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Introduction

In this notes we treat the problem of the description of variational limits of discrete
lattice systems. Consider a fixed reference open set Ω ⊂ R

N , and given ε > 0 the
reference lattice εZN . We consider energies defined on the discrete functions i �→ ui

for {i ∈ Z
N : iε ∈ Ω}, of the general form

Eε({ui}) =
∑

k

∑
i

ψk
ε (ui+k − ui),

where the sum is performed for k ∈ Z
N and on indices i ∈ Z

N such that iε ∈ Ω
and (i+ k)ε ∈ Ω. If we picture the lattice εZn ∩ Ω as the reference configuration
of a set of material points interacting through some forces, and ui represents the
displacement of the i-th point, then ψk

ε can be thought as the energy density of the
interaction of points with distance kε in the reference lattice. Note that the only
assumption we make is that ψk

ε depends on {ui} through the differences ui+k −ui.
It is usually more convenient to make change in the notation and set

ϕj
ε(z) = ε−Nψj

ε(jεz);

In such a way we write

Eε({ui}) =
∑

k

∑
i

εNϕk
ε

(ui+k − ui

kε

)
,

to highlight the dependence of Eε on ‘discrete difference quotients’.
Our goal is to describe the behaviour of problems of the form

min
{
En({ui})−

∑
i

εNuifi : {ui} = φ on ∂Ω
}
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(and similar), where the boundary conditions are given appropriately, and to show
that for a quite general class of energies these problems have a limit continuous
counterpart. Here {fi} represents the external forces. More general problems can
be also examined. To make this asymptotic analysis precise, we use the notation
and methods of De Giorgi’s Γ-convergence (see [3], [8]). We will show that, under
some growth conditions of superlinear growth and upon suitably identifying the
discrete functions {ui} with some interpolations, the free energies Eε ‘Γ-converge’
to a limit energy F . In the simplest case, the limit functional F is defined on a
Sobolev space and takes the form

F (u) =
∫

Ω

ψ(∇u) dx.

This usually follows from the ‘superlinear growth’ of some interactions. As a con-
sequence we obtain that minimizers of the problem above are ‘very close’ to min-
imizers of a classical problem of the Calculus of Variations

min
{∫ L

0

(
ψ(∇u) − fu

)
dx : u = φ on ∂Ω

}
.

If the growth conditions of superlinear growth fail the identification is more com-
plex and the limit problem involves energies defined on functions of bounded vari-
ation with a bulk and surface part (i.e., in the terminology of De Giorgi the limit
problem is a ‘free-discontinuity problem’). In the notation of the SBV spaces of
Ambrosio and De Giorgi (see [1]) the limit functional will be in this case of the
form

F (u) =
∫

Ω

ψ(∇u) dx+
∫

S(u)

g(u+ − u−, νu) dHN−1,

and the limit problem must be changed accordingly.
The energy densities ψ and g can be explicitly identified by a series of op-

erations on the functions ψk
ε , which follow some general ‘principles’. In order to

describe those principles, we start with the one-dimensional case and the limit is
defined on a Sobolev space.

1. Nearest-neighbour superlinear interaction: a convexification principle. The
case when only nearest-neighbour interactions are taken into account (i.e., ψk

ε = 0
if k �= 1) and at least one of the interactions is uniformly of superlinear type the
limit energy density is given by the limit of the convex envelopes of the functions
ϕ1

ε(z), which exists up to subsequences.

If the limit is defined on a subspace of BV then we have the appearance of
the interfacial energy.

2. Nearest-neighbour (sub)linear interactions: a separation of scales principle.
Still in the case when only nearest-neighbour interactions are taken into account,
if all interactions are uniformly of at most linear type then an interfacial energy
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appears, whose energy density g can be computed by examining the behaviour of
the (subadditive envelopes of the) scaled energy densities ϕ1

ε(εz)/ε.
When more interactions are taken into account we have to describe their

mutual interference.
3. Long-range interactions: a clustering principle. The description of the limit

energy gets more complex when not only nearest-neighbour interactions come into
play. In the case when interactions up to a fixed order K are taken into account
(i.e., ψj

ε = 0 if |j| > K), the main idea is to show that (upon some controllable
errors) we can find a lattice spacing η (possibly much larger than ε) such that Eε

is ‘equivalent’ (as Γ-convergence is concerned) to a nearest-neighbour interaction
energy on a lattice of step size η, of the form

Eη({uj}) =
∑

j

ηϕη

(uj+1 − uj

η

)
,

and to which then the recipe above can be applied.
The crucial points are the computation of ϕη and the choice of the scaling η.

In the case of next-to-nearest neighbours this computation is particularly simple,
as it consists in choosing η = 2ε and in ‘integrating out the contribution of first
neighbours’: in formula,

ϕ2ε(z) = ϕ2
ε(z) +

1
2

min{ϕ1
ε(z1) + ϕ1

ε(z2) : z1 + z2 = 2z}.

In a sense this is a formula of relaxation type. If K > 2 then the formula giving
ψn resembles more a homogenization formula, and we have to choose ηn = Knλn

with Kn large. In this case the reasoning that leads from En to En is that the
overall behaviour of a system of interacting point will behave as clusters of large
arrays of neighbouring points interacting through their ‘extremities’.

4. Unbounded-range interactions: non local terms. When the number of inter-
action orders we consider is not bounded the description becomes more complex.
In particular, additional non-local terms may appear in F through some type of
(possibly noninear) Dirichlet form.

We will show how all these principles carry also to higher dimension (to some
extent) upon suitably modifying the representation formulas in the spirit of the
homogenization of free-discontinuity problems in nonlinear elasticity.
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Chapter 1

Introduction

1.1 Limits of discrete problems

We face the description of variational limits of discrete problems (for the sake
of brevity in a one-dimensional setting). Given n ∈ N and points xni = iλn
(λn = L/n is the lattice spacing, which plays the role of the small parameter ε)
we consider energies of the general form

En({ui}) =
n∑

j=1

n−j∑
i=0

λnψ
j
n

(ui+j − ui
jλn

)
.

