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Abstract

We show how the R-polynomials of the symmetric groups can be com-

puted, in a poset-theoretic way, from canonical hypercube decompositions.

This involves a new combinatorial concept, which we call a shortcut. We con-

jecture that the same formula holds for a certain class of combinatorially de-

fined hypercube decompositions. We also study the behavior of these concepts

under the operation of taking the direct product of two Bruhat intervals, and

characterize the shortcuts of the canonical hypercube decompositions. Our

main conjecture implies the Combinatorial Invariance Conjecture.
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1 Introduction

Kazhdan–Lusztig polynomials are fundamental objects in Lie theory, representation

theory, and the geometry of Schubert varieties (see, e.g., [24], [2], [13], and also

[3], [4], [21], and the references cited there). These polynomials Pu,v(q), one for

each Bruhat interval [u, v] in a Coxeter group W , were introduced by Kazhdan and

Lusztig in [23] and soon found applications in several contexts.

Among others, the combinatorial aspects of Kazhdan–Lusztig polynomials have

received attention from the start ([25]). From a combinatorial point of view, one

of the most intriguing open problems about Kazhdan–Lusztig polynomials is what

is usually referred to as the Combinatorial Invariance Conjecture (CIC for short),

formulated by Lusztig (G. Lusztig, private communications, 1980, see also [16, Rem.

7.31]), namely that the Kazhdan–Lusztig polynomial Pu,v(q) depends only on the

isomorphism class of the Bruhat interval [u, v] as a poset. The conjecture is known

to hold in various special cases. For instance, it has been proved for intervals of

rank ≤ 4 (see, e.g., [16, 7.31], and [4, Chap. 5, Exercises 7 and 8]), intervals of

rank ≤ 8 in type A and ≤ 6 in types B and D ([22]), for intervals in type Ã2 ([14]),

for intervals which are lattices ([16, 7.23], [8]), and for intervals starting from the

identity ([11]). We refer the reader to [10] for a complete account of the cases in

which the CIC is known to be true, and further details. On the other hand, it is

worth noting that certain entirely poset-theoretical generalizations of the CIC (e.g.,

for zircons and diamonds) fail ([12], [26]).

With the help of certain machine learning models, recently Blundell, Buesing,

Davies, Velic̆ković, and Williamson ([7], see also [15]) proposed for the first time a

constructive conjectural procedure to compute the Kazhdan–Lusztig polynomial of

a Bruhat interval in a symmetric group starting just from the interval as an abstract

poset. This procedure is stated in terms of a new combinatorial concept, that they

call a hypercube decomposition. The authors prove that their procedure is correct

for a class of hypercube decompositions derived from maximal parabolic subgroups

(the canonical ones, see Remark 4.2 below for the precise definition) thereby obtain-

ing a new formula for the computation of the Kazhdan–Lusztig polynomials, and

conjecture that it is correct for any hypercube decomposition. Their conjecture im-

plies the CIC. A generalization of the formula in [7] was recently given by Gurevich

and Wang ([19]).
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The R-polynomial of two elements in a Coxeter group, also introduced by Kazh-

dan and Lusztig in [23], is equivalent to the Kazhdan–Lusztig polynomial of the two

elements in the sense that if the R-polynomials of all the subintervals of a Bruhat

interval [u, v] are known, then the Kazhdan–Lusztig polynomials of all the subinter-

vals of [u, v] are known, and conversely. It is easy to see that the CIC is equivalent

to the analogous conjecture for the R-polynomials.

Our aim in this work is to study the relationships between R-polynomials and

hypercube decompositions. More precisely, we define two new combinatorial con-

cepts, namely the set of shortcuts of an element in a Bruhat interval, and that of

a join hypercube decomposition, and a new algebraic one, namely that of an alge-

braically calculating element in a Bruhat interval, and show that the shortcuts of

any algebraically calculating hypercube decomposition can be used to compute, in

a new and explicit way, the R-polynomial of the interval. We conjecture that the

natural generalization of our formula holds for any join hypercube decomposition.

This conjecture implies the CIC. We also give three equivalent characterizations of

the shortcuts of the canonical hypercube decompositions, and study the behavior

of hypercube decompositions, join hypercube decompositions, and their shortcuts,

with respect to the direct product of intervals. Many open problems arise naturally

from our work.

Some advantages in considering R-polynomials instead of Kazhdan–Lusztig poly-

nomials are that the corresponding formulas are simpler and have dual counterparts.

Indeed, one can define “upper”and “lower”versions of the concepts of shortcuts and

(join) hypercube decompositions, and obtain upper and lower versions of our for-

mulas.

After the first version of this article started circulating, the preprint [1] appeared

on the arXiv. In it, the authors propose a conjecture similar to our own, that also

implies the CIC. These two conjectures were obtained independently. We discuss

the similarities and differences between them in §6.

The organization of the paper is as follows. In the next section, we recall some

definitions, notation, and results that are used in the sequel. In §3, we introduce

the main new combinatorial concept of this work, namely that of the shortcuts of

a Bruhat interval with respect to an element in the interval. We then show how

these can be used to compute in a new way the R-polynomial of a Bruhat interval

in Coxeter groups of type A (Corollary 3.10). In §4, we characterize the shortcuts of
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a Bruhat interval in the symmetric group with respect to the canonical hypercube

decompositions. More precisely, we give an algebraic characterization (Corollary

4.3), and two combinatorial ones (Theorem 4.5). In particular, we show that they

can be characterized in a simple way in terms of the maps that arise in the definition

of hypercube decompositions. In §5 we introduce the concept of a join hypercube

decomposition and show that this class of elements is strictly smaller than that of

the hypercube decompositions while still containing the canonical ones, and study

shortcuts, and (join) hypercube decompositions of Bruhat intervals which are the

direct product (as posets) of two smaller Bruhat intervals. In §6, we present our main

conjecture (Conjecture 6.1) namely that the formula obtained for the R-polynomial

of a Bruhat interval in the symmetric group in terms of shortcuts of the canonical

decompositions (Corollary 3.10) holds for any join hypercube decomposition, and

the evidence that we have in its favor. We also discuss the relationship of this

conjecture with [1, Conj. 1.2] and with [7, Conj. 3.8] as well as some other open

problems arising from this work.

2 Preliminaries

This section reviews the background material that is needed in the rest of this

work. We follow [28, Chapter 3], [4] and [20] for undefined notation and terminology

concerning partially ordered sets and Coxeter groups.

Given a Coxeter system (W,S), we denote by e the identity of W , by ℓ the

length function of W with respect to S, and by T the set {wsw−1 : w ∈ W, s ∈ S}
of reflections of W . Given u, v ∈ W , we let ℓ(u, v) := ℓ(v) − ℓ(u) for short. The

Bruhat graph of W is the directed graph B(W ) on vertex set W where u → v if

and only if vu−1 ∈ T and ℓ(u) < ℓ(v). For short, we also write u
t→ v, if t = vu−1.

The Bruhat order on W , denoted ≤, is the partial order where u ≤ v provided that

there is a directed path from u to v in B(W ). We denote by B(u, v) the directed

graph induced by B(W ) on the interval [u, v] := {z ∈ W : u ≤ z ≤ v}.
Recall (see [18, §2]) that a reflection ordering on (W,S) is a total order ⪯ on T

such that if (W ′, S ′) is a dihedral reflection subgroup of W (so W ′ =< J > for some

J ⊆ T and S ′ = {t ∈ T : {r ∈ T ∩W ′ : ℓ(rt) < ℓ(t)} = {t}} has cardinality 2) then

either

a ⪯ aba ⪯ ababa ⪯ · · · ⪯ babab ⪯ bab ⪯ b
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or

a ⪰ aba ⪰ ababa ⪰ · · · ⪰ babab ⪰ bab ⪰ b

where {a, b} = S ′. Reflection orderings always exist, and in fact there are many (we

refer the reader to [4, §5.2] for further information about reflection orderings).

Let x, y ∈ W , x ≤ y, and Γ = (x = x0 → x1 → · · · → xr = y) be a (directed)

path from x to y in B(W ). We define r to be the length of Γ, denoted ℓ(Γ), and

{xi : i ∈ [0, r]} to be the support of Γ, denoted supp(Γ). Furthermore, we define

the distance from x to y, denoted d(x, y), as the distance from x to y in B(W ),

i.e. min{ℓ(Γ) : Γ is a path from x to y}. Note that d(x, y) ≤ ℓ(x, y) and d(x, y) ≡
ℓ(x, y) (mod 2). Given a reflection ordering ⪯, we say that a path Γ =

(
x0

t1−→
x1

t2−→ · · · tr−1−→ xr−1
tr−→ xr

)
is increasing (with respect to ⪯) if t1 ⪯ t2 ⪯ · · · ⪯ tr.

With any Coxeter system (W,S), Kazhdan and Lusztig in [23] associated two

families of polynomials {Pu,v}u,v∈W ⊆ Z[q] and {Ru,v}u,v∈W ⊆ Z[q] which are now

known as the Kazhdan–Lusztig and R-polynomials, respectively, of W . We do not

define them here and instead refer the reader to [4, §5]. The R̃-polynomials are

a rescaling of the R-polynomials. More precisely (see, e.g., [4, Prop. 5.3.1]), the

polynomial R̃u,v(q) is the unique polynomial with natural coefficients satisfying

Ru,v(q) = q
ℓ(u,v)

2 R̃u,v(q
1
2 − q−

1
2 ).

The following combinatorial interpretation of the R̃-polynomials is due to Dyer (see

[18] and also [4, Thm. 5.3.4]).

Theorem 2.1. Let (W,S) be a Coxeter system and ⪯ be a reflection ordering. Given

u, v ∈ W , with u ≤ v, we have

R̃u,v(q) =
∑

qℓ(Γ),

where the sum is over all increasing paths Γ from u to v.

The next result was proved by Blanco [6, Prop. 3.9], and also follows from the

previous result and [16, Prop. 7.20].

Proposition 2.2. Let (W,S) be a Coxeter system and ⪯ be a reflection ordering.

Let u, v ∈ W and k ∈ N. If there exists a path from u to v of length k, then there

exists an increasing path from u to v of length k.
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Let Sn be the symmetric group. We write the elements of Sn in one-line notation

(so u = [a1, . . . , an], or simply u = a1 · · · an, means that u(i) = ai for all i ∈ [n]) as

well as in disjoint cycle-form, omitting to write the 1-cycles. It is well known (see,

e.g., [4, Prop. 1.5.4]) that Sn, with respect to the generating set S = {s1, . . . , sn−1},
where si = (i, i + 1) for i = 1, . . . , n − 1, is a Coxeter group of type An−1. The

corresponding set of reflections is the set of transpositions T = {(i, j) : 1 ≤ i < j ≤
n}, and the corresponding length function is the number of inversions, so

ℓ(u) = |{(i, j) ∈ [n]2 : i < j and u(i) > u(j)}|

for all u ∈ Sn. This implies that, if u ∈ Sn and (i, j) ∈ T , with i < j, then

u → (i, j)u in the Bruhat graph if and only if u−1(i) < u−1(j). For u ∈ Sn and

i ∈ [n], we let

{ui,1, . . . , ui,i}< = {u(1), . . . , u(i)} . (1)

Here and below, the index < means that {ui,1, . . . , ui,i} = {u(1), . . . , u(i)} and

ui,1 < · · · < ui,i. The following result is a well known characterization of the Bruhat

order of Sn (see, e.g., [4, Thm. 2.6.3]) and is usually called the “tableau criterion”.

Theorem 2.3. Let u, v ∈ Sn. Then u ≤ v if and only if ui,j ≤ vi,j for all 1 ≤ j ≤
i ≤ n− 1.

For Sn, the reverse lexicographic order (n, n − 1) ≺ (n, n − 2) ≺ · · · ≺ (n, 1) ≺
(n− 1, n− 2) ≺ · · · ≺ (2, 1) is a reflection ordering.

For A,B ⊆ N with |A| = |B| = r, we find it convenient to write A ≤ B if ai ≤ bi

for i = 1, . . . , r, where {a1, . . . , ar}< = A and {b1, . . . , br}< = B. The following

property, whose simple verification is omitted, is useful in what follows.

Lemma 2.4. If A,B ⊆ N, a ∈ N\A, and b ∈ N\B are such that |A| = |B|, A ≤ B

and a ≤ b, then A ∪ {a} ≤ B ∪ {b}.

Given a set E, let P(E) denote the directed Boolean algebra on E, i.e. the

directed graph having the power set of E as vertex set and where I → J if I is

obtained from J by removing one element.

Let p be an element in a Coxeter group W . Let E be a set of edges of B(W )

having this same target p. Following [7], we say that E spans a hypercube if there

exists a unique embedding of directed graphs θE : P(E) → W sending the directed
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edge E \ {α} → E to α, for all α ∈ E. Furthermore, E spans a hypercube cluster if

every subset E ′ of E consisting of edges with pairwise incomparable sources (with

respect to Bruhat order) spans a hypercube. Note that, if E as above spans a

hypercube, and α ∈ E, then θE(∅) → θE\{α}(∅). In the rest of this work, if there is

no danger of confusion, we will simply write θ instead of θE.

Let u, v ∈ W and z ∈ [u, v]. After [7], we say that the interval [z, v] (or just z,

for short) is an upper hypercube decomposition of [u, v] provided that:

1. [z, v] is diamond complete (with respect to [u, v]), meaning that, if there exist

x ∈ [u, v] and a1, a2, y ∈ [z, v], a1 ̸= a2, such that x → a1 → y, x → a2 → y,

then x ∈ [z, v];

2. for all p ∈ [z, v], the set Ep = {x → p : x /∈ [z, v]} spans a hypercube cluster.

For example, if W = S5, u = 21354, and v = 52341, then one can check (preferably

with the aid of a computer) that the upper hypercube decompositions of [u, v] are

23451, 23514, 24153, 25134, 31452, 31524, 41253, and 51234.

Similarly, taking the dual versions of the above definitions, we obtain the concept

of a lower hypercube decomposition. Note that, if z is an upper hypercube decom-

position of [u, v], then z−1 is an upper hypercube decomposition of [u−1, v−1] and,

if W is finite, z w0 and w0 z are lower hypercube decompositions of [vw0, uw0] and

[w0v, w0u], respectively, where w0 is the longest element of W .

Note that a lower hypercube decomposition is called simply a hypercube decom-

position in [7]. Note also that we adopt the convention that arrows in the Bruhat

graph go from the shorter element to the longer one, which is opposite to the con-

vention in [7].

3 Shortcuts and R̃-polynomials

In this section, we introduce the main new combinatorial concept of this work,

namely that of the shortcuts of a Bruhat interval in a Coxeter group with respect

to an element of the interval. We then show how the shortcuts with respect to some

specific elements, that always exist in a Bruhat interval [u, v] in a symmetric group,

can be used to compute, in a new and entirely combinatorial (i.e., poset-theoretic)

way, the R̃-polynomial of u, v. This is achieved through the related concepts of an
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algebraically calculating element and an R-element of a Bruhat interval. In this

section, we define the “upper” versions of these concepts and obtain the “upper”

versions of the results. The lower ones are entirely analogous.

Definition 3.1. Let W be a Coxeter group, and u, v ∈ W . Given an element

z ∈ [u, v], we let

W z
[u,v] := {p ∈ [z, v] : supp(Γ)∩[z, v] = {p} for all paths Γ from u to p of length d(u, p)},

and

R̃z
u,v(q) :=

∑
p∈W z

[u,v]

qd(u,p)R̃p,v(q).

We call the elements in W z
[u,v] the (upper) shortcuts of [u, v] with respect to z. Fur-

thermore, we say that an element z in [u, v] is an (upper) R-element for [u, v] (or

just an R-element when the interval [u, v] is clear from the context) if R̃z
u,v = R̃u,v.

In particular, W u
[u,v] = {u} and u is an R-element of [u, v]. Note that, if z is an

R-element for [u, v], then, by well known properties of the R-polynomials (see, e.g.,

[4, Chap. 5, Ex. 10]), z−1 is an R-element for [u−1, v−1] and, if W is finite, w0z and

z w0 are R-elements for [w0v, w0u] and [vw0, uw0], respectively.

Remark 3.2. Note that the subset W z
[u,v] can be defined equivalently in the following

recursive way:

i) z ∈ W z
[u,v];

ii) if x ∈ [z, v] \ {z}, then x ∈ W z
[u,v] if and only if

d(u, x) < min{d(u, y) + d(y, x)},

where the minimum is taken over the set {y ∈ W z
[u,v] : y < x}.

For example, if W = S5, u = 21354, v = 52341, and z = 25134, then W z
[u,v] =

{25134, 25314} (see also Fig. 1).

Remark 3.3. By definition, the polynomial R̃z
u,v depends only on the poset structure

of the interval [u, v], on z, and on the R̃-polynomials of intervals that are strictly

contained in [u, v]. If one had a combinatorial recipe (i.e. a recipe depending only

on the poset structure of the interval [u, v]) to detect an R-element z ̸= u, the CIC

would follow.
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Figure 1: The directed graph B(21354, 52341).

The next results shows, in particular, that every element in a lattice is an R-

element.

Proposition 3.4. Let W be a Coxeter group, and u, v ∈ W . If there are no x, y ∈
[u, v] such that x → y and ℓ(x, y) > 1 (for example, if [u, v] is a lattice), then every

element in [u, v] is an R-element.

Proof. It is well known (see [8, Theorem 6.3]) that the R̃-polynomials satisfy

R̃a,b = qℓ(a,b) (2)

whenever there are no c, d ∈ [a, b] such that c → d and ℓ(c, d) > 1. Let z ∈ [u, v].

By (2), we have to show R̃z
u,v = qℓ(u,v). In our hypotheses, every path from x

to y has length d(x, y) = ℓ(x, y), for all x, y ∈ [u, v]. Hence W z
[u,v] = {z} and

R̃z
u,v = qℓ(u,z)R̃z,v. Again by (2), R̃z,v = qℓ(z,v) and the proof is completed.

In order to find R-elements, we introduce the following property.
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Definition 3.5. Let W be a Coxeter group, and u, v ∈ W . An element z ∈ [u, v] is

algebraically calculating for [u, v] (or just algebraically calculating for short) provided

that there exists a reflection ordering of W satisfying the following two properties:

1. every reflection that labels an edge a → b, with a /∈ [z, v] and b ∈ [z, v], is

smaller than each reflection that labels an edge c → d with both c and d in

[z, v];

2. given an increasing path Γ from u to an element p ∈ [z, v] such that supp(Γ)∩
[z, v] = {p}, we have:

(a) ℓ(Γ) = d(u, p);

(b) Γ is the only increasing path from u to p that satisfies supp(Γ) ∩ [z, v] =

{p};

(c) p ∈ W z
[u,v].

The next result shows that being algebraically calculating is a stronger property

than being an R-element.

Proposition 3.6. Let W be a Coxeter group, and u, v ∈ W . Every algebraically

calculating element z is an R-element, i.e.

R̃u,v(q) =
∑

p∈W z
[u,v]

qd(u,p)R̃p,v(q).

Proof. Let z be an algebraically calculating element for [u, v] and fix a reflection

ordering satisfying the properties in Definition 3.5. We use Theorem 2.1 with this

reflection ordering, so we want to show that∑
Γ

qℓ(Γ) =
∑

p∈W z
[u,v]

qd(u,p)R̃p,v,

where the first sum is over all increasing paths Γ from u to v.

Let Γ be an increasing path from u to v. Denote by p the smallest element in

supp(Γ) ∩ [z, v], and by Γp the path from u to p given by the truncation of Γ at p.

By properties (2a) and (2c) of Definition 3.5, we have ℓ(Γp) = d(u, p) and p ∈ W z
[u,v].

By property (2b) of Definition 3.5, the truncation at p of every increasing path ∆

from u to v such that the smallest element of supp(∆) ∩ [z, v] is p coincides with

Γp. Furthermore, by property (1) of Definition 3.5, the concatenation of Γp with
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every increasing path from p to v gives an increasing path from u to v. Hence∑
qℓ(∆) = qd(u,p)R̃p,v where the sum is over all increasing paths ∆ from u to v such

that p is the smallest element in supp(∆) ∩ [z, v].

It remains to show that, for every p ∈ W z
[u,v], there exists an increasing path Γ

from u to v such that p is the smallest element in supp(Γ)∩[z, v]. By Proposition 2.2,

there exists an increasing path Γ′ from u to p of length d(u, p). By the definition of

W z
[u,v], we have supp(Γ

′)∩[z, v] = {p}. Furthermore, by property (1) of Definition 3.5,

the path Γ′ can be completed to an increasing path from u to v by concatenating

it with any increasing path from p to v (there exists at least one such path since

R̃p,v ̸= 0).

Algebraically calculating elements and R-elements may or may not exist. For

example, in a dihedral interval of rank 3 both coatoms are algebraically calculating

elements, dihedral intervals of rank 4 or 5 have no algebraically calculating elements,

but both elements of rank 2 are R-elements, dihedral intervals of rank ≥ 6 have no

R-elements.

The following result estabishes the existence of algebraically calculating elements

for any interval [u, v] in the symmetric group. An algebraically calculating element

is the minimum of the intersection of [u, v] with the coset of v of a certain standard

parabolic subgroup. Note that, in an arbitrary Coxeter group, the intersection of

any interval with any coset of a standard parabolic subgroup is itself an interval (see

[27]).

Theorem 3.7. Let W be a Coxeter group of type An−1, and u, v ∈ W . Let z =

min([u, v] ∩WS\{sn−1}v), i.e. z is the smallest element in [u, v] such that z−1(n) =

v−1(n). Then z is algebraically calculating.

Proof. Consider the reflection ordering defined after Theorem 2.3. Let Rn :=

{(n, k) : k ∈ [n − 1]}. Note that every transposition in Rn is smaller than each

transposition in T \ Rn. Hence property (1) of Definition 3.5 holds since every

transposition that labels an edge a → b with a /∈ [z, v] and b ∈ [z, v] belongs to

Rn and every transposition that labels an edge c → d with c, d ∈ [z, v] belongs to

T \Rn.

Let Γ be an increasing path from u to an element p in [z, v] such that supp(Γ)∩
[z, v] = {p}. Since the last label belongs to Rn and Γ is increasing, all labels of Γ
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belong to Rn: more precisely, there exist i1, i2, . . . , ik ∈ [n− 1], with i1 < i2 < · · · <
ik, such that

Γ =
(
u = x0

(n,ik)−→ x1
(n,ik−1)−→ · · · (n,i2)−→ xk−1

(n,i1)−→ xk = p
)
. (3)

Since (n, i1)(n, i2) · · · (n, ik) = (ik, ik−1, . . . , i1, n), we have p = (ik, ik−1, . . . , i1, n)u

and hence d(u, p) = k since a (k + 1)-cycle cannot be obtained as a product of less

than k transpositions. So ℓ(Γ) = d(u, p), i.e. property (2a) of Definition 3.5 holds.

Similarly, if

Γ′ =
(
u = y0

(n,jk)−→ y1
(n,jk−1)−→ · · · (n,j2)−→ yk−1

(n,j1)−→ yk = p
)

is an increasing path from u to p such that supp(Γ) ∩ [z, v] = {p}, then p =

(jk, jk−1, . . . , j1, n)u and then Γ′ = Γ, i.e. property (2b) of Definition 3.5 holds.

We now prove property (2c) of Definition 3.5. We know that (3) holds and that

i1 < i2 < · · · < ik. Since x0 < x1 < · · · < xk, we have u−1(i1) < u−1(i2) < · · · <
u−1(ik), i.e. the one line notation of u is of the form:

u = [· · · i1 · · · i2 · · · · · · ik−1 · · · ik · · ·n · · · ],

and hence

p = [· · ·n · · · i1 · · · · · · ik−2 · · · ik−1 · · · ik · · · ].

Let ∆ =
(
u = u0

(a1,b1)−→ u1
(a2,b2)−→ · · · (ak,bk)−→ uk = p

)
be a path from u to p of length

d(u, p) = k. We claim that aj, bj ∈ {i1, . . . , ik, n} for all j = 1, . . . , k. Indeed, in

order to get to p, each element ij with j ∈ [k] has to move to the right. Since every

transposition only moves one element to the right, and the path ∆ is of minimal

length, namely k, every transposition in the path ∆ has to move one element ij to

the right, for some j ∈ [k]. If there is at least one transposition in Γ of the form

(a, ij) for some a /∈ {i1, . . . , ik, n} then a is moved to the left and therefore we have

one more element to move to the right in order to get to p, which is impossible in

a path of minimal length. In particular, ak, bk ∈ {i1, . . . , ik, n}. Since uk−1 < p, we

conclude that (uk−1)
−1(n) ̸= p−1(n), so uk−1 /∈ [z, v]. Hence p ∈ W z

[u,v].

Remark 3.8. If min([u, v]∩WS\{sn−1}v) = u, i.e. u−1(n) = v−1(n), then Theorem 3.7

holds also for z = min([u, v] ∩ WS\{sn−1,sn−2,...,sd−1}v), where d = max{i ∈ [n] :

u−1(i) ̸= v−1(i)}. The proof and statement are, mutatis mutandis, the same as

above.
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Remark 3.9. It is easy to check that Theorem 3.7 holds also for z = min([u, v] ∩
WS\{s1}v), i.e. for the smallest element in [u, v] such that z−1(1) = v−1(1) , as well

as for z = min([u, v] ∩ vWS\{sn−1}), i.e. for the smallest element in [u, v] such that

z(n) = v(n), and for z = min([u, v]∩vWS\{s1}), i.e. for the smallest element in [u, v]

such that z(1) = v(1).

The existence of lower versions of the results in this section reflects the fact that

the R̃-polynomials are invariant under the antiautomorpism of the Bruhat graph

given by multiplication by w0 (while the Kazhdan–Lusztig polynomials are not).

The next result collects the formulas for the R̃-polynomial of a Bruhat interval

[u, v] in the symmetric group obtained from Proposition 3.6, Theorem 3.7, and the

preceding considerations. By Corollary 4.3 below, the first one of these can be seen

as a poset-theoretical formulation of Corollary 3.9 of [9].

Corollary 3.10. Let W be a Coxeter group of type An−1, and u, v ∈ W .

� Let z ∈ {min([u, v]∩WS\{sn−1}v),min([u, v]∩WS\{s1}v),min([u, v]∩vWS\{sn−1}),

min([u, v] ∩ vWS\{s1})}. Then

R̃u,v =
∑

p∈W z
[u,v]

qd(u,p)R̃p,v.

� Let z ∈ {max([u, v]∩WS\{sn−1}u),max([u, v]∩WS\{s1}u),max([u, v]∩uWS\{sn−1}),

max([u, v] ∩ uWS\{s1})}. Then

R̃u,v =
∑

p∈W
[u,v]
z

qd(p,v)R̃u,p,

where

W [u,v]
z = {p ∈ [u, z] : supp(Γ)∩[u, z] = {p} for all paths Γ from p to v of length d(p, v)}.

4 Shortcuts and canonical hypercube decomposi-

tions

In this section we give algebraic and combinatorial characterizations of the shortcuts

of the canonical hypercube decompositions of Bruhat intervals in the symmetric
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groups. In particular, we show that they can be characterized in a simple way also

using the maps that are used to define hypercube decompositions.

Let W be a Coxeter group of type An−1, and u, v ∈ W . Let z = min([u, v] ∩
WS\{sn−1}v), and suppose z ̸= u. Let p ∈ [z, v], E ′ be a subset of Ep = {x → p : x /∈
[z, v]} consisting of edges with incomparable sources, and t1, . . . , tr ∈ T be the labels

of the edges in E ′. Since p ∈ [z, v], tk p /∈ [z, v], and tk p < p, there is ak ∈ [n − 1]

such that tk = (n, ak) and p−1(n) < p−1(ak) for k = 1, . . . , r. We may assume that

p−1(a1) < · · · < p−1(ar). Since {t1p, . . . , trp} is an antichain, we have a1 < · · · < ar

(for if ak > ak+1 for some k ∈ [r − 1] then tk+1p < tkp). Let θ : P([r]) → B(u, v) be

the map sending a subset A of [r] to

θ(A) = (ai1 , . . . , ais , n) p, (4)

where {i1, . . . , is}< = [r] \ A (so θ([r]) = p). Recall that we write {i1, . . . , is}< for

the set {i1, . . . , is} with i1 < i2 < · · · < is. The next result is (the dual version of)

Theorem 5.1 of [7].

Theorem 4.1. Let W be a Coxeter group of type An−1, and u, v ∈ W with u ≤ v.

Let z = min([u, v] ∩WS\{sn−1}v). Then z is an upper hypercube decomposition and

the maps θ are its embeddings.

Remark 4.2. Theorem 4.1 holds not only for min([u, v] ∩ WS\{sn−1}v), but also for

min([u, v] ∩ WS\{s1}v), min([u, v] ∩ vWS\{sn−1}), and min([u, v] ∩ vWS\{s1}v). We

find it convenient to call these four (possibly not mutually distinct) elements the

canonical upper hypercube decompositions for the interval [u, v] in the symmetric

group.

The next result answers a natural question, namely, it determines the shortcuts

of the canonical hypercube decomposition.

Corollary 4.3. Let W be a Coxeter group of type An−1, u, v ∈ W , and z =

min([u, v] ∩WS\{sn−1}v). Then the following are equivalent:

i) p ∈ W z
[u,v];

ii) p = (ik, ik−1, . . . , i1, n)u for some 0 < i1 < i2 < · · · < ik < n such that

v−1(n) = u−1(i1) < u−1(i2) < · · · < u−1(ik) < u−1(n).
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Proof. Assume first that p ∈ W z
[u,v]. Then, by definition, all Bruhat paths Γ from

u to p of length d(u, p) are such that supp(Γ) ∩ [z, v] = {p}. In particular, by

Proposition 2.2, there is at least one such path Γ that is increasing with respect to

the reflection ordering defined after Theorem 2.3. Then, reasoning exactly as in the

proof of Theorem 3.7 we conclude that ii) holds.

Conversely, if ii) holds then the path Γ defined as in (3) is such that supp(Γ) ∩
[z, v] = {p}, and Γ is increasing with respect to the reflection ordering just con-

sidered. But, by Theorem 3.7, z is algebraically calculating with respect to that

reflection ordering, so p ∈ W z
[u,v].

Remark 4.4. Similarly, there are analogous versions of Corollary 4.3 for the other

canonical hypercube decompositions. More precisely, the corresponding shortcuts

are all the elements of the form (1, i1, . . . , ik)u for some 1 < i1 < · · · < ik ≤ n

such that u−1(1) < u−1(i1) < · · · < u−1(ik) = v−1(1) if z = min([u, v] ∩WS\{s1}v),

all the elements of the form (i1, . . . , ik, a)u for some a < i1 < · · · < ik ≤ n such

that u−1(a) < u−1(i1) < · · · < u−1(ik) = n, where a := v(n), if z = min([u, v] ∩
vWS\{sn−1}), and all the elements of the form (ik, . . . , i1, a)u for some 1 ≤ i1 <

· · · < ik < a such that 1 = u−1(i1) < · · · < u−1(ik) < u−1(a), where a := v(1), if

z = min([u, v] ∩ vWS\{s1}).

Suppose that an element z in [u, v] is an upper hypercube decomposition of [u, v].

Given p ∈ [z, v], let Ep = {x → p : x /∈ [z, v]} and denote by (Ep)min the subset of

Ep consisting of the arrows with minimal sources. We let θp : P((Ep)min) → W be

the only embedding of directed graphs sending the directed edge (Ep)min \ {α} →
(Ep)min to α, for all α ∈ (Ep)min. While the characterization in Corollary 4.3 is

algebraic, the following characterizations of the shortcuts of the canonical hypercube

decomposition(s) are entirely combinatorial.

Theorem 4.5. Let W be a Coxeter group of type An−1, u, v ∈ W , u ≤ v, z =

min([u, v] ∩WS\{sn−1}v), and p ∈ [z, v]. Then the following are equivalent:

i) p ∈ W z
u,v;

ii) θp(∅) = u;

iii) p ∈ W z
u,v and there are d(u, p)! paths from u to p of length d(u, p).
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Proof. We first assume that ii) holds and show that i) holds. Let t1, . . . , tr ∈ T

be the labels of the edges in (Ep)min. Since p ∈ [z, v], tk p /∈ [z, v], and tk p < p,

there is ak ∈ [n − 1] such that tk = (n, ak) and p−1(n) < p−1(ak), for k = 1, . . . , r.

We may assume p−1(a1) < · · · < p−1(ar). Since {t1p, . . . , trp} is an antichain, we

have a1 < · · · < ar (for if ak > ak+1 for some k ∈ [r − 1] then tk+1p < tkp). By

Theorem 4.1,

θp(A) = (ai1 , . . . , ais , n) p (5)

for all A ⊆ [r], where {i1, . . . , is}< = [r] \A. Therefore, u = θp(∅) = (a1, . . . , ar, n)p

so, by Corollary 4.3, we have p ∈ W z
u,v.

We now assume that i) holds and show that ii) holds. By Corollary 4.3, there

are a1, . . . , ar ∈ [n − 1] (r ∈ [n − 1]) such that a1 < · · · < ar, u
−1(a1) < · · · <

u−1(ar) < u−1(n), and p = (n, ar, . . . , a1)u. We claim that the labels of the edges

in (Ep)min are (n, a1), . . . , (n, ar). Let k ∈ [r]. It is clear that (n, ak) p < p and that

(n, ak) p /∈ [z, v]. Let j ∈ [n] and i ∈ [r] be such that u−1(ai) ≤ j < u−1(ai+1) (where

ar+1 = n). Then

{((n, ak)p)(1), . . . , ((n, ak)p)(j)} =

{
({u(1), . . . , u(j)} \ {ai}) ∪ {ak}, if 1 ≤ i ≤ k,

({u(1), . . . , u(j)} \ {ai}) ∪ {n}, if k < i ≤ r,

so {u(1), . . . , u(j)}< ≤ {((n, ak)p)(1), . . . , ((n, ak)p)(j)}<, and hence u ≤ (n, ak) p.

Now let t ∈ Ep\{(n, a1), . . . , (n, ar)}. There is a ∈ [n−1]\{a1, . . . , ar} such that t =

(n, a) and p−1(n) < p−1(a). Let i ∈ [r] be such that u−1(ai) < p−1(a) < u−1(ai+1)

(where ar+1 = n). Then a > ai (for if a < ai then

{((n, a)p)(1), . . . , ((n, a)p)(u−1(ai))}< < {u(1), . . . , u(u−1(ai))}<

so u ̸≤ (n, a) p) and hence tp = (n, a)p ≥ (n, ai)p. Finally, let 1 ≤ i < j ≤ r. By

Lemma 2.4

{((n, ai)p)(1), . . . , ((n, ai)p)(u−1(a1))}< < {((n, aj)p)(1), . . . , ((n, aj)p)(u−1(a1))}<

while

{((n, aj)p)(1), . . . , ((n, aj)p)(u−1(ai+1))}< < {((n, ai)p)(1), . . . , ((n, ai)p)(u−1(ai+1))}<

so (n, ai)p and (n, aj)p are incomparable in Bruhat order. This proves our claim,

which implies θp(∅) = u.

16



Finally, if i) holds, then by Corollary 4.3 there are a1, . . . , ar ∈ [n − 1] (r ∈
[n − 1]) such that a1 < · · · < ar, u

−1(a1) < · · · < u−1(ar) < u−1(n), and p =

(n, ar, . . . , a1)u. But then, reasoning exactly as in the proof of property (2c) in the

proof of Theorem 3.7, we conclude that there are d(u, p)! paths from u to p of length

d(u, p), so iii) holds.

It is natural to wonder if Theorem 4.5 holds for any hypercube decomposition (see

also Problem 6.4).

5 Direct Products

In this section we define the second new combinatorial concept of this work, namely

join (and meet) hypercube decompositions, and study (join) hypercube decompo-

sitions, shortcuts, and R-elements, of Bruhat intervals which are direct product

(as posets) of two smaller Bruhat intervals. Our results show that these concepts

are very well behaved under this operation, and have implications for some of the

conjectures in the next section.

We begin with the following simple (and probably well known) result about the

Bruhat graph of an interval which is the direct product of two other ones.

Lemma 5.1. Let (W,S), (W1, S1), and (W2, S2) be three Coxeter systems and u, v ∈
W , ui, vi ∈ Wi for i = 1, 2 be such that [u, v] ≃ [u1, v1] × [u2, v2] (isomorphic as

posets). Let x 7→ (x1, x2) be an isomorphism and x, y ∈ [u, v]. Then the following

are equivalent:

i) x → y;

ii) either x1 = y1 and x2 → y2, or x2 = y2 and x1 → y1.

Proof. Consider the direct product W1 × W2 of the two Coxeter systems and the

interval [(u1, u2), (v1, v2)] in this direct product. The Subword property (see [4,

Theorem 2.2.2]) implies [(u1, u2), (v1, v2)] = [u1, v1] × [u2, v2] as posets. Therefore

[u, v] ≃ [(u1, u2), (v1, v2)] as posets. By [17, Proposition 3.3], this implies that the

directed graphs induced on these intervals by the Bruhat graphs of (W,S) and

(W1 ×W2, S1 ∪ S2) are also equal. Therefore, x → y in the Bruhat graph of (W,S)

if and only if (x1, x2) → (y1, y2) in the Bruhat graph of W1 × W2. But, from the

definition of the direct product of two Coxeter systems, we have (x1, x2) → (y1, y2)
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in the Bruhat graph of W1×W2 if and only if either x1 = y1 and x2 → y2, or x2 = y2

and x1 → y1, as claimed.

The next result shows that hypercube decompositions behave very well under

direct products.

Theorem 5.2. Let (W,S), (W1, S1), and (W2, S2) be three Coxeter systems and

u, v ∈ W , ui, vi ∈ Wi for i = 1, 2 be such that [u, v] ≃ [u1, v1]× [u2, v2] (isomorphic

as posets). Let x 7→ (x1, x2) be an isomorphism and z ∈ [u, v]. Then the following

are equivalent:

i) z is an upper hypercube decomposition of [u, v];

ii) zi is an upper hypercube decomposition of [ui, vi], for i = 1, 2.

Proof. Since the concept of a hypercube decomposition of an interval depends only

on the structure of the interval as a poset (which determines its structure as a

directed graph by [17, Proposition 3.3]), we may suppose that W = W1 ×W2 and

[u, v] = [(u1, u2), (v1, v2)].

Suppose first that z1 and z2 are upper hypercube decompositions of [u1, v1] and

[u2, v2], respectively.

We begin by showing that [(z1, z2), (v1, v2)] is diamond complete. Let (x1, x2), (a1, a2),

(b1, b2), (y1, y2) ∈ [u, v] be such that (x1, x2) → (a1, a2) → (y1, y2), (x1, x2) →
(b1, b2) → (y1, y2), and (a1, a2), (b1, b2), (y1, y2) ∈ [(z1, z2), (v1, v2)] with (a1, a2) ̸=
(b1, b2). By Lemma 5.1, one of these cases must hold:

� x1 → a1 → y1, x1 → b1 → y1, and x2 = a2 = b2 = y2,

� x2 → a2 → y2, x2 → b2 → y2, and x1 = a1 = b1 = y1,

� x1 → a1 = y1, x1 = b1 → y1, x2 = a2 → y2, and x2 → b2 = y2,

� x1 = a1 → y1, x1 → b1 = y1, x2 → a2 = y2, and x2 = b2 → y2.

In the first two cases, (x1, x2) ∈ [(z1, z2), (v1, v2)] holds since z1 and z2 are upper

hypercube decompositions of [u1, v1] and [u2, v2]. In the second two cases, (x1, x2) ∈
[(z1, z2), (v1, v2)] trivially holds.
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Let now (p1, p2) ∈ [(z1, z2), (v1, v2)]. Let, for brevity, E(p1,p2) = {(x1, x2) ∈
[(u1, u2), (v1, v2)] : (x1, x2) ̸≥ (z1, z2) and (x1, x2) → (p1, p2)}. It is clear from Lemma 5.1

that

E(p1,p2) = Ep1 × {p2} ∪ {p1} × Ep2

where Epi = {xi ∈ [ui, vi] : xi ̸≥ zi and xi → pi}, for i = 1, 2. Let A ⊆ E(p1,p2)

be an antichain, say A = {(a1, p2), . . . , (ar, p2)} ∪ {(p1, b1), . . . , (p1, bs)}. Let A1 =

{a1, . . . , ar} and A2 = {b1, . . . , bs}. Then Ai is an antichain in [ui, vi], for i = 1, 2.

Since z1 and z2 are upper hypercube decompositions, there are unique embeddings

of directed graphs θi : P(Ai) → B(ui, vi), such that θi(Ai) = pi, for i = 1, 2,

θ1(A1 \ {aj}) = aj for all j ∈ [r], and θ2(A2 \ {bk}) = bk for all k ∈ [s]. We define a

map θ : P(A) → B((u1, u2), (v1, v2)) by letting

θ(B1 × {p2} ∪ {p1} ×B2) = (θ1(B1), θ2(B2))

for all B1 ⊆ A1 and all B2 ⊆ A2. Clearly, θ(A) = (p1, p2), θ(A\{(aj, p2)}) = (aj, p2)

for all j ∈ [r], and θ(A \ {(p1, bk)}) = (p1, bk) for all k ∈ [s], and, by Lemma 5.1, the

map θ is an embedding of directed graphs. Let θ̃ : P(A) → B((u1, u2), (v1, v2)) be an

embedding of directed graphs such that θ̃(A) = (p1, p2), θ̃(A \ {(aj, p2)}) = (aj, p2)

for all j ∈ [r], and θ̃(A \ {(p1, bk)}) = (p1, bk) for all k ∈ [s]. We need to prove that

θ̃ = θ. Given B1 ⊆ A1 and B2 ⊆ A2, we use induction on r + s − |B1 ∪ B2| to
show that θ̃(B1 × {p2} ∪ {p1} × B2) = θ(B1 × {p2} ∪ {p1} × B2). This is clear if

|B1 ∪ B2| ≥ r + s− 1, so assume |B1 ∪ B2| ≤ r + s− 2. Suppose first |B1| ≤ r − 2.

Let ai, aj ∈ A1 \B1, i ̸= j. By the induction hypothesis, we have

θ̃
(
(B1 × {p2} ∪ {p1} ×B2) ∪ {(ai, p2)}

)
= θ

(
(B1 × {p2} ∪ {p1} ×B2) ∪ {(ai, p2)}

)
=

(
θ1(B1 ∪ {ai}), θ2(B2)

)
and similarly for aj. Let (x1, x2) = θ̃(B1 × {p2} ∪ {p1} × B2). Since θ̃ is an

embedding of directed graphs, we have that (x1, x2) → (θ1(B1 ∪ {ai}), θ2(B2)) and

(x1, x2) → (θ1(B1 ∪ {aj}), θ2(B2)). If x2 → θ2(B2) then, by Lemma 5.1, θ1(B1 ∪
{ai}) = x1 = θ1(B1 ∪ {aj}), which is a contradiction since i ̸= j and θ1 is an

embedding. Hence x2 = θ2(B2), x1 → θ1(B1 ∪ {ai}) and x1 → θ1(B1 ∪ {aj}). This

shows that x1 → θ1(B1 ∪ {ak}) holds for any ak ∈ A1 \B1. Since p ∈ [z, v] and z is

an upper hypercube decomposition of [u, v], we conclude that x1 = θ1(B1). Hence

θ̃(B1×{p2} ∪ {p1}×B2) = (x1, x2) = (θ1(B1), θ2(B2)) = θ(B1×{p2} ∪ {p1}×B2).
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Similarly if |B2| ≤ s − 2. Finally, suppose that |B1| = r − 1 and |B2| = s − 1,

say B1 = A1 \ {aj} and B2 = A2 \ {bk}, for some j ∈ [r] and k ∈ [s]. Then

θ(B1 × {p2} ∪ {p1} × B2) = (aj, bk). Let (x1, x2) = θ̃(B1 × {p2} ∪ {p1} × B2).

Hence (x1, x2) → (aj, p2) and (x1, x2) → (p1, bk), which, by Lemma 5.1, implies that

x1 = aj and x2 = bk, so θ̃(B1 × {p2} ∪ {p1} × B2) = (x1, x2) = (aj, bk) = θ(B1 ×
{p2} ∪ {p1}×B2). Hence θ̃ = θ, so (z1, z2) is an upper hypercube decomposition of

[(u1, u2), (v1, v2)].

Conversely, suppose that (z1, z2) is an upper hypercube decomposition of [(u1, u2),

(v1, v2)]. We will show that z1 is an upper hypercube decomposition of [u1, v2]. (A

similar argument shows that z2 is an upper hypercube decomposition of [u2, v2].)

Let x1, a1, b1, y1 ∈ [u1, v1] be such that x1 → a1 → y1, x1 → b1 → y1, and

a1, b1, y1 ∈ [z1, v1] with a1 ̸= b1. Then we have that (x1, z2) → (a1, z2) → (y1, z2),

(x1, z2) → (b1, z2) → (y1, z2), and (a1, z2), (b1, z2), (y1, z2) ∈ [(z1, z2), (v1, v2)], with

(a1, z2) ̸= (b1, z2). Hence, since [(z1, z2), (v1, v2)] is diamond complete, we have that

(x1, z2) ∈ [(z1, z2), (v1, v2)], so x1 ∈ [z1, v1]. Therefore [z1, v1] is diamond complete.

Let p1 ∈ [z1, v1] and A1 be an antichain in Ep1 , where Ep1 has the same meaning

as in the first part of the proof. Then (p1, z2) ∈ [(z1, z2), (v1, v2)] and A1 × {z2}
is an antichain in E(p1,z2) (where E(p1,z2) has the same meaning as in the first

part of the proof, namely E(p1,z2) = {(x1, x2) ∈ [(u1, u2), (v1, v2)] : (x1, x2) ̸≥
(z1, z2) and (x1, x2) → (p1, z2)}). Since (z1, z2) is an upper hypercube decompo-

sition, there is a unique embedding θ : P(A1 × {z2}) → B((u1, u2), (v1, v2)) of

directed graphs such that θ(A1 × {z2}) = (p1, z2) and θ((A1 \ {a})× {z2}) = (a, z2)

for all a ∈ A1. We claim that θ(B × {z2}) ⊆ [u1, v1] × {z2}, for all B ⊆ A1. We

prove this by induction on |A1 \ B|. Suppose |B| ≤ |A1| − 2. Let b1, b2 ∈ A1 \ B,

b1 ̸= b2. By the induction hypothesis, there are a1, a2 ∈ [u1, v1], a1 ̸= a2, such that

θ((B∪{b1})×{z2}) = (a1, z2) and θ((B∪{b2})×{z2}) = (a2, z2). Let (x1, x2) = θ(B).

Since θ is an embedding of directed graphs, we have that (x1, x2) → (a1, z2) and

(x1, x2) → (a2, z2). By Lemma 5.1, this implies that x2 = z2, which proves our

claim. Therefore, for all C ⊆ A1, there is θ1(C) ∈ [u1, v1] such that θ(C × {z2}) =
(θ1(C), z2). Since θ is an embedding of directed graphs, the map θ1 : P(A1) →
B(u1, v1) is also an embedding of directed graphs, and it satisfies θ1(A1) = p1 and

θ1(A1 \ {a}) = a for all a ∈ A1. Let θ̃1 : P(A1) → B(u1, v1) be an embedding of

directed graphs such that θ̃1(A1) = p1 and θ̃1(A1 \ {a}) = a for all a ∈ A1. Then
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θ̃ : P(A1 × {z2}) → B((u1, u2), (v1, v2)) defined by θ̃(C × {z2}) = (θ̃1(C), z2) for

all C ⊆ A1 is also an embedding of directed graphs, θ̃(A1 × {z2}) = (p1, z2), and

θ̃((A1 \ {a}) × {z2}) = (a, z2) for all a ∈ A1. Since (z1, z2) is an upper hypercube

decomposition, we have that θ̃ = θ, so θ̃1 = θ1. Hence, z1 is an upper hypercube

decomposition of [u1, v1].

Our next result shows that shortcuts also behave well under direct products.

Proposition 5.3. Let (W1, S1), (W2, S2), and (W,S) be three Coxeter systems and

u1, v1 ∈ W1, u2, v2 ∈ W2, and u, v ∈ W be such that [u, v] ≃ [u1, v1] × [u2, v2]

(isomorphic as posets). Let x 7→ (x1, x2) be an isomorphism, z ∈ [u, v], and p ∈
[z, v]. Then the following conditions are equivalent:

i) p ∈ W z
[u,v];

ii) pi ∈ (Wi)
zi
[ui,vi]

, for i = 1, 2.

Proof. As in the proof of Theorem 5.2, we may suppose that W = W1 × W2 and

[u, v] = [(u1, u2), (v1, v2)].

From Lemma 5.1, we have that every Bruhat path from u to p in B(u, v) is the

shuffle of a Bruhat path from u1 to p1 in B(u1, v1) and one from u2 to p2 in B(u2, v2).

In particular, d(u, p) = d(u1, p1) + d(u2, p2).

Assume first that p1 and p2 are both shortcuts. Let (u1, u2) = (a0, b0) →
(a1, b1) → · · · → (ak−1, bk−1) → (ak, bk) = (p1, p2) be a path of minimal length

in B(u, v). Then, by Lemma 5.1, either ak−1 = p1 and bk−1 → p2, or bk−1 = p2

and ak−1 → p1. In the first case, by what was just observed, bk−1 → p2 is the last

edge of a path of minimal length from u2 to p2 in B(u2, v2), so bk−1 /∈ [z2, v2] and

hence (ak−1, bk−1) /∈ [(z1, z2), (v1, v2)]. Similarly in the second case. Hence (p1, p2) is

a shortcut of [u, v] with respect to z.

Conversely, suppose that p is a shortcut. Let u1 = a0 → a1 → · · · → ak = p1

and u2 = b0 → b1 → · · · → bh = p2 be two Bruhat paths of minimal length from

u1 to p1 and from u2 to p2, respectively. Then (u1, u2) = (a0, u2) → (a1, u2) →
· · · → (ak−1, u2) → (p1, u2) → (p1, b1) → · · · → (p1, bh−1) → (p1, p2) is a Bruhat

path of minimal length from (u1, u2) to (p1, p2). Since p is a shortcut, (p1, bh−1) /∈
[(z1, z2), (v1, v2)], so bh−1 /∈ [z2, v2]. Hence p2 is a shortcut. Similarly for p1.

We now introduce the second new combinatorial concept of this work.
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Definition 5.4. Let W be a Coxeter group and u, v ∈ W . Let z be an upper

hypercube decomposition of [u, v]. We say that the interval [z, v] (or just z, for

short) is a join upper hypercube decomposition of [u, v] provided that, for all w in

[u, v], the intersection [w, v]∩ [z, v] has a unique minimal element (i.e., w and z have

a join).

Similarly, we have the concept of a meet lower hypercube decomposition.

Remark 5.5. As already noted before, the intersection of any interval with any coset

of a standard parabolic subgroup is itself an interval ([27]). Hence, the canonical

hypercube decompositions (Remark 4.2) are join (or meet) hypercube decomposi-

tions. Note that not all upper hypercube decompositions are join upper hypercube

decompositions. For example, if u = 1234, v = 3412, and z = 2143, then z is an

upper hypercube decomposition of [u, v] but not a join upper hypercube decompo-

sition. This is, so far, the only known combinatorially defined class of elements that

is strictly contained in the class of hypercube decompositions but still includes the

canonical decompositions.

The following simple result shows that elements that have a join with every other

element in a poset also behave well under direct products.

Proposition 5.6. Let P , P1 and P2 be posets such that P ≃ P1 × P2. Let x 7→
(x1, x2) be an isomorphism, and z ∈ P . Then the following are equivalent:

i) z has a join with every other element of P ;

ii) zi has a join with every other element of Pi, for i = 1, 2.

Proof. Suppose that i) holds. Then (z1, z2) has a join with every other element of

P1 × P2. Let (x1, x2) ∈ P1 × P2 and (y1, y2) := (z1, z2) ∨ (x1, x2). Then, as it is easy

to show, yi = zi ∨ xi for i = 1, 2. Similarly if ii) holds.

We can now prove the main result of this section.

Corollary 5.7. Let (W,S), (W1, S1), and (W2, S2) be three Coxeter systems and

u, v ∈ W , ui, vi ∈ Wi with ui ̸= vi, for i = 1, 2, be such that [u, v] ≃ [u1, v1]× [u2, v2]

(isomorphic as posets). If every join upper hypercube decomposition of any Bruhat

interval of rank less than ℓ(u, v) is an R-element, then every join upper hypercube

decomposition of [u, v] is an R-element.
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Proof. Let x 7→ (x1, x2) be an isomorphism from [u, v] to [u1, v1] × [u2, v2]. Let

z ∈ [u, v] be a join upper hypercube decomposition of [u, v], and p ∈ W z
[u,v]. By

Theorem 5.2 and Proposition 5.6 z1 and z2 are join upper hypercube decompositions

of [u1, v1] and [u2, v2], respectively. Further, by Proposition 5.3, p1 ∈ (W1)
z1
[u1,v1]

and

p2 ∈ (W2)
z2
[u2,v2]

.

We claim that R̃p,v = R̃p1,v1 R̃p2,v2 . Indeed, consider the direct product W1 ×W2

of the two Coxeter systems and the interval [(p1, p2), (v1, v2)] in this direct product.

The Subword property (see, e.g., [4, Theorem 2.2.2]) implies that [(p1, p2), (v1, v2)] =

[p1, v1]× [p2, v2] as posets. Therefore, [p, v] ≃ [(p1, p2), (v1, v2)] as posets. Since every

join upper hypercube decomposition of any Bruhat interval of rank < ℓ(u, v) is an

R-element the CIC holds for [p, v] ≃ [(p1, p2), (v1, v2)]. Hence R̃p,v = R̃(p1,p2),(v1,v2).

But, by [5, Proposition 1.7], R̃(p1,p2),(v1,v2) = R̃p1,v1 R̃p2,v2 , so our claim follows.

Therefore,

R̃z
u,v =

∑
p∈W z

[u,v]

qd(u, p)R̃p,v(q)

=
∑

p∈W z
[u,v]

qd(u1, p1)qd(u2, p2)R̃p1,v1(q)R̃p2,v2(q)

=
∑

p1∈W
z1
[u1,v1]

qd(u1, p1)R̃p1,v1(q)
∑

p2∈W
z2
[u2,v2]

qd(u2, p2)R̃p2,v2(q) = R̃z1
u1,v1

R̃z2
u2,v2

,

where the second equality follows from our claim, and the third one from Proposi-

tion 5.3. Since all join upper hypercube decompositions of [u1, v1] and [u2, v2] are

R-elements, we have that R̃z1
u1,v1

= R̃u1,v1 and R̃z2
u2,v2

= R̃u2,v2 . Therefore R̃z
u,v does

not depend on z and hence R̃z
u,v = R̃u,v, so z is an R-element.

6 Open problems

In this section we discuss some conjectures and open problems arising from our

work, and the evidence that we have about them.

It is natural to wonder whether all upper hypercube decompositions are R-

elements. This is not true. For example, if u = 432156, v = 645231, and z = 543216,

then z is an upper hypercube decomposition of [u, v] but not an R-element: indeed,

R̃z
u,v = t7 + 3t5 while R̃u,v = t7 + 2t5. However, we feel that the following holds.
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Conjecture 6.1. Let W be a Coxeter group of type A, and u, v ∈ W with u ≤ v.

Then every join upper hypercube decomposition z of [u, v] is an R-element, i.e.

R̃u,v(q) =
∑

p∈W z
[u,v]

qd(u,p)R̃p,v(q). (6)

Note that Conjecture 6.1 implies the Combinatorial Invariance Conjecture for the

symmetric groups. We have checked Conjecture 6.1 for all intervals in Sn, for n ≤ 6.

By Corollary 3.10, we have that Conjecture 6.1 holds for the canonical upper hy-

percube decompositions. Furthermore, Proposition 3.4 implies that Conjecture 6.1

holds for all intervals such that every edge in the Bruhat graph has length 1. Finally,

our results in Section 5 show that, if Conjecture 6.1 holds for all Bruhat intervals of

rank < d for some d ∈ N, and [u, v] is a Bruhat interval of rank d that is the direct

product of two smaller Bruhat intervals, then Conjecture 6.1 holds for [u, v].

There is in the literature one other conjecture that gives a combinatorial recipe for

computing the R̃-polynomials of the symmetric group (which also uses hypercube

decompositions), namely Conjecture 1.2 of [1]. These conjectures were obtained

independently. We here point out the similarities and differences between them. To

do so, we find it convenient to recall the conjecture in [1] (stating the upper version

of it). Let z ∈ [u, v] be an upper hypercube decomposition and keep notation as in

Section 2. Then z is called a strong hypercube decomposition ([1, Def. 3.6]) if for

each p ∈ [z, v] and all E1, E2 ⊆ Ep such that |E1| = |E2| = |E1∩E2|+1, the sources

of the edges of Ei are an antichain for i = 1, 2 (say, for short, that E1 and E2 are

edge antichains), and there is a w ∈ [u, v] such that w → θE1(∅) → θE1∩E2(∅) and
w → θE2(∅) → θE1∩E2(∅), then E1 ∪E2 is also an edge antichain and w = θE1∪E2(∅).
The following is [1, Conj. 1.2].

Conjecture 6.2. Let W be a Coxeter group of type A, u, v ∈ W , u ≤ v, and

z ∈ [u, v] be a strong upper hypercube decomposition of [u, v]. Then

R̃u,v(t) ≤
∑

p∈[z,v]

∑
E⊆Ep

t|E|R̃p,v(t) (7)

(coefficientwise) where E runs over all subsets of Ep that are edge antichains, and

θE(∅) = u.

The main difference between the two conjectures, of course, is that Conjecture 6.2

is an inequality while Conjecture 6.1 is an equality. Also, the two conjectures concern

24



different kinds of hypercube decompositions (strong and join). While, as remarked

previously, Conjecture 6.1 fails for general hypercube decompositions, Conjecture 6.2

could be true for all hypercube decompositions since it is an open question (see [1,

Rem. 3.7]) whether all hypercube decompositions are strong. It is not known if the

polynomials on the right hand sides of (6) and (7) coincide for all join hypercube

decompositions.

There is also, in the literature, a conjecture that gives a combinatorial recipe to

compute the Kazhdan–Lusztig polynomials of the symmetric group, namely Conjec-

ture 3.8 in [7]. No logical implications between Conjecture 6.2 (i.e., [1, Conj. 1.2]),

Conjecture 6.1, and [7, Conj. 3.8] are known.

In the same spirit as [1, Conj. 1.2], the following problem might be worth inves-

tigating.

Problem 6.3. Let W be a Coxeter group of type A. For which intervals [u, v] does

the inequality R̃z
u,v ≥ R̃u,v hold for every upper hypercube decomposition z?

We have checked that the inequality in Problem 6.3 holds for every upper hy-

percube decomposition in all intervals in Sn, for n ≤ 6.

Regarding general hypercube decompositions, we feel that, in view of Theorem

4.5, the following problem is natural, should shed light also on the relationships

between Conjecture 6.1 and [1, Conj. 1.2], and could therefore be worth investigating.

We keep notation as in Theorem 4.5.

Problem 6.4. Let W be a Coxeter group of type A, and u, v ∈ W , with u ≤ v.

Let z be an upper hypercube decomposition of [u, v], and p ∈ [z, v]. Is it true that

p ∈ W z
u,v if and only if θp(∅) = u?

By Theorem 4.5, the answer to the previous problem is positive for the canonical

upper hypercube decompositions.
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