫

Y
1{ϕ>c′t}ϕη dμ.

Now apply Proposition 3.4(b). ��
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Remark 5.6. Recall that R j+1Vj (s) is the Laplace transform of R j+1
qVj (t). It follows

from the estimates in Propositions 5.4 and 5.5 that R j+1
qVj (t) can be recovered as the

inverse Fourier transform of R j+1Vj (ib). The arguments are completely standard and
hencegenerally omitted; they arewritten out carefully once in the proof ofCorollary 5.11.
(In the proof of Corollary 5.11, the verification is carried out in a situation where there
is a bounded roof function ϕ(N ). The required integrability conditions are not uniform
in N but this is of no consequence.)

A further convention: we often consider expressions of the form κ(b)R j+1Vj (ib). For
brevity, we refer to these as κ R j+1Vj and regard them as functions of the real variable
b ∈ R.

Corollary 5.7. Let κ : R → R be C
∞ with |κ(k)(b)| = O((b2 + 1)−1) for all k ∈ N.

Then ‖κ R j+1Vj‖θ ∈ R(γ
j/3
1 ‖v‖γ,η t−q) for all v ∈ Hγ,η(Y ϕ), j � 0.

Proof. Write v(y, u) = v0(y) + v1(y, u) where v0(y) = v(y, 0). We have the corre-
sponding decomposition Vj = Vj,0 + Vj,1. The function g(b) = κ(b)|b|−(1−η) is inte-

grable and‖(κ R j+1Vj,0)
(q)‖θ � γ

j/3
1 ‖v‖γ,η g byProposition5.4.Hence,‖κ R j+1Vj,0‖θ

∈ R(γ
j/3
1 ‖v‖γ t−q) byProposition 5.1.Also, κ ∈ R(t−q) byProposition 5.1, so ‖κ R j+1

Vj,1‖θ ∈ R(γ
j/3
1 ‖v‖γ,η t−q) by Propositions 5.2 and 5.5. ��

5.2. Truncation. We proceed in a manner analogous to [30, Section 8.4], replacing ϕ

by a bounded roof function. Given N � 1, let Y (N ) = ⋃

j�1:infY j ϕ�N Y j . Define

ϕ(N ) = N on Y (N ) and ϕ(N ) = ϕ elsewhere. (Unlike [30], it is not sufficient to take
ϕ(N ) = min{ϕ, N }.) Note that ϕ(N ) � 2C1N by (3.3).

Consider the suspension semiflows Ft and FN ,t on Y ϕ and Y ϕ(N ) respectively. (Here,
FN ,t is computed modulo the identification (y, ϕ(N )(y)) ∼ (Fy, 0) on Y ϕ(N ).) Let
ρv,w and ρtrunc

v,w denote the respective correlation functions. In particular, ρtrunc
v,w (t) =

∫

Y ϕ(N ) v w ◦ FN ,t dμϕ(N ) − ∫

Y ϕ(N ) v dμϕ(N )
∫

Y ϕ(N ) w dμϕ(N ) where the observables
v,w : Y ϕ(N ) → R are the restrictions of v,w : Y ϕ → R to Y ϕ(N ).

Proposition 5.8 ([30, Proposition 8.19]). There are constants C, t0 > 0, N0 � 1 such
that

|ρv,w(t) − ρtrunc
v,w (t)| � C |v|∞|w|∞(t N−β + N−(β−1)),

for all v,w ∈ L∞(Y ϕ), N � N0, t > t0. ��
When computing the norms of observables v : Y ϕ(N ) → R, we retain ϕ as the weight

function in the denominator. It follows that ‖v‖γ,η = ‖v′‖γ,η where v′ is the extension
of v by zero to Y ϕ . This convention is in accordance with the formalism introduced in
Sect. 4; with ϕ(N ) playing the role of ϕ̆ (see Remark 4.1).

Note also that v ∈ Hγ,η(Y ϕ) restricts to v|Y ϕ(N ) ∈ Hγ,η(Y ϕ(N )) with ‖v|Y ϕ(N )‖γ,η �
‖v‖γ,η. The similar convention applies to observables w ∈ Hγ (Y ϕ(N )). However, re-
stricting w ∈ Hγ,0,m(Y ϕ) to Y ϕ(N ) need not preserve smoothness in the flow direction.
Below we prove:

Lemma 5.9. Assume absence of approximate eigenfunctions. In particular, there is a
finite union Z ⊂ Y of partition elements such that the corresponding finite subsystem
Z0 does not support approximate eigenfunctions. Choose N1 � |1Zϕ|∞ + 3.
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There exist m � 1, C > 0 such that

|ρtrunc
v,w (t)| � C‖v‖γ,η‖w‖γ,0,m t−(β−1),

for all v ∈ Hγ,η(Y ϕ(N )), w ∈ Hγ,0,m(Y ϕ(N )), N � N1, t > 1.

Proof of Theorem 3.2. Let m � 1, N1 � 3 be as in Lemma 5.9. As discussed above, the
observable v : Y ϕ → C restricts to an observable v : Y ϕ(N ) → Cwith no increase in the
value of ‖v‖γ,η, but restricting w ∈ Hγ,0,m(Y ϕ) to Y ϕ(N ) need not preserve smoothness
in the flow direction. To circumvent this, following [29,30] we define an approximating
observable wN : Y ϕ(N ) → R, N � N1,

wN (y, u) =

⎧

⎪

⎨

⎪

⎩

w(y, u) (y, u) 	∈ Y (N ) × [N − 2, N ]
∑2m+1

j=0 (u − N + 2) j dN , j (y) (y, u) ∈ Y (N ) × [N − 2, N − 1]
w(y, u + ϕ(y) − N ) (y, u) ∈ Y (N ) × (N − 1, N ]

,

where the dN , j (y) are linear combinations of ∂ i
t w(y, N − 2) and ∂ i

t w(y, ϕ(y) − 1),
i = 0, . . . , m, with coefficients independent of y and N uniquely specified by the
requirements ∂ i

t wN (y, N−2) = ∂ i
t w(y, N−2) and ∂ i

t wN (y, N−1) = ∂ i
t w(y, ϕ(y)−1)

for i = 0, . . . , m.3

It is immediate from the definitions that wN is m-times differentiable in the flow
direction. We claim that ‖wN ‖γ,0,m � C ′‖w‖γ,0,m+1 for some constant C ′ independent
of N . By Lemma 5.9,

|ρtrunc
v,wN

(t)| � CC ′‖v‖γ,η‖w‖γ,0,m+1 t−(β−1).

Also,

|ρtrunc
v,w (t) − ρtrunc

v,wN
(t)| � |v|∞(|w|∞ + |wN |∞)μϕ(N )(F−1

N ,t SN )

= |v|∞(|w|∞ + |wN |∞)μϕ(N )(SN ) � 2|v|∞|w|∞μ(ϕ > N ) � |v|∞|w|∞ N−β,

so

|ρtrunc
v,w (t)| � ‖v‖γ,η‖w‖γ,0,m+1 (t−(β−1) + N−β).

Taking N = [t], the result follows directly from Proposition 5.8.
It remains to verify the claim. Fix k ∈ {0, . . . , m}. Let (y, u), (y′, u) ∈ Y (N )×[N −

2, N − 1], where y, y′ lie in the same partition element. Then

|∂k
t wN (y, u)| � (2m + 1)!∑2m+1

j=0 |dN , j (y)|
� C

∑m
i=0(|∂ i

t w(y, N − 2)| + |∂ i
t w(y, ϕ(y) − 1)|) � 2C‖w‖γ,0,m,

where C is a constant independent of N . Also, by (3.3), for 0 � i � m

|∂ i
t w(y, ϕ(y) − 1) − ∂ i

t w(y, ϕ(y′) − 1)| � |∂ i+1
t w|∞|ϕ(y) − ϕ(y′)|

� C1|∂ i+1
t w|∞ϕ(y)γ s(y,y′).

3 In fact dN , j (y) = (1/j !)∂ j
t w(y, N − 2) for 0 � j � m but the remaining formulas are messier. When

m = 1, for instance, dN ,2(y) = −3w(y, N − 2) − 2∂t w(y, N − 2) + 3w(y, ϕ(y) − 1) − ∂t w(y, ϕ(y) − 1),
dN ,3(y) = 2w(y, N − 2) + ∂t w(y, N − 2) − 2w(y, ϕ(y) − 1) + ∂t w(y, ϕ(y) − 1).
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Hence

|∂k
t wN (y, u)| − ∂k

t wN (y′, u)| � (2m + 1)!∑2m+1
j=0 |dN , j (y) − dN , j (y′)|

� C
∑m

i=0

(|∂ i
t w(y, N − 2) − ∂ i

t w(y′, N − 2)| + |∂ i
t w(y, ϕ(y) − 1)

− ∂ i
t w(y′, ϕ(y′) − 1)|)

� 2C
∑m

i=0 |∂ i
t w|γ ϕ(y){d(y, y′) + γ s(y,y′)}

+ C
∑m

i=0
|∂ i

t w(y, ϕ(y) − 1) − ∂ i
t w(y, ϕ(y′) − 1)|

� 2C‖w‖γ,0,mϕ(y){d(y, y′) + γ s(y,y′)} + CC1‖w‖γ,0,m+1ϕ(y)γ s(y,y′)

� 3CC1‖w‖γ,0,m+1ϕ(y){d(y, y′) + γ s(y,y′)}.
This completes the verification of the claim on the region Y (N ) × [N − 2, N − 1] and
the other regions are easier to treat. ��

Our strategy for proving Lemma 5.9 is identical to that for [30, Lemma 8.20]. Let
χ : [0,∞) → [0, 1] be a C∞ function vanishing on [0, 1] and replace ρtrunc

v,w by χρtrunc
v,w .

Then the asymptotics of ρtrunc
v,w and the smoothness of ρ̂trunc

v,w are unchanged uniformly in
N . Hence, as in [30, Section 6.1], we may assume without loss that ρtrunc

v,w vanishes for
t � 1.

The next step is to show that the inverse Laplace transform of ρ̂trunc
v,w can be computed

using the imaginary axis as the contour of integration (cf. Remark 5.6).

Proposition 5.10. Let N � N1, v,w ∈ Hγ (Y ϕ(N )). Then there exists ε > 0, C > 0,

α � 0, such that ρ̂trunc
v,w is continuous on {Re s ∈ [0, ε]} and |ρ̂trunc

v,w (s)| � C(|b| + 1)α

for all s = a + ib with a ∈ [0, ε].
Proof. In this proof, the constant C is not required to be uniform in N . Consequently,
the estimates are very straightforward compared to other estimates in this section.

The desired properties for ρ̂trunc
v,w hold provided they are verified for all the constituent

parts in Lemma 4.12. Note that if f is integrable on [0,∞), then f̂ satisfies the required
properties with α = 0. By Proposition 4.4, |J0(t)| � |v|∞|w|∞(t + 1)−2 (since ϕ(N )

is bounded) and hence is integrable.
By definition of N1, the truncated roof function ϕ(N ) coincides with ϕ on the sub-

system Z0, so absence of approximate eigenfunctions passes over to the truncated flow
for each N � N1. Also ϕ(N ) is bounded. Hence the estimate for ̂C comes from Corol-
lary 4.22 with r = 0.

It remains to consider the terms An and Bn . Starting from the end of the proof of
Proposition 4.15, we obtain

|An(t)| � 4C1C2Nγ n−1
1 |v|∞|w|γ

∫

Y ϕη ◦ Fn1{ϕn+1>t} dμ.

Hence, by Proposition 3.4, |An(t)| � nβ+1−ηγ n
1 |v|∞|w|γ (1 + t)−(β−η). Similarly

|Bn,k(t)| � nβ+1γ n
1 |v|γ |w|∞ (1 + t)−(β−η). Hence

∑

n�1 An and
∑

0�k<n<∞ Bn,k
are integrable, completing the proof. ��

Choose ψ : R → [0, 1] to be C∞ and compactly supported such that ψ ≡ 1 on a
neighbourhood of zero. Let κm(b) = (1 − ψ(b))(ib)−m , m � 2.
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Corollary 5.11. Let N � N1, m � α + 2, v ∈ Hγ (Y ϕ(N )), w ∈ Hγ,0,m(Y ϕ(N )). Then

ρtrunc
v,w (t) = 1

2π

∫ ∞

−∞
ψ(b)eibt ρ̂trunc

v,w (ib)db +
1

2π

∫ ∞

−∞
κm(b)eibt ̂ρtrunc

v,∂m
t w

(ib)db.

Proof. We proceed as in the proof of [30, Corollary 6.1 and Lemma 6.2]. Recall our
assumption that ρtrunc

v,w vanishes for t near zero, so that

ρ̂trunc
v,w (s) = s−m ̂ρtrunc

v,∂m
t w

(s) for all s ∈ H. (5.5)

Using the elementary estimate |ρ̂trunc
v,w (a + ib)| � 4a−1|(|s|2 +1)−1|v|1(|w|∞ + |∂2t w|∞)

for s = a + ib ∈ H, it follows from the classical inverse Laplace transform formula that

ρtrunc
v,w (t) = 1

2π

∫ ∞

−∞
e(ε′+ib)t ρ̂trunc

v,w (ε′ + ib) db

for all ε′ > 0. By (5.5) and Proposition 5.10, we have ρ̂trunc
v,w (ε′ + ib) � C(|b| + 1)−2

for every b ∈ R and every ε′ ∈ [0, ε). Hence, by continuity of ρ̂trunc
v,w and dominated

convergence,

2πρtrunc
v,w (t) =

∫ ∞

−∞
eibt ρ̂trunc

v,w (ib)db

=
∫ ∞

−∞
ψ(b)eibt ρ̂trunc

v,w (ib)db +
∫ ∞

−∞
(1 − ψ(b))eibt ρ̂trunc

v,w (ib)db.

By Proposition 5.10, equation (5.5) extends to H\{0} and the result follows. ��
From now on we suppress the superscript “trunc” for sake of readability. Notation

̂R, ̂T and so on refers to the operators obtained using ϕ(N ) instead of ϕ. We end this
subsection by recalling some further estimates from [30]. The first is a uniform version
of Proposition 4.9.

Proposition 5.12 ([30, Proposition 8.27]). Assume absence of approximate eigenfunc-
tions. Then there exists m � 2 such that

‖κm(b)̂T (ib)‖θ ∈ R(t−q) uniformly in N � N1.