If we picture the set {xni } as the reference configuration of an array of material
points interacting through some forces, and ui represents the displacement of
the i-th point, then ψj

n can be thought as the energy density of the interaction
of points with distance jλn (j lattice spacings) in the reference lattice. Note
that the only assumption we make is that ψj

n depends on {ui} through the
differences ui+j −ui, but we find it more convenient to highlight its dependence
on ‘discrete difference quotients’. For a quite general class of energies it is
possible to describe the behaviour of problems of the form

min
{
En({ui})−

n∑
i=0

λnuifi : u0 = U0, un = UL

}
(and similar), and to show that these problems have a limit continuous coun-
terpart. Here {fi} represents the external forces and U0, UL are the boundary
conditions at the endpoints of the interval (0, L). More general statement and
different problems can be also obtained. Under some growth conditions, mini-
mizers of the problem above are ‘very close’ to minimizers of a classical problem
of the Calculus of Variations

min
{∫ L

0

(
ψ(u′)− fu

)
dt : u(0) = U0, u(L) = UL

}
.
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2 CHAPTER 1. INTRODUCTION

The energy densities ψ can be explicitly identified by a series of operations on
the functions ψj

n. The case when only nearest-neighbour interactions are taken
into account,

En({ui}) =
n−1∑
i=0

λnψn

(ui+1 − ui
λn

)
,

is particularly simple. In this case, the limit energy density is given by the limit
of the convex envelopes of the functions ψn(z), which exists up to subsequences.
The description of the limit energy gets more complex when not only nearest-
neighbour interactions come into play. In the case when interactions up to a
fixed order K are taken into account:

En({ui}) =
K∑
j=1

n−j∑
i=0

λnψ
j
n

(ui+j − ui
jλn

)
(or, equivalently, ψj

n = 0 if j > K), the main idea is to show that (upon some
controllable errors) we can find a lattice spacing ηn (possibly much larger than
λn) such that En is ‘equivalent’ to a nearest-neighbour interaction energy on a
lattice of step size ηn, of the form

En({ui}) =
m−1∑
i=0

ηnψn

(ui+1 − ui
ηn

)
,

and to which then the recipe above can be applied. The crucial points are
the computation of ψn and the choice of the scaling ηn. In the case of next-
to-nearest neighbours this computation is particularly simple, as it consists in
choosing ηn = 2λn and in ‘integrating out the contribution of first neighbours’:
in formula,

ψn(z) = ψ2
n(z) +

1
2
min{ψ1

n(z1) + ψ1
n(z2) : z1 + z2 = 2z}.

If K > 2 then the formula giving ψn resembles more a homogenization process,
and we have to choose ηn = Knλn with Kn large. In this case the reasoning
that leads from En to En is that the overall behaviour of a system of interacting
point will behave as clusters of large arrays of neighbouring points interacting
through their ‘extremities’.

1.2 Γ-convergence

The questions risen above can be placed in a variational framework. The general
problem amounts to studying the asymptotic behaviour of a family of minimum
problems depending on a parameter; in an abstract notation,

min{Fε(u) : u ∈ Xε}. (1.1)
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An answer to this problem is provided by substituting such a family by an
‘effective problem’ (not depending on ε)

min{F (u) : u ∈ X}, (1.2)

which captures the relevant behaviour of minimizers. This notion of ‘conver-
gence of problems’ must be sensible, as it must include cases where the limit
problem is set on a space X completely different from all Xε, and even when X
is the same it may be very different from pointwise convergence. Furthermore,
it must not rely on any a priori ansatz on the asymptotic form of minimizers,
and it should in a sense itself suggest the precise meaning of this asymptotic
question, as this could not be supplied by problems (1.1).

Γ-convergence is a convergence on functionals which loosely speaking amounts
to requiring the convergence of minimizers of problems (1.1) and of their contin-
uous perturbations. The fact that this convergence is given in terms of conver-
gence of minimizers assures precisely that the limit ‘theory’ can be considered
as an effective theory, whose solutions capture the important properties of the
theories at level ε. We now derive the desired definition of convergence for func-
tionals from the requirements that it implies the convergence of minimizers and
minimum values (under suitable assumptions), that it is stable under contin-
uous perturbations, and that it is given in local terms (i.e., we can also speak
of convergence ‘at one point’). For the sake of simplicity, from here onwards
all our problems will be set on metric spaces, so that the topology is described
by just using sequences. The starting point will be the examination of the
so-called direct methods of the calculus of variations. The idea is very simple:
in order to prove the existence of a minimizer of a problem of the form

min{F (u) : u ∈ X}, (1.3)

we examine the behaviour of a minimizing sequence; i.e., a sequence (uj) such
that

limjF (uj) = inf{F (u) : u ∈ X}, (1.4)

which clearly always exists.
Such a sequence, in general might lead nowhere. The first thing to check is

then that we may find a converging minimizing sequence. This property may
be at times checked by hand, but it is often more convenient to check that an
arbitrary minimizing sequence lies in a compact subset K of X (i.e., since X
is metric, that for any sequence (uj) in K we can extract a subsequence (ujk)
converging to some u ∈ K). This property is clearly stronger than requiring that
there exists one converging minimizing sequence, but its verification often may
rely on a number of characterization of compact sets in different spaces. In its
turn this compactness requirement can be directly made on the functional F by
asking that it be coercive; i.e., that for all t its sub-level sets {F < t} = {u ∈ X :
F (u) < t} are pre-compact (this means that for fixed t there exists a compact
set Kt containing {F < t}, or, equivalently, in terms of sequences, that for all
sequences (uj) with supj F (uj) < +∞ there exists a converging subsequence).
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Again, this is an even stronger requirement, but it may be derived directly
from the form of the functional F and not from special properties of minimizing
sequences. Once some compactness properties of a minimizing sequence are
established, we may extract a (minimizing) subsequence, that we still denote by
(uj), converging to some u.

