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Abstract

We study the partial orders induced on Wachs and signed Wachs permutations by the

Bruhat and weak orders of the symmetric and hyperoctahedral groups. We show that these

orders are graded, determine their rank function, characterize their ordering and covering

relations, and compute their characteristic polynomials, when partially ordered by Bruhat

order, and determine their structure explicitly when partially ordered by right weak order.

1 Introduction

Wachs permutations are a class of permutations first introduced (in the even case) in [22] to study

the signed Eulerian numbers and the signed major index enumerator of the symmetric groups.

This class was extended in [4] to the odd case and to signed permutations in order to study

the enumerators of the odd and even major indices of classical Weyl groups twisted by their one-

dimensional characters. In this work we study Wachs (and signed Wachs) permutations in their own

right. More precisely, we study the partial orders induced on them by the Bruhat and weak orders

of the symmetric and hyperoctahedral groups. These orders are fundamental objects in algebraic

combinatorics and have important connections to algebra and geometry (see, e.g., [2, Chaps.2 and

3], [1, Chap.2], [16, Chap.1], [11, Chap.5], [7, Chap.10], [17, Chap.2], and the references cited

there). Many subsets of the symmetric and hyperoctahedral groups have been studied as posets

under the Bruhat order such as, for example, quotients, descent classes, and generalized quotients

[3], complements of quotients [19], involutions [9, 12, 13, 15, 18], conjugation-invariant sets of

involutions [5, 8], and twisted identities [10]. In this paper we show that Wachs permutations

possess many nice properties when partially ordered by Bruhat and weak orders. More precisely,
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we show that they form a graded poset, determine their rank function, characterize the ordering and

covering relations, and compute the characteristic polynomial, when partially ordered by Bruhat

order, and determine their structure explicitly when partially ordered by right weak order.

The organization of the paper is as follows. In the next section we collect some notation

and results that are used in the sequel. In §3 we study the poset obtained by partially ordering

Wachs permutations with respect to Bruhat order. We show that these posets are always graded

(Theorem 3.9), characterize their order and covering relations (Theorem 3.13 and Proposition 3.12),

and compute their characteristic polynomials (Corollary 3.16). In §4, using some of the results in

§3, we obtain analogous results for the poset induced on signed Wachs permutations by Bruhat

order. More precisely, we show that these posets are graded (Theorem 4.10), characterize their

order and covering relations (Theorem 4.13, Proposition 4.2, Corollary 4.12, and Corollary 4.6),

and compute the characteristic polynomials (Corollary 4.16). In §5 we study the posets obtained

by partially ordering Wachs and signed Wachs permutations under right weak order. We show

that they are always isomorphic to the direct product of a Boolean algebra with the weak order on

the whole group in rank
⌈
n
2

⌉
(Theorems 5.1 and 5.3). Finally, in §6, we discuss some conjectures

and open problems arising from the present work and the evidence that we have about them.

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the sequel. As

N we denote the set of non-negative integers and as P the set of positive integers. If n ∈ N,

[n] := {1, 2, ..., n}; in particular [0] = ∅. For n ∈ P, in the polynomial ring Z[q] the q-analogue of

n is defined by [n]q :=
n−1∑
i=0

qi and the q-factorial by [n]q! :=
n∏
i=1

[i]q. For a set A and f : A→ N we

define

A(x, f) :=
∑
w∈A

xf(w)

and f(u, v) := f(v)− f(u), for all u, v ∈ A. The cardinality of a set X will be denoted by |X| and

the power set of X by P(X). Given a cartesian product X × Y of two sets X and Y , we indicate

with π1 and π2 the projections on X and Y respectively.

Let n ∈ N, i ∈ Z, q ∈ Q and J ⊆ [n]; then we define Je := {j ∈ J : j ≡ 0 mod 2},
Jo := {j ∈ J : j ≡ 1 mod 2}, J + i := {i+ j : j ∈ J} ∩ [n], and qJ :=

⋃
j∈J
{qj} ⊆ Q.

We follow Chapter 3 of [20] for notation and terminology concerning posets. We just recall

some definitions. Given two posets P and Q, their ordinal product P ⊗ Q is defined by ordering

the set P ×Q in the following manner: (x, y) 6 (x′, y′) if and only if x = x′ and y 6 y′ or x < x′,

for all (x, y), (x′, y′) ∈ P × Q. If µ is the Möbius function of a graded poset P with minimum 0̂,

maximum 1̂ and rank function ρ, then the characteristic polynomial of P in the indeterminate x

is defined by

CP (x) :=
∑
z∈P

µ(0̂, z)xρ(z,1̂).

Next recall some basic results in the theory of Coxeter groups which will be useful in the sequel.

The reader can consult [2] or [11] for further details. Let (W,S) be a Coxeter system. The length
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of an element z ∈W with respect of the given presentation is denoted as `(z). If J ⊆ S, we let

W J := {w ∈W : `(ws) > `(w) ∀ s ∈ J},
JW := {w ∈W : `(sw) > `(w) ∀ s ∈ J},

D(w) := {s ∈ S : `(ws) < `(w)},

and, more generally, for any A ⊆ W we let AJ := A ∩W J . The subgroup WJ ⊆ W is the group

generated by J . In particular WS = W and W∅ = {e}, being e the identity of W . We consider on

W the Bruhat order 6 (see, e.g., [2, Chapter 2] or [11, Chapter 5]) and on any subset we consider

the induced order. When the group W is finite, there exists a unique maximal element w0 of

maximal length. We recall this characterizing property of the Bruhat order, known as the lifting

property (see [2, Proposition 2.2.7]):

Proposition 2.1. Let v, w ∈ W be such that v < w and s ∈ D(w) \ D(v). Then v 6 ws and

vs 6 w.

For J ⊆ S, each element w ∈ W has a unique expression w = wJw
J , where wJ ∈ W J and

wJ ∈ WJ (see [2, Proposition 2.4.4]). Often we consider the projection P J : W → W J defined

by P J(w) = wJ . This map is order preserving ([2, Proposition 2.5.1]). We let T := {wsw−1 :

w ∈ W, s ∈ S}. The following lemma will be useful in the next section; for a proof see [2, Lemma

2.2.10].

Lemma 2.2. Suppose that x < xt and y < ty, for x, y ∈W , t ∈ T . Then, xy < xty.

For w ∈ W we set TL(w) := {t ∈ T : `(tw) < `(w)}; the right weak order 6R on W is the

partial order whose cover relations are defined by letting u CR v if and only if v−1u ∈ S and

`(v) = `(u) + 1, for all u, v ∈ W (see [2, Chapter 3]). Then the following characterization holds

(see [2, Proposition 3.1.3]):

Proposition 2.3. Let (W,S) be a Coxeter system. Then u 6R v if and only if TL(u) ⊆ TL(v),

for all u, v ∈W .

Now, for any n ∈ P, let Sn be the group of all bijections of the set [n]. It is well known that it

is a Coxeter group with set of generators {s1, s2, ..., sn−1}, being si the simple inversion given, in

one line notation, by 12...(i + 1)i...n. Given a permutation σ = σ(1)σ(2)...σ(n) ∈ Sn, the action

of si on the right is given by σsi = σ(1)σ(2)...σ(i+ 1)σ(i)...σ(n), for all i ∈ [n− 1]. For i, j ∈ [n],

the action on the right of a transposition (i, j), i 6= j, then is given by σ(i, j) = σ(1)σ(2)...σ(i −
1)σ(j)...σ(j − 1)σ(i)...σ(n), for all σ ∈ Sn. As a Coxeter group, identifying {s1, s2, ..., sn−1} with

[n−1], we have that (see e.g. [2, Propositions 1.5.3 and 1.5.2]) D(σ) = {i ∈ [n−1] : σ(i) > σ(i+1)}
and `(σ) = `A(σ), where `A(σ) := inv(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|, for all σ ∈ Sn.

Then, given J ⊆ [n− 1], SJn = {σ ∈ Sn : σ(i) < σ(i+ 1) ∀ i ∈ J}.
For i ∈ [n] and A ⊆ Sn define A(i) := {σ ∈ A : pos(σ) = i}, being pos : Sn → [n] the function

defined by pos(σ) := σ−1(n), for all σ ∈ Sn. We find it convenient to define the following involution
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on [n]:

i∗ :=


i− 1, if i ≡ 0 mod 2;

i+ 1, if i ≡ 1 mod 2 and i+ 1 ∈ [n];

n, otherwise,

and the simple inversion s∗i := (i, i∗), for all i ∈ [n]. Given a permutation σ ∈ Sn, k ∈ [n] and

i ∈ [k], define σi,k as the i-th element in the increasing rearrangement of {σ(1), σ(2), ..., σ(k)}<
and σ−1

i,k as the position of σ(i) in {σ(1), σ(2), ..., σ(k)}<. So σj,k = σ(i) if j = σ−1
i,k . The following

theorem, known as the “tableau criterion”, characterizes the Bruhat order on Sn (see [2, Theorem

2.6.3]).

Theorem 2.4. Let n ∈ P and σ, τ ∈ Sn. The following are equivalent:

1. σ 6 τ ;

2. σi,k 6 τi,k for all k ∈ D(σ) and i ∈ [k];

3. σi,k 6 τi,k for all k ∈ [n− 1] \D(τ) and i ∈ [k].

We indicate by wn the maximum of the poset (Sn,6), i.e., in one line notation, wn = n...321.

The descent number and the major index are the functions des : Sn → N and maj : Sn → N
defined respectively by des(σ) := |D(σ)| and maj(σ) :=

∑
i∈D(σ) i. A famous result of McMa-

hon asserts that `A and maj are equidistribuited over Sn (see, e.g. [20, Proposition 1.4.6]), i.e.

Sn(x, `A) = Sn(x,maj), and this rank-generating function is known to be (see, e.g [20, Corollary

1.3.10])

Sn(x, `A) = [n]x!. (1)

Following [4] we define functions from Sn to N by letting

odes(σ) := |D(σ)o|, emaj(σ) :=
∑

i∈D(σ)e

i

2
,

for all σ ∈ Sn, and call these functions odd descent number and even major index respectively.

Following [4], for n ∈ P, we let

W(Sn) := {σ ∈ Sn : |σ−1(i)− σ−1(i∗)| ≤ 1 if i ∈ [n− 1]}

and call the elements of W(Sn) Wachs permutations. It is not hard to see that, if n is even,

W(Sn) = {σ ∈ Sn : |σ(i)− σ(i∗)| ≤ 1 if i ∈ [n− 1]}.
Let [±n] := {−n, . . . ,−1, 1, . . . , n}. We denote by Bn the group of bijective functions σ :

[±n] → [±n] satisfying −σ(i) = σ(−i), for all i ∈ [n]. We use the window notation. So, for

example, the element [−2, 1] ∈ B2 represents the function σ : [±2]→ [±2] such that σ(1) = −2 =

−σ(−1) and σ(2) = 1 = −σ(−2). We let Neg(σ) := {i ∈ [n] : σ(i) < 0}, neg(σ) = |Neg(σ)|,
nsp(σ) := |{(i, j) ∈ [n]2 : i < j, σ(i) + σ(j) < 0}|, sBj := (j, j + 1)(−j,−j − 1) for j = 1, ..., n− 1,

s0 := (1,−1), and SB := {s0, s
B
1 , ..., s

B
n−1}. It is well known that (Bn, SB) is a Coxeter system and

that, identifying SB with [0, n− 1], the following holds (see, e.g., [2, §8.1]).
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Proposition 2.5. Let σ ∈ Bn. Then `B(σ) = `A(σ)+neg(σ)+nsp(σ), and D(σ) = {i ∈ [0, n−1] :

σ(i) > σ(i+ 1)}, where σ(0) := 0.