��
The remaining estimates in this subsection are required when b is close to zero. By

Proposition 4.10, for each N � 1 there exists δ > 0 such that

̂R(ib) = λ(b)P(b) + ̂R(ib)Q(b) for |b| < δ,

where λ, P and Q = I − P are C∞ on (−δ, δ) and λ(0) = 1, λ′(0) = −i |ϕ(N )|1 and
P(0)v = ∫

Y v dμ̄. In fact, as shown in [30, Section 8.5], δ > 0 can be chosen uniformly
in N . Moreover, ‖̂R(q)(ib)‖θ is bounded uniformly in N on (−δ, δ), so λ, P, Q are Cq

uniformly in N on (−δ, δ).
Define

˜P(b) = b−1(P(b) − P(0)), λ̃ = b−1(1 − λ(b)).
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Proposition 5.13. There exists a constant C > 0, uniform in N � 1, such that

|(λ̃−1)(q)(ib)|, ‖(λ̃−1
˜P)(q)(ib)‖θ � C |b|−(1−η) for |b| < δ,

Proof. By [30, Proposition 8.18], ‖˜P(q1)(b)‖θ �
{

|b|−(1−η) q1 < β − 2η
1 q1 < β − 1

. The argu-

ment in the proof of [30, Proposition 8.26] gives the same estimates for λ̃−1 completing
the estimates for λ̃−1

˜P . ��

5.3. Proof of Lemma 5.9. Let ψ and κm be as in Corollary 5.11 with the extra property
that suppψ ⊂ (−δ, δ). By Proposition 5.1,

ψ, κm ∈ R(t−p) for all p > 0, m � 2. (5.6)

By Corollary 5.11, we need to show that ψ(b)ρ̂v,w(ib) ∈ R(‖v‖γ,η‖w‖γ t−(β−1)) and
κm(b)ρ̂v,w(ib) ∈ R(‖v‖γ,η‖w‖γ t−(β−1)) for all v ∈ Hγ,η(Y ϕ(N )), w ∈ Hγ (Y ϕ(N )),
uniformly in N � N1.

Let ̂A = ∑∞
n=1

̂An , ̂B = ∑∞
n=1

∑n−1
k=0

̂Bn,k , ̂C = ∑∞
j,k=0

̂C j,k . Recalling Re-

mark 5.6, we refer to functions of the type b �→ ψ(b)̂J0(ib) as ψ ̂J0. By Lemma 4.12,
it remains to show that each of the terms

ψ ̂J0, ψ ̂A, ψ̂B, ψ̂C; κm ̂J0, κm ̂A, κm ̂B, κm ̂C,

lies inR(‖v‖γ,η‖w‖γ t−(β−1)) uniformly in N � 1.
By Propositions 4.4, 4.15 and 4.16, ̂J0, ̂A, ̂B ∈ R(‖v‖γ ‖w‖γ t−(β−1)). (Estimates

such as these that hold even before truncation are clearly independent of N .) By (5.6)
and Proposition 5.2, uniformly in N � 1,

ψ ̂J0, ψ ̂A, ψ̂B, κm ̂J0, κm ̂A, κm ̂B ∈ R(‖v‖γ ‖w‖γ t−(β−1)).

Hence it remains to estimate ψ̂C and κm ̂C . The next lemma provides the desired esti-
mates and completes the proof of Lemma 5.9 (recall that q > β − 1).

Lemma 5.14. Assume absence of approximate eigenfunctions. Fix N1 as in the statement
of Lemma 5.9. There exists m � 2 such that after truncation, uniformly in N � N1,

(a) κm ̂C ∈ R(‖v‖γ,η‖w‖γ t−q), and
(b) ψ̂C ∈ R(‖v‖γ,η‖w‖γ t−(β−1)),

for all t > 1, v ∈ Hγ,η(Y ϕ), w ∈ Hγ (Y ϕ).

Proof. (a) Let � = max{ j − k − 1, 0} and recall that

̂C j,k = ∫

Y D j,�Wk dμ̄, D j,� = ̂R�
̂T R j+1Vj .

By Proposition 5.12, we can choosem � 2 such that ‖κm−5̂T ‖θ ∈ R(t−q) uniformly
in N � N1. Write κm = κ3κm−5κ2, where κi is C∞, vanishes in a neighborhood of zero,
and is O(|b|−i ). Then

|κm D j,�|∞ � ‖κ3̂R�‖θ‖κm−5̂T ‖θ‖κ2R j+1Vj‖θ .
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The estimates for ̂R� and R j+1Vj in Proposition 4.18 and Corollary 5.7 hold even before
truncation and hence are uniform in N � 1. Using (5.6) and Propositions 5.1 and 5.2,

‖κ3̂R�‖θ ∈ R((� + 1)β t−q), ‖κ2R j+1Vj‖θ ∈ R(

γ
j/3
1 ‖v‖γ,η t−q)

,

uniformly in N � 1. Since q > 1, it follows from Proposition 5.2 that uniformly in
N � N1,

|κm D j,�|∞ ∈ R(

(� + 1)β t−q � t−q � γ
j/3
1 ‖v‖γ,η t−q) ∈ R(

(� + 1)βγ
j/3
1 ‖v‖γ,η t−q)

.

Also, |Wk |1 ∈ R(

(k + 1)β+1γ k
1 ‖w‖γ t−q

)

by Proposition 4.17 and this is uniform in
N � 1. Applying Proposition 5.2 once more, uniformly in N � N1,

κm ̂C j,k ∈ R(( j + 1)βγ
j/3
1 (k + 1)β+1γ k

1 ‖v‖γ,η‖w‖γ t−q),

and part (a) follows.
(b) As in the proof of Proposition 4.21, we write

D j,� = (1 − λ)−1
∫

Y
̂Vj dμ + Q j,�,

where

Q j,� = ( − (λ�−1 + · · · + 1)P(0) + λ�Q2 + ̂R�Q1
)

R j+1Vj .

Here, Q2 = (1 − λ)−1(P − P(0)) = λ̃−1
˜P .

By Proposition 4.19,

̂C = ∑

j,k

∫

Y D j,�Wk dμ = ∑

j,k

∫

Y Q j,�Wk dμ + (1 − λ)−1 I0
∑

k

∫

Y Wk dμ,

where I0(s) = ∫

Y

∫ ϕ(y)

0 e−s(ϕ(y)−u)v(y, u) du dμ.
Choose ψ1 to be C∞ with compact support such that ψ1 ≡ 1 on suppψ . By Propo-

sition 5.13 we know that ‖Q(q)
2 (ib)‖θ � C |b|−(1−η). Proposition 4.18 tells us that

‖(̂R�)(q)(ib)‖θ � C�q(|b| + 1) and, by standard perturbation theory, a similar estimate
holds for λ�(b). Using also Corollary 5.7, this means that, uniformly in N � 1,

|ψλ�Q2R j+1Vj |∞ ∈ R(

(� + 1)βγ
j/3
1 ‖v‖γ,η t−q)

.

The other terms in Q j,� are simpler and we obtain that |ψ Q j,�|∞ ∈ R(

(� + 1)βγ
j/3
1

‖v‖γ,η t−q
)

. Hence by Proposition 4.17, uniformly in N � 1,

ψ
∑

j,k

∫

Y
Q j,�Wk dμ ∈ R(‖v‖γ,η‖w‖γ t−q),

∑

k

∫

Y
Wk dμ ∈ R(‖w‖γ t−q)

.

To complete the proof, it remains to estimate ψ(1 − λ)−1 I0. Recall from (4.4) that
I0(0) = 0, so (1 − λ)−1 I0 = λ̃−1

̂I1 where

̂I1(s) = s−1(I0(s) − I0(0)) = s−1
∫

Y

∫ ϕ(y)

0
(e−s(ϕ(y)−u) − 1)v(y, u) du dμ,

with inverse Laplace transform I1(t) = − ∫

Y

∫ ϕ(y)

0 1{ϕ(y)>t+u}v(y, u) du dμ. Proposi-
tion 3.4(b) implies that |I1(t)| � |v|∞

∫

Y ϕ1{ϕ>t} dμ � |v|∞ t−(β−1), uniformly in
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N � 1, and by the arguments in the proof of Corollary 5.11 (see also Remark 5.6), I1(t)
is the inverse Fourier transform of ̂I1(ib). Hence, ̂I1 ∈ R(|v|∞ t−(β−1)). Combining
this with Proposition 5.13, we obtain that

ψ(1 − λ)−1 I0 = ψλ̃−1
̂I1 ∈ R(t−q � |v|∞ t−(β−1)) ∈ R(|v|∞ t−(β−1)),

uniformly in N � 1. ��

6. General Gibbs–Markov Flows

In this section, we assume the setup from Sect. 3 but we drop the requirement that ϕ is
constant along stable leaves.

In Sect. 6.1, we introduce a criterion, condition (H), that enables us to reduce to the
skew product Gibbs–Markov flows studied in Sects. 3, 4 and 5. This leads to an enlarged
class of Gibbs–Markov flows for which we can prove results on mixing rates (Theo-
rem 6.4 below). Our strategy for proving Theorem 6.4 is that we introduce an auxiliary
skew product Gibbs–Markov flow for which the results of the previous sections apply.
Then we construct a measure-preserving semiconjugacy between the two suspension
flows. This way we can relate the decay rates, for an appropriate class of observables on
the Gibbs–Markov flow, to the decay rates of observables on the skew product Gibbs–
Markov flow. Condition (H) plays a crucial role in our arguments. In Sect. 6.2, we recall
criteria for absence of approximate eigenfunctions based on periodic data.

6.1. Condition (H). Let F : Y → Y be a map as in Sect. 3 with quotient Gibbs–Markov
map F : Y → Y , and define ˜Yj = Y j ∩ ˜Y . Let ϕ : Y → R

+ be an integrable roof
function with inf ϕ > 1 and associated suspension flow Ft : Y ϕ → Y ϕ .

We no longer assume that ϕ is constant along stable leaves. Instead of condition (3.3)
we require that

|ϕ(y) − ϕ(y′)| � C1infY j ϕ γ s(y,y′) for all y, y′ ∈ ˜Yj , j � 1. (6.1)

(Clearly, ifϕ is constant along stable leaves, then conditions (3.3) and (6.1) are identical.)
Recall that π : Y → ˜Y is the projection along stable leaves. Define

χ(y) = ∑∞
n=0(ϕ(Fnπy) − ϕ(Fn y)),

for all y ∈ Y such that the series converges absolutely. We assume

(H) (a) The series converges almost surely on Y and χ ∈ L∞(Y ).
(b) There are constants C3 � 1, γ ∈ (0, 1) such that

|χ(y) − χ(y′)| � C3(d(y, y′) + γ s(y,y′)) for all y, y′ ∈ Y.

When conditions (6.1) and (H) are satisfied, we call Ft a Gibbs–Markov flow. (If ϕ is
constant along stable leaves then χ = 0, so every skew product Gibbs–Markov flow is
a Gibbs–Markov flow.)

Since inf ϕ > 0, it follows that ϕn = ∑n−1
j=0 ϕ ◦ F j � 4|χ |∞ +1 for all n sufficiently

large. For simplicity we suppose from now on that inf ϕ � 4|χ |∞+1 (otherwise, replace
F by Fn).

Define
ϕ̃ = ϕ + χ − χ ◦ F. (6.2)
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Note that inf ϕ̃ � inf ϕ − 2|χ |∞ � 1 and
∫

Y ϕ̃ dμ = ∫

Y ϕ dμ, so ϕ̃ : Y → R
+ is an

integrable roof function. Hence we can define the suspension flow ˜Ft : Y ϕ̃ → Y ϕ̃ . Also,
a calculation shows that ϕ̃(y) = ∑∞

n=0(ϕ(Fnπy)−ϕ(Fnπ Fy)), so ϕ̃ is constant along
stable leaves and we can define the quotient roof function ϕ̄ : Y → R

+ with quotient

semiflow Ft : Y
ϕ̃ → Y

ϕ̃
.

In the remainder of this section, we prove that ˜Ft is a skew product Gibbs–Markov
flow (and hence Ft is a Gibbs–Markov semiflow), and show that (super)polynomial
decay of correlations for ˜Ft is inherited by Ft .

Proposition 6.1. Let Ft : Y ϕ → Y ϕ be a Gibbs–Markov flow. Then ˜Ft : Y ϕ̃ → Y ϕ̃ is a
skew product Gibbs–Markov flow.

Proof. Weverify that the setup in Sect. 3 holds.All the conditions on themap F : Y → Y
are satisfied by assumption. Hence it suffices to check that ϕ̃ satisfies condition (3.3).

Let y, y′ ∈ ˜Yj for some j � 1. By (3.2), d(y, y′) � C2γ
s(y,y′) and d(Fy, Fy′) �

C2γ
s(y,y′)−1. By (H)(b), |χ(y) − χ(y′)| � 2C2C3γ

s(y,y′) and |χ(Fy) − χ(Fy′)| �
2C2C3γ

s(y,y′)−1. Hence by (6.1) and (6.2),

|ϕ̃(y) − ϕ̃(y′)|� |ϕ(y) − ϕ(y′)|+|χ(y) − χ(y′)|+|χ(Fy)−χ(Fy′)| � infY j ϕ γ s(y,y′).

Also, infY j ϕ � infY j ϕ̃+2|χ |∞ � infY j ϕ̃+
1
2 inf ϕ � infY j ϕ̃+

1
2 infY j ϕ. Hence infY j ϕ �

2infY j ϕ̃ and |ϕ̃(y) − ϕ̃(y′)| � infY j ϕ̃ γ s(y,y′) as required. ��
Corollary 6.2. There is a constant C > 0 such that

|ϕ(y) − ϕ(y′)| � C infY j ϕ{d(y, y′) + d(Fy, Fy′) + γ s(y,y′)} for all y, y′ ∈ Y j , j � 1.

Proof. Let ỹ = ˜Y ∩ W s(y), ỹ′ = ˜Y ∩ W s(y′). Since ϕ̃ is constant along stable leaves,
it follows as in the proof of Proposition 6.1 that

|ϕ̃(y) − ϕ̃(y′)| = |ϕ̃(ỹ) − ϕ̃(ỹ′)| � infY j ϕ γ s(ỹ,ỹ′) = infY j ϕ γ s(y,y′).

Hence by (6.2) and (H)(b)

|ϕ(y) − ϕ(y′)| � |ϕ̃(y) − ϕ̃(y′)| + |χ(Fy) − χ(Fy′)| + |χ(y) − χ(y′)|
� infY j ϕ{γ s(y,y′) + d(Fy, Fy′) + γ s(Fy,Fy′) + d(y, y′)}.

The result follows since γ s(Fy,Fy′) = γ −1γ s(y,y′). ��
Next, we relate the two suspension flows Ft : Y ϕ → Y ϕ and ˜Ft : Y ϕ̃ → Y ϕ̃ . Note

that (y, ϕ(y)) is identified with (Fy, 0) in the first flow and (y, ϕ̃(y)) is identified with
(Fy, 0) in the second flow. Define

g+ : Y ϕ → Y ϕ̃ , g+(y, u) = (y, u + χ(y) + |χ |∞),

g− : Y ϕ̃ → Y ϕ, g−(y, u) = (y, u − χ(y) + |χ |∞),

computed modulo identifications. Using (6.2) and the identifications on Y ϕ̃ ,

g+(y, ϕ(y)) = (y, ϕ(y) + χ(y) + |χ |∞) = (y, ϕ̃(y) + χ(Fy) + |χ |∞)

∼ (Fy, χ(Fy) + |χ |∞) = g+(Fy, 0),
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so g+ respects the identification on Y ϕ and hence is well-defined. It follows easily that
g+ : Y ϕ → Y ϕ̃ is a measure-preserving semiconjugacy between the two suspension
flows. Similarly, g− is well-defined and g− ◦ g+ = F2|χ |∞ : Y ϕ → Y ϕ .