At this stage, the point u is a candidate to be a minimizer of F ; we have to
prove that indeed

F (u) = inf{F (u) : u ∈ X}. (1.5)

One inequality is trivial, since u can be used as a test function in (1.5) to
obtain an upper inequality for inf F

inf{F (u) : u ∈ X} ≤ F (u). (1.6)

To obtain a lower inequality we have to link the value at u to those computed
at uj, to obtain the right inequality

F (u) ≤ limjF (uj) = inf{F (u) : u ∈ X}. (1.7)

Since we do not want to rely on special properties of u or of the approximating
sequence (uj), but instead we would like to isolate properties of the functional
F , we require that for all u ∈ X and for all sequences (uj) tending to u we have
the inequality

F (u) ≤ lim infjF (uj). (1.8)

This property is called the lower semicontinuity of F . It is much stronger
than requiring (1.7), but it is much stabler under perturbations, and it may
be interpreted as a structure condition on F and often derived from general
considerations.

At this point we have not only proven that F admits a minimum, but we
have also found a minimizer u by following a minimizing sequence. We may
condensate the reasoning above in the following formula

coerciveness + lower semicontinuity ⇒ existence of minimizers, (1.9)

which summarizes the direct methods of the calculus of variations. It is worth
noticing that the coerciveness of F is easier to verify if we have many converging
sequences, while the lower semicontinuity of F is more easily satisfied if we have
few converging sequences. These two opposite requirements will result in a
balanced choice of the metric on X, which is in general not given a priory, but
in a sense forms a part of the problem.

We now turn our attention to the problem not of proving the existence of
a minimum for a single problem but of describing the behaviour of a family of
minimum problems depending on a parameter. In order to simplify the notation
we deal with the case of a sequence of problems

inf{Fj(u) : u ∈ Xj} (1.10)

depending on a discrete parameter j ∈ N; the case of a family depending on a
continuous parameter ε introduces only a little extra complexity in the notation.
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As j increases we would like these problems to be approximated by a ‘limit
theory’ described by a problem of the form

min{F (u) : u ∈ X}. (1.11)

In order to make this notion of ‘convergence’ precise we try to follow closely the
direct approach outlined above. In this case we start by examining a minimizing
sequence for the family Fj; i.e., a sequence (uj) such that

limj

(
Fj(uj)− inf{Fj(u) : u ∈ Xj}

)
= 0, (1.12)

and try to follow this sequence.
In many problems the space Xj indeed varies with j, so that now we have to

face a preliminary problem of defining the convergence of a sequence of functions
which belong to different spaces. This is usually done by choosing X large
enough so that it contains the domain of the candidate limit and all Xj . We
can always consider all functionals Fj as defined on this space X by identifying
them with the functionals

F̃j(u) =
{
Fj(u) if u ∈ Xj

+∞ if u ∈ X \Xj.
(1.13)

This type of identification is customary in dealing with minimum problems and
is very useful to include constraints directly in the functional. We may therefore
suppose that all Xj = X. If one is not used to dealing with functionals which
take the value +∞, one may regard this as a technical tool; if the limit functional
is not finite on the whole X it will always be possible to restrict it to its domain
domF = {u ∈ X : F (u) < +∞}.

As in the case of a minimizing sequence for a single problem, it is necessary
to find a converging minimizing (sub)sequence. In general it will be possible to
find a minimizing sequence lying in a compact set of X as before, or prove that
the functional themselves satisfy an equi-coerciveness property: for all t there
exists a compact Kt such that for all j we have {Fj < t} ⊂ Kt.

If a compactness property as above is satisfied, then from the sequence (uj)
we can therefore extract a converging subsequence (ujk). In this presentation
we may suppose that the whole sequence (uj) converges to some u (this is a
technical point that will be made clear in the next section).

First, we want to obtain an upper bound for the limit behaviour of the se-
quence of minima, of the form

lim supj inf{Fj(u) : u ∈ X} ≤ inf{F (u) : u ∈ X} ≤ F (u). (1.14)

The second inequality is trivially true; the first inequality means that for all
u ∈ X we have

lim supj inf{Fj(v) : v ∈ X} ≤ F (u). (1.15)

This is a requirement of global type; we can ‘localize’ it in the neighbourhood
of the point u by requiring a stronger condition: that for all δ > 0 we have

lim supj inf{Fj(v) : d(u, v) < δ} ≤ F (u). (1.16)
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By the arbitrariness of δ we can rephrase this condition as a condition on se-
quences converging to u as:

(limsup inequality) for all u ∈ X there exists a sequence (uj) converging to
u such that

lim supjFj(uj) ≤ F (u). (1.17)

This condition can be considered as a local version of (1.14); it clearly implies
all conditions above and (1.14) in particular.

Next, we want to obtain a lower bound for the limit behaviour of the sequence
of minima of the form

F (u) ≤ lim infjFj(uj) (1.18)

As we do not want to rely on particular properties of minimizers we regard u as
an arbitrary point in X and (uj) as any converging sequence; hence, condition
(1.18) can be deduced from the more general requirement:

(liminf inequality) for all u ∈ X and for all sequences (uj) converging to u
we have

F (u) ≤ lim infjFj(uj). (1.19)

This condition is the analog of the lower semicontinuity hypothesis in the case
of a single functional.

From the considerations above, if we can find a functional F such that the
liminf and limsup inequalities are satisfied and if we have a converging sequence
of minimizers, from (1.18) and (1.14) we deduce the chain of inequalities

lim supj inf{Fj(u) : u ∈ X} ≤ inf{F (u) : u ∈ X} ≤ F (u)
≤ lim infjFj(uj) = lim infj inf{Fj(u) : u ∈ X}. (1.20)

As the last term is clearly not greater than the first, all inequalities are indeed
equalities; i.e., we deduce that

(i) (existence) the limit problem min{F (u) : u ∈ X} admits a solution,
(ii) (convergence of minimum values) the sequence of infima inf{Fj(u) : u ∈

X} converges to this minimum value,
(ii) (convergence of minimizers) up to subsequences, the minimizing sequence

for (Fj) converges to a minimizer of F on X.
Therefore, if we define the Γ-convergence of (Fj) to F as the requirement that
the limsup and the liminf inequalities above both hold, then we may summarize
the considerations above in the formula

equi-coerciveness + Γ-convergence ⇒ convergence of minimum problems.
(1.21)

As in the case of the application of the direct methods, a crucial role will be
played by the type of metric we choose on X. In this case, again, it will be a
matter of balance between the convenience of a stronger notion of convergence,
that will make the liminf inequality easier to verify, and a weaker one, which
would be more convenient both to satisfy an equi-coerciveness condition and to
find sequences satisfying the limsup inequality.