We denote by 6 the Bruhat order of Bn and by σ 7→ σ̃ the embedding Bn ↪→ S±n (where S±n

is the set of all bijections of [±n]) . The following result is [2, Corollary 8.1.9].

Proposition 2.6. We have that σ 6 τ in Bn if and only if σ̃ 6 τ̃ in S±n.

The next result, which appears in [14, Theorem 5.5], characterizes the cover relations in the

Bruhat order of Bn. For σ ∈ Bn and i, j ∈ [±n], i < j, we say that (i, j) is a rise for σ if σ(i) < σ(j)

(i.e., if (i, j) is not an inversion of σ). Given a rise (i, j) for σ we then say, following [14], that

(i, j) is central if (0, 0) ∈ [i, j] × [σ(i), σ(j)], that (i, j) is free if there is no i < k < j such that

σ(i) < σ(k) < σ(j), and that it is symmetric if i = −j.

Theorem 2.7. Let n ∈ P and σ, τ ∈ Bn. Then σ � τ in Bruhat order if and only if either

1. τ = σ(i, j)(−i,−j) where (i, j) is a non-central free rise of σ or

2. τ = σ(i, j) where (i, j) is a central symmetric free rise of σ.

Following [4], for n ∈ P, we let

W(Bn) := {σ ∈ Bn : |σ−1(i)− σ−1(i∗)| ≤ 1 if i ∈ [n− 1]}

and call the elements of W(Bn) signed Wachs permutations.

Our aim in this work is to study the sets of Wachs and signed Wachs permutations under the

Bruhat order and the weak order.

3 Wachs permutations and Bruhat order

Let (W,S) be a Coxeter system. For any independent set I ⊆ S (i.e. st = ts for all s, t ∈ I) we

define a subgroup of W by

GI := {w ∈W : Iw = I},

where Iw := {wsw−1 : s ∈ I}. Note that GI is a subgroup of W , and that, since I is independent,

WI ⊆ GI . Furthermore, WI is normal in GI .

Proposition 3.1. P I(GI) is a subgroup of GI , isomorphic to the quotient GI/WI . In particular

we have the group isomorphisms

GI ' P I(GI)nWI ' S2 oI P I(GI).

Proof. Let w ∈ GI and write w = wIwI where wI ∈ W I and wI ∈ WI . Let s ∈ I. Then, by

our hypothesis, wsw−1 = wIwIs(wI)
−1(wI)−1 = wIs(wI)−1 so wI ∈ GI . So P I(GI) ⊆ GI . Let

u, v ∈ GI and write u = uIuI and v = vIvI where uI , vI ∈W I and uI , vI ∈WI , so uI , vI ∈ P I(GI).
Let s ∈ I. Then there is t ∈ I such that vIs = tvI . Furthermore, since uI , vI ∈W I , `(tvI) > `(vI),

and `(uIt) > `(uI). Therefore, by Lemma 2.2 we obtain that uIvIs = uItvI > uIvI . Hence
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uIvI ∈ W I . But, since vI ∈ GI , there exists ũI ∈ WI such that uv = uIvI ũIvI so (uv)I = uIvI .

Hence uIvI ∈ P I(GI). In particular, (uI)−1 = (u−1)I , so P I(GI) is a subgroup of GI , and

P I : GI → P I(GI) is a surjective homomorphism whose kernel is WI . The last statements follow

by the definitions.

Let m ∈ P, W := S2m. For any set X, we consider P(X) as an abelian group, the operation

being the symmetric difference +, i.e. A + B := (A \B) ∪ (B \A), for all A,B ∈ X. Then it is

straightforward to see that if we take I = {si : i ≡ 1 mod 2} ⊆ S then W(S2m) = GI . The group

isomorphisms P I(W(S2m)) ' Sm and WI ' P([m]) then imply

W(S2m) ' Sm n P([m]) = S2 o Sm.

Therefore W(S2m) is isomorphic to the hyperoctahedral group.

We consider Sn with the Bruhat order and the subset W(Sn) ⊆ Sn with the induced order. It

is not difficult to see, using Theorem 2.4 that P I(W(S2m)) ' Sm as posets for all m > 0, where the

set Sm is ordered by the Bruhat order. Let m > 0. For u ∈ Sm and T ⊆ [m] let φ−1
2m(u, T ) := v,

where v ∈ W(S2m) is defined by

v(2i− 1) =

{
2u(i)− 1, if i 6∈ T ,

2u(i), if i ∈ T ,

and

v(2i) =

{
2u(i), if i 6∈ T ,

2u(i)− 1, if i ∈ T ,

for all i ∈ [m]. The following result follows easily from our definitions and Theorem 2.4, and its

proof is omitted.

Proposition 3.2. Let m ∈ P. Then

1. φ2m is a bijection;

2. φ2m :W(S2m)→ Sm ⊗ P([m]) is order preserving;

3. φ−1
2m : Sm × P([m])→W(S2m) is order preserving.

Moreover `(v) = 4`(τ) + |T | if φ(v) = (τ, T ).

Figure 1 shows the Hasse diagram of (W(S5),6). By the following example we see that φ2m

and φ−1
2m are not poset isomorphisms in general.

Example 3.3. Let m = 3. Then (123, {1, 2, 3}) 6 (132,∅) in Sm⊗P([m]) but φ−1
2m(123, {1, 2, 3}) =

214365 
 125634 = φ−1
2m(132,∅) in W(S2m).

Let m = 2, u = 2143 and v = 3412. Then u, v ∈ W(S4), u < v and φ2m(u) = (12, {1, 2}) 

(21,∅) = φ2m(v) in Sm × P([m]).

We consider now W(S2m+1). For any m > 0 it is not difficult to see that the set W(S2m+1)

is not a group. The previous general construction in Coxeter systems gives, for W = S2m+1, the

group GI ' W(S2m) which, as a set, can be included in W(S2m+1). For n > 1, define a function

χn :W(Sn)→W(Sn−1) by
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χn(v)(i) =

{
v(i), if i < pos(v);

v(i+ 1), if i > pos(v),

for all i ∈ [n − 1], v ∈ W(Sn). Note that the function χn is not necessarily order preserving. For

example, if m = 2 and u = 21345, v = 51234 then u 6 v but χn(u) = 2134 
 1234 = χn(v).

Let φ2m+1 :W(S2m+1)→ [m+ 1]× Sm × P([m]) be the function defined by

φ2m+1(v) := ((pos(v) + 1)/2, τ, T ),

if χ2m+1(v) = (τ, T ), for all v ∈ W(S2m+1). For example, φ2m+1(4312756) = (3, 213, {1}). As in

the even case, noting that u 6 v implies pos(v) 6 pos(u), we have the following result whose proof

follows easily from our definitions and Proposition 3.2.

Proposition 3.4. Let m > 0. Then

1. φ2m+1 is a bijection;

2. φ2m+1 :W(S2m+1)→ [m+ 1]∗ ⊗ Sm ⊗ P([m]) is order preserving;

3. φ−1
2m+1 : [m+ 1]∗ × Sm × P([m])→W(S2m+1) is order preserving,

where i 6 j in [m + 1]∗ if and only if j 6 i, for all i, j ∈ [m + 1]. Moreover `(v) = 4`(τ) + |T | +
2(m− i+ 1) if φ2m+1(v) = (i, τ, T ).

Let n > 0 and fn : W(Sn) → Sbn
2 c be the function defined by the assignment (i, τ, T ) 7→ τ if

n is odd, and (τ, T ) 7→ τ if n is even. By Proposition 3.2, if n is even then fn is order preserving.

Corollary 3.8 states that the function fn is order preserving also in the odd case. We also define a

function `W :W(Sn)→ N by

`W(v) := `(v)− `(fn(v)),

for all v ∈ W(Sn). For example, `W(342156) = 5 − 1 = 4 and `W(3472156) = 9 − 1 = 8. The

minimum and the maximum of the poset (W(Sn),6) are respectively the identity of Sn, which

corresponds to (e,∅) in the even case and to (m + 1, e,∅) in the odd one, and the element of

maximal length wn of Sn, which corresponds to (wm, [m]) in the even case and to (1, wm, [m]) in

the odd one, where m :=
⌊
n
2

⌋
. Moreover `W(e) = 0 and

`W(wn) =

(
n

2

)
−
(
bn2 c

2

)
. (2)

Note that if n is even then `W(wn) = (3n−2)n
8 = (3m−1)m

2 . So {`W(w2m)}m∈P is the sequence

of pentagonal numbers (see A000326 in OEIS). If n is odd then `W(wn) = 3(n2−1)
8 = 3m(m+1)

2 ; so

{`W(w2m+1)}m∈P is the sequence of triangular matchstick numbers (see A045943 in OEIS).

Let n > 0 and m :=
⌊
n
2

⌋
; for any i, j ∈ [m], i < j, we define an involution wAi,j : W(Sn) →

W(Sn) by

wAi,j(v) =

{
(τ(i, j), T + {i, j}), if n is even and v = (τ, T );

(k, τ(i, j), T + {i, j}), if n is odd and v = (k, τ, T ),

for all v ∈ W(Sn). For example, if v = 4312765 ∈ W(S7), then wA2,3(v) = 4356721.

7



54321

53421 54312

43521 53412

52143 34521 43512

51243 52134 34512 43215

21543 51234 34215 43125

12543 21534 34125

12534 21435

12435 21345

12345

Figure 1: Hasse diagram of (W(S5),6).
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Lemma 3.5. Let m > 0, v = (τ, T ) ∈ W(S2m), i, j 6∈ T and τ(i, j) C τ . Then wAi,j(v) < v and

`W(v)− `W(wAi,j(v)) = 1. If u = (σ, S) ∈ W(S2m), u < v and σ 6 τ(i, j) then u 6 wAi,j(v).

Proof. We have that v̂ := wAi,j(v) = (τ(i, j), T ∪{i, j}). By the tableau criterion it is easy to deduce

that v̂ < v and the equality `W(v̂, v) = 1 follows easily from Proposition 3.2 and the definition of

`W . We now show that u ≤ v̂. We use Theorem 2.4. Note first that, since u and v̂ are Wachs

permutations and σ ≤ τ(i, j), ul,h ≤ v̂l,h for all 1 ≤ l ≤ h if h is even. Furthermore, since u < v,

ul,h ≤ v̂l,h for all l ∈ [h] if h ≤ 2i− 2 or h ≥ 2j. So let k ∈ [m] be such that k 6∈ T and i < k < j.

We wish to show that ul,2k−1 6 v̂l,2k−1, for all 1 6 l 6 2k − 1.

Let a := v(2i − 1) and b := v(2j − 1). So a + 1 = v(2i) and a > b + 1 = v(2j) as well as

v̂(2i−1) = b+ 1, v̂(2i) = b, v̂(2j−1) = a+ 1 and v̂(2j) = a. Let c := v(2k−1) and d := u(2k−1).

Note that, since τ(i, j) C τ , c 6∈ [b, a+ 1] and that c ≡ 1 (mod 2) since k 6∈ T . Let r, s ∈ [k] be such

that v2r−1,2k−1 = c and u2s−1,2k−1 = d. We have two cases to consider according as to whether

c < b or c > a+ 1.

Say c > a+ 1.

Let p, q ∈ [k] be such that v2q−1,2k−1 = a and v̂2p−1,2k−1 = b, so p ≤ q, v2q,2k−1 = a + 1 and

v̂2p,2k−1 = b+ 1. Then 2r − 1 > 2q since c > a+ 1. Note that

vl,2k−1 = v̂l,2k−1 (3)

if 1 6 l 6 2p− 2 or 2q + 1 6 l 6 2k − 1 and that

vl,2k−1 = v̂l+2,2k−1 (4)

if 2p− 1 6 l 6 2q − 2. Moreover, since u 6 v by our hypothesis,

ul,2k−1 6 vl,2k−1, (5)

for all 1 6 l 6 2k − 1.

Note that, by (3) and (5), we have

ul,2k−1 6 vl,2k−1 = v̂l,2k−1

if 1 6 l 6 2p− 2 or 2q + 1 6 l 6 2k − 1. So assume 2p− 1 6 l 6 2q.

If x, y ∈ P, x, y ≡ 1 (mod 2), then we find it convenient to write {x, x+ 1} 6 {y, y+ 1} if x 6 y

and similarly for <.

We have two cases to consider.

Let s > q. Then, since σ 6 τ(i, j), we have that

{u2h−1,2k−1, u2h,2k−1} 6 {v̂2h−1,2k−1, v̂2h,2k−1}

for all p 6 h 6 q, so ul,2k−1 6 v̂l,2k−1 for all 2p− 1 6 l 6 2q.
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Let s 6 q. If p 6 h 6 s− 1 then, since σ 6 τ(i, j), we have that

{u2h−1,2k−1, u2h,2k−1} 6 {v̂2h−1,2k−1, v̂2h,2k−1}

so ul,2k−1 6 v̂l,2k−1 for all 2p− 1 ≤ l ≤ 2s− 2.

We may therefore assume that max{2p− 1, 2s− 1} 6 l 6 2q. Since σ 6 τ(i, j), we have that

ul,2k−2 6 v̂l,2k−2

for 1 6 l 6 2k − 2. But

ul,2k−1 = ul−1,2k−2

if 2s 6 l 6 2k − 1 since {u(1), ..., u(2k − 2)} = {u(1), ..., u(2k − 1)} \ {d}, and similarly

v̂l,2k−1 = v̂l,2k−2

if 1 6 l 6 2r − 2. Therefore

ul,2k−1 < ul+1,2k−1 = ul,2k−2 6 v̂l,2k−2 = v̂l,2k−1,

if 2s− 1 6 l 6 2r − 2, so ul,2k−1 6 v̂l,2k−1 if 2s− 1 6 l 6 2q, because 2q 6 2r − 2.

The case c < b is similar (and slightly simpler) except that one uses 2k rather than 2k− 2 and

obtains that

ul,2k−1 = ul,2k ≤ v̂l,2k = v̂l−1,2k−1 < v̂l,2k−1

if 2p 6 l 6 2s− 1. We leave the details to the interested reader.

The following lemma can be proved using Lemma 3.5 and the definitions.

Lemma 3.6. Let m > 0, v = (k, σ, S) ∈ W(S2m+1), i, j, k 6∈ S and σ(i, j) C σ. Then wAi,j(v) < v,

v(k, k + 2) < v and `W(wAi,j(v)) = `W(v(k, k + 2)) = `W(v)− 1.

The next result is the crucial technical tool for the proof of our main theorem, and states that

elements of W(S2m+1) are “join-irreducible” in a certain sense.

Proposition 3.7. Let m > 0, u, v ∈ W(S2m+1), u < v and i := pos(v). If u < v and pos(u, v) > 0

then u 6 z where z ∈ W(S2m+1) is defined by

z =

{
v(i, i+ 2), if v < v(i+ 1, i+ 2);

v(i+ 1, i+ 2), otherwise.

Proof. Let h := (i + 1)/2 and consider first the case i + 1 6∈ D(v). Let a := v(i + 1); then

a+ 1 = v(i+ 2) = z(i), a = z(i+ 1) and z(i+ 2) = 2m+ 1. Define c := u(i), r ∈ [m+ 1] be such

that u(2r− 1) = 2m+ 1, p ∈ [h] be such that z2p−1,i = a+ 1 and q ∈ [h] be such that u2q−1,i = c.

Notice that u(i+ 1) ∈ {u(i) + 1, u(i)− 1} since pos(u, v) > 0. Assume that q 6 p. Note that

ul,i 6 vl,i = zl,i

if 1 6 l 6 2p− 2, while

ul,i = ul−1,i−1 6 vl−1,i−1 = zl−1,i−1 = zl,i
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if 2p 6 l, and

u2p−1,i =


u2p−2,i−1 6 v2p−2,i−1 = z2p−2,i−1 = z2p−2,i < z2p−1,i, if q < p,

u2p−1,i+1 6 v2p−1,i+1 = a < a+ 1 = z2p−1,i, if q = p and u(i) < u(i+ 1),

u2p−1,i+1 + 1 6 v2p−1,i+1 + 1 = a+ 1 = z2p−1,i, if q = p and u(i) > u(i+ 1),

since u 6 v. Moreover ul,i+1 = ul−1,i 6 zl−1,i = zl,i+1 if l > 2p + 1 while ul,i+1 6 vl,i+1 = zl,i+1,

if l 6 2p− 2. Let l ∈ {2p− 1, 2p}. There are some cases to be considered.

1. q < p and u(i) > u(i+ 1): in this case we have that u2p,i+1 = u2p−1,i 6 z2p−1,i = z2p,i+1 and

so u2p−1,i+1 6 u2p,i+1 − 1 6 z2p,i+1 − 1 = z2p−1,i+1.

2. q < p and u(i) < u(i+ 1): in this case we have that u2p−1,i+1 = u2p−1,i − 1 6 z2p−1,i − 1 =

z2p−1,i+1 and so u2p,i+1 = u2p−1,i+1 + 1 6 z2p−1,i+1 + 1 = z2p,i+1.

3. q = p and u(i) > u(i+ 1): in this case u2p,i+1 = u2p−1,i 6 z2p−1,i = z2p,i+1 and u2p−1,i+1 =

u2p−1,i − 1 6 z2p−1,i − 1 = z2p−1,i+1.

4. q = p and u(i) < u(i + 1): in this case u2p−1,i+1 6 v2p−1,i+1 = a = z2p−1,i+1 and u2p,i+1 =

u2p−1,i+1 + 1 6 z2p−1,i+1 + 1 = z2p,i+1.

So we have proved that u 6 z whenever q 6 p. Consider the case q > p. If l 6 2p− 2 or l > 2q

the result follows as above. Let 2p 6 l 6 2q − 2. Then ul,i = ul,i+1 6 vl,i+1 = zl,i. Moreover

u2p−1,i = u2p−1,i+1 6 v2p−1,i+1 = a < a+ 1 = z2p−1,i.

Let u(i) < u(i+ 1). Then

u2q−1,i = u2q−1,i+1 6 v2q−1,i+1 = z2q−1,i.

If u(i) > u(i+ 1) we have that u2q−1,i = u2q−1,i+1 + 1 6 v2q−1,i+1 + 1 = z2q−1,i and then we have

proved that u 6 z also in case q > p.

Let’s consider the case si+1 ∈ D(v). Define a := v(i+ 2) and v2p−1,i+1 := a+ 1. If l 6= 2p− 1

we have that ul,i+1 6 vl,i+1 = zl,i+1. Let l = 2p − 1. Since u2p−1,i+1 ≡ 1 (mod 2), a ≡ 1 (mod 2)

and u2p−1,i+1 6 a+ 1, we conclude that u2p−1,i+1 6 a = z2p−1,i+1.

Corollary 3.8. Let n ∈ P. Then fn :W(Sn)→ Sbn2 c is order preserving.

Proof. If n is even the result was already observed. If n is odd let u, v ∈ W(Sn) and u 6 v. We

prove the result by induction on pos(u, v). If pos(u, v) = 0 by the tableau criterion we conclude

that χn(u) 6 χn(v) and then the result follows by the even case. Let pos(u, v) > 0 and i := pos(v).

In this case, by Proposition 3.7, u 6 v(i, i+2) < v or u 6 v(i+1, i+2)(i, i+2) < v(i+1, i+2) < v.

Hence, by the inductive hypothesis, fn(u) 6 fn(v(i, i+2)) = fn(v) or fn(u) 6 fn(v(i+1, i+2)(i, i+

2)) = fn(v(i+ 1, i+ 2)) = fn(v).

We can now prove the main result of this section.
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Theorem 3.9. Let n > 0. Then (W(Sn),6) is graded, of rank
(
n
2

)
−
(bn2 c

2

)
, and its rank function

is `W .

Proof. Assume first n = 2m, m > 1. Let u, v ∈ W(S2m) with u < v, φ(u) = (σ, S) and φ(v) =

(τ, T ). We prove that, if `W(u, v) 6= 1, then there exists z ∈ W(S2m) such that u < z < v and

`W(z, v) = 1. Note that, by Proposition 3.2, σ ≤ τ . We have two cases to consider.

1. `(σ, τ) = 0: then σ = τ so, by Proposition 3.2, S ⊆ T . Therefore there exists i ∈ T \ S. So

s2i−1 ∈ D(v) \D(u) hence, by the Lifting Property, u < vs2i−1 < v, vs2i−1 ∈ W(S2m) and

`W(vsi, v) = 1.

2. `(σ, τ) > 0: in this case, since σ < τ , there exist 1 ≤ x < y ≤ m such that σ 6 τ(x, y) � τ .

Let i := 2x− 1 and j := 2y − 1. There are three cases to consider.

(a) si ∈ D(v): let z := vsi and w := (τ(x, y), T ). We want to prove that u < z. Let

a + 1 := v(i) = v2p−1,i, b := w(i) = v(j) = w2q−1,i and c := u(i) = u2s−1,i. In

particular q ≤ p. We only have to prove that ul,i 6 (vsi)l,i for all l 6 i. Since

(vsi)l,i = vl,i if l 6= 2p − 1, it is enough to prove that u2p−1,i 6 (vsi)2p−1,i. Note that

ul,i+1 ≤ vl,i+1 = (vsi)l,i+1 for all 1 ≤ l ≤ i+ 1.

If s 6 p then

(vsi)2p−1,i > (vsi)2p−2,i = w2p−1,i = w2p,i+1 > u2p,i+1 > u2p−1,i

because b < a, and σ ≤ τ(x, y).

If s > p then u2p−1,i = u2p−1,i+1 6 (vsi)2p−1,i+1 = (vsi)2p−1,i. Since `W(vsi, v) = 1 the

result follows.

(b) si 6∈ D(v) and sj ∈ D(v): we then claim that u < vsj . Let b + 1 = v(j) = v2p−1,j ;

then b = (vsj)(j) = (vsj)2p−1,j . As in the case above it is sufficient to prove that

u2p−1,j 6 (vsj)2p−1,j . If u(j) > u2p−1,j then u2p−1,j = u2p−1,j+1 = u2p,j+1 − 1 ≤
v2p,j+1 − 1 = b. Let u(j) 6 u2p−1,j ; since σ 6 τ(x, y) we have {u2p−1,j−1, u2p,j−1} 6
{w2p−1,j−1, w2p,j−1}. Then, u2p−1,j < u2p,j = u2p−1,j−1 6 w2p−1,j−1 = b, since a >

b+ 1.

(c) si, sj 6∈ D(v): in this case, by Lemma 3.5, u < wAx,y(v) < v and wAx,y(v) ∈ W(S2m),

`W(wAx,y(v), v) = 1.

Now assume n = 2m + 1, m > 0. Let u 6 v, i := pos(v), and `W(u, v) > 1. We prove that

there exists z ∈ W(S2m+1) such that u < z < v and `W(z, v) = 1. If pos(u, v) = 0 then the result

follows by the previous point. If pos(u, v) > 0 we have, by Proposition 3.7, u < v(i, i + 2) < v if

si+1 6∈ D(v) and u < vsi+1 < v otherwise.

Remark 3.10. In general W(Sn) ∩ SJn is not graded; one can see this by considering J = {s1} and

the interval [124365, 561234] in W(S6) ∩ SJ6 .

We can now compute the rank-generating function of (W(Sn),6).
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Corollary 3.11. Let m > 0. Then

W(S2m)(x, `W) = (1 + x)m[m]x3 !,

W(S2m+1)(x, `W) = (1 + x)m[m+ 1]x2 [m]x3 !.

Moreover

W(S2m)(x, `W) =W(S2m)(x, 3 emaj + odes)

and

W(S2m+1)(x, `W) =W(S2m+1)(x, (3 emaj + odes) ◦ χ2m+1 + pos).

Proof. The result follows by (1), Theorem 3.2 and the definition of `W . In fact,W(S2m+1)(x, `W) =

[m+ 1]x2W(S2m)(x, `W) and `(v) = odes(v) + 4`(f2m(v)), for all v ∈ W(S2m).

From Proposition 3.11 we find that the polynomials W(Sn)(x, `W) are reciprocal, i.e. x`W(wn)

W(Sn)(x−1, `W) = W(Sn)(x, `W). In fact the poset (W(Sn),6) is self-dual, for all n ∈ P, since

the map v 7→ vwn is an antiautomorphism of (W(Sn),6) such that `W(vwn) = `W(wn) − `W(v)

(see [2, Propositions 2.3.2 and 2.3.4]).

From the combinatorial description of the rank function of W(S2m+1) we can deduce a de-

scription of its cover relations.

Proposition 3.12. Let m ∈ P, u, v ∈ W(S2m+1), u = (i, σ, S) and v = (j, τ, T ). Then u C v if

and only if either

1. i = j, σ = τ and S C T , or

2. j = i− 1, σ = τ , i− 1 ∈ S and T = S \ {i− 1}, or

3. i = j, σ C τ , T ∩ {a, b} = ∅ and S = T ∪ {a, b},

where (a, b) := τ−1σ. In particular, if u, v ∈ W(S2m), u = (σ, S) and v = (τ, T ), then u C v if and

only if either σ = τ and S C T , or σ C τ , T ∩ {a, b} = ∅ and S = T ∪ {a, b}.

Proof. If point 1 or 2 hold then `W(v)− `W(u) = 1 and by Theorem 3.4 there follows that u 6 v.

If point 3 holds then the result follows by Lemma 3.6.

Conversely let u C v. Then σ 6 τ by Corollary 3.8 and `W(u, v) = 1. If i − j > 2 then, by

Proposition 3.7 there is z ∈ W(S2m+1) such that u 6 z < v and `W(z, v) = 1; so z = u, which is a

contradiction since k − j 6 1, being z = (k, ρ,R). Hence assume i− j 6 1.

If σ < τ then there exists a reflection (r, s) such that σ 6 τ(r, s) C τ . If i − j = 1 then by

Proposition 3.7 u = v(2j − 1, 2j + 1) and σ = τ , which is a contradiction. Therefore i = j. As in

the proof of Theorem 3.9, if r ∈ T then (σ, S) 6 (τ, T \ {r}); if r 6∈ T and s ∈ T then (σ, S) 6

(τ, T \ {s}). Moreover `W((τ, T \ {r}), (τ, T )) = 1 and `W((τ, T \ {s}), (τ, T )) = 1 in these cases.

Then (σ, S) = (τ, T \{r}) or (σ, S) = (τ, T \{s}), a contradiction. Therefore r, s 6∈ T and, as in the

proof of Theorem 3.9, (σ, S) 6 (τ(r, s), T ∪{r, s}) C (τ, T ), and `W((τ(r, s), T ∪{r, s}), (τ, T )) = 1.

So we conclude that S = T ∪ {r, s} and σ = τ(r, s) C τ .

Assume now σ = τ . If i = j then S C T (else `W(u, v) = `(u, v) > 2). If i − j = 1 then by

Proposition 3.7 we have that u = v(2j − 1, 2j + 1) and v < vs2j and the result follows.
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The second statement follows from the first one by observing that W(S2m) is isomorphic to

the interval [e, 2m...321(2m+ 1)] in W(S2m+1).

For example the permutation 782156934 ∈ W(S9) covers the Wachs permutations 781256934,

782156439 and 652187934, which correspond respectively to cases 1, 2 and 3 in Proposition 3.12.

From Proposition 3.12 we can now prove the second main result of this section, namely a

characterization of the Bruhat order relation on Wachs permutations.

Theorem 3.13. Let m > 0 and u, v ∈ W(S2m+1), u = (i, σ, S), v = (j, τ, T ). Then u 6 v if and

only if

σ 6 τ , S(u, v) ⊆ T (u, v), and j 6 i,

where, for X ⊆ [m+1], X(u, v) := X∩([j−1]∪ [i,m])∩F (σ, τ), being F (σ, τ) := {k ∈ [m] : σ(k) =

τ(k)}. Moreover `W(u) = 3`(σ) + |S|+ 2(m− i+ 1). In particular, if u, v ∈ W(S2m), u = (σ, S),

v = (τ, T ), then u 6 v if and only if σ 6 τ and S ∩ F (σ, τ) ⊆ T , and `W(u) = 3`(σ) + |S|.

Proof. Let u 6 v. We may assume u C v. There are three cases to consider.

1. i = j, σ = τ and S C T : in this case F (σ, τ) = [m] so the result follows.

2. j = i − 1, σ = τ and S = T ∪ {i − 1}, with i − 1 6∈ T : in this case F (σ, τ) = [m] and

S ∩ ([i− 2] ∪ [i,m]) ⊆ T .

3. i = j, σ C τ , T ∩ {a, b} = ∅ and S = T ∪ {a, b}, where (a, b) = τσ−1: we have F (σ, τ) =

[m] \ {a, b} and then S ∩ F (σ, τ) ⊆ T .

Now let σ 6 τ , j < i and S ∩ ([j − 1] ∪ [i,m]) ∩ F (σ, τ) ⊆ T . In Sm there exists a saturated chain

σ = σ0 C σ1 C ... C σn = τ with n = `(σ, τ). Define (ai, bi) := σ−1
i σi−1 for all i ∈ [n]. We have

the following chain in (W(S2m+1),6):

(i, σ, S) 6 (i, σ, S ∪ [j, i− 1])

C (i− 1, σ, (S ∪ [j, i− 2]) \ {i− 1})

C (i− 2, σ, (S ∪ [j, i− 3]) \ {i− 2, i− 1})

C ... C (j + 1, σ, (S ∪ {j}) \ [j + 1, i− 1])

C (j, σ, S \ [j, i− 1])

6 (j, σ, (S \ [j, i− 1]) ∪ {a1, b1})

C (j, σ1, (S \ [j, i− 1]) \ {a1, b1})

6 (j, σ1, (S \ ([j, i− 1] ∪ {a1, b1})) ∪ {a2, b2})

C (j, σ2, (S \ [j, i− 1]) \ {a1, b1, a2, b2})

6 ... 6 (j, τ, (S \ [j, i− 1]) \ {a1, b1, ..., an, bn}) 6 (j, τ, T ),

since {a1, b1, ..., an, bn} = [m] \ F (σ, τ). The length formula follows by Proposition 3.4.

The last statement follows immediately noting that the map (σ, S) 7→ (m+ 1, σ, S) is a poset

isomorphism between W(S2m) and {(i, σ, S) ∈ W(S2m+1) : i = m+ 1}.
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We illustrate the preceding theorem with an example. Let u = (4, 2431, {1, 2, 3}) ∈ W(S9) and

v = (3, 3421, {2}) ∈ W(S9). Then we have that 2431 < 3421 and S ∩ ([j − 1] ∪ [i,m]) ∩ F (σ, τ) =

{1, 2, 3} ∩ ({1, 2} ∪ {4}) ∩ {2, 4} = {2}; hence, by Theorem 3.13, u < v.

The following lemma can be easily deduced by Theorem 3.13 so we omit its verification.

Lemma 3.14. Let m > 0 and u, v ∈ W(S2m+1). If u 6 (i, σ, S1) 6 v and u 6 (i, σ, S2) 6 v in

(W(S2m+1),6) then u 6 (i, σ, S1 ∪ S2) 6 v.

The characterization obtained in Theorem 3.13 enables us to give an explicit expression for the

Möbius function of lower intervals in the poset of Wachs permutations partially ordered by Bruhat

order, and shows, in particular, that it has values in {0, 1,−1}.

Proposition 3.15. Let m > 0, and v = (j, τ, T ) ∈ W(S2m+1). Then

µ(e, v) =

{
(−1)|T |, if τ = e and j = m+ 1;

0, otherwise.

In particular, if v = (τ, T ) ∈ W(S2m) then

µ(e, v) =

{
(−1)|T |, if τ = e;

0, otherwise.

Proof. We proceed by induction on `W(v). If τ = e and j = m + 1 then, by Theorem 3.13, the

interval [e, v] is isomorphic to a Boolean algebra, so we conclude that µ(e, v) = (−1)|T |, as desired.

So assume that either τ 6= e or j < m + 1. Then, by Proposition 3.12, `W(v) ≥ 2, so, by Lemma

3.14 there exists R ⊆ [m], R 6= ∅, such that [e, v] ∩ {(k, ρ, U) ∈ W(S2m+1) : ρ = e, k = m + 1} =

[e, (m+ 1, e, R)]. Hence

µ(u, v) = −
∑

x∈[e,v)

µ(e, x)

= −
∑

x∈[e,(i,σ,R)]

µ(e, x)−
∑

x∈[e,v)\[e,(i,σ,R)]

µ(e, x)

= −
∑

x∈[e,v)\[e,(i,σ,R)]

µ(e, x) = 0

by our induction hypothesis, and the fact that |[e, (i, σ,R)]| 6= 1, where [u, v) := {z ∈ W(S2m+1) :

u 6 z < v}.
The statement about Wachs permutations in the even case follows from the odd one as in the

proof of Theorem 3.13.

We conclude by computing, using Proposition 3.15, the characteristic polynomial of the poset

of Wachs permutations.

Corollary 3.16. The characteristic polynomial of (W(Sn),6) is

(x− 1)b
n
2 cx(n

2)−(b
n
2 c+1

2
),

for all n ∈ P.
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Proof. The result follows from Poposition 3.15 and Theorem 3.9.

The following is a commutative diagram that summarizes the poset morphisms considered in

this section. The function πi stands for the canonical projection on the i-th factor of a Cartesian

product. Notice that, if A and B are posets, the projection π1 : A ⊗ B → A is order preserving,

whereas π2 : A⊗B → B is not order preserving.

[m+ 1]∗ × Sm × P([m]) W(S2m+1) ([m+ 1]∗ × Sm)⊗ P([m])

Sm × P([m]) W(S2m) Sm ⊗ P([m])

Sm

φ−1
2m+1

π2×π3

φ2m+1

f2m+1

φ−1
2m

π1

φ2m

f2m
π1

4 Signed Wachs permutations and Bruhat order

For n > 0 recall (see [4]) that the set of signed Wachs permutation is

W(Bn) := {σ ∈ Bn : |σ−1(i)− σ−1(i∗)| 6 1 ∀ i ∈ [n− 1]}.

So, for example, [−2,−1, 4, 3] ∈ W(B4) while [3, 4,−2, 1] /∈ W(B4). In the even case, as in type A,

we have the following group isomorphism (see Proposition 3.1)

W(B2m) ' Bm n P([m]) = S2 oBm.

We define a bijection φ : W(B2m) → Bm × P([m]) as follows. For σ ∈ Bm and T ⊆ [m] let

φ−1(σ, T ) := v, where v ∈ W(B2m) is defined by

v(2i− 1) =

{
2σ(i)− χ(σ(i) > 0), if i 6∈ T ,

2σ(i) + χ(σ(i) < 0), if i ∈ T ,

and

v(2i) =

{
2σ(i) + χ(σ(i) < 0), if i 6∈ T ,

2σ(i)− χ(σ(i) > 0), if i ∈ T ,

for all i ∈ [m]. For example, let v := [−3,−4, 1, 2, 6, 5] ∈ W(B6); then φ(v) = ([−2, 1, 3], {1, 3}).
Because of this bijection from now on we freely identify the sets W(B2m) and Bm × P([m]), so if

v ∈ W(B2m) and φ(v) = (σ, T ), then we simply write v = (σ, T ) and we define

`W(v) := `B(v)− `B(σ).

Recall that we denote by v 7→ ṽ the natural embedding Bn ↪→ S±n. Note that if v ∈ W(B2m)

then ṽ ∈ W(S±2m). Indeed, if v = (σ, T ) then ṽ = (σ̃,−T ∪ T ). In fact, by Proposition 2.6,

this is an injective group and poset morphism W(B2m) ↪→ W(S±2m). For example, for u =

[−2,−1, 6, 5,−3,−4] = ([−1, 3,−2], {2, 3}) ∈ W(B6) we have

ũ = (4, 3,−5,−6, 1, 2,−2,−1, 6, 5,−3,−4) = ((2,−3, 1,−1, 3,−2), {−3,−2, 2, 3}) ∈ W(S±6).

16



Notice that if n is odd then the image of a signed Wachs permutation is not a Wachs permutation.

For example, if u = [−2,−1, 6, 5,−3,−4, 7] ∈ W(B7) we have

ũ = (−7, 4, 3,−5,−6, 1, 2,−2,−1, 6, 5,−3,−4, 7) 6∈ W(S±7).

It is known that 2`B(v) = `A(ṽ) + neg(v) (see e.g. [2, Exercise 8.2]) so we have that

`W(v) =
`W(ṽ) + neg(σ)

2
, (6)

for all v = (σ, T ) ∈ W(B2m), because 2 neg(σ) = neg(v).

Proposition 4.1. The function W(B2m) → Bm defined by the assignment (τ, T ) 7→ τ is order

preserving.

Proof. Let u = (σ, S) ∈ W(B2m) and v = (τ, T ) ∈ W(B2m). We have that u 6 v implies ũ 6 ṽ

and then, by Corollary 3.8, σ̃ 6 τ̃ . By Proposition 2.6, this implies σ 6 τ .

It is easy to characterize, using Theorem 3.13, the Bruhat order relation between signed Wachs

permutations in the even case.

Proposition 4.2. Let u, v ∈ W(B2m), u = (σ, S), v = (τ, T ). Then u 6 v if and only if σ 6 τ in

Bm and S ∩ F (σ, τ) ⊆ T , where F (σ, τ) := {i ∈ [m] : σ(i) = τ(i)}.

Proof. We have that ũ = (σ̃,−S ∪S) and similarly ṽ = (τ̃ ,−T ∪ T ). But, by Theorem 3.13, ũ 6 ṽ

if and only if σ̃ 6 τ̃ and (−S ∪ S) ∩ F (σ̃, τ̃) ⊆ −T ∪ T , which in turn happens if and only if σ 6 τ

and S ∩ F (σ, τ) ⊆ T .

The next result is the analogue of Proposition 3.2.

Proposition 4.3. Let m > 0. Then

1. φ :W(B2m)→ Bm ⊗ P([m]) is order preserving;

2. φ−1 : Bm × P([m])→W(B2m) is order preserving.

Moreover `B(τ, T ) = 4`B(τ) + |T | − neg(τ), for all (τ, T ) ∈ W(B2m).

Proof. Points 1. and 2. are direct consequences of Propositions 2.6 and 3.2. The last equality

follows by the formula of Proposition 3.2; in fact

`B(τ, T ) =
`A(τ̃ ,−T ∪ T ) + neg(τ, T )

2
= 2`A(τ̃) + |T |+ neg(τ)

= 4`B(τ)− 2 neg(τ) + |T |+ neg(τ).

For any (i, j) ∈ [n]× [±n], i 6= j, we find it convenient to define

(i, j)B :=

{
(i, j)(−i,−j), if i 6= |j|;
(i,−i), otherwise.
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So the set of reflections of Bn is (see [2, Proposition 8.1.5])

TBn = {(i, j)B : 1 6 i < |j| 6 n} ∪ {(i,−i)B : i ∈ [n]}.

Let m > 0. For any reflection (i, j)B ∈ TBm we define an involution wBi,j :W(B2m)→W(B2m) by

letting

wBi,j(τ, T ) := (τ(i, j)B , T + {i, |j|}) ,

for all (τ, T ) ∈ W(B2m), where X + Y stands for the symmetric difference between two sets X

and Y . For example, if v = ([−2, 1, 4, 3], {1, 4}) then wB3,−3(v) = ([−2, 1,−4, 3], {1, 3, 4}) and

wB1,−3(v) = ([−4, 1, 2, 3], {3, 4}).

Remark 4.4. We observe that, under the embeddingW(B2m) ↪→W(S±2m), we have that wBi,j(v) 7→
wA−i,−j(w

A
i,j(ṽ)), if i 6= −j, and wBi,−i(v) 7→ wAi,−i(ṽ).

The next technical result enables us to “lift” some order theoretic properties from B2m to

W(B2m). Its proof relies on the corresponding result in type A, namely Lemma 3.5.

Lemma 4.5. Let m > 0, i ∈ [m] and j ∈ [±m]. Assume v = (τ, T ) ∈ W(B2m), i, |j| 6∈ T and

τ(i, j)B C τ . Then wBi,j(v) < v and `W(wBi,j(v), v) = 1. Moreover if u = (σ, S) ∈ W(B2m) and

σ 6 τ(i, j)B then u 6 wBi,j(v) < v.

Proof. Consider the element ṽ = (τ̃ ,−T ∪ T ) ∈ W(S±2m). Then by our hypothesis and Theorem

2.7 we have that τ̃(i, j)(−i,−j) C τ̃(i, j) C τ̃ if i 6= |j|, and τ̃(i,−i) C τ̃ if i = |j|. So, by

Lemma 3.5, ũ 6 wA−i,−j(w
A
i,j(ṽ)) < wAi,j(ṽ) < ṽ (since i, j 6∈ T implies −i,−j 6∈ −T ) if i 6= |j|, and

ũ 6 wAi,−i(ṽ) < ṽ if i = |j|. By Proposition 2.6 and Remark 4.4 we conclude that u 6 wBi,j(v) < v.

Note also that, by Theorem 2.7, i 6= |j| and v(i, j)B C v in Bn imply neg(v(i, j)B) = neg(v),

and that v(i,−i)B C v in Bn implies neg(v(i,−i)B) = neg(v) − 1. Therefore, if i, |j| 6∈ T and

τ(i, j)B C τ , then by Lemma 3.5 and (6) we have that `W(wBi,j(v), v) = 1.

The following result characterizes the cover relations of the ordering induced by Bruhat order

on the signed Wachs permutations in the even case.

Corollary 4.6. Let m > 0, u, v ∈ W(B2m), u = (σ, S) and v = (τ, T ). Then u C v if and only if

either one of the following conditions is satisfied:

1. σ = τ and S C T ;

2. σ C τ , T ∩ {a, |b|} = ∅ and S = T ∪ {a, |b|}, where (a, b)B := τ−1σ.

Proof. Let u C v in W(B2m). Then σ 6 τ by Corollary 4.1. Moreover, if σ < ω < τ for some

ω ∈ Bm then, by Proposition 4.3, u 6 (ω, S) 6 v. So u C v implies σ = τ or σ C τ .

If σ = τ then, by Corollary 4.2, S ⊆ T ; since u C v, we have that S C T . Assume now

σ C τ and let (a, b)B := τ−1σ. If a ∈ T or |b| ∈ T then, by point 2 of the proof of Theorem 3.9,

ũ 6 ṽ(a, a+1)(−a−1,−a) < ṽ and ũ 6 ṽ(|b|, |b|+1)(−|b|−1,−|b|) < ṽ, respectively. Hence u C v

and σ C τ imply T ∩ {a, |b|} = ∅ and u = wBa,b(v), by Lemma 4.5. This implies S = T ∪ {a, |b|}.
The converse can be proved by noting that if condition 1 or 2 are satisfied then, by Proposition

3.12, [ũ, ṽ] = {ũ, w1, w2, ṽ}, with w1, w2 ∈ W(S±2m) \ W(B2m), or [ũ, ṽ] = {ũ, ṽ}, where the

intervals are taken in W(S±2m).
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For example [−2,−1, 3, 4, 6, 5,−7,−8] C [−2,−1, 4, 3, 6, 5,−7,−8] C [−2,−1, 5, 6, 3, 4,−7,−8].

By Corollary 4.6 we have that if u C v holds in W(B2m) then either u = v(2i − 1, 2i)B for some

i ∈ [m], or u = wBi,j(v) for some (i, j)B ∈ TBm .

We can now prove the even part of the main result of this section.

Theorem 4.7. The poset W(B2m) is graded, with rank function `W , and its rank is 3m2.

Proof. Since e, wB2m
0 ∈ W(B2m), these are the minimum and maximum of the poset W(B2m),

respectively. Let u = (σ, S) ∈ W(B2m) and v = (τ, T ) ∈ W(B2m) be such that u C v. Therefore,

by Corollary 4.6, either u = v(2i− 1, 2i)B for some i ∈ [m] or u = wBi,j(v), where σ = τ(i, j)B C τ .

In both cases `W(u, v) = 1, and this proves the first statement. The rank of the poset W(B2m) is,

by (6), `W(w0(B2m)) = 3m2, being `W

(
˜w0(B2m)

)
= m(6m− 1).

We now investigate the Bruhat order on W(Bn) for n odd. Let v ∈ W(B2m+1). Note that

there is a bijection between W(B2m+1) and W(B2m) × [±(m + 1)] given by v 7→ (v, (pos(v) +

sgn(pos(v)))/2) where

v(i) =

{
v(i), if i < v−1(2m+ 1),

v(i+ 1), if i ≥ v−1(2m+ 1),

for i ∈ [2m]. Combining this with the bijection betweenW(B2m) and Bm×P([m]) explained at the

beginning of this section we obtain a bijection φ betweenW(B2m+1) and [±(m+1)]×Bm×P([m]).

If v ∈ W(B2m+1) and (i, σ, S) ∈ [±(m + 1)] × Bm × P([m]) correspond under this bijection then

we write v = (i, σ, S), and we define

`W (v) := `B(v)− `B(σ), (7)

and v̌ := (σ, S) (so v̌ ∈ W(B2m)). So, for example, if v = [−1,−2, 5, 6,−7, 3, 4, ] then v =

(−5, [−1, 3, 2], {−1}) so `W (v) = (9 + 3 + 7) − 2 = 17, and v̌ = [−1,−2, 5, 6, 3, 4]. Note that, if

u, v ∈W (B2m+1) are such that u−1(2m+ 1) = v−1(2m+ 1) then

`W (u, v) = `W (ǔ, v̌). (8)

The next result is the analogue of Proposition 3.4.

Proposition 4.8. Let m > 0. Then

1. φ :W(B2m+1)→ [±(m+ 1)]∗ ⊗Bm ⊗ P([m]) is order preserving;

2. φ−1 : [±(m+ 1)]∗ ×Bm × P([m])→W(B2m+1) is order preserving.

Moreover `B(v) = 4`B(τ)+|T |−neg(τ)+2(m−i+1)−3χ(i < 0) = `B(v̌)+2(m−i+1)−3χ(i < 0),

for all v = (i, τ, T ) ∈ W(B2m+1).

Proof. The first two points follow easily from Proposition 4.3 and the fact that if u ≤ v then

pos(u) ≥ pos(v). The length equality is easy to check using our definitions and the well known fact

(see, e.g., [2, Prop. 8.1.1]) that `B(v) = inv(v) + neg(v) + nsp(v) for all v in the hyperoctahedral

group.
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For v ∈ W(B2m+1) we define an element c(v) ∈ W(B2m+1) by

c(v) :=


v(−1, 1)B , if j = −1;

v(j + 1, j + 2)B , if j 6= −1 and v(j + 1) > v(j + 2);

v(j, j + 2)B , if j 6= −1 and v(j + 1) < v(j + 2);

(9)

where j := v−1(2m+1). For example, c([−9, 4, 3,−6,−5, 2, 1,−8,−7]) = [9, 4, 3,−6,−5, 2, 1,−8,−7],

c([4, 3,−6,−5, 9, 2, 1,−8,−7]) = [4, 3,−6,−5, 9, 1, 2,−8,−7] and c([3, 4,−9, 1, 2, 6, 5,−7,−8]) =

[−9, 4, 3, 1, 2, 6, 5,−7,−8]. Note that `W(c(v), v) = 1. The next result implies that c(v) is the

only coatom u of v such that v−1(2m + 1) 6= u−1(2m + 1), and is the main technical tool in our

proof of the fact that W(Bn), under Bruhat order, is graded.

Theorem 4.9. Let m ∈ P, and u, v ∈ D(B2m+1), u < v, be such that v−1(2m+1) < u−1(2m+1).

Then u ≤ c(v).

Proof. Let j := v−1(2m+1). We distinguish various cases according as to whether j < −1, j = −1,

or j > 0. Let, for brevity, z := c(v). Given a signed permutation w ∈ Bn and j ∈ [±n] we find it

convenient to denote by wj the increasing rearrangement of {w(−n), w(−n+ 1), . . . , w(j)}.
Assume first that j > 0 and j + 1 ∈ DR(v). Let a := v(j + 2) so v(j + 1) = a + 1. Then

vk = zk for all k ∈ [±(2m + 1)] \ {j + 1,−j − 2}. Since u, v, z are all Wachs permutations there

are x1, . . . , xm̃, y1, . . . , ym̃+1 ∈ [±(2m)], where m̃ := 2m−1+j
2 , such that

vj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

and

uj+1 = (−2m− 1, y1, y1 + 1, . . . , ym̃+1, ym̃+1 + 1),

for some 0 ≤ p ≤ m̃. Since uj+1 ≤ vj+1 we have that yp+1 ≤ a + 1. But yp+1 and a are of the

same parity if they have the same sign so yp+1 ≤ a and hence uj+1 ≤ zj+1.

Similarly, there are x1, . . . , xm̃, y1, . . . , ym̃ ∈ [±(2m)], where m̃ := 2m−j−1
2 such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

z−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

and

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1),

for some 0 ≤ p ≤ m̃. Since u−j−2 ≤ v−j−2 we have that yp ≤ xp + 1. But xp + 1 < −a − 1 so

yp + 1 ≤ −a− 1 and hence u−j−2 ≤ z−j−2.

Suppose now that (j > 0 and) j + 1 /∈ DR(v). Consider first vj , zj , uj , vj+1, zj+1, uj+1. Since

v, u, and z are all Wachs permutations, and by our definition of z, there are {x1, . . . , xm̃}<,
{y1, . . . , ym̃}< ⊆ [±(2m)], where m̃ := 2m−1+j

2 such that

vj = (−2m− 1, x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)
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zj = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, b∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

vj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj+1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, b, b+ 1, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

where a := v(j+1) (= z(j+1)), b∗ := u(j), and p, q ∈ [m̃]. By our hypothesis u ≤ v so uj ≤ vj and

uj+1 ≤ vj+1 (componentwise). This easily implies that uj ≤ zj and uj+1 ≤ zj+1 (componentwise)

keeping in mind the fact that xr and ys have the same parity if they have the same sign for all

r, s ∈ [m̃] (so ys ≤ xr + 1 implies ys ≤ xr for all r, s ∈ [m̃]). For example, if q < p, then yp ≤ a

(since uj+1 ≤ vj+1), while yk ≤ xk + 1 (since uj ≤ vj) so yk ≤ xk if p + 1 ≤ k ≤ m̃. Similarly,

if q > p, then yp+1 ≤ a (since uj+1 ≤ vj+1) while b ≤ xq+1 so b ≤ xq, while yk ≤ xk + 1 (since

uj ≤ vj) so yk ≤ xk if q + 1 ≤ k ≤ m̃, and yk ≤ xk−1 + 1 (since uj+1 ≤ vj+1) so yk ≤ xk−1 if

p+ 2 ≤ k ≤ q. The case p = q is even simpler, and is therefore omitted.

Consider now u−j−2, z−j−2, v−j−2 and u−j−1, z−j−1, v−j−1.Then reasoning as above we have

that there are {x1, . . . , xm̃}<, {y1, . . . , ym̃}< ⊆ [±(2m)] , where m̃ := m− j+1
2 , such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

z−j−2 = (−2m− 1, x1, x1 + 1, . . . , xm̃, xm̃ + 1)

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1)

v−j−1 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

z−j−1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

u−j−1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1,−b, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

where p, q ∈ [m̃]. As above, the fact that u−j−2 ≤ v−j−2 and u−j−1 ≤ v−j−1 easily implies that

u−j−2 ≤ z−j−2 and u−j−1 ≤ z−j−1. For example, if q < p, then yk ≤ xk+1 (since u−j−2 ≤ v−j−2)

so yk ≤ xk for 1 ≤ k ≤ p and hence −b < yq+1 ≤ xq+1. Similarly, if q ≥ p.

Consider now the case j < −1 (so j ≤ −3). Assume first that j + 1 /∈ DR(v). Consider

uj , zj , vj , uj+1, zj+1, vj+1. If u−1(−2m− 1) > j then we conclude exactly as in the case j > 0. So

assume that u−1(−2m−1) < j. Then reasoning as above we conclude that there are {x1, . . . , xm̃}<,

{y1, . . . , ym̃}< ⊆ [±(2m)], where m̃ := m+ j+1
2 , such that

vj = (x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj = (x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1)

vj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

21



uj+1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

vj+2 = (x1, x1 + 1, . . . , xp, xp + 1, a, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

uj+2 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c, c+ 1, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

where a := v(j + 1) (= z(j + 1)), c := u(j + 1), and p, q ∈ [m̃]. By our hypothesis u ≤ v so

uj ≤ vj , uj+1 ≤ vj+1, and uj+2 ≤ vj+2 (componentwise). As above, this implies that uj ≤ zj and

uj+1 ≤ zj+1. For example, if p < q, then yp+1 ≤ a+ 1 (so yp+1 + 1 ≤ xp+1), yp+ 1 ≤ a, c ≤ xq + 1,

and yi ≤ xi−1 + 1 (so yi ≤ xi−1) for p + 2 ≤ i ≤ q (since uj+2 ≤ vj+2), while yi ≤ xi + 1 (so

yi ≤ xi) for p + 1 ≤ i ≤ m̃ ( since uj ≤ vj). Similarly, if q < p, then yp ≤ a and yi ≤ xi + 1 (so

yi ≤ xi) for p + 1 ≤ i ≤ m̃ (since uj+1 ≤ vj+1). Finally, if q = p, then c ≤ a + 1, yp+1 ≤ a and

yi ≤ xi + 1 (so yi ≤ xi) for p+ 1 ≤ i ≤ m̃ (since uj+2 ≤ vj+2).

Consider now u−j−1, v−j−1, z−j−1, u−j−2, v−j−2, z−j−2. If u−1(−2m−1) > j then we conclude

exactly as in the case j > 0. So assume that u−1(−2m−1) < j. Then as above, since u, v, and z are

all Wachs permutations we conclude that there are {x1, . . . , xm̃}< ⊆ [±(2m)] and {y1, . . . , ym̃}< ⊆
[±(2m)] such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

z−j−2 = (−2m− 1, x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

v−j−1 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

z−j−1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

u−j−1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c, c+ 1, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

v−j−3 = (x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

u−j−3 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1)

where m̃ := m − j+3
2 , −a := v(−j − 1) (= z(−j − 1)), and c∗ := u(−j − 2), for some p, q ∈ [m̃].

It is then not hard to conclude that u−j−2 ≤ z−j−2 and u−j−1 ≤ z−j−1. For example, if p ≤ q,

then yi ≤ xi + 1 (since u−j−2 ≤ v−j−2) so yi ≤ xi for 1 ≤ i ≤ p. If p > q then yi ≤ xi + 1 ( since

u−j−3 ≤ v−j−3) so yi ≤ xi for 1 ≤ i ≤ m̃ and hence c+ 1 < yq+1 ≤ xq+1.

Assume now that (j < −1 and) j+1 ∈ DR(v). Then vk = zk if k ∈ [±(2m+1)]\{−j−2, j+1}.
Assume first that u−1(2m + 1) ≥ −j. Let a := v(j + 2) so v(j + 1) = a + 1. Then there are

x1, . . . , xm̃, y1, . . . , ym̃ ∈ [±(2m)], where m̃ := 2m−3−j
2 such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (10)

z−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (11)

and

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1),

for some 0 ≤ p, q ≤ m̃ where c∗ := u(−j− 2). It is then easy to see that u−j−2 ≤ z−j−2. Indeed, if

q < p then, since u−j−2 ≤ v−j−2, yp ≤ −a so, as above, yp ≤ −a− 1 and hence u−j−2 ≤ z−j−2. If
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q ≥ p then yp ≤ xp + 1 (since u−j−2 ≤ v−j−2) so yp ≤ xp. But xp + 1 < −a hence yp + 1 ≤ −a− 1

so u−j−2 ≤ z−j−2.

Similarly, there are {x1, . . . , xm̃}<, {y1, . . . , ym̃}< ∈ [±(2m)], where m̃ := 2m+j+1
2 , such that

vj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (12)

zj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (13)

and

uj+1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1),

for some 0 ≤ p, q ≤ m̃, where c∗ := u(j + 1), and we conclude exactly as in the last case.

Assume now that u−1(2m+ 1) < −j. Then there are x1, . . . , xm̃, y1, . . . , ym̃+1 ∈ [±2m], where

m̃ := 2m+1+j
2 such that (12) and (13) hold and

uj+1 = (y1, y1 + 1, . . . , ym̃+1, ym̃+1 + 1)

and the result follows easily. Similarly, there are x1, . . . , xm̃, y1, . . . , ym̃ ∈ [±2m], where m̃ :=
2m−3−j

2 , such that (10) and (11) hold and

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1, 2m+ 1)

for some 0 ≤ p ≤ m̃. Hence, since u−j−2 ≤ v−j−2, yp ≤ xp + 1 < −a− 1 so yp + 1 ≤ −a− 1.

Finally, if j = −1 then z = v(−1, 1) so there are x1, . . . , xm, y1, . . . , ym ∈ [±2m] such that

v−1 = (x1, x1 + 1, . . . , xm, xm + 1, 2m + 1), z−1 = (−2m − 1, x1, x1 + 1, . . . , xm, xm + 1) and

u−1 = (−2m − 1, y1, y1 + 1, . . . , ym, ym + 1), so the conclusion follows easily. This concludes the

proof.

Recall that if v = (σ, S, i) ∈ W(B2m+1) then we let v̌ = (σ, S) ∈ W(B2m). We can now prove

the main result of this section.

Theorem 4.10. W(Bn) is graded, with rank function `W , and its rank is n2 −
⌊
n
2

⌋2
.

Proof. If n is even then this follows from Theorem 4.7. So assume that n = 2m + 1 for some

m > 0. Since W(B2m+1) has both a maximum and a minimum element it is enough to show that

if u, v ∈ W(B2m+1) and u � v then `W(u, v) = 1. So let u, v ∈ W(B2m+1) be such that u � v.

Let j := u−1(2m + 1), and i := v−1(2m + 1). Since u < v we have that i ≤ j. If i < j then by

Theorem 4.9 we have that u ≤ c(v) < v so u = c(v) and hence `W(u, v) = 1. If i = j then ǔ � v̌

so, by Theorem 4.7, `W(ǔ, v̌) = 1 and hence, by (8), `W(u, v) = 1. Finally, it is not difficult to see,

by our definition of `W , that `W(w0(B2m+1)) = 3m2 + 4m+ 1.

We remark that the sequence {`W(w0(B2m))}m∈P gives the number of edges of the complete

tripartite graph Km,m,m (see A033428 in OEIS), and {`W(w0(B2m+1))}m∈P is the sequence of

octagonal numbers (see A000567 in OEIS). We can now compute the rank-generating function of

(W(Bn),6).
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Corollary 4.11. Let m > 0. Then

W(B2m)(x, `W) = (1 + x)m[m]x3 !

m∏
i=1

(1 + x3i−1)

and

W(B2m+1)(x, `W) = [m+ 1]x2(1 + x2m+1)(1 + x)m[m]x3 !

m∏
i=1

(1 + x3i−1).

Proof. Note first that by our definition and Proposition 4.3 if u ∈ W(B2m), u = (σ, S), then

`W(u) = 3`B(σ) + |S| − neg(σ). Therefore∑
u∈W(B2m)

x`W(u) =
∑
σ∈Bm

∑
S⊆[m]

x3`B(σ)+|S|−neg(σ) = (1 + x)m
∑
σ∈Bm

x3`B(σ)−neg(σ).

Let J := [m]. Then by [2, Prop. 2.4.4] every element of σ ∈ Bm may be expressed in a unique way as

σ = zw where w ∈ (Bm)J and z ∈ (Bm)J . But the elements of (Bm)J are permutations of Sm and

the z ∈ (Bm)J are characterized by the fact that z(1) < z(2) < · · · < z(m). Hence these elements

z are in bijection with subsets S ⊆ [m], where the subset S is the set of negative values taken by σ.

Furthermore, we then have that `B(σ) = inv(σ) + neg(σ) + nsp(σ) = inv(w) + neg(z) + nsp(z) =

inv(w) + |S|+
∑
s∈S(s− 1) = inv(w) +

∑
s∈S s. We therefore have that∑

σ∈Bm

x3`B(σ)−neg(σ) =
∑
w∈Sm

∑
S⊆[m]

x3 inv(w)−|S|+3
∑

s∈S s =
∑
w∈Sm

x3 inv(w)
∑
S⊆[m]

x
∑

s∈S(3s−1)

and the first equation follows. For the second formula we have, using Proposition 4.8 and (7),

∑
u∈W(B2m+1)

x`W(u) =

( −1∑
i=−m−1

x2m−2i−1 +

m+1∑
i=1

x2(m−i+1)

)
W(B2m)(x, `W)

= [m+ 1]x2(1 + x2m+1)W(B2m)(x, `W).

Theorem 4.10 enables us to explicitly determine the cover relations in W(Bn) for n odd.

Corollary 4.12. Let u, v ∈ W(B2m+1), u = (i, σ, S), v = (j, τ, T ) (σ, τ ∈ Bm, S, T ⊆ [m],

i, j ∈ [±(m+ 1)]). Then u� v if and only if either one of the following conditions is satisfied:

1. i = j, σ = τ , and S � T ;

2. j = i− 1, σ = τ and either |j + χ(j < 0)| ∈ S, T = S \ {|j + χ(j < 0)|} if j 6= −1, or S = T

if j = −1;

3. i = j, σ � τ , T ∩ {|a|, |b|} = ∅ and S = T ∪ {|a|, |b|}, where (a, b)B = τσ−1.

Proof. Note that, sinceW(B2m+1) is graded, and its rank function is `W , u�v if and only if u ≤ v
and `W(u, v) = 1. If either 1. or 2. hold then it is easy to check that u ≤ v and `W (u, v) = 1.

Assume now that 3. holds. Suppose first that τ = σ(a, b)(−a,−b). Since σ � τ we have from

Theorem 2.7 that ab > 0. We may assume that 0 < a < b. Again by Theorem 2.7 we have that

{k ∈ [a + 1, b − 1] : σ(a) < σ(k) < σ(b)} = ∅. This, by 3., implies that inv(v) − inv(u) = 4 − 2,
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neg(v) = neg(u), and nsp(v) = nsp(u). Hence `W(u, v) = `B(u, v)− `B(σ, τ) = 2− 1 = 1. Suppose

now that τ = σ(c,−c). We may clearly assume that c > 0. Then by Theorem 2.7 {k ∈ [c − 1] :

−σ(c) < σ(k) < σ(c)} = ∅. This, again by 3., implies that inv(v) − inv(u) = −2(σ(c) − 1) − 1,

neg(v) = neg(u)+2, and nsp(v) = nsp(u)+2(σ(c)−1)+1. Hence `W(u, v) = `B(u, v)−`B(σ, τ) =

2− 1 = 1.

Conversely, assume that u � v. If j > i then by Theorem 4.9 u ≤ c(v) < v so u = c(v). If

j = −1 then 2. follows easily from (9). If j 6= −1 then v(pos(v) + 1) < v(pos(v) + 2) (else, by (9),

v−1(2m + 1) = c(v)−1(2m + 1) so i = j, a contradiction) and 2. again follows from (9). If i = j

and σ = τ then it follows easily from Proposition 2.6 and Theorem 2.4 that S ⊆ T and 1. follows

since u � v. So assume (i = j and) σ < τ . Then, since i = j, (σ, S) � (τ, T ) in W(B2m) so 3.

follows from Corollary 4.6.

So, for example, inW(B9) we have that [9, 2, 1,−3,−4, 8, 7,−6,−5]�[−9, 2, 1,−3,−4, 8, 7,−6,−5]

�[1, 2,−9,−3,−4, 8, 7,−6,−5]�[1, 2,−9,−3,−4, 8, 7,−5,−6]�[1, 2,−9,−6,−5, 8, 7,−4,−3], where

the first two covering relations are of type 2. (with j = −1, and j = −2, respectively), the third

one is of type 1., and the fourth one of type 3., with (a, b)B = (2, 4)(−2,−4).

The next theorem characterizes the Bruhat order on signed Wachs permutations, in the odd

case. Note that it generalizes and puts in perspective the results of Proposition 4.8.

Theorem 4.13. Let m > 0 and u, v ∈ W(B2m+1), u = (i, σ, S), v = (j, τ, T ). Then u 6 v if and

only if

σ 6 τ , S(u, v) ⊆ T (u, v), and j 6 i ,

where, for X ⊆ [m], X(u, v) := X∩([min{|i|, |j|} − 1] ∪ [max{|i|, |j|},m])∩F (σ, τ), being F (σ, τ) :=

{i ∈ [m] : σ(i) = τ(i)}. Moreover `W(u) = 3`B(σ) + |S| − neg(σ) + 2(m− i+ 1)− 3χ(i < 0).

Proof. Let u 6 v. We may assume u C v. It is clear from Corollary 4.12 that σ 6 τ and j 6 i.

Furthermore in case 1 of Corollary 4.12 and in case 2 with j = −1 we have that S ⊆ T and then

S(u, v) ⊆ T (u, v). In case 2 with j 6= −1 we have that i and j have the same sign and F (σ, τ) = [m];

hence T = S \ {j} if i > 0, so T (u, v) = (S \ {j}) ∩ ([j − 1] ∪ [j + 1,m]) = S(u, v). If i < 0 then

T = S \ {|i|} and T (u, v) = (S \ {|i|})∩ ([|i| − 1] ∪ [|i|+ 1,m]) = S(u, v). Finally in case 3 we have

that F (σ, τ) = [m] \ {|a|, |b|}; since S = T ∪ {|a|, |b|} we obtain T (u, v) = S(u, v).

Now let σ 6 τ , j 6 i and S(u, v) ⊆ T (u, v). Assume j 6 i < 0. We then have the following

chain in (W(B2m+1),6):

(i, σ, S) 6 (i, σ, S ∪ [|i|, |j| − 1])

C (i− 1, σ, (S ∪ [|i|+ 1, |j| − 1]) \ {|i|})

C (i− 2, σ, (S ∪ [|i|+ 2, |j| − 1]) \ {|i|, |i|+ 1})

C ... C (j, σ, S \ [|i|, |j| − 1]) 6 (j, τ, T ),

where the last inequality follows from Proposition 4.2 and the facts that (S \ [|i|, |j| − 1])∩F (σ, τ) =

S(u, v) ⊆ T (u, v) ⊆ T and (j, σ, S \ [|i|, |j|−1]) 6 (j, τ, T ) if and only if (σ, S \ [|i|, |j|−1]) 6 (τ, T ).
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If j < 0 < i and |j| < i we have the following chain in (W(B2m+1),6):

(i, σ, S) 6 (i, σ, S ∪ [|j|, i− 1])

C (i− 1, σ, (S ∪ [|j|, i− 2]) \ {i− 1})

C (i− 2, σ, (S ∪ [|j|, i− 3]) \ {i− 2, i− 1})

C ... C (−j, σ, S \ [|j|, i− 1]) 6 (j, σ, S \ [|j|, i− 1]) 6 (j, τ, T ),

where the last inequality follows as in the previous case. If j < 0 < i and |j| > i have that

(i, σ, S) 6 (−i, σ, S) 6 (j, τ, T ), where the second inequality follows by the first case above. The

case i > j > 0 is similar and easier, so we omit it. The length formula follows from Proposition

4.8.

We illustrate the previous theorem with an example. Letm = 4, u = [3, 4,−5,−6, 1, 2, 9,−7,−8]

and v = [−3,−4,−9, 1, 2,−5,−6,−8,−7]. Then u = (4, [2,−3, 1,−4], {2, 4}), and v = (−2, [−2, 1,−3,−4],

{1, 3}), so σ = [2,−3, 1,−4] ≤ [−2, 1,−3,−4] = τ , F (σ, τ) = {4}, j = −2 ≤ 4 = i, and

S(u, v) = {2, 4} ∩ {1, 4} ∩ {4} = {4}, T (u, v) = {1, 3} ∩ {1, 4} ∩ {4} = ∅, so u 6≤ v in W(B9).

The following lemma is the analogue of Lemma 3.14 and can be easily deduced from Theorem

4.13 so we omit its verification.

Lemma 4.14. Let m > 0 and u, v ∈ W(B2m+1). If u 6 (i, σ, S1) 6 v and u 6 (i, σ, S2) 6 v in

(W(B2m+1),6) then u 6 (i, σ, S1 ∪ S2) 6 v.

The next result gives an explicit expression for the Möbius function of lower intervals in the

poset of signed Wachs permutations partially ordered by Bruhat order, and shows, in particular,

that it has values in {0, 1,−1}. The proof is similar to the one of Proposition 3.15 and we omit it.

Proposition 4.15. Let m > 0, and v = (j, τ, T ) ∈ W(B2m+1). Then

µ(e, v) =

{
(−1)|T |, if τ = e and j = m+ 1;

0, otherwise.

In particular, if v = (τ, T ) ∈ W(B2m) then

µ(e, v) =

{
(−1)|T |, if τ = e;

0, otherwise.

By Proposition 4.15 and Theorem 4.10 we deduce the following result.

Corollary 4.16. The characteristic polynomial of W(Bn) with the Bruhat order is

(x− 1)b
n
2 cxn

2−bn
2 c2−bn

2 c,

for all n ∈ P.
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[−1,−2,−3]

[−2,−1,−3]

[2, 1,−3] [−3,−1,−2]

[1, 2,−3] [−3,−2,−1] [3,−1,−2]

[−3, 2, 1] [3,−2,−1]

[−3, 1, 2] [3, 2, 1] [−1,−2, 3]

[3, 1, 2] [−2,−1, 3]

[2, 1, 3]

[1, 2, 3]

Figure 2: Hasse diagram of (W(B3),6).

33 32 31 30

34 16 15 14 29

35 17 5 4 13 28

36 18 6 3 12 27

19 7 1 2 11 26

20 8 9 10 25

21 22 23 24

Figure 3: Reading clockwise, the bold numbers on the diagonals of the hexagon are the se-

quences {3, 12, 27, . . .} = {rk(W(B2m))}m>0, {2 rk(W(S2m))}m>0, {rk(W(B2m+1))}m>0 and

{2 rk(W(S2m+1))}m>0.
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5 Weak orders on Wachs permutations and signed Wachs

permutations

In the previous sections we have proved several results concerning the Bruhat order on Wachs

permutations and signed Wachs permutations. The Bruhat order of a Coxeter group is a refinement

of two fundamental orders, the left weak order 6L and the right one 6R (see, e.g. [2, Chapter 3]),

whose Hasse diagrams are isomorphic to the Cayley graph of the group, relative to the considered

Coxeter presentation. Then it is natural to ask when our results hold, and in what terms, for the

left and right weak orders on Wachs permutations and signed Wachs permutations.

Differently from the Bruhat order, for the right weak order the answer is easily described as

a Cartesian product (compare with Propositions 4.3 and 4.8). For reasons that will become clear

in the next two pages we begin with signed Wachs permutations. Recall that the set of reflections

of Bn is {(a, b)(−a,−b) : 1 6 a < |b| 6 n} ∪ {(a,−a) : 1 6 a 6 n}. Therefore, if v ∈ Bn,

(a, b)(−a,−b) ∈ TL(v) if and only if b > 0 and b is to the left of a in the complete notation of v,

or b < 0 and b is to the right of a, while (a,−a) ∈ TL(v) if and only if a is to the left of −a.

Theorem 5.1. Let n > 0; then (W(Bn),6R) '
(
Bdn

2 e,6R
)
×P

([⌊
n
2

⌋])
. In particular, (W(Bn),6R

) is a complemented lattice.

Proof. Let n be even; for v = (τ, T ) ∈ W(Bn) we have that

TL(τ, T ) =
⊎

(a,−a)B∈TL(τ)

{(2a− 1,−2a+ 1)B , (2a,−2a)B , (2a− 1,−2a)B}

⊎
(a,b)B∈TL(τ):b>0

{(2a− 1, 2b− 1)B , (2a− 1, 2b)B , (2a, 2b− 1)B , (2a, 2b)B}

⊎
(a,b)B∈TL(τ):b<−a

{(2a− 1, 2b+ 1)B , (2a− 1, 2b)B , (2a, 2b+ 1)B , (2a, 2b)B}

] {(v(2a), v(2a− 1))B : a ∈ T, τ(a) > 0}

] {(−v(2a− 1),−v(2a))B : a ∈ T, τ(a) < 0} .

Note that in the first group of reflections the non-symmetric ones (i.e., not of the form (k,−k)

for some k ∈ [n]) are never simple and have odd first element, and even and negative second one.

The only simple reflections in the second line have even first element and odd positive second

one. The ones in the third line are never simple, have negative second element, and if the first

one is odd and the second one even then the difference between the absolute values of the two

is ≥ 3 (and hence are disjoint from the non-symmetric ones in the first line). The reflections in

the last two lines are always simple, and have odd first element and even and positive second

one, since (v(2a), v(2a − 1))B = (2τ(a) − 1, 2τ(a))B if τ(a) > 0 while (−v(2a − 1),−v(2a))B =

(−2τ(a)− 1,−2τ(a))B if τ(a) < 0.

Therefore, if u = (σ, S) ∈ W(Bn) and v = (τ, T ) ∈ W(Bn), we have that TL(u) ⊆ TL(v) if and

only if TL(σ) ⊆ TL(τ) and σS ⊆ τT , where, for X ⊆ [n/2] and w ∈ Bn/2, wX := {w(i) : i ∈ X}.
Indeed, if TL(u) ⊆ TL(v) and (a, b)B ∈ TL(σ) is such that (say) b < −a then, by the equation

written at the beginning of this proof, (2a, 2b)B ∈ TL(u) so (2a, 2b)B ∈ TL(v) which implies, by

the remarks above, that there is (c, d)B ∈ TL(τ) such that c < −d and (2a, 2b)B = (2c, 2d)B ,
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so (a, b)B = (c, d)B ∈ TL(τ). Similarly all the other cases. The converse is clear. Hence, by

Proposition 2.3, the map (τ, T ) 7→ (τ, τT ) gives the desired poset isomorphism.

Let n be odd and v = (j, τ, T ) ∈ W(Bn). Then similarly

TL(j, τ, T ) =
⊎

(a,−a)B∈TL(τ̄):a 6=dn/2e

{(2a− 1,−2a+ 1)B , (2a,−2a)B , (2a− 1,−2a)B}

⊎
(a,b)B∈TL(τ̄):0<b<dn/2e

{(2a− 1, 2b− 1)B , (2a− 1, 2b)B , (2a, 2b− 1)B , (2a, 2b)B}

⊎
(a,b)B∈TL(τ̄):−dn/2e<b<−a

{(2a− 1, 2b+ 1)B , (2a− 1, 2b)B , (2a, 2b+ 1)B , (2a, 2b)B}

⊎
(a,b)B∈TL(τ̄):b=dn/2e

{(2a− 1, n)B , (2a, n)B}

⊎
(a,b)B∈TL(τ̄):b=−dn/2e,a 6=−b

{(2a− 1,−n)B , (2a,−n)B}

]{(n,−n)B : (dn/2e,−dn/2e)B ∈ TL(τ̄)}

] {(2τ(a)− 1, 2τ(a))B : a ∈ T, τ(a) > 0}

] {(2τ(a)− 1, 2τ(a))B : −a ∈ T, τ(a) > 0}

where

τ̄(k) :=


τ(k), if k < |j|;
sgn(j) · (n+ 1)/2, if k = |j|;
τ(k − 1), if k > |j|,

for all k ∈ dn/2e. The considerations made in the even case apply line by line also to this case,

with the added remark that the reflections in lines 4, 5, and 6 are the only ones with n or −n in

the second position. Therefore, if u = (i, σ, S) ∈ W(Bn) and v = (j, τ, T ) ∈ W(Bn), we have that

TL(u) ⊆ TL(v) if and only if TL(σ̄) ⊆ TL(τ̄) and σS ⊆ τS , and we conclude as in the previous case.

The last statement follows from the fact that (Bdn
2 e,6R) is a complemented lattice (see, e.g., [2,

Cor. 3.2.2]).

Regarding left weak order we have the following observations.

Proposition 5.2. Let m > 0. The posets (W(B2m),6R) and (W(B2m),6L) are isomorphic.

Proof. The assignment v 7→ v−1 defines a bijective function W(B2m) → W(B2m) and u 6R v if

and ony if u−1 6L v−1, for all u, v ∈ B2m.

On the other hand, the poset (W(B3),6L) is not graded.

For Wachs permutations the situation is analogous but simpler so we leave to the interested

reader the proof of the following result.

Theorem 5.3. Let n > 0; then (W(Sn),6R) '
(
Sdn

2 e,6R
)
×P

([⌊
n
2

⌋])
. In particular, (W(Sn),6R

) is a complemented lattice.

As in the case of signed Wachs permutations, the posets (W(S2m),6R) and (W(S2m),6L) are

isomorphic, for all m > 0. On the other hand, the poset (W(S5),6L) is not graded.
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6 Open problems

In this section we collect some open problems and conjectures which arise in this work, and the

evidence that we have in their favor.

We have proved in Propositions 3.15 and 4.15 that the Möbius function of lower intervals in

the posets of Wachs permutations and signed Wachs permutations partially ordered by Bruhat

order always has values in {0, 1,−1}. We feel that this is true in general.

Conjecture 6.1. Let n ∈ P. Then

µ(u, v) ∈ {0, 1,−1}

for all u, v ∈ W(Sn).

We have verified Conjecture 6.1 for n ≤ 8.

Conjecture 6.2. Let n ∈ P. Then

µ(u, v) ∈ {0, 1,−1}

for all u, v ∈ W(Bn).

We have verified Conjecture 6.2 for n ≤ 6. Note that since W(Sn) is isomorphic, as a poset,

to the interval [e, [n, . . . , 3, 2, 1]] in W(Bn), Conjecture 6.2 implies Conjecture 6.1.

Recently Davis and Sagan [6] studied the convex hull of various sets of pattern avoiding per-

mutations. Following this idea, it is natural to look at the convex hulls c(W(Sn)) and c(W(Bn))

of Wachs and signed Wachs permutations in Rn. In this respect, we feel that the following is true.

Conjecture 6.3. Let m ∈ P. Then c(W(S2m)) is a simple polytope.

We have verified Conjecture 6.3 for m ≤ 5. According to SageMath [21] c(W(S9)) is not simple.

Conjecture 6.4. Let m ∈ P. Then c(W(B2m)) is a simple polytope.

We have verified Conjecture 6.4 for m ≤ 3. According to SageMath [21] c(W(B3)) is not

simple.

Regarding left weak order, we feel that the following might be true.

Problem 1. Is (W(S2m+1),6L) a lattice for all m ∈ P?

We have verified that the answer to Problem 1 is yes if m ≤ 4.

Acknowledgments. The first named author was partially supported by the MIUR Excellence

Department Project CUP E83C18000100006.

References

[1] S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, 182,
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de France, Paris, 2001. viii+167 pp.

[18] R. Richardson, T. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35

(1990), 389–436; and 49 (1994), 231–238.

31



[19] P. Sentinelli, Complements of Coxeter group quotients, J. Algebraic Combin., 41 (2015), 727–

750.

[20] R. P. Stanley, Enumerative Combinatorics , vol.1, Second Edition, Cambridge Studies in

Advanced Mathematics, no.49, Cambridge Univ. Press, Cambridge, 2012.

[21] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.6), 2019,

https://www.sagemath.org.

[22] M. L. Wachs, An involution for signed Eulerian numbers, Discrete mathematics 99.1-3 (1992):

59-62.

32