Given observables v,w : Y ϕ → R, let ṽ = v ◦ g−, w̃ = w ◦ g− : Y ϕ̃ → R. When
speaking ofHγ (Y ϕ̃) and so on, we use the metric d1(y, y′) = d(y, y′)η on Y instead of
d. Let γ1 = γ η.

Let H∗
γ,η(Y

ϕ) = {v : Y ϕ → R : ‖v‖∗
γ,η < ∞} and H∗

γ,0,m(Y ϕ) = {w : Y ϕ → R :
‖w‖∗

γ,0,m < ∞} where
‖v‖∗

γ,η = ‖v‖γ,η + ‖v ◦ F2|χ |∞‖γ,η, ‖w‖∗
γ,0,m = ‖w‖γ,0,m + ‖w ◦ F2|χ |∞‖γ,0,m .

Lemma 6.3. Letv ∈ H∗
γ,η(Y

ϕ),w ∈ H∗
γ,0,m(Y ϕ), for some m � 1. Then ṽ ∈ Hγ1,η(Y

ϕ̃),

w̃ ∈ Hγ1,0,m(Y ϕ̃ ), and ‖ṽ‖γ1,η � 4C3‖v‖∗
γ,η, ‖w̃‖γ1,0,m � 2C3‖w‖∗

γ,0,m.

Proof. We have ṽ(y, u) = v(y, u − χ(y) + |χ |∞). It is immediate that |ṽ|∞ � |v|∞.
Now let (y, u), (y′, u) ∈ Y ϕ̃ . Suppose without loss that χ(y) � χ(y′). First, we

consider the case u − χ(y) + |χ |∞ � ϕ(y), u − χ(y′) + |χ |∞ � ϕ(y′). By (H)(b) and
the definition of ‖v‖γ,η,

|ṽ(y, u) − ṽ(y′, u)| �
∣

∣v(y, u − χ(y) + |χ |∞) − v(y′, u − χ(y) + |χ |∞)
∣

∣

+
∣

∣v(y′, u − χ(y) + |χ |∞) − v(y′, u − χ(y′) + |χ |∞)
∣

∣

� |v|γ ϕ(y)(d(y, y′) + γ s(y,y′)) + |v|∞,η|χ(y) − χ(y′)|η
� 2|v|γ ϕ̃(y)(d(y, y′) + γ s(y,y′)) + |v|∞,ηC3(d(y, y′) + γ s(y,y′))η

� 2C3‖v‖γ,ηϕ̃(y)(d1(y, y′) + γ
s(y,y′)
1 ).

Second, we consider the case u � χ(y) + |χ |∞ � χ(y′) + |χ |∞. Then we can write
g−(y, u) = Fσ (y, u − χ(y) − |χ |∞), g−(y′, u) = Fσ (y′, u − χ(y′) − |χ |∞) where
σ = 2|χ |∞, so

|ṽ(y, u) − ṽ(y′, u)| = ∣

∣v ◦ Fσ (y, u − χ(y) − |χ |∞) − v ◦ Fσ (y′, u − χ(y′) − |χ |∞)
∣

∣.

Proceeding as in the first case,

|ṽ(y, u) − ṽ(y′, u)| � 2C3‖v ◦ Fσ ‖γ,ηϕ̃(y)(d1(y, y′) + γ
s(y,y′)
1 ).

This leaves the case u < χ(y) + |χ |∞ � 2|χ |∞ and u � min{ϕ(y) + χ(y) −
|χ |∞, ϕ(y′)+χ(y′)−|χ |∞} � inf ϕ − 2|χ |∞. This is impossible since inf ϕ > 4|χ |∞.
Hence

|ṽ(y, u) − ṽ(y′, u)| � 2C3‖v‖∗
γ,ηϕ̃(y)(d1(y, y′) + γ

s(y,y′)
1 ) for all (y, u), (y′, u) ∈ Y ϕ̃ ,

so ‖ṽ‖γ1 � 2C3‖v‖∗
γ,η.

The estimate for |ṽ|∞,η splits into cases similarly. Let 0 � u < u′ � ϕ̃(y). Then

|ṽ(y, u) − ṽ(y, u′)| �
{

|v|∞,η|u − u′|η u′ − χ(y) + |χ |∞ � ϕ(y)

|v ◦ Fσ |∞,η|u − u′|η u � χ(y) + |χ |∞ .

This leaves the case u′ − χ(y) + |χ |∞ > ϕ(y) and u < χ(y) + |χ |∞. But then u′ − u >

ϕ(y) + 2χ(y) > ϕ(y) − 2|χ |∞ > 1
2ϕ(y) � 1

2 , so we obtain |ṽ(y, u) − ṽ(y, u′)| �
2|v|∞ � 4|v|∞|u − u′|η. Hence |ṽ|∞,η � 4‖v‖∗

γ,η completing the estimate for ‖ṽ‖γ1,η.
The calculation for w̃ is similar. ��
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We say that a Gibbs–Markov flow has approximate eigenfunctions if this is the case
for ˜Ft (equivalently Ft ).

Theorem 6.4. Suppose that Ft : Y ϕ → Y ϕ is a Gibbs–Markov flow such that μ(ϕ >

t) = O(t−β) for some β > 1. Assume absence of approximate eigenfunctions. Then
there exists m � 1 and C > 0 such that

|ρv,w(t)| � C‖v‖∗
γ,η‖w‖∗

γ,0,m t−(β−1) for all v ∈ H∗
γ,η(Y

ϕ), w ∈ H∗
γ,0,m(Y ϕ), t > 1.

Proof. Since g+ is a measure-preserving semiconjugacy and g− ◦ g+ = F2|χ |∞ ,
∫

Y ϕ

v w ◦ Ft dμϕ =
∫

Y ϕ

v ◦ g− ◦ g+ w ◦ g− ◦ g+ ◦ Ft dμϕ

=
∫

Y ϕ

ṽ ◦ g+ w̃ ◦ ˜Ft ◦ g+ dμϕ =
∫

Y ϕ̃

ṽ w̃ ◦ ˜Ft dμϕ̃

where ˜Ft does not possess approximate eigenfunctions. Note also that μ(ϕ̃ > t) =
O(t−β). By Lemma 6.3, ṽ ∈ Hγ1,η(Y

ϕ̃ ), w̃ ∈ Hγ1,0,m(Y ϕ̃).
By Theorem 3.2, we can choose m � 1 such that |ρv,w(t)| = | ∫Y ϕ̃ ṽ w̃ ◦ ˜Ft dμϕ̃ −

∫

Y ϕ̃ ṽ dμϕ̃
∫

Y ϕ̃ w̃ dμϕ̃ | � ‖ṽ‖γ1,η‖w̃‖γ1,0,m t−(β−1) � 8C2
3‖v‖∗

γ,η‖w‖∗
γ,0,m t−(β−1).

��

6.2. Periodic data and absence of approximate eigenfunctions. In this subsection, we
recall the relationship between periodic data and approximate eigenfunctions and review
two sufficient conditions to rule out the existence of approximate eigenfunctions. We
continue to assume that Ft is a Gibbs–Markov flow as in Sect. 6.1.

Define ϕn = ∑n−1
j=0 ϕ ◦ F j . Similarly, define ϕ̃n and ϕ̄n . If y is a periodic point of

period p for F (that is, F p y = y), then y is periodic of period L = ϕp(y) for Ft (that
is, FLy = y). Recall that π̄ : Y → Y is the quotient projection.

Proposition 6.5. Suppose that there exist approximate eigenfunctions on Z0 ⊂ Y . Let
α, C, bk, nk be as in Definition 2.3. If y ∈ π̄−1Z0 is a periodic point with F p y = y and
FLy = y where L = ϕp(y), then

dist(bknkL − pψk, 2πZ) � C(inf ϕ)−1L|bk |−α for all k � 1. (6.3)

Proof. Define ȳ = π̄ y ∈ Z0 and note that F p ȳ = F pπ̄ y = π̄ F p y = ȳ. By (6.2),

ϕ̄p(ȳ) = ϕ̃p(y) = ϕp(y) + χ(y) − χ(F p y) = L.

Now (M p
b v)(ȳ) = eibϕ̄p(ȳ)v(F p ȳ) = eibLv(ȳ). Hence substituting ȳ into (2.2), we

obtain |eibk nkL − eipψk | � Cp|bk |−α . Also L = ϕp(y) � p inf ϕ. ��
The following Diophantine condition is based on [22, Section 13]. (Unlike in [22],

we have to consider periods corresponding to three periodic points instead of two.)

Proposition 6.6. Let y1, y2, y3 ∈ ⋃

Y j be fixed points for F, and let Li = ϕ(yi ),
i = 1, 2, 3, be the corresponding periods for Ft . Let Z0 ⊂ Y be the finite subsystem
corresponding to the three partition elements containing π̄ y1, π̄ y2, π̄ y3.

If (L1 − L3)/(L2 − L3) is Diophantine, then there do not exist approximate eigen-
functions on Z0.
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Proof. Using Proposition 6.5, the proof is identical to that of [30, Proposition 5.3]. ��
The condition in Proposition 6.6 is satisfied with probability one but is not robust.

Using the notion of good asymptotics [23], we obtain an open and dense condition.

Proposition 6.7. Let Z0 ⊂ Y be a finite subsystem. Let y0 ∈ π̄−1Z0 be a fixed point
for F with period L0 = ϕ(y0) for the flow. Let yN ∈ π̄−1Z0, N � 1, be a sequence of
periodic points with F N yN = yN such that their periods LN = ϕN (yN ) for the flow Ft
satisfy

LN = NL0 + κ + EN γ N cos(Nω + ωN ) + o(γ N ),

where κ ∈ R, γ ∈ (0, 1) are constants, EN ∈ R is a bounded sequence with lim infN→∞
|EN | > 0, and either (i) ω = 0 and ωN ≡ 0, or (ii) ω ∈ (0, π) and ωN ∈ (ω0 −
π/12, ω0 +π/12) for some ω0. (Such a sequence of periodic points is said to have good
asymptotics.)

Then there do not exist approximate eigenfunctions on Z0.

Proof. Using Proposition 6.5, the proof is identical to that of [30, Proposition 5.5]. ��
By [23], for any finite subsystem Z0, the existence of periodic points with good

asymptotics in π̄−1Z0 is a C2-open and C∞-dense condition. Although [23] is set in
the uniformly hyperbolic setting, the construction applies directly to the current set up
as we now explain. Assume that (Y, d) is a Riemannian manifold. Let Z̄1 and Z̄2 be two
of the partition elements in Z and set Z j = Int π̄−1 Z̄ j for j = 1, 2. Assume that Z1,
Z2 are submanifolds of Y and that F and ϕ are Cr when restricted to Z1 ∪ Z2 for some
r � 2.

Let y0 ∈ Z1 be a fixed point for F and choose a transverse homoclinic point in Z2.
Following [23], we construct a sequence of N -periodic points yN , N � 1, for F with
orbits lying in Z1 ∪ Z2. The sequence automatically has good asymptotics except that in
exceptional cases it may be that lim infN→∞ |EN | = 0. By [23], the liminf is positive
for a C2 open and Cr dense set of roof functions ϕ.

Combining this construction with Proposition 6.7, it follows that nonexistence of
approximate eigenfunctions holds for an open and dense set of smooth Gibbs–Markov
flows.

Part II
Mixing rates for nonuniformly hyperbolic flows

In this part of the paper, we show how the results for suspension flows in Part I can be
translated into results for nonuniformlyhyperbolic flowsdefinedon an ambientmanifold.
In Sect. 7, we show how this is done under the assumption that condition (H) from Sect. 6
is valid. In Sect. 8, we describe a number of situations where condition (H) is satisfied.
This includes all the examples considered here and in [30]. In Sect. 9, we consider in
detail the planar infinite horizon Lorentz gas.

7. Nonuniformly Hyperbolic Flows and Suspension Flows

In this section, we describe a class of nonuniformly hyperbolic flows Tt : M → M that
have most of the properties required for Tt to be modelled by a Gibbs–Markov flow.
(The remaining property, condition (H) from Sect. 6, is considered in Sect. 8.)

In Sect. 7.1, we consider a class of nonuniformly hyperbolic transformations f :
X → X modelled by a Young tower [36,37], making explicit the conditions from [36]
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that are needed for this paper. In Sect. 7.2, we consider flows that are Hölder suspensions
over such a map f and show how to model them, subject to condition (H), by a Gibbs–
Markov flow. In Sect. 7.3, we generalise the Hölder structures in Sect. 7.2 to ones that
are dynamically Hölder.

In applications, f is typically a first-hit Poincaré map for the flow Tt and hence is
invertible. Invertibility is used in Proposition A.1 but not elsewhere, so many of our
results do not rely on injectivity of f .

7.1. Nonuniformly hyperbolic transformations f : X → X. Let f : X → X be a
measurable transformation defined on a metric space (X, d) with diam X � 1. We
suppose that f is nonuniformly hyperbolic in the sense that it is modelled by a Young
tower [36,37]. We recall the metric parts of the theory; the differential geometry part
leading to an SRB or physical measure does not play an important role here.

Product structure Let Y be a measurable subset of X . LetWs be a collection of disjoint
measurable subsets of X (called “stable leaves”) and let Wu be a collection of disjoint
measurable subsets of X (called “unstable leaves”) such that each collection covers Y .
Given y ∈ Y , let W s(y) and W u(y) denote the stable and unstable leaves containing y.

We assume that for all y, y′ ∈ Y , the intersection W s(y) ∩ W u(y′) consists of
precisely one point, denoted z = W s(y) ∩ W u(y′), and that z ∈ Y . Also we suppose
there is a constant C4 � 1 such that

d(y, z) � C4d(y, y′) for all y, y′ ∈ Y, z = W s(y) ∩ W u(y′). (7.1)

Induced map Next, let {Y j } be an at most countable measurable partition of Y such
that Y j = ⋃

y∈Y j
W s(y) ∩ Y for all j � 1. Also, fix τ : Y → Z

+ constant on partition

elements such that f τ(y)y ∈ Y for all y ∈ Y . Define F : Y → Y by Fy = f τ(y)y. Let
μ be an ergodic F-invariant probability measure on Y and suppose that τ is integrable.
(It is not assumed that τ is the first return time to Y .)

As in Sect. 3, we suppose that F(W s(y)) ⊂ W s(Fy) for all y ∈ Y . Let Y denote the
space obtained from Y after quotienting byWs , with natural projection π̄ : Y → Y . We
assume that the quotient map F : Y → Y is a Gibbs–Markov map as in Definition 2.1,
with partition {Yj } and ergodic invariant probability measure μ̄ = π̄∗μ. Let s(y, y′)
denote the separation time on Y .

Contraction/expansion Let Y j = π̄−1Yj ; these form a partition of Y and each Y j is a
union of stable leaves. The separation time extends to Y , setting s(y, y′) = s(π̄ y, π̄ y′)
for y, y′ ∈ Y .

We assume that there are constants C2 � 1, γ ∈ (0, 1) such that for all n � 0,
y, y′ ∈ Y ,

d( f n y, f n y′) � C2γ
ψn(y)d(y, y′) for all y′ ∈ W s(y), (7.2)

d( f n y, f n y′) � C2γ
s(y,y′)−ψn(y) for all y′ ∈ W u(y), (7.3)

whereψn(y) = #{ j = 1, . . . , n : f j y ∈ Y } is the number of returns of y to Y by time n.
Note that conditions (3.1) and (3.2) are special cases of (7.2) and (7.3) where ˜Y can be
chosen to be any fixed unstable leaf. In particular, all the conditions on F in Sects. 3
and 6 are satisfied.

In Sects. 7.3, 8.4 and 9, we make use of the condition

F(W u(y) ∩ Y j ) = W u(Fy) ∩ Y for all y ∈ Y j , j � 1. (7.4)
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Remark 7.1. Further hypotheses in [36] ensure the existence of SRB measures on Y , Y
and X . These assumptions are not required here and no special properties of μ and μ̄

(other than the properties mentioned above) are used.

Remark 7.2. The abstract setup in [36] essentially satisfies all of the assumptions above.
However condition (7.2) is stated in the slightly weaker form d( f n y, f n y′) � C2γ

ψn(y).
As pointed out in [20], the stronger form (7.2) is satisfied in all known examples where
the weaker form holds.

Condition (7.4) is not stated explicitly in [36] but is an automatic consequence of the
set up therein provided f : X → X is injective.Weprovide the details in PropositionA.1.
In the examples considered in this paper and in [30], the map f is a first return map for
a flow and hence is injective, so condition (7.4) is not very restrictive.

Condition (7.4) is also used in [30, Section 5.2] but is stated there in a slightly different
form. In [30], the subspace X is not needed (and hence not mentioned) and the stable
and unstable disks W s(y), W u(y) are replaced by their intersections with Y . Hence
the condition F(W u(y) ∩ Y j ) ⊃ W u(Fy) for y ∈ Y j in [30, Section 5.2] becomes
F(W u(y) ∩ Y j ) ⊃ W u(Fy) ∩ Y for y ∈ Y j in our present notation and hence holds
by (7.4).

Proposition 7.3. d( f n y, f n y′) � C2C4(γ
ψn(y)d(y, y′) + γ s(y,y′)−ψn(y)) for all y, y′ ∈

Y , n � 0.

Proof. Let z = W s(y) ∩ W u(y′). Note that s(z, y′) = s(y, y′) and ψn(z) = ψn(y).
Hence

d( f n y, f n y′) � d( f n y, f nz) + d( f nz, f n y′) � C2(γ
ψn(y)d(y, z) + γ s(z,y′)−ψn(z))

� C2C4(γ
ψn(y)d(y, y′) + γ s(y,y′)−ψn(y)),

as required. ��

7.2. Hölder flows and observables. Let Tt : M → M be a flow defined on a metric
space (M, d) with diam M � 1. Fix η ∈ (0, 1].

Given v : M → R, define |v|Cη = supx 	=x ′ |v(x) − v(x ′)|/d(x, x ′)η and ‖v‖Cη =
|v|∞ + |v|Cη . Let Cη(M) = {v : M → R : ‖v‖Cη < ∞}. Also, define |v|C0,η =
supx∈M, t>0 |v(Tt x)− v(x)|/tη and let C0,η(M) = {v : M → R : |v|∞ + |v|C0,η < ∞}.
(Such observables are Hölder in the flow direction.)

We say that w : M → R is differentiable in the flow direction if the limit ∂tw =
limt→0(w ◦ Tt − w)/t exists pointwise. Define ‖w‖Cη,m = ∑m

j=0 ‖∂ j
t w‖Cη and let

Cη,m(M) = {w : M → R : ‖w‖Cη,m < ∞}.
Let X ⊂ M be a Borel subset and define Cη(X) using the metric d restricted to X .

We suppose that Th(x)x ∈ X for all x ∈ X , where h : X → R
+ lies in Cη(X) and

inf h > 0. In addition, we suppose that for any D1 > 0 there exists D2 > 0 such that

d(Tt x, Tt x
′) � D2d(x, x ′)η for all t ∈ [0, D1], x, x ′ ∈ M. (7.5)

Define f : X → X by f x = Th(x)x .We suppose that f is a nonuniformly hyperbolic
transformation as in Sect. 7.1, with induced map F = f τ : Y → Y and so on.

Define h� = ∑�−1
j=0 h ◦ f j . We define the induced roof function

ϕ = hτ : Y → R
+, ϕ(y) = ∑τ(y)−1

�=0 h( f �y).
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Note that h � ϕ � |h|∞τ so ϕ ∈ L1(Y ) and inf ϕ > 0. Define the suspension flow
Ft : Y ϕ → Y ϕ as in (1.1).

To deduce rates of mixing for nonuniformly hyperbolic flows from the corresponding
result for Gibbs–Markov flows, Theorem 6.4, we need to verify that

(i) Condition (6.1) holds.
(ii) Condition (H) from Sect. 6 holds.
(iii) Regular observables on M lift to regular observables on Y ϕ .

Ingredients (i) and (ii) guarantee that the suspension flow Ft : Y ϕ → Y ϕ is a Gibbs–
Markov flow and ingredient (iii) ensures that Theorem 6.4 applies to the appropriate
observables on M .

In the remainder of this subsection, we deal with ingredients (i) and (iii). First, we
verify that ϕ satisfies condition (6.1). Let d1(y, y′) = d(y, y′)η and γ1 = γ η.

Proposition 7.4. Let y, y′ ∈ Y j for some j � 1 and let � = 0, . . . , τ (y) − 1. Then

|h�(y) − h�(y′)| � C2C4|h|η �(d1(y, y′) + γ
s(y,y′)
1 ).

Moreover,

|ϕ(y) − ϕ(y′)| � 2C2
2C4(inf h)−1|h|η infY j ϕ γ

s(y,y′)
1 for all y, y′ ∈ ˜Y j , j � 1.

Proof. Note that ψ�(y) = 0, so by Proposition 7.3,

d( f �y, f �y′) � C2C4(d(y, y′) + γ s(y,y′)). (7.6)

Hence

|h�(y) − h�(y′)| �
�−1
∑

j=0

|h( f j y) − h( f j y′)|

� |h|η
�−1
∑

j=0

d( f j y, f j y′)η � C2C4|h|η �(d1(y, y′) + γ
s(y,y′)
1 ),

establishing the estimate for h�. Also, τ(y) � (inf h)−1 inf 1Y j ϕ, so taking � = τ(y)

and using (7.3) with n = 0, we obtain the estimate for ϕ. ��
Next we deal with ingredient (iii) assuming (ii). Define π : Y ϕ → M as π(y, u) =

Tu y.

Proposition 7.5. Suppose that the function χ : Y → R satisfies condition (H).
Then observables v ∈ Cη(M) ∩ C0,η(M) lift to observables ṽ = v ◦ π : Y ϕ → R

that lie in H∗
γ2,η

(Y ϕ) where γ2 = γ η2 and the metric d on Y is replaced by the metric

d2(y, y′) = d(y, y′)η2 .
For m � 1, observables w ∈ Cη,m(M) lift to observables w̃ = w◦π ∈ H∗

γ2,0,m
(Y ϕ).

Moreover, there is a constant C > 0 such that ‖ṽ‖∗
γ2,η

� C(‖v‖Cη + ‖v‖C0,η ) and
‖w̃‖∗

γ2,0,m
� C‖w‖Cη,m .



Polynomial Decay of Correlations for Flows 91

Proof. Let σ = 2|χ |∞. We show that ‖ṽ ◦ Fσ ‖γ2,η � ‖v‖Cη + ‖v‖C0,η . The same
calculation with σ = 0 shows that ‖ṽ‖γ2,η � ‖v‖Cη + ‖v‖C0,η , so ‖ṽ‖∗

γ2,η
� ‖v‖Cη +

‖v‖C0,η , We take D1 = |h|∞ + 2|χ |∞ with corresponding value of D2 in (7.5)
Let (y, u), (y′, u) ∈ Y ϕ with y, y′ ∈ Y j for some j � 1. There exists �, �′ ∈

{0, . . . , τ (y) − 1} such that

u ∈ [h�(y), h�+1(y)] ∩ [h�′(y′), h�′+1(y′)].

Suppose without loss that � � �′. Then

u = h�(y) + r = h�(y′) + r ′,

where r ∈ [0, |h|∞] and r ′ = u − h�(y′) � u − h�′(y′) � 0. Note that Tu y =
Tr Th�(y)y = Tr f �y. Hence ṽ(y, u) = v(Tr f �y) and so ṽ ◦ Fσ (y, u) = v(Tσ+r f �y).
Similarly, Tu y′ = Tr ′ f �y′ and ṽ ◦ Fσ (y′, u) = v(Tσ+r ′ f �y′). Also, σ + r ∈ [0, D1].
By (7.5) and (7.6),

|v(Tσ+r f �y) − v(Tσ+r f �y′)| � |v|Cη d(Tσ+r f �y, Tσ+r f �y′)η � Dη
2 |v|Cη d( f �y, f �y′)η2

� |v|Cη (d2(y, y′) + γ
s(y,y′)
2 ).

Since u � h�(y′) � � inf h, it follows from Proposition 7.4 that

|v(Tσ+r f �y′)−v(Tσ+r ′ f �y′)| � |v|C0,η |r − r ′|η = |v|C0,η |h�(y) − h�(y′)|η

� |v|C0,η �(d2(y, y′)η + γ
s(y,y′)
2 ) � (inf h)−1|v|C0,η u(d2(y, y′)η + γ

s(y,y′)
2 ).

Hence

|ṽ ◦ Fσ (y, u) − ṽ ◦ Fσ (y′, u)| = |v(Tσ+r f �y) − v(Tσ+r ′ f �y′)|
� (|v|Cη + |v|C0,η )(u + 1)(d2(y, y′) + γ

s(y,y′)
2 )

whenever s(y, y′) � 1. For s(y, y′) = 0, we have the estimate |ṽ ◦ Fσ (y, u) − ṽ ◦
Fσ (y′, u)| � 2|v|∞ = 2|v|∞γ

s(y,y′)
2 � |v|∞ ϕ(y)(d2(y, y′) + γ

s(y,y′)
2 ), so in all cases

we obtain

|ṽ ◦ Fσ (y, u) − ṽ ◦ Fσ (y′, u)| � (‖v‖Cη + |v|C0,η )(u + 1)(d2(y, y′) + γ
s(y,y′)
2 )

� 2(‖v‖Cη + |v|C0,η )ϕ(y)(d2(y, y′) + γ
s(y,y′)
2 ).

Also,

|ṽ ◦ Fσ (y, u) − ṽ ◦ Fσ (y, u′)| = |v(Tσ+u y) − v(Tσ+u′ y) � |v|C0,η |u − u′|η,

so ‖ṽ ◦ Fσ ‖γ2.η � |v|C0 + |v|C0,η as required. ��
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7.3. Dynamically Hölder flows and observables. The Hölder assumptions in Sect. 7.2
can be replaced by dynamically Hölder as follows.We continue to assume that inf h > 0.

Definition 7.6. The roof function h, the flow Tt and the observable v are dynamically
Hölder if v ∈ C0,η(M) for some η ∈ (0, 1] and there is a constant C � 1 such that for
all y, y′ ∈ Y j , j � 1,

(a) |h( f �y) − h( f �y′)| � C(d(y, y′)η + γ s(y,y′)) for all 0 � � � τ(y) − 1.
(b) For every u ∈ [0, ϕ(y)] ∩ [0, ϕ(y′)], there exist t, t ′ ∈ R such that |t − t ′| �

C(u + 1)(d(y, y′)η + γ s(y,y′)), and setting z = W s(y) ∩ W u(y′),

max
{|v(Tu y) − v(Tt z)| , |v(Tu y′) − v(Tt ′ z)|

}

� C(u + 1)(d(y, y′)η + γ s(y,y′)).

Also, we replace the assumption w ∈ Cη,m(M) by the condition that ∂k
t w lies in

C0,η(M) and satisfies (b) for all k = 0, . . . , m.

Remark 7.7. In the proof of Proposition 7.5, we showed that |v(Tu y) − v(Tu y′)| =
|ṽ(y, u) − ṽ(y′, u)| � (u + 1)(d(y, y′)η + γ s(y,y′)) (for modified d and γ ) under the
old hypotheses. Hence, taking t = t ′ = u, we see that Definition 7.6 is indeed a relaxed
version of the conditions in Sect. 7.2.

It is easily verified that condition (6.1) remains valid under the more relaxed assump-
tion on h in Definition 7.6(a). Also, it follows as in the proof of Proposition 7.5 that
|ṽ(y, u) − ṽ(y, u′)| � |v|C0,η |u − u′|η.

Nextweestimate |ṽ(y, u)−ṽ(y′, u)| and |ṽ◦Fσ (y, u)−ṽ◦Fσ (y′, u)| for (y, u), (y′, u)

∈ Y ϕ , where σ = 2|χ |∞. If s(y, y′) = 0, then |ṽ(y, u) − ṽ(y′, u)|, |ṽ ◦ Fσ (y, u) − ṽ ◦
Fσ (y′, u)| � |v|∞ ϕ(y)(d2(y, y) + γ

s(y,y′)
2 ) as in the proof of Proposition 7.5. Hence

we can suppose that y, y′ ∈ Y j for some j � 1. Set z = W s(y) ∩ W u(y′) and choose
t, t ′ as in Definition 7.6(b). Then

|ṽ(y, u) − ṽ(y′, u)| = |v(Tu y) − v(Tu y′)|
� |v(Tu y) − v(Tt z)| + |v(Tt ′ z) − v(Tu y′)| + |v(Tt z) − v(Tt ′ z)|
� 4Cϕ(y)(d(y, y′)η + γ s(y,y′)) + |v|C0,η |t − t ′|η � ϕ(y)(d2(y, y′) + γ

s(y,y′)
2 ).

Hence |ṽ(y, u) − ṽ(y′, u)| � ϕ(y)(d2(y, y′)η + γ
s(y,y′)
2 ) for all (y, u), (y′, u) ∈ Y ϕ ,

and so ṽ ∈ Hγ2,η(Y
ϕ).

To proceed, we recall that z = W s(y) ∩ W u(y′), so Fz = W s(Fy) ∩ W u(Fy′)
by (7.4). Hence

d(Fy, Fy′) � d(Fy, Fz) + d(Fz, Fy′) � d(y, z) + γ s(y,y′) � C4d(y, y′) + γ s(y,y′).
(7.7)

To control ṽ ◦ Fσ (y, u) − ṽ ◦ Fσ (y′, u), we assume without loss that ϕ(y) ≥ ϕ(y′),
and distinguish three cases.

If u + σ < ϕ(y′), we argue as in the bound for ṽ(y, u) − ṽ(y′, u).
If u + σ ≥ ϕ(y), then there exists 0 ≤ ū ≤ σ and ū′ � ū such that Tu+σ y = Tū Fy

and Tu+σ y′ = Tū′ Fy′. By Corollary 6.2 and (7.7),

|ū − ū′| = |ϕ(y) − ϕ(y′)| � ϕ(y)(d(y, y′) + γ s(y,y′))

and so

|v(Tū Fy′) − v(Tū′ Fy′)| � ϕ(y)(d2(y, y′) + γ
s(y,y′)
2 ).



Polynomial Decay of Correlations for Flows 93

On the other hand, choosing t̄ and t̄ ′ for ū as in Definition 7.6(b), we get

|v(Tū Fy) − v(Tū Fy′)|
� |v(Tū Fy) − v(Tt̄ Fz)| + |v(Tt̄ ′ Fz) − v(Tū Fy′)| + |v(Tt̄ Fz) − v(Tt̄ ′ Fz)|
� 2C(ū + 1)(d(Fy, Fy′)η + γ s(Fy,Fy′)) + |v|C0,η |t̄ − t̄ ′|η � d2(y, y′) + γ

s(y,y′)
2

where we have used (7.7) and ū � σ . Hence

|ṽ ◦ Fσ (y, u) − ṽ ◦ Fσ (y′, u)| � |v(Tū Fy) − v(Tū Fy′)| + |v(Tū Fy′) − v(Tū′ Fy′)|
� ϕ(y)(d2(y, y′) + γ

s(y,y′)
2 ).

Finally, if ϕ(y′) ≤ u + σ < ϕ(y), there exist 0 < u1, u2 ≤ ϕ(y) − ϕ(y′) such that
Fy = Tu1Tu+σ y and Tu+σ y′ = Tu2 Fy′. Using again Corollary 6.2 and (7.7),

|ṽ ◦ Fσ (y, u) − ṽ ◦ Fσ (y′, u)| = |v(Tu+σ y) − v(Tu+σ y′)|
≤ |v(Tu+σ y) − v(Fy)| + |v(Fy) − v(Fy′)| + |v(Fy′) − v(Tu+σ y′)|
= |v(Tu+σ y) − v(Tu1+u+σ y)| + |v(Fy) − v(Fy′)| + |v(Fy′) − v(Tu2 Fy′)|
� ϕ(y)(d2(y, y′) + γ

s(y,y′)
2 ).

This completes the verification that ṽ ∈ H∗
γ2,η

(Y ϕ). A similar argument shows that
w̃ ∈ H∗

γ2,0,m
(Y ϕ), completing the verification that Proposition 7.5 holds under the

modified assumptions.

8. Condition (H) for Nonuniformly Hyperbolic Flows

In this section, we consider various classes of nonuniformly hyperbolic flows for which
condition (H) in Sect. 6 can be satisfied. We are then able to apply Theorem 6.4 to obtain
results that superpolynomial and polynomial mixing applies to such flows as follows:

Corollary 8.1. Let Tt : M → M be a nonuniformly hyperbolic flow as in Sect. 7.2 and
assume that condition (H) is satisfied. Then
(a) Ft : Y ϕ → Y ϕ is a Gibbs–Markov flow.
(b) Suppose that μ(ϕ > t) = O(t−β) for some β > 1 and assume absence of approxi-
mate eigenfunctions for Ft . Then there exists m � 1 and C > 0 such that

|ρv,w(t)| � C(‖v‖Cη + ‖v‖C0,η )‖w‖Cη,m t−(β−1),

for all v ∈ Cη(M) ∩ C0,η(M), w ∈ Cη,m(M), t > 1.

Proof. Part (a) follows from the discussion in Sect. 7.2 (so ingredient (i) is automatic
and ingredient (ii) is now assumed).

As described in Sect. 6.1, there is a measure-preserving conjugacy from Ft to Tt , so
part (b) is immediate from Theorem 6.4 combined with Proposition 7.5. ��

The analogous result holds for nonuniformly hyperbolic flows and observables sat-
isfying the dynamically Hölder conditions in Sect. 7.3.

We verify condition (H) for three classes of flows. In Sect. 8.1, we consider roof
functions with bounded Hölder constants. In Sect. 8.2, we consider flows for which
there is exponential contraction along stable leaves. In Sect. 8.3, we consider flows with
an invariant Hölder stable foliation. These correspond to the situations mentioned in [30,
Section 4.2].

Also, in Sect. 8.4, we briefly review the temporal distance function and a criterion
for absence of approximate eigenfunctions.
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8.1. Roof functions with bounded Hölder constants. We assume a “bounded Hölder
constants” condition on ϕ, namely that for all y, y′ ∈ Y ,

|ϕ(y) − ϕ(y′)| � C1d(y, y′) for all y′ ∈ W s(y), (8.1)

|ϕ(y) − ϕ(y′)| � C1γ
s(y,y′) for all y′ ∈ W u(y), s(y, y′) � 1. (8.2)

This leads directly to an enhanced version of (6.1):

Proposition 8.2. |ϕ(y)−ϕ(y′)| � C1C4(d(y, y′)+γ s(y,y′)) for all y, y′ ∈ Y , s(y, y′) �
1.

Proof. Let z = W s(y) ∩ W s(y′). Then

|ϕ(y) − ϕ(y′)| � |ϕ(y) − ϕ(z)| + |ϕ(z) − ϕ(y′)|
� C1(d(y, z) + γ s(z,y′)) � C1C4(d(y, y′) + γ s(y,y′)),

as required. ��
Lemma 8.3. If conditions (8.1) and (8.2) are satisfied, then condition (H) holds.

Proof. By (7.2) and (8.1), for all y ∈ Y , n � 0,

|ϕ(Fnπy) − ϕ(Fn y)| � C1d(Fnπy, Fn y) � C1C2γ
nd(πy, y) � C1C2γ

n .

It follows that

|χ(y)| �
∑∞

n=0 |ϕ(Fnπy) − ϕ(Fn y)| � C1C2(1 − γ )−1.

Hence |χ |∞ � C1C2(1 − γ )−1 and condition (H)(a) is satisfied.
Next, let y, y′ ∈ Y , and set N = [ 12 s(y, y′)], γ1 = γ 1/2. Write

χ(y) − χ(y′) = A(πy, πy′) − A(y, y′) + B(y) − B(y′),

where

A(p, q) =
N−1
∑

n=0

(ϕ(Fn p) − ϕ(Fnq)), B(p) =
∞
∑

n=N

(ϕ(Fnπp) − ϕ(Fn p)).

By the calculation for |χ |∞, we obtain |B(p)| � C1C2(1 − γ )−1γ N for all p ∈ Y .

Also, γ N � γ −1γ
1
2 s(y,y′) = γ −1γ

s(y,y′)
1 , so B(p) = O(γ

s(y,y′)
1 ) for p = y, y′.

For n � N − 1 we have s(Fn y, Fn y′) � 1, so by Propositions 7.3 and 8.2,

|ϕ(Fn y) − ϕ(Fn y′)| � C1C4(d(Fn y, Fn y′) + γ s(y,y′)−n) � C(γ nd(y, y′) + γ s(y,y′)−n),

where C = 2C2
4C1C2. Hence

|A(y, y′)| �
N−1
∑

n=0

|ϕ(Fn y) − ϕ(Fn y′)| � C
N−1
∑

n=0

(γ nd(y, y′) + γ s(y,y′)−n)

� C(1 − γ )−1(d(y, y′) + γ s(y,y′)−N ) � C(1 − γ )−1(d(y, y′) + γ
s(y,y′)
1 ).

Similarly for A(πy, πy′). Hence |χ(y) − χ(y′)| � d(y, y′) + γ
s(y,y′)
1 , so (H)(b) holds.

��
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8.2. Exponential contraction along stable leaves. In this subsection, we suppose that
h ∈ Cη(X) and that f is exponentially contracting along stable leaves:

d( f n y, f n y′) � C2γ
nd(y, y′) for all n � 0 and all y, y′ ∈ Y with y′ ∈ W s(y).

(8.3)
Note that this strengthens condition (7.2). Proposition 7.3 becomes

d( f n y, f n y′) � C2C4(γ
nd(y, y′) + γ s(y,y′)−ψn(y)) for all n � 0, y, y′ ∈ Y. (8.4)

Lemma 8.4. If condition (8.3) is satisfied, then condition (H) holds.

Proof. Let γ1 = γ η, γ2 = γ
1/2
1 . We verify condition (H) with γ2 and d1(y, y′) =

d(y, y′)η, using the equivalent definition for χ ,

χ(y) = ∑∞
n=0(h( f nπy) − h( f n y)).

By (8.3),

|χ(y)| �
∑∞

n=0 |h|ηd( f nπy, f n y)η � C2|h|η ∑∞
n=0 γ n

1 d1(πy, y) � C2|h|η(1 − γ1)
−1.

Hence |χ |∞ � C2|h|η(1 − γ1)
−1 and condition (H)(a) is satisfied.

Next, let y, y′ ∈ Y and set N = [ 12 s(y, y′)]. Write χ(y) − χ(y′) = A(πy, πy′) −
A(y, y′) + B(y) − B(y′), where

A(p, q) =
N−1
∑

n=0

(h( f n p) − h( f nq)), B(p) =
∞
∑

n=N

(h( f nπp) − h( f n p)).

By the calculation for |χ |∞, we obtain |B(p)| � C2|h|η(1 − γ1)
−1γ N

1 for all p ∈ Y .

Also, γ N
1 � γ −1

1 γ
1
2 s(y,y′)
1 = γ −1

1 γ
s(y,y′)
2 , so B(p) = O(γ

s(y,y′)
2 ) for p = y, y′.

Finally, by (8.4) using that ψn � n,

|A(y, y′)| � |h|η
N−1
∑

n=0

d( f n y, f n y′)η � C2C4|h|η
N−1
∑

n=0

(γ n
1 d1(y, y′) + γ

s(y,y′)−n
1 )

� C2C4|h|η(1 − γ1)
−1(d1(y, y′) + γ

s(y,y′)−N
1 )

� C2C4|h|η(1 − γ1)
−1(d1(y, y′) + γ

s(y,y′)
2 ).

Similarly for A(πy, πy′). Hence |χ(y)−χ(y′)| � d1(y, y′)+γ
s(y,y′)
2 , so (H)(b) holds.

��
Remark 8.5. In cases where h lies in Cη(X) and the dynamics on X is modelled by a
Young tower with exponential tails (so μX (τ > n) = O(e−ct ) for some c > 0), it
is immediate that ϕ ∈ Lq(Y ) for all q and that condition (8.3) is satisfied. Assuming
absence of approximate eigenfunctions, we obtain rapid mixing for such flows.
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8.3. Flows with an invariant Hölder stable foliation. Let Tt : M → M be a Hölder
nonuniformly hyperbolic flow as in Sect. 7.2 and let � be an attractor for this flow. We
suppose that (M, d) is a Riemannian manifold, that X is a C2 embedded cross-section
for the flow and that Y ⊂ X ∩ � is a set with hyperbolic product structure for the return
map. We assume that the flow possesses a Tt -invariant Hölder stable foliation Wss in
a neighbourhood of � (a sufficient condition for this to hold is that � is a partially
hyperbolic attracting set with a DTt -invariant dominated splitting T�M = Ess ⊕ Ecu ,
see [4]). We also assume that diam Y can be chosen arbitrarily small. In this subsection,
we show how to use the stable foliationWss for the flow to show that χ is Hölder, hence
verifying the hypotheses in Sect. 6.1.

Remark 8.6. Asdiscussed in [30, Section 4.2(iii)], this framework includes (not necessar-
ily Markovian) intermittent solenoidal flows, and yields polynomial decay O(t−(β−1))

for any prescribed β > 1. These results are optimal by [31] in the Markovian case and
by [9] in general.

Remark 8.7. The results of this subsection concerning flows with an invariant Hölder
stable foliation are not required for the study of billiard systems in Sect. 9.

First, we show that if W s(y) and W ss(y) coincide for all y ∈ Y , then Ft : Y ϕ → Y ϕ

is already a skew product (so χ = 0). (We remind the reader that Ws is the collection
of stable leaves of the hyperbolic product structure on X and that Wss is the collection
of strong stable manifolds for the flow on M .)

Proposition 8.8. Suppose that W s(y) and W ss(y) coincide for all y ∈ Y . Then ϕ is
constant along stable leaves W s(y), y ∈ Y .

Proof. For y0 ∈ Y ,

{Tϕ(y)y : y ∈ W ss(y0)} = {Fy : y ∈ W s(y0)} = FW s(y0) ⊂ W s(Fy0) = W ss(Fy0).

But setting t0 = ϕ(y0),

{Tt0 y : y ∈ W ss(y0)} = Tt0W ss(y0) ⊂ W ss(Tt0 y0) = W ss(Fy0).

Hence ϕ|W ss (y0) ≡ ϕ(y0). ��
We can choose a du-dimensional ball ˜X ⊂ W u(y0) ⊂ X for some y0 ∈ Y such

that the strong stable manifold W ss(x) is uniformly large (in the sense of containing a
ds-dimensional ball of uniform radius) for all x ∈ ˜X . We define the new cross-section
to the flow X∗ = ⋃

x∈˜X W ss(x). Shrinking Y if necessary, there exists a neighbourhood
(within X ) of Y which we denote by X̆ and a unique continuous function ζ : X̆ → R

with |ζ | � 1
2 inf ϕ such that ζ |

˜X ≡ 0 and {Tζ(x)(x) : x ∈ X̆} ⊂ X∗. Moreover, ζ

is Hölder since X is C2 embedded in M and X∗ is Hölder by the assumption on the
regularity of the stable foliationWss . Let Y ∗ = {Tζ(y)(y) : y ∈ Y }. Define the new roof
function

ϕ∗ : Y ∗ → R
+, ϕ∗(Tζ(y)y) = ϕ(y) + ζ(Fy) − ζ(y).

We observe that ϕ∗ is the return time for the flow Tt to the cross-section X∗, restricted
to Y ∗.

Lemma 8.9. Under the above assumption on Wss , condition (H) holds.
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Proof. We show that χ = −ζ . The result follows since ζ is Hölder.
Let n � 0, y ∈ Y . By Proposition 8.8 applied to ϕ∗ : Y ∗ → R

+, we have that
ϕ∗(Tζ(Fnπy)Fnπy) = ϕ∗(Tζ(Fn y)Fn y). Hence by definition of ϕ∗,

ϕ(Fnπy) − ϕ(Fn y) = ζ(Fnπy) − ζ(Fn y) + ζ(Fn+1y) − ζ(Fn+1πy).

Let η be the Hölder exponent of ζ . By (7.2), |ϕ(Fnπy) − ϕ(Fn y)| � 2C2|ζ |η(γ η)n so
the series χ(y) = ∑∞

n=0(ϕ(Fnπy) − ϕ(Fn y)) converges absolutely. Moreover,

χ(y) = lim
N→∞

N−1
∑

n=0

(ϕ(Fnπy) − ϕ(Fn y))

= lim
N→∞

(

ζ(πy) − ζ(y) + ζ(F N y) − ζ(F N πy)
) = ζ(πy) − ζ(y).

Finally, ζ(πy) = 0 since ζ |
˜X ≡ 0. ��

8.4. Temporal distance function. Dolgopyat [22, Appendix] showed that for Axiom A
flows a sufficient condition for absence of approximate eigenfunctions is that the range
of the temporal distance function has positive lower box dimension. This was extended
to nonuniformly hyperbolic flows in [29,30]. Here we recall the main definitions and
result.

We assume that condition (H) holds, so that the suspension flow Y ϕ → Y ϕ is a
Gibbs–Markov flow (and hence conjugate to a skew product flow). We also assume the
dynamically Hölder setup from Sect. 7.3. In particular, the Poincaré map f : X → X
is nonuniformly hyperbolic as in Sect. 7.1 and Y has a local product structure. Also we
assume that the roof function ϕ has bounded Hölder constants along unstable leaves, so
condition (8.2) is satisfied.

Let y1, y4 ∈ Y and set y2 = W s(y1) ∩ W u(y4), y3 = W u(y1) ∩ W s(y4). Define the
temporal distance function D : Y × Y → R,

D(y1, y4) =
∞
∑

n=−∞

(

ϕ(Fn y1) − ϕ(Fn y2) − ϕ(Fn y3) + ϕ(Fn y4)
)

.

It follows from the construction in [30, Section 5.3] (which uses (7.4) and (8.2)) that
inverse branches Fn yi for n � −1 can be chosen so that D is well-defined.

Lemma 8.10 ([30, Theorem 5.6]). Let Z0 = ⋂∞
n=0 F−n Z where Z is a union of finitely

many elements of the partition {Y j }. Let Z0 denote the corresponding finite subsystem
of Y . If the lower box dimension of D(Z0 × Z0) is positive, then there do not exist
approximate eigenfunctions on Z0. ��
Remark 8.11. For AxiomA attractors, Z0 can be taken to be connected and D is continu-
ous, so absence of approximate eigenfunctions is ensured whenever D is not identically
zero. For nonuniformly hyperbolic flows, where the partition {Y j } is countably infinite,
Z0 is a Cantor set of positive Hausdorff dimension [29, Example 5.7]. In general it is
not clear how to use this property since D is generally at best Hölder. However for flows
with a contact structure, a formula for D in [25, Lemma 3.2] can be exploited and the
lower box dimension of D(Z0 × Z0) is indeed positive, see [29, Example 5.7]. The
arguments in [29, Example 5.7] apply to general Gibbs–Markov flows with a contact
structure. A special case of this is the Lorentz gas examples considered in Sect. 9.
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9. Billiard Flows Associated to Infinite Horizon Lorentz Gases

In this section we show that billiard flows associated to planar infinite horizon Lorentz
gases satisfy the assumptions of Sect. 8.1. In particular, we prove decay of correlations
with decay rate O(t−1).

Background material on infinite horizon Lorentz gases is recalled in Sect. 9.1 and the
decay rate O(t−1) is proved in Sect. 9.2. In Sect. 9.3, we show that the same decay rate
holds for semidispersing Lorentz flows and stadia. In Sect. 9.4, we show that the decay
rate is optimal for the examples considered in this section.

9.1. Background on the infinite horizon Lorentz gas. We begin by recalling some back-
ground on billiard flows; for further details we refer to the monograph [16].

Let T
2 denote the two dimensional flat torus, and let us fix finitely many disjoint

convex scatterers Sk ⊂ T
2 with C3 boundaries of nonvanishing curvature. The com-

plement Q = T
2\⋃

Sk is the billiard domain, and the billiard dynamics are that of
a point particle that performs uniform motion with unit speed inside Q, and specular
reflections—angle of reflection equals angle of incidence—off the scatterers, that is, at
the boundary ∂ Q. The resulting billiard flow is Tt : M → M , where the phase space
M = Q × S

1 is a Riemannian manifold, and Tt preserves the (normalized) Lebesgue
measure μM (often called Liouville measure in the literature).

There is a natural Poincaré section X = ∂ Q × [−π/2, π/2] ⊂ M corresponding
to collisions (with outgoing velocities), which gives rise to the billiard map denoted by
f : X → X , with absolute continuous invariant probability measure μX . The time until
the next collision, the free flight function h : X → R

+, is defined to be h(x) = inf{t >

0 : Tt x ∈ X}. The Lorentz gas has finite horizon if h ∈ L∞(X) and infinite horizon if h
is unbounded.

In the finite horizon case, [5] recently proved exponential decay of correlations. In
this section, we prove

Theorem 9.1. Let η ∈ (0, 1]. In the infinite horizon case, there exists m � 1 such that
ρv,w(t) = O(t−1) for all v ∈ Cη(M)∩C0,η(M) and w ∈ Cη,m(M) (and more generally
for the class of observables defined in Corollary 9.6 below).

Let us fix some terminology and notations. The billiard map f : X → X is discontin-
uous, with singularity set S corresponding to the preimages of grazing collisions. Here,
S is the closure of a countable union of smooth curves, X\S consists of countably many
connected components Xm ,m � 1, and f |Xm isC2. If x, x ′ ∈ Xm for somem � 1, then,
in particular, x, x ′ and f x, f x ′ lie on the same scatterer (even when the configuration
is unfolded to the plane). Throughout our exposition, d(x, x ′) denotes the Euclidean
distance of the two points, i.e. the distance that is generated by the Riemannian metric
on X (or M).

It follows from geometric considerations in the infinite horizon case that μX (h >

t) = O(t−2). Moreover, as the trajectories are straight lines, we have

|h(x) − h(x ′)| � d(x, x ′) + d( f x, f x ′) for all x, x ′ ∈ Xm, m � 1; and (9.1)

d(Tt x, Tt ′ x) � |t − t ′| for all x ∈ X and t, t ′ ∈ [0, h(x)). (9.2)

The billiardmaps considered here (both finite and infinite horizon) have uniform con-
traction and expansion even for f . There exist stable and unstable manifolds of positive
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length for almost every x ∈ X , which we denote by W s(x) and W u(x) respectively, and
there exist constants C2 � 1, γ ∈ (0, 1) such that for all x, x ′ ∈ X , n � 0,

d( f n x, f n x ′) � C2γ
nd(x, x ′) for x ′ ∈ W s(x). (9.3)

d(x, x ′) � C2γ
nd( f n x, f n x ′) for f n x ′ ∈ W u( f n x). (9.4)

This follows from the uniform hyperbolicity properties of f , see in particular [16, For-
mula (4.19)].

Furthermore, there is a constant C5 � 1 such that for x, x ′ ∈ X ,

d(Tt x, Tt x
′) � C5d(x, x ′) for x ′ ∈ W s(x), t ∈ [0, h(x)] ∩ [0, h(x ′)]. (9.5)

d(T−t x, T−t x
′) � C5d(x, x ′) for x ′ ∈ W u(x), t ∈ [0, h( f −1x)] ∩ [0, h( f −1x ′)].

(9.6)

To verify (9.5), note that d(x, x ′) consists of a position and a velocity component. In
course of the free flight, the velocities do not change, while for x ′ ∈ W s(x), the position
component can only shrink as stable manifolds correspond to converging wavefronts. A
similar argument applies to (9.6).

Remark 9.2. (a) In the remainder of the section—and in particular in the proof of
Proposition 9.5 below—we apply (9.1) repeatedly, but always in the case when either
x ′ ∈ W s(x), or f x ′ ∈ W u( f x). As all iterates f n, n � 0 are smooth on local stable
manifolds (while all iterates f −n, n � 0 are smooth on local unstable manifolds), both
of these conditions imply x, x ′ ∈ Xm for some m � 1.
(b) For larger values of t than those in (9.5), we note that d(Tt x, Tt x ′) may grow large
temporarily: it can happen that one of the trajectories has already collided with some
scatterer, while the other has not, hence even though the two points are close in position,
the velocities differ substantially. Similar comments apply to (9.6). This phenomenon
is the main reason why we require the notion of dynamically Hölder flows Tt in Defini-
tion 7.6.

In [36], Young constructs a subset Y ⊂ X and an induced map F = f τ : Y → Y
that possesses the properties discussed in Sect. 7.1 including (7.4). The tails of the return
time τ : Y → Z

+ are exponential, i.e. μ(τ > n) = O(e−cn) for some c > 0. Moreover,
the construction can be carried out so that diam Y is as small as desired. This is proved in
[36] for the finite horizon, and in [14] for the infinite horizon case. Wemention that (7.2)
and (7.3) follow from (9.3) and (9.4), respectively, while (7.1) holds as the stable and
the unstable manifolds are uniformly transversal, see [16, Formulas (4.13) and (4.21)].

Proposition 9.3. For all y, y′ ∈ Y j , j � 1, and all 0 � � � τ(y) − 1,

|h( f �y) − h( f �y′)| � 2C2
2C4γ

−1(γ �d(y, y′) + γ τ(y)−�γ s(y,y′)).

Proof. Let z = W s(y) ∩ W u(y′). By (7.4), Fz ∈ W u(Fy′). By (9.3) and (9.4), for
0 � � � τ(y),

d( f �y, f �y′) � d( f �y, f �z) + d( f �z, f �y′) � C2(γ
�d(y, z) + γ τ(y)−�d(Fz, Fy′)).

Using also (7.1) and (7.3),

d( f �y, f �y′) � C2(γ
�C4d(y, y′) + γ τ(y)−�C2γ

s(y,y′)−1).
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Hence by (9.1), for � � τ(y) − 1,

|h( f �y)−h( f �y′)|�d( f �y, f �y′) + d( f �+1y, f �+1y′)�γ �d(y, y′) + γ τ(y)−�γ s(y,y′),

as required. ��
Define the induced roof function ϕ = ∑τ−1

�=0 h ◦ f �. Using (7.3), it is immediate from
Proposition 9.3 that ϕ has bounded Hölder constants in the sense of Sect. 8.1:

Corollary 9.4. Conditions (8.1) and (8.2) hold.

Proof. If y′ ∈ W s(y), then s(y, y′) = ∞ so |ϕ(y) − ϕ(y′)| � d(y, y′) by Proposi-
tion 9.3. If y′ ∈ W u(y), then d(y, y′) � C2γ

s(y,y′) by (7.3), so |ϕ(y)−ϕ(y′)| � γ s(y,y′)

by Proposition 9.3. ��
Proposition 9.5. For diam Y sufficiently small, there exist an integer n0 � 1 and a
constant C > 0 such that for all y, y′ ∈ Y , s(y, y′) � n0, and all u ∈ [0, ϕ(y)] ∩
[0, ϕ(y′)], there exist t, t ′ ∈ R such that

|t − u| � Cd(y, y′), d(Tu y, Tt z) � Cd(y, y′),
|t ′ − u| � Cγ s(y,y′), d(Tu y′, Tt ′ z) � Cγ s(y,y′),

where z = W s(y) ∩ W u(y′).

Proof. Define h�(y) = ∑�−1
j=0 h( f j y) for y ∈ Y , 0 � � � τ(y). By Proposition 9.3,

there is a constant C > 0 such that

|h�(y) − h�(y′)| �
τ(y)−1
∑

j=0

|h( f j y) − h( f j y′)| � C(d(y, y′) + γ s(y,y′)), (9.7)

for all y, y′ ∈ Y j , j � 1 (which is equivalent to s(y, y′) � 1) and all 0 � � � τ(y).
Now consider y, y′ ∈ Y with s(y, y′) � n0, and u ∈ [0, ϕ(y)] ∩ [0, ϕ(y′)]. Let

z = W s(y) ∩ W u(y′).
Choosing t . By (7.1), d(y, z) � C4d(y, y′). Also, s(y, z) = ∞. We can shrink Y if
necessary so that C diam Y < inf h.

Write Tu y = Tr f �y where 0 � � � τ(y) − 1 and r ∈ [0, h( f �y)). (When u =
ϕ(y), we take � = τ(y) − 1, r = h( f �y).) Similarly, write Tuz = Tr ′ f �′

z. Note that
u = h�(y) + r = h�′(z) + r ′.

First we show that |� − �′| � 1. If � � �′ + 1, then by (9.7),

(� − �′ − 1) inf h � h�(z) − h�′+1(z) � h�(y) − h�′+1(z) + h�(z) − h�(y)

� h�(y) − h�′(z) − h( f �′
z) + C diam Y

= r ′ − r − h( f �′
z) + C diam Y � C diam Y < inf h,

hence � � �′+1. Similarly, if �′ � �+1, then (�′−�−1) inf h � h�′(y)−h�+1(y) < inf h,
which implies �′ � � + 1. Thus we indeed have |� − �′| � 1.

If � = �′, then we take t = u. By (9.7),

|r − r ′| = |h�(y) − h�(z)| � Cd(y, z) � CC4d(y, y′).
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By (9.3), d( f �y, f �z) � C2d(y, z) � C2C4d(y, y′). Without loss, r � r ′, so by (9.2)
and (9.5)

d(Tu y, Tt z) = d(Tr f �y, Tr ′ f �z) � d(Tr f �y, Tr f �z) + d(Tr f �z, Tr ′ f �z)

� C5d( f �y, f �z) + |r − r ′| � d(y, y′).

If �′ = � − 1, then we take t = u + r + s where s = h( f �−1z) − r ′ � 0. Then
Tu y = Tr f �y and Tt z = Tr+s Tr ′ f �−1z = Tr+h( f �−1z) f �−1z = Tr f �z.

Note that u = h�(y)+r = h�(z)−s, hence r+s = h�(z)−h�(y) � Cd(y, z) by (9.7).
In particular, |t − u| = r + s � CC4d(y, y′). Also 0 � r � r + s � C diam Y � inf h.
Hence by (9.3) and (9.5),

d(Tu y, Tt z) = d(Tr f �y, Tr f �z) � C5d( f �y, f �z) � C2C5d(y, z) � C2C4C5d(y, y′).

The argument for �′ = � + 1 is analogous.
Choosing t ′. This goes along similar lines. We can shrink diam Y and increase n0 so
that C(C2 + 1)(diam Y + γ n0) < inf h. Note that s(z, y′) = s(y, y′) � n0 � 1.

Since s(z, y′) � 1, it follows from (7.4) that Fz ∈ W u(Fy′).WriteTuz = T−r f −�Fz
where0 � � � τ(y)−1and r ∈ [0, h( f −(�+1)Fz)). SimilarlywriteTu y′ = T−r ′ f −�′

Fy′.
Note that u = hτ(y)−�(z) − r = hτ(y)−�′(y′) − r ′.

Again, we show that |� − �′| � 1. If � � �′ + 1, by (9.7),

(� − �′ − 1) inf h � hτ(y)−�′−1(y′) − hτ(y)−�(y′)
� hτ(y)−�′−1(y′) − hτ(y)−�(z) + C(diam Y + γ n0)

= r ′ − r − h( f τ(y)−�′−1y′) + C(diam Y + γ n0) � C(diam Y + γ n0) < inf h,

hence � � �′ + 1. Similarly, if �′ � � + 1, then (�′ − � − 1) inf h � hτ(y)−�−1(z) −
hτ(y)−�′(z) < inf h so �′ � � + 1. Thus we have |� − �′| � 1.

If � = �′, then we take t ′ = u. It follows from (7.3) and (9.7) that

|r − r ′| = |hτ(y)−�(y′) − hτ(y)−�(z)| � C(d(y′, z) + γ s(y′,z)) � C(C2 + 1)γ s(y′,z).

Also, by (7.3) and (9.4),

d( f −�Fy′, f −�Fz) � C2d(Fy′, Fz) � C2
2γ

−1γ s(y′,z).

Without loss, r ′ � r , so by (7.3), (9.2) and (9.6),

d(Tu y′, Tuz) = d(T−r ′ f −�Fy′, T−r f −�Fz)

� d(T−r ′ f −�Fy′, T−r ′ f −�Fz) + d(T−r ′ f −�Fz, T−r f −�Fz)

� C5d( f −�Fy′, f −�Fz) + |r − r ′| � γ s(y′,z) = γ s(y,y′).

If � = �′ − 1, then we take t ′ = u − r ′ − s where s = h( f −(�−1)Fz) − r � 0. Then
Tu y′ = T−r ′ f −�′

Fy′ and Tt ′ z = T−r ′−s Tuz = T−r ′ f −�′
Fz.

Note that u = hτ(y)−�′(y′) − r ′ = hτ(y)−�′(z) + s, hence r ′ + s = hτ(y)−�′(y′) −
hτ(y)−�′(z) � C(C2 + 1)γ s(y,y′) by (9.7). In particular, |t ′ − u| = r ′ + s � γ s(y,y′).
Also, 0 � r ′ � r ′ + s � C(C2 + 1)γ n0 � inf h. Hence by (7.3), (9.4) and (9.6),

d(Tu y′, Tt ′ z) = d(T−r ′ f −�′
Fy′, T−r ′ f −�′

Fz) � C5d( f −�′
Fy′, f −�′

Fz) � γ s(y,y′).

The argument for � = �′ + 1 is analogous. ��
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Corollary 9.6. Let v ∈ C0,η(M), w ∈ C0,m(M) such that ∂k
t w ∈ C0,η(M), for all

k = 0, . . . , m. Suppose also that there is a constant C > 0 such that |v(x) − v(x ′)| �
Cd(x, x ′)η and |∂k

t w(x)−∂k
t w(x ′)| � Cd(x, x ′)η for all x, x ′ ∈ M of the form x = Tu y,

x ′ = Tu y′ where y, y′ ∈ Y j for some j � 1, u ∈ [0, ϕ(y)], u′ ∈ [0, ϕ(y′)], and for all
k = 0, . . . , m. Then h, Tt , v and w are dynamically Hölder in the sense of Definition 7.6.

Proof. Condition (a) of Definition 7.6 follows from Proposition 9.3. To check condi-
tion (b), we distinguish two cases. If s(y, y′) < n0, we may take t = t ′ = u and use
that |v(x)− v(x ′)| � 2|v|∞ � γ n0 for any x, x ′ ∈ M . If s(y, y′) � n0, Proposition 9.5
applies and, along with Formulas (9.1)–(9.6), implies Definition 7.6(b) . ��

9.2. Tail estimate for ϕ and completion of the Proof of Theorem 9.1. Since

μX (x ∈ X : h(x) > t) = O(t−2) (9.8)

μ(y ∈ Y : τ(y) > n) = O(e−cn) for some c > 0, (9.9)

a standard argument shows that μ(ϕ > t) = O((log t)2t−2). In fact, we have

Proposition 9.7. μ(ϕ > t) = O(t−2).

The crucial ingredient for proving Proposition 9.7 is due to Szász and Varjú [34].

Lemma 9.8. ([34, Lemma 16], [18, Lemma 5.1]) There are constants p, q > 0 with the
following property. Define

Xb(m) = {

x ∈ X : [h(x)] = m and h(T j x) > m1−q for some j ∈ {1, . . . , b logm}}.
Then for any b sufficiently large there is a constant C = C(b) > 0 such that

μX (Xb(m)) � Cm−pμX (x ∈ X : [h(x)] = m) for all m � 1.

��
For b > 0, define

Yb(n) = {y ∈ Y : τ(y) � b log n and max
0��<τ(y)

h(T �y) � 1
2n and ϕ(y) � n}.

Corollary 9.9. For b sufficiently large, μ(Yb(n)) = o(n−2).

Proof. Fix p and q as in Lemma 9.8. Also fix b sufficiently large.
Let y ∈ Yb(n). Define h1(y) = max0��<τ(y) h( f �y) and choose �1(y) ∈ {0, . . . ,

τ (y) − 1} such that h1(y) = h( f �1(y)y). Define h2(y) = max0��<τ(y), � 	=�1(y) h( f �y).
Then h1(y) and h2(y) are the two largest free flights h ◦ f � during the iterates � =
0, . . . , τ (y) − 1.

We begin by showing that these two flight times have comparable length. Indeed, let
mi = [hi ], i = 1, 2. Then n � ϕ � h1 + (τ − 1)h2 � n/2 + (b log n)h2. Hence

n

2b log n
− 1 � m2 � m1 � n

2
. (9.10)

In particular, m1 > m1−q
2 and m2 > m1−q

1 for large n.
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Choose �2(y) ∈ {0, . . . , τ (y)−1} such that �2(y) 	= �1(y) and h2(y) = h( f �2(y)y).
We can suppose without loss that �1(y) < �2(y). For large n, it follows from (9.10) that
f �1(y)y ∈ Xb(m1(y)). Hence

Yb(n) ⊂ f −� Xb(m) for some � < b log n, m � n/(2b log n) − 1,

and so

μ(Yb(n)) � μX (Yb(n) × 0) � b log n
∑

m�n/(2b log n)−1

μX (Xb(m)).

By Lemma 9.8 and (9.8),

μ(Yb(n)) � log n
∑

m�n/(2b log n)−1

m−pμX (x ∈ X : [h(x)] = m)

� log n(n/ log n)−(2+p) = o(n−2),

as required. ��
Proof of Proposition 9.7. Define the tower � = {(y, �) ∈ Y × Z : 0 � � � τ(y) − 1}
with probability measure μ� = μ × counting/τ̄ where τ̄ = ∫

Y τ dμ. Recall that μX =
π∗μ� where π(y, �) = f �y.

Write max0��<τ(y) h( f �y) = h( f �1(y)y) where �1(y) ∈ {0, . . . , τ (y) − 1}. Then

μ{y ∈ Y : max
0��<τ(y)

h( f �y) > n/2} = τ̄μ�{(y, 0) ∈ � : h( f �1(y)y) > n/2}
= τ̄μ�{(y, �1(y)) : h( f �1(y)y) > n/2} = τ̄μ�{(y, �1(y)) : h ◦ π(y, �1(y)) > n/2}
� τ̄μ�{p ∈ � : h ◦ π(p) > n/2} = τ̄μX {x ∈ X : h(x) > n/2},

and so μ{y ∈ Y : max0��<τ(y) h(T �y) > n/2} = O(n−2) by (9.8). Hence it follows
from Corollary 9.9 that

μ{y ∈ Y : τ(y) � b log n and ϕ(y) � n} = O(n−2).

Finally, by (9.9), μ(τ > b log n) = O(n−bc) = o(n−2) for any b > 2/c and so
μ(ϕ � n) = O(n−2) as required. ��

It follows from Lemma 8.3 and Corollary 9.4 that condition (H) is satisfied. Hence
by Corollary 8.1(a), the suspension flow Ft : Y ϕ → Y ϕ is a Gibbs–Markov flow as
defined in Sect. 6. By Proposition 9.7, μ(ϕ > t) = O(t−2). By Corollary 9.6, the
flows and observables are dynamically Hölder (Definition 7.6). Hence it follows from
Corollary 8.1(b) that absence of approximate eigenfunctions implies decay rate O(t−1).

Finally, we exclude approximate eigenfunctions. By Corollary 9.4, condition (8.2)
holds and hence the temporal distortion function D : Y × Y → R is defined as in
Sect. 8.4. Let Z0 ⊂ Y be a finite subsystem and let Z0 = π̄−1Z0. The presence of a
contact structure implies by Remark 8.11 that the lower box dimension of D(Z0 × Z0)

is positive. Hence absence of approximate eigenfunctions follows from Lemma 8.10.



104 P. Bálint, O. Butterley, I. Melbourne

9.3. Semi-dispersing Lorentz flows and stadia. In this subsection we discuss two further
classes of billiard flows and show that the scheme presented above can be adapted to
cover these examples, resulting in Theorem 9.13.

Semi-dispersing Lorentz flows are billiard flows in the planar domain obtained as
R\⋃

Sk where R is a rectangle and the Sk ⊂ R are finitely many disjoint convex
scatterers with C3 boundaries of nonvanishing curvature. By the unfolding process –
tiling the plane with identical copies of R, and reflecting the scatterers Sk across the
sides of all these rectangles – an infinite periodic configuration is obtained, which can
be regarded as an infinite horizon Lorentz gas.

Bunimovich stadia are convex billiard domains enclosed by two semicircular arcs
(of equal radii) connected by two parallel line segments. An unfolding process could
reduce the bounces on the parallel line segments to long flights in an unbounded domain,
however, there is another quasi-integrable effect here corresponding to sequences of
consecutive collisions on the same semi-circular arc.

Both of these examples have been extensively studied in the literature, see for instance
[7,10,16,17,29], and references therein. A common feature of the two examples is that
the billiard map itself is not uniformly hyperbolic; however, there is a geometrically
definedfirst returnmapwhich has uniformexpansion rates.As before, the billiard domain
is denoted by Q, and the billiard flow is Tt : M → M where M = Q × S

1. However,
this time we prefer to denote the natural Poincaré section ∂ Q × [−π/2, π/2] ⊂ M
by ˜X , the corresponding billiard map as f̃ : ˜X → ˜X , and the free flight function as
h̃ : ˜X → R

+ where h̃(x̃) = inf{t > 0 : Tt x̃ ∈ ˜X}. Then, as mentioned above, there is a
subset X ⊂ ˜X such that the first return map of f̃ to X has good hyperbolic properties.
We denote this first return map by f : X → X . The corresponding free flight function
h : X → R

+ is given by h(x) = inf{t > 0 : Tt x ∈ X}. Let us, furthermore, introduce
the discrete return time r̃ : X → Z

+ given by r̃(x) = min{n � 1 : f̃ n x ∈ X}.
In the case of the semi-dispersing Lorentz flow, X corresponds to collisions on the

scatterers Sk . In the case of the stadium, X corresponds to first bounces on semi-circular
arcs, that is, x ∈ X if x is on one of the semi-circular arcs, but f̃ −1x is on another
boundary component (on the other semi-circular arc, or on one of the line segments).

The following properties hold. Unless otherwise stated, standard references are [16,
Chapter 8] and [17]. As in Sect. 9.1, d(x, x ′) always denotes the Euclidean distance of
the two points, generated by the Riemannian metric.

• There is a countable partition X\S = ⋃∞
m=1 Xm such that f |Xm is C2 and r̃ |Xm

is constant for any m � 1. We refer to the partition elements Xm with r̃ |Xm � 2 as
cells; these are of two different types:
– Bouncing cells are present both in the semi-dispersing billiard examples and in

stadia. For these, one iteration of f |Xm consists of several consecutive reflections
on the flat boundary components, that is, the line segments. By the above men-
tioned unfolding process, these reflections reduce to trajectories along straight
lines in the associated unbounded table.

– Sliding cells are present only in stadia. For these, one iteration of f |Xm consists
of several consecutive collisions on the same semi-circular arc.

• inf h > 0, and sup h̃ < ∞, however, there is no uniform upper bound on h, and no
uniform lower bound for h̃.

• f : X → X is uniformly hyperbolic in the sense that stable and unstable manifolds
exist for almost every x , and Formulas (9.3) and (9.4) hold. This follows from the
uniform expansion rates of f , see [16, Formula (8.22)].
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• If x, x ′ ∈ Xm where Xm is a bouncing cell, in the associated unfolded table the
flow trajectories until the first return to X are straight lines, hence (9.1) follows. If
x, x ′ ∈ Xm and Xm is a sliding cell, the induced roof function is uniformly Hölder
continuous with exponent 1/4, as established in the proof of [7, Theorem 3.1]. The
same geometric reasoning applies to h̃k(x) = h̃(x)+ h̃( f̃ x)+ · · ·+ h̃( f̃ k−1x) as long
as k � r̃(x). Summarizing, we have

|h̃k(x) − h̃k(x ′)| � d(x, x ′)1/4 + d( f x, f x ′)1/4 (9.11)

for x, x ′ ∈ Xm, m � 1 and k � r̃(x)−1. In particular, |h(x)−h(x ′)| � d(x, x ′)1/4+
d( f x, f x ′)1/4.

• (9.2) has to be relaxed to

d(Tt x̃, Tt ′ x̃) � |t − t ′| for all x̃ ∈ ˜X and t, t ′ ∈ [0, h̃(x̃)). (9.12)

• (9.5) has to be relaxed to the following two formulas:

d(Tt x̃, Tt x̃
′) � d(x̃, x̃ ′) for x̃ ∈ ˜X , x̃ ′ ∈ W s(x̃), t ∈ [0, h̃(x̃)) ∩ [0, h̃(x̃ ′));

(9.13)

d( f̃ k x, f̃ k x ′) � d(x, x ′) for x ∈ X, x ′ ∈ W s(x), 0 � k. (9.14)

Similarly, (9.6) has to be relaxed to

d(T−t x̃, T−t x̃
′) � d(x̃, x̃ ′) for x̃ ∈ ˜X , x̃ ′ ∈ W u(x̃),

t ∈ [0, h̃( f̃ −1 x̃)) ∩ [0, h̃( f̃ −1 x̃ ′)); (9.15)

d( f̃ −k x, f̃ −k x ′) � d(x, x ′) for x ∈ X, x ′ ∈ W u(x), 0 � k. (9.16)

To verify (9.16), let us note first that d(x, x ′) consists of a position and a velocity
component, and in course of a free flight velocities do not change.Now themechanism
of hyperbolicity for stadia is defocusing, see, for instance, [16, Figure 8.1], which
guarantees that for x ′ ∈ W u(x), the position component of d(x, x ′) in course of the
free flight is dominated by the position component at the end of the free flight. (9.14)
holds for analogous reasons. To verify (9.15), by uniform hyperbolicity of f (in
particular Formula (9.4), see above), it is enough to consider how f̃ evolves unstable
vectors between two consecutive applications of f , ie. within a series of sliding or
bouncing collisions. On the one hand, again by the defocusing mechanism, f̃ does
not contract the p-length of unstable vectors, see [16, Section 8.2]. On the other hand,
for an unstable vector, the ratio of the Euclidean and the p-length is

√
1 + V2/ cosϕ,

where V is the slope of the unstable vector in the standard billiard coordinates, and ϕ

is the collision angle, see [16, Formula (8.21)]. Now |V| is uniformly bounded away
from ∞, see Formula [16, Formula (8.18)], while cosϕ is constant in course of a
sequence of consecutive sliding or bouncing collisions. (9.13) holds by an analogous
argument.

• The map f : X → X can be modeled by a Young tower with exponential tails.
In particular, there exists a subset Y ⊂ X and an induced map F = f τ : Y → Y
that possesses the properties discussed in Sect. 7.1 including (7.4). The tails of the
return time τ : Y → Z

+ are exponential, i.e. μ(τ > n) = O(e−cn) for some c > 0.4

4 It is important to note that here τ is the return time to Y in terms of f ; the return time in terms of f̃ has
polynomial tails.
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Moreover, the construction can be carried out so that diam Y is as small as desired.
The existence of the Young tower satisfying these properties is established in [17].
As in Sect. 9.1, we introduce the induced roof function ϕ = ∑τ−1

�=0 h ◦ f �.
• By construction, for y, y′ ∈ Y j , j � 1 and � � τ fixed, f �y and f �y′ always
belong to the same cell of X .

Let us introduce γ̂ = γ 1/4 and d̄(y, y′) = d(y, y′)1/4. The following version of
Proposition 9.3 holds.

Proposition 9.10. For all y, y′ ∈ Y j , j � 1, and all 0 � � � τ(y) − 1,

|h( f �y) − h( f �y′)| � γ̂ �(d̄(y, y′) + γ̂ τ (y)−�γ̂ s(y,y′)).

Proof. The proof of Proposition 9.3 applies, using (9.11) instead of (9.1). ��
This readily implies

Corollary 9.11. Conditions (8.1) and (8.2) hold, with γ replaced by γ̂ , and d(y, y′)
replaced by d̄(y, y′). ��

The adapted version of Proposition 9.5 reads as follows.

Proposition 9.12. For diam Y sufficiently small, there exist an integer n0 � 1 and a
constant C > 0 such that for all y, y′ ∈ Y , s(y, y0) � n0, and all u ∈ [0, ϕ(y)] ∩
[0, ϕ(y′)], there exist t, t ′ ∈ R such that

|t − u| � Cd̄(y, y′), d(Tu y, Tt z) � Cd̄(y, y′),
|t ′ − u| � C γ̂ s(y,y′), d(Tu y′, Tt ′ z) � C γ̂ s(y,y′),

where z = W s(y) ∩ W u(y′).

Proof. First, (9.7) can be updated as

|h�(y) − h�(y′)| �
τ(y)−1
∑

j=0

|h( f j y) − h( f j y′)| � d̄(y, y′) + γ̂ s(y,y′), (9.17)

for 0 � � � τ(y).
Fix y, y′ ∈ Y j for some j � 1, and u ∈ [0, ϕ(y)] ∩ [0, ϕ(y′)]. We will focus

on choosing the appropriate t and obtaining the relevant estimates. The choice of t ′ is
analogous. Recall the notation d̄(y, z) = d(y, z)1/4 and note that d̄(y, z) � d̄(y, y′).

First adjustment. As in the proof of Proposition 9.5, we arrive at Tu y = Tr f �y and
Tt1 z = Tr1 f �z for the same 0 � � � τ(y) − 1, and such that |u − t1| � d̄(y, z) and
|r − r1| � d̄(y, z). Indeed, a priori we have Tu y = Tr f �y and Tuz = Tr ′ f �′

z, where,
as inf h > 0, shrinking diam Y if needed, (9.17) implies |� − �′| � 1. If � = �′, then
let t1 = u, r1 = r ′, and |r − r1| � d̄(y, z) follows from (9.17). If �′ = � − 1, then
Tuz = T−r∗ f �z, where r∗ = h( f �−1z)−r ′ ∈ [0, h( f �−1z)]. Note that u = h�(y)+r =
h�(z) − r∗, hence r + r∗ = h�(z) − h�(y) � d̄(y, z). Let t1 = u + r + r∗, so that
|t1 − u| � d̄(y, z) and r1 = r as Tt1 z = Tr f �z. Note that we do not claim anything
about d(Tu y, Tt1 z) at this point.

Second adjustment. For brevity, introduce ŷ = f �y and ẑ = f �z. We have

Tu y = Tr ŷ = Ts f̃ k ŷ, Tt1 z = Tr1 ẑ = Ts′ f̃ k′
ẑ,
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for some 0 � k, k′ � r̃(ŷ) − 1 (note that r̃(ŷ) = r̃(ẑ)), s ∈ [0, h̃( f̃ k ŷ)) and s′ ∈
[0, h̃( f̃ k′

ẑ)). Note that by (9.13), (9.14) and (9.3), for any 0 � k � r̃(ŷ) − 1, we have

d( f̃ k ŷ, f̃ k ẑ) � d(ŷ, ẑ) � d(y, z), hence |h̃k(ŷ) − h̃k(ẑ)| � d̄(y, z), (9.18)

where we have used (9.11). We distinguish three cases: k = k′, k > k′ and k < k′.
If k = k′, (9.18) along with |r − r1| � d̄(y, z) implies |s − s′| � d̄(y, z). But then,

again by (9.18), (9.13) and (9.14), we have

d(Tu y, Tt1 z) = d(Ts f̃ k ŷ, Ts′ f̃ k ẑ) � d̄(y, z).

As |u − t1| � d̄(y, z), we can fix t = t1.
If k > k′, we prefer to represent our points as

Tu y = Tr ŷ = Ts f̃ k ŷ, Tt1 z = Tr1 ẑ = T−s1 f̃ k ẑ

for some s1 > 0. Now by (9.18) and as |r − r1| � d̄(y, z), we have s + s1 � d̄(y, z).
Define

s2 = min(s, h̃( f̃ k ẑ)/2, h̃( f̃ k ŷ)/2), r2 = s2 + s1 + r1, t = s2 + s1 + t1.

Then Tt z = Ts2 f̃ k ẑ, where s2 ∈ [0, h̃( f̃ k ŷ)) ∩ [0, h̃( f̃ k ẑ)) and

|s − s2| � s � s + s1 � d̄(y, z).

Hence

d(Tu y, Tt z) = d(Ts f̃ k ŷ, Ts2 f̃ k ẑ) � d(Ts2 f̃ k ŷ, Ts2 f̃ k ẑ) + d(Ts f̃ k ŷ, Ts2 f̃ k ŷ),

where d(Ts f̃ k ŷ, Ts2 f̃ k ŷ) � d̄(y, z) by (9.12), while d(Ts2 f̃ k ŷ, Ts2 f̃ k ẑ) � d̄(y, z) by
(9.13), (9.14) and (9.18). Hence d(Tu y, Tt z) � d̄(y, z), as desired. On the other hand
|t − t1| = s1 + s2 � s1 + s � d̄(y, z), and as we have already controlled |t1 − u|, we
have |t − u| � d̄(y, z).

The case when k < k′ can be treated analogously. The choice of t ′ goes along similar
lines, so we omit the details. ��
Theorem 9.13. Consider a semi-dispersing Lorentz flow or the billiard flow in a Buni-
movich stadium. Let η ∈ (0, 1]. There exists m � 1 such that ρv,w(t) = O(t−1) for
all v ∈ Cη(M) ∩ C0,η(M) and w ∈ Cη,m(M) (and more generally for the class of
observables defined in Corollary 9.6).

Proof. It follows from Lemma 8.3 and Corollary 9.11 that condition (H) is satisfied.
Hence by Corollary 8.1(a), the suspension flow Ft : Y ϕ → Y ϕ is a Gibbs–Markov flow
as defined in Sect. 6. The conclusions of Corollary 9.6 follow from Propositions 9.10
and 9.12. Hence the flows and observables are dynamically Hölder (Definition 7.6).

For the tail estimate on ϕ, introduce τ̃ : Y → Z
+, τ̃ (y) = min{n � 1 : f̃ n y ∈ Y }.

Note that sup h̃ < ∞, and ϕ(y) = ∑τ̃ (y)−1
k=0 h̃( f̃ k y) � τ̃ (y) sup h̃ . Also it is shown in

[18] (both for the semi-dispersing examples and for stadia) that μ(τ̃ > n) = O(n−2).
Hence μ(ϕ > t) � μ(τ̃ sup h̃ > t) = O(t−2).

Finally, to exclude approximate eigenfunctions, we may appeal as at the end of
Sect. 9.2 to the contact structure which the billiard examples have in common. The
result now follows from Corollary 8.1(b). ��
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9.4. Lower bounds. In this subsection, we show that it is impossible to improve on the
error rate O(t−1) for infinite horizon Lorentz gases, semidispersing Lorentz flows, and
Bunimovich stadia. The following result is based on [6, Corollary 1.3].

Proposition 9.14. Let v ∈ L2(M) with
∫

M v dμM = 0. Suppose that ρv,v(t) = o(t−1).

Then | ∫ t
0 v ◦ Ts ds|2 = o((t log t)1/2).

Proof. Let vt = ∫ t
0 v ◦ Ts ds. Then

∫

M
v2t dμM =

∫ t

0

∫ t

0

∫

M
v ◦ Tr v ◦ Ts dμM dr ds = 2

∫ t

0

∫ s

0

∫

M
v v ◦ Ts−r dμM dr ds

= 2
∫ t

0

∫ s

0
ρv,v(r) dr ds = 2

∫ t

0

∫ t

r
ρv,v(r) ds dr � 2t

∫ t

0
ρv,v(r) dr.

By the assumption on ρv,v , we obtain |vt |22 = o(t log t). ��
In the case of the planar infinite horizonLorentz gas, Szász andVarjú [34] showed that

(t log t)−1/2
∫ t
0 v◦Ts ds converges in distribution to a nondegenerate normal distribution

for typical Hölder mean zero observables v. The result applies equally to semidispersing
Lorentz flows. Similarly, in the case of Bunimovich stadia by Bálint and Gouëzel [6,
Corollary 1.6]. In particular, (t log t)−1/2| ∫ t

0 v◦Ts ds|2 |→ 0.Hence byProposition 9.14,
an upper bound of the type o(t−1) is impossible and so the upper bound in Theorems 9.1
and 9.13 is optimal.

Remark 9.15. There is also the possibility of obtaining an asymptotic expression of the
form

ρv,w(t) = ct−1 + O(t−(2−ε)), (9.19)

(ε > 0 arbitrarily small, c > 0) for certain classes of observables v,w. Such results
are obtained in [31] in cases where there is a first return to a uniformly hyperbolic map
f : X → X . The first return map in the examples considered here is nonuniformly
hyperbolic, modelled by a Young tower with exponential tails, so [31] does not apply
directly. In a recent preprint, [13] have announced the existence of a uniformly hyperbolic
first return. This combined with [31] may yield the asymptotic (9.19). (Interestingly, the
class of observables in (9.19) would be disjoint from the class of observables covered
by Proposition 9.14.)
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A. Markov Property

Thepurpose of this appendix is to show that equality (7.4) holds in the abstract framework
of Young [36]. Often this equality is assumed without further comment (see, e.g., [32,
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(Y1) p. 8538], [19, (P2) p. 51]) but we prefer to take the opportunity here to show that
it follows directly from Young’s original assumptions.

In this appendix, we use the notation of Young [36] since the result is general and in-
dependent of the rest of this article. Hence our notation here is consistent withYoung [36]
but differs from the other sections of this article where we used notation consistent with
[30]. In particular:

• The dynamical system studied is f : M → M (the corresponding notation is
f : X → X in the other sections of this article);

• The set with hyperbolic product structure is � (this was denoted by Y in the other
sections of this article);

• Local stable and unstable manifolds for points y ∈ � are denoted as γ s = γ s(y)

and γ u = γ u(y), respectively. In the other sections of this article, these are denoted
by W s and W u , respectively. In other words, following the notation of [36], in the
appendix, we write � = ( ⋃

γ u
) ∩ ( ⋃

γ s
) ⊂ M for the set with the hyperbolic

product structure, which is denoted as Y = (⋃

W s
) ∩ (⋃

W u
) ⊂ X in the other

sections of our paper;
• The return time of f to Y is denoted as R : � → Z

+ in the appendix (in the other
sections, this is τ : Y → Z

+);
• The s-subsets which make a partition of � are denoted as �i ⊂ � in the appendix
(in the other sections, these are denoted as Yi ⊂ Y ).

• The return time R takes a constant value on each of the �i , which, following
again [36], are denoted as Ri in this appendix. That is, R|�i = Ri .

With these notations, the equality (7.4) reads as f Ri (γ u(x) ∩ �i ) = γ u( f Ri x) ∩ �.

Proposition A.1. Let f : M → M be an injective transformation satisfying the abstract
set up in [36, Section 1]: specifically, the proof below uses (P1), the second part of (P2),
property (iii) of the separation time s0, and (P4)(a).

Let x ∈ �i , i � 1. Then f Ri (γ u(x) ∩ �i ) = γ u( f Ri x) ∩ �.

Proof. Before starting the actual proof, let us summarize the essence of the argument.
The Markov condition [36, (P2)] requires full crossings of � but, on its own, appears to
also allow multiple full crossings. However we show that, in combination with the other
assumptions, only single full crossings are permitted.

It follows from injectivity of f and hence f Ri , as well as (P2), that

f Ri (γ u(x) ∩ �i ) = f Ri γ u(x) ∩ f Ri �i ⊃ γ u( f Ri x) ∩ f Ri �i . (A.1)

Recall from (P1) thatwehave the local product structure� = ( ⋃

k∈K u γ u
k

)∩( ⋃

�∈K s γ s
�

)

.
By (P2), f Ri �i is au-subset of�whichmeans that f Ri �i = ( ⋃

k∈K u
i
γ u

k

)∩( ⋃

�∈K s γ s
�

)

for some subset K u
i ⊂ K u . Hence γ u

k ∩ � = γ u
k ∩ ( ⋃

�∈K s γ s
�

) = γ u
k ∩ f Ri �i for all

k ∈ K u
i . Also, γ

u
k ∩ f Ri �i = ∅ for all k 	∈ K u

i .
Now, γ u( f Ri x) ∩ f Ri �i 	= ∅ (it contains f Ri x) so it follows from the above con-

siderations that γ u( f Ri x) ∩ � = γ u( f Ri x) ∩ f Ri �i . Combining this with (A.1),

f Ri (γ u(x) ∩ �i ) ⊃ γ u( f Ri x) ∩ �. (A.2)

It remains to prove the reverse inclusion, so suppose that y ∈ γ u(x) ∩ �i . By
(P1), there exists z∗ ∈ γ u( f Ri x) ∩ γ s( f Ri y) ⊂ �. By (A.2), z∗ = f Ri z for some
z ∈ γ u(x)∩�i . Since z∗ and f Ri y lie in the same stable disk it follows fromproperty (iii)
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of the separation time that s0(z∗, f Ri y) = ∞. Using property (iii) oncemore, s0(z, y) �
s0(z∗, f Ri y) = ∞. But z ∈ γu(x) = γu(y) so (P4)(a) implies thatd(z, y) � Cαs0(z,y) =
0. Hence f Ri y = f Ri z = z∗ ∈ γ u( f Ri x). This shows that f Ri (γ u(x) ∩ �i ) ⊂
γ u( f Ri x) ∩ � completing the proof. ��
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