Chapter 2

A quick guide to
Γ-convergence

This chapter is a quick summary of the main properties of Γ-convergence.
We recall the definition of Γ-convergence, and make some first remarks.

Definition 2.1 (Γ-convergence) We say that a sequence fj : X → R Γ-
converges in X to f∞ : X → R if for all x ∈ X we have

(i) (lim inf inequality) for every sequence (xj) converging to x

f∞(x) ≤ lim infjfj(xj); (2.1)

(ii) (lim sup inequality) there exists a sequence (xj) converging to x such that

f∞(x) ≥ lim supjfj(xj). (2.2)

The function f∞ is called the Γ-limit of (fj), and we write f∞ = Γ-limj fj .

Pointwise definition The definition above can be also given at a fixed point
x ∈ X: we say that (fj) Γ-converges at x to the value f∞(x) if (i), (ii) above hold;
in this case we write f∞(x) = Γ-limj fj(x). In this notation, fj Γ-converges to
f∞ if and only if f∞(x) = Γ-limj fj(x) at all x ∈ X.

If we want to highlight the role of the metric, we can add the dependence on
the distance d, and write Γ(d)-limj , Γ(d)-convergence, and so on.

Remark 2.2 (Γ-convergence as an equality of upper and lower bounds)
The liminf inequality (i) can be rewritten as

f∞(x) ≤ inf{lim infjfj(xj) : xj → x}.

Trivially, we always have

inf{lim infjfj(xj) : xj → x} ≤ inf{lim supjfj(xj) : xj → x},

7
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and, if (xj) is a recovery sequence for (ii) we have

inf{lim supjfj(xj) : xj → x} ≤ lim sup
j

fj(xj) ≤ f∞(x),

so that (i) and (ii) imply that we have

f∞(x) = min{lim infjfj(xj) : xj → x} = min{lim supjfj(xj) : xj → x} (2.3)

(and actually both minima are obtained as limits along a recovery sequence).
It is important to keep in mind this characterization as many properties of the
Γ-limit will be easily explained from it.

It is sometimes convenient to state the equality in (2.3) as an equality of
infima:

f∞(x) = inf{lim infjfj(xj) : xj → x} = inf{lim supjfj(xj) : xj → x}. (2.4)

This equality is indeed equivalent to the definition of Γ-limit; i.e., the Γ-limit
exists if and only if the two infima in (2.4) are equal. This characterization
will be important in that in this way the existence of the Γ-limit (which not
always exists) is expressed as the equality of two quantities which are always
defined, and which can (and will) be studied separately. The first quantity can
be thought as a lower bound for the Γ-limit, the second as an upper bound.

By (2.4) we obtain in particular that the Γ-limit, if it exists, is unique.

Remark 2.3 (Different ways of writing the limsup inequality) Note that
if (xj) satisfies the limsup inequality, then by (2.1) we have

f∞(x) ≤ lim infjfj(xj) ≤ lim supjfj(xj) ≤ f∞(x),

so that indeed f∞(x) = limjfj(xj); hence, (ii) can be substituted by

(ii)′ (existence of a recovery sequence) there exists a sequence (xj) converging
to x such that

f∞(x) = limjfj(xj). (2.5)

On the other hand, sometimes it is more convenient to prove (ii) with a small
error and then deduce its validity by an approximation argument; i.e., (ii) can
be replaced by

(ii)′′ (approximate limsup inequality) for all ε > 0 there exists a sequence
(xj) converging to x such that

f∞(x) ≥ lim supjfj(xj)− ε. (2.6)

In the following (and in the literature) all conditions (ii), (ii)′ and (ii)′′ are
equally referred to as the limsup inequality or as the existence of a recovery
sequence.
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Remark 2.4 (Stability under continuous perturbations) An important prop-
erty of Γ-convergence is its stability under continuous perturbations: if (fj) Γ-
converges to f∞ and g : X → [−∞,+∞] is a d-continuous function then (fj+g)
Γ-converges to f∞+g. This is an immediate consequence of the definition, since
if (i) holds then for all x ∈ X and xj → x we get

f∞(x) + g(x) ≤ lim infjfj(xj) + limjg(xj) = lim infj(fj(xj) + g(xj)),

while if (ii)′ above holds then we get

f∞(x) + g(x) = limjfj(xj) + limjg(xj) = limj(fj(xj) + g(xj)),

and (xj) is a recovery sequence also for f∞ + g.

Remark 2.5 (Γ-limit of a constant sequence) Consider the simplest case
fj = f for all j ∈ N. In this case it will be easily seen that (fj) Γ-converges.
By the liminf inequality, the limit f∞ must satisfy

f∞(x) ≤ lim infjf(xj)

for all x and xj → x. If f is not lower semicontinuous then there exists x and
a sequence xj → x such that

lim infjf(xj) < f(x);

hence, in particular f∞(x) �= f(x). This shows that Γ-convergence does not
satisfy the requirement that a constant sequence fj = f converges to f (if f
is not lower semicontinuous). We will see however that this holds true in the
family of lower semicontinuous functions (see Remark 2.7 below).

Remark 2.6 (Dependence on the metric) The choice of the metric on X
is clearly a fundamental step in problems involving Γ-limits. In general, even
when two distances d and d′ are comparable; i.e.,

limjd
′(xj, x) = 0 =⇒ limjd(xj, x) = 0, (2.7)

the existence of the Γ-limit in one metric does not imply the existence of the
Γ-limit in the second (see the examples in the next section). However, in this
situation, if both Γ-limits exist then we have

Γ(d)-limjfj ≤ Γ(d′)-limjfj .

This is clear for example from the characterization (2.3) since the set of con-
verging sequences for d is larger that that for d′.

Remark 2.7 (Comparison with pointwise and uniform limits) As a very
particular case, we can consider the metric d′ of the discrete topology (where the
only converging sequences are constant sequences). In this case the Γ-limit coin-
cides with the pointwise limit. If d is any other metric then (2.7) holds trivially,
so that we obtain

Γ(d)-limjfj ≤ limjfj
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as a particular case of the previous remark.
If fj converge uniformly to a f on an open set U (in particular if fj = f)

and f is l.s.c. then we have also that fj Γ-converge to f . Indeed, the limsup
inequality is obtained by the constant sequence, while the liminf inequality is
immediately verified once we remark that if xj → x ∈ U then xj ∈ U for j large
enough, so that lim infj fj(xj) = limj(fj(xj) − f(xj )) + lim infj f(xj) ≥ f(x).

2.1 Some examples on the real line

In this section we will compute some simple Γ-limits of functions defined on the
real line (equipped with the usual euclidean distance), and we will also make
some comparisons with the pointwise convergence (which can be thought of as
a Γ-limit with respect to the discrete metric, as explained in Remark 2.7).

The computations in these examples will be quite straightforward, but nev-
ertheless will allow us to highlight the different roles of the limsup and liminf
inequalities. The first inequality is more constructive, as it amounts to finding
the optimal approximating sequence for a fixed target point x, while the second
one is more technical, and amounts to proving that the bound given by the
recovery sequence is indeed optimal.

Example 2.8 We have seen that a constant sequence fj = f Γ-converges to f
if and only if f is lower semicontinuous; hence, if f is not l.s.c. the pointwise
limit and the Γ-limit are different. Now we construct an example where these
two limits differ even if the pointwise limit is lower semicontinuous. Take fj(t) =
f1(jt), where f1(t) =

√
2 te−(2t2−1)/2 or

f1(t) =
{±1 if t = ±1
0 otherwise.

Then fj → 0 pointwise, but Γ-limj fj = f , where

f(t) =
{ 0 if t �= 0
−1 if t = 0.

Indeed, the sequence fj converges locally uniformly (and hence also Γ-converges)
to 0 in R \ {0}, while clearly the optimal sequence for x = 0 is xj = −1/j, for
which fj(xj) = −1. In this case the pointwise and Γ-limits both exist and are
different at one point.

Example 2.9 Take fj(t) = −f1(jt), where f1 is as in the previous example.
Clearly, the Γ-limit remains unchanged. This shows that in general

Γ- lim(−fj ) �= −Γ- lim
j

fj,

Γ- lim(fj + gj) �= Γ- lim
j

fj +Γ- lim
j

gj

(taking in the example gj = −fj) even if all functions are continuous.
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Example 2.10 The pointwise and Γ-limits may exist and be different at every
point. Take fj = gj , where

gj(t) =

 0 if t �∈ Q or t = k
n
, with k ∈ Z and n ∈ {1, . . . , j},

−1 otherwise.

We then have fj → 0 pointwise, but Γ-limj fj = −1 The liminf inequality is
trivial, and the limsup inequality is easily obtained by remarking that {gj = −1}
is dense for all j ∈ N.

Example 2.11 There may be no pointwise converging subsequence of (fj) but
the Γ-limjfj may exist all the same. Take for example fj(t) = − cos(jt). In this
case Γ-limj fj = −1. Again, the liminf inequality is trivial, while the limsup
inequality is easily obtained by taking for example xj = [jx/2π]2π/j ([t] the
integer part of t).

Example 2.12 The sequence fj may be converging pointwise, but may not Γ-
converge. Take for example fj = (−1)jgj with gj the function of Example 2.10.
In this case fj → 0 pointwise, but the Γ-limj fj does not exist at any point.

2.2 The many definitions of Γ-convergence

In this section we state different equivalent definitions of Γ-convergence, which
will be useful in different contexts. Some of the different ways to state the
limsup inequality have been already pinpointed above. Before this overview we
recall the definition of compact set.

Definition 2.13 By a compact subset of X we mean a sequentially compact
set K ⊂ X; i.e., such that all sequences in K admit a subsequence converging
to some point in K. In formula,

∀(xj) ⊂ K ∃x ∈ K, ∃(xjk) : xjk → x.

A set K ⊂ X is called precompact if its closure is compact; i.e., all sequences
in K admit a converging subsequence (but its limit may also be outside K). In
formula,

∀(xj) ⊂ K ∃(xjk) : xjk converges in X.

Topological definitions Sometimes, it is useful to have the definition of Γ-
limit directly expressed in terms of the topology of X, and not only through the
convergence of sequences. In this case it is easily seen that we can rewrite the
equality in (2.4)

f∞(x) = sup
U∈N(x)

lim infj inf
y∈U

fj(y) = sup
U∈N(x)

lim supj inf
y∈U

fj(y). (2.8)

This definition makes sense in any topological space and in the case of arbitrary
topological spaces (in particular if X is not metric) is taken as the definition of
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Γ-convergence (while Definition 2.1 above is called sequential Γ-convergence).
However, we will always be able to stick to metric spaces. A suggestive obser-
vation is that equivalently to (2.8), we may also write

f∞(x) = sup
U∈N(x)

sup
k∈N

inf
j≥k

inf
y∈U

fj(y) = sup
U∈N(x)

inf
k∈N

sup
j≥k

inf
y∈U

fj(y); (2.9)

in this way, Γ-limits may be interpreted as compositions of the ‘elementary
operators’ of the type inf/sup.

Note that in (2.8) we can substitute N (x) by a suitable family of neighbour-
hoods generating the topology of X; e.g., in the metric case a family of open
balls with center in x. For example we can require equivalently that

f∞(x) = sup
n∈N

lim infj inf{fj(y) : d(y, x) < 1/n}

= sup
n∈N

lim supj inf{fj(y) : d(y, x) < 1/n}

or

f∞(x) = sup
δ>0

lim infj inf{fj(y) : d(y, x) < δ}

= sup
δ>0

lim supj inf{fj(y) : d(y, x) < δ}.

A definition in terms of the convergence of minima Γ-convergence is
designed so that it implies the convergence of ‘compact’ minimum problems. In
turn, starting from the topological definition above, a definition of Γ-convergence
can be expressed in terms of the asymptotic behaviour of (local) minimum
problems: from the second equality in (2.8) we have

inf
U

f∞ ≥ lim supj inf
U

fj (2.10)

for all open sets U , while requiring that

inf
K

f∞ ≤ sup{lim infj inf
U

fj : U ⊃ K, U open} (2.11)

for all compact sets K implies the first equality in (2.8) by choosing K = {x}.
Finally, starting from (2.10), back to the case of metric spaces, we can sub-

stitute the problems on balls by unconstrained problems, where we penalize the
distance from the point x. For example, if all fj are non negative, we have that
an equivalent definition is that for some p > 0

f∞(x) = sup
λ≥0

lim infj inf
y∈X

{fj(y) + λd(x, y)p}

= sup
λ≥0

lim supj inf
y∈X

{fj(y) + λd(x, y)p} (2.12)

for all x ∈ X. Note that in this case the Γ-convergence is determined by looking
at a family of particular problems, which sometimes can be solved easily.

We can explicitly state the equivalence of all the definitions above in the
following theorem.
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Theorem 2.14 Let fj , f∞ : X → [−∞,+∞]. Then the following conditions
are equivalent:

(i) f∞ = Γ-limj fj in X as in Definition 2.1;
(ii) for every x ∈ X (2.3) holds;
(iii) the liminf inequality in Definition 2.1(i) and the approximate limsup

inequality (ii)′′ hold;
(iv) for every x ∈ X (2.4) holds;
(v) for every x ∈ X (2.8) holds;
(vi) inequality (2.10) holds for all open sets U and inequality (2.11) holds for

all compact sets K.
Furthermore, if fj(x) ≥ −c(1 + d(x, x0)p) for some p > 0 and x0 ∈ X, then

each of the conditions above is equivalent to
(vii) we have (2.12) for all x ∈ X.

The proof of the equivalence of (i)–(vi) is essentially contained in the con-
siderations made hitherto and details are left to the reader; point (vii) will be
analysed in Proposition 2.23.

Note that the asymmetry of Definition 2.1 is reflected in the different roles
of the sup and inf operators in the equivalent conditions above. Of course, this
comes from the fact that Γ-convergence is designed to study minimum problems
(and not maximum problems!).

2.3 Convergence of minima

We first observe that some requirements on the behaviour of sequences of the
form (fj(xj)) give some information on the behaviour of minimum problems.

Proposition 2.15 Let fj, f : X → [−∞,+∞] be functions. Then we have
(i) if Definition 2.1(i) is satisfied for all x ∈ X then we have

inf
K

f∞ ≤ lim infj inf
K

fj

for all compact sets K ⊂ X;
(ii) if Definition 2.1(ii) is satisfied for all x ∈ X then we have

inf
U

f∞ ≥ lim supj inf
U

fj

for all open sets U ⊂ X.

Proof (i) Let (x̃j) be such that lim infj infK fj = lim infjfj(x̃j). After ex-
tracting a subsequence we obtain (x̃jk) such that

limkfjk (x̃jk) = lim infj inf
K

fj ,

and xjk → x ∈ K. If xj =
{
x̃jk if j = jk
x if j �= jk for all k,

then

inf
K

f∞ ≤ f∞(x) ≤ lim infjfj(xj)

≤ lim infkfjk (xjk) = limkfjk(x̃jk) = lim infj inf
K

fj, (2.13)
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as required.
(ii) With fixed δ > 0, let x ∈ U be such that f∞(x) ≤ infU f∞ + δ. Then,

if (xj) is a recovery sequence for x we have

inf
U

f∞ + δ ≥ f∞(x) ≥ lim supjfj(xj) ≥ lim supj inf
U

fj , (2.14)

and the thesis follows by the arbitrariness of δ.

Definition 2.16 A function f : X → R is coercive if for all t ∈ R the set
{f ≤ t} is precompact. A function f : X → R is mildly coercive if there exists
a non-empty compact set K ⊂ X such that infX f = infK f.

Remark 2.17 If f is coercive then it is mildly coercive. In fact, if f is not
identically +∞ (in which case we take K as any compact subset of X), then
there exists t ∈ R such that {f ≤ t} is not empty, and we take K as the closure
of {f ≤ t} in X. An example of a non-coercive, mildly coercive function is given
by any periodic function f : Rn → R.

An intermediate condition between coerciveness and mild coerciveness is
the requirement that there exists t ∈ R such that {f ≤ t} is not empty and
precompact.

We immediately obtain the required convergence result as follows.

Theorem 2.18 Let (X, d) be a metric space, let (fj) be a sequence of equi-
mildly coercive functions on X, and let f∞ = Γ-limj fj ; then

∃min
X

f∞ = limj inf
X

fj . (2.15)

Moreover, if (xj) is a precompact sequence such that limj fj(xj) = limj infX fj ,
then every limit of a subsequence of (xj) is a minimum point for f∞.

Proof The proof follows immediately from Proposition 2.15. In fact, if x is
as in the proof of Proposition 2.15(i) (in particular we can take x = limk xjk if
(xjk) is a converging subsequence such that limk fj(xjk) = limj infX fj) then by
(2.13) and (2.14) with U = X, and by the equi-mild coerciveness we get

inf
X

f∞ ≤ inf
K

f∞ ≤ f∞(x) ≤ lim infj inf
K

fj

= lim infj inf
X

fj ≤ lim supj inf
X

fj ≤ inf
X

f∞.

As the first and last terms coincide, we easily get the thesis.

Remark 2.19 (Γ-convergence as a choice criterion) If in the theorem above
all functions fj admit a minimizer xj then, up to subsequences, xj converge to a
minimum point of f∞. The converse is clearly not true: we may have minimizers
of f∞ which are not limits of minimizers of fj . A trivial example is fj(t) = 1

j t
2

on the real line. This situation is not exceptional; on the contrary: we may
often view some functional as a Γ-limit of some particular perturbations, and
single out from its minima those chosen as limits of minimizers.
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2.4 Upper and lower Γ-limits

Condition (iv) in Theorem 2.14 justifies the following definition.

Definition 2.20 Let fj : X → R and let x ∈ X. The quantity

Γ-lim infjfj(x) = inf{lim infjfj(xj) : xj → x} (2.16)

is called the Γ-lower limit of the sequence (fj) at x. The quantity

Γ-lim supjfj(x) = inf{lim supjfj(xj) : xj → x} (2.17)

is called the Γ-upper limit of the sequence (fj) at x. If we have the equality

Γ-lim infjfj(x) = λ = Γ-lim supjfj(x) (2.18)

for some λ ∈ [−∞,+∞], then we write

λ = Γ-limjfj(x), (2.19)

and we say that λ is the Γ-limit of the sequence (fj) at x. Again, if we need to
highlight the dependence on the metric d we may add it in the notation.

Remark 2.21 Clearly, the Γ-lower limit and the Γ-upper limit exist at every
point x ∈ X. Definition 2.20 is in agreement with Definition 2.1, and we can
say that a sequence (fj) Γ-converges to f∞ if and only if for fixed x ∈ X the
Γ-limit exists and we have λ = f∞(x) in (2.19).

Remark 2.22 It can be easily checked, as we did for the Γ-limit, that we have

Γ-lim infjfj(x) = min{lim infjfj(xj) : xj → x}
= sup

U∈N(x)

lim infj inf
y∈U

fj(y), (2.20)

Γ-lim supjfj(x) = min{lim supjfj(xj) : xj → x}
= sup

U∈N(x)

lim supj inf
y∈U

fj(y) (2.21)

The reader is encouraged to fill the details of the proof of this statement.

We also have the following characterization of upper and lower Γ-limits,
which proves in particular the last statement of Theorem 2.14.

Proposition 2.23 Let fj : X → [−∞,+∞] be a sequence of functions satisfy-
ing fj(x) ≥ −c(1 + d(x, x0)p) for some p > 0 and x0 ∈ X; then we have

Γ-lim infjfj(x) = sup
λ≥0

lim infj inf
y∈X

{fj(y) + λd(x, y)p}, (2.22)

Γ-lim supjfj(x) = sup
λ≥0

lim supj inf
y∈X

{fj(y) + λd(x, y)p} (2.23)

for all x ∈ X.
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2.5 Lower semicontinuity and Γ-limits

The notion of Γ-convergence does not have the property that a constant sequence
fj = f converges to its constant term f . Conversely, this property is true for
lower semicontinuous functions. Moreover, on the family of lower semicontinu-
ous functions, Γ-convergence enjoys more interesting and useful properties.

2.5.1 Lower semicontinuity of Γ-limits

Proposition 2.24 The Γ-upper and lower limits of a sequence (fj) are d-lower
semicontinuous functions.

Remark 2.25 (Proof of the limsup inequality by density) The lower semi-
continuity of the Γ-limsup in the proposition above is sometimes useful for the
estimate of Γ-limits as follows. Let d′ be a distance on X inducing a topol-
ogy which is not weaker than that induced by d; i.e., d′(xj, x) → 0 implies
d(xj, x) → 0. Suppose D is a dense subset of X for d′ and that we have
Γ-lim supjfj(x) ≤ f(x) on D, where f is a function which is continuos with
respect to d. Then we have Γ-lim supjfj ≤ f on X. In fact, if d′(xj , x)→ 0 and
xj ∈ D then

Γ-lim supjfj(x) ≤ lim inf
k

(
Γ-lim supjfj(xk)

)
≤ lim inf

k
f(xk) = f(x).

2.5.2 The lower-semicontinuous envelope

If f is not lower semicontinuous, it is sometimes interesting to compute the
lower semicontinuous envelope of f .

Definition 2.26 Let f : X → R be a function. Its lower-semicontinuous en-
velope scf is the greatest lower-semicontinuous function not greater than f,
i.e. for every x ∈ X

scf(x) = sup{g(x) : g l.s.c., g ≤ f}. (2.24)

Note that scf is l.s.c. as the supremum of a family of l.s.c. functions.
Moreover, if f1 ≤ f2 then scf1 ≤ scf2.

Proposition 2.27 We have scf(x) = Γ- limj f(x) = lim infy→x f(y).

Proposition 2.28 We have

Γ- lim inf
j

fj = Γ- lim inf
j

scfj , Γ- lim sup
j

fj = Γ- lim sup
j

scfj . (2.25)
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2.5.3 The direct method

Combined lower semicontinuity and coerciveness ensure the existence of mini-
mum points, as specified by the following version of a well-known theorem.

Theorem 2.29 (Weierstrass’ Theorem) If f : X → R is mildly coercive, then
there exists the minimum value min{scf(x) : x ∈ X}, and it equals the infimum
inf{f(x) : x ∈ X}. Moreover, the minimum points for scf are exactly all the
limits of converging sequences (xj) such that limj f(xj) = infX f.

Proof The theorem is a particular case of Theorem 2.18. The only thing to
notice is that if x is a minimum point for scf , we can find a sequence (xj)
converging to x such that limj f(xj) = scf(x) = infX f .

Remark 2.30 The previous theorem gives, of course, that if f is l.s.c. and
mildly coercive then the problem minX f has a solution.

The application of Theorem 2.29, and in particular of the remark above, to
prove the existence of solutions of minimum problems is usually referred to as
the ‘direct method’ of the calculus of variations.

2.6 More properties of Γ-limits

From the definitions of Γ-convergence we immediately obtain the following prop-
erties.

Remark 2.31 If (fjk) is a subsequence of (fj) then

Γ-lim infjfj ≤ Γ-lim infkfjk , Γ-lim supkfjk ≤ Γ-lim supjfj.

In particular, if f∞ = Γ- limj fj exists then for every increasing sequence of
integers (jk) f∞ = Γ-limk fjk .

Remark 2.32 If g is a continuous function then f∞+g = Γ-limj(fj +g); more
in general, if gj → g uniformly, and g is continuous then f∞+g = Γ-limj(fj+gj).
In particular, if fj → f uniformly on an open set U , then

Γ-limjfj = scf (2.26)

on U .

Remark 2.33 If fj → f pointwise then Γ-lim supj fj ≤ f , and hence, also
Γ-lim supj fj ≤ scf .
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2.6.1 Γ-limits of monotone sequences

We can state some simple but important cases when the Γ-limit does exist, and
it is easily computed.

Remark 2.34 (i) If fj+1 ≤ fj for all j ∈ N, then

Γ-limjfj = sc(infj fj) = sc(limj fj). (2.27)

In fact as fj → infk fk pointwise, by Remark 2.33 we have Γ-lim supj fj ≤
sc(infk fk), while the other inequality comes trivially from the inequality sc(infk fk) ≤
infk fk ≤ fj ;

(ii) if fj ≤ fj+1 for all j ∈ N, then

Γ-limjfj = supj scfj = limj scfj ; (2.28)

in particular if fj is l.s.c. for every j ∈ N, then

Γ-limjfj = lim
j

fj . (2.29)

In fact, since scfj → supk scfk pointwise,

Γ-lim supjfj = Γ-lim supjscfj ≤ supk scfk

by Remark 2.33. On the other hand scfk ≤ fj for all j ≥ k so that the converse
inequality easily follows.

Remark 2.35 By Remark 2.34(ii), if fj is a equi-mildly coercive non-decreasing
sequence of l.s.c. functions then supjminX fj = minX supj fj .

2.6.2 Compactness of Γ-convergence

Proposition 2.36 Let (X, d) be a separable metric space, and for all j ∈ N let
fj : X → R be a function. Then there is an increasing sequence of integers (jk)
such that the Γ-limk fjk (x) exists for all x ∈ X.

Remark 2.37 If (X, d) is not separable, then Proposition 2.36 fails. As an
example, we can take X = {−1, 1}N equipped with the discrete topology. X is
metrizable, and Γ-convergence on X is equivalent to pointwise convergence. We
take the sequence fj : X → {−1, 1} defined by fj(x) = xj if x = (x0, x1, . . .).
If (fjk ) is a subsequence of (fj) and we define x by xjk = (−1)k, and xj = 1
if j �∈ {jk : k ∈ N}, then the limit limk fjk (x) does not exist. Hence no
subsequence of (fj) Γ-converges.

2.6.3 Stability of Γ-convergence by subsequences

Proposition 2.38 We have Γ-limj fj = f∞ if and only if for every subsequence
(fjk ) there exists a further subsequence which Γ-converges to f∞.
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2.7 Γ-limits indexed by a continuous parameter

In applications, our energies will often depend on a continuous parameter ε > 0,
so that we will have a family of functions fε : X → R. It is necessary then to
make precise the definition of Γ-limit in this case, as follows.

Definition 2.39 We say that fε Γ-converges to f0 if for all sequences (εj)
converging to 0 we have Γ-limj fεj = f0.

Remark 2.40 It can be easily checked that all the characterizations and prop-
erties of the Γ-limits, as well as the definitions of Γ- upper and lower limits, can
be still obtained in this case with the due changes. We usually prefer to stick
to sequences, as in the proof it is more convenient to extract subsequences.

2.8 Development by Γ-convergence

As already remarked, the process of Γ-limit enatails a choice in the minimizers
of the limit problem by minimizers of the approximating ones. In the case that
this ‘choice’ is still not unique, we may proceed further to a ‘Γ-limit of higher
order’.

Theorem 2.41 (development by Γ-convergence) . Let fε : X → R be a
family of d-equi-coercive functions and let f0 = Γ(d)-limε→0 fε. Let mε = inf fε
and m0 = minf0. Suppose that for some α > 0 there exists the Γ-limit

fα = Γ(d′)- lim
ε→0

fε −m0

εα
, (2.30)

and that the sequence fαε = (fε−m0)/εα is d′-equi-coercive for a metric d′ which
is not weaker than d. Define mα = minfα and suppose that mα �= +∞; then
we have that

mε = m0 + εαmα + o(εα) (2.31)

and from all sequences (xε) such that fε(xε) − mε = o(εα) (in particular this
holds for minimizers) there exists a subsequence converging in (X, d′) to a point
x which minimizes both f0 and f1.

Proof The proof is a simple refinement of that of Theorem 2.18. Since we
have

mα = lim
ε→0

minfαε = lim
ε→0

mε −m0

εα

we deduce immediately (2.31). Let (xε) be such that fε(xε) = mε + o(εα).
By the equi-coerciveness of fαε we can assume that xε converges to some x in
(X, d′) and hence also in (X, d), upon extracting a subsequence. By Theorem
2.18 applied to fε x is a minimizer of f0 . From (2.31) we get that minfαε =
(mε −m0)/εα = fαε (xε) + o(1), so that we can also apply Theorem 2.18 to fαε
and obtain that x is a minimizer of f1 .
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2.9 Γ-development with respect a family of data

We may refine the notion of development by Γ-convergence when our problems
depend also on some data (which we denote by the letter d). Suppose that
functionals as above are given, a set D of data, and spaces Xd

ε that form a
partition of the space Xε. We say that the family fε has a development f0+εαfα

with respect to the family D, if there exists a partition Xd
0 of X0 and functionals

f0
d , f

α
d each defined on Xd

0 such that

f0
d = Γ- limε fdε , f0

d = f0 on X0
d (2.32)

and, having set

fα,dε (u) =
fε(u)−min f0

d

εα
for u ∈ Xd

ε , (2.33)

we have
fαd = Γ- limε fα,dε , fαd = fα on X0

d . (2.34)

In particular this implies that, upon setting

mε(d) = min{fε(u) : u ∈ Xd
ε }, (2.35)

m0(d) = min{f0(u) : u ∈ X0
d}, (2.36)

mα(d) = min{fα(u) : u ∈ X0
d}, (2.37)

we obtain that for all d ∈ D

mε(d) = m0(d) + εαmα(d) + o(εα). (2.38)

Example 2.42 Take fε(u) =
∫
I(W (u) + ε2|u′|2) dt, Xε = H1(I), where

W (u) = (u2 − 1)2, Xd
ε =

{
u ∈ H1(I) : −

∫
I
u dt = d

}
and D =R. In this case we

have
f0(u) =

∫
I

W ∗∗(u) dt, X0 = L2(I).

Take α = 1; if −1 ≤ d ≤ 1 then

f1
d (u) = c#(S(u)) dt, X1

d =
{
u ∈ BV (I; {−1, 1}) : −

∫
I

u dt = d
}

with c =
∫ 1

−1
2
√

W (s)ds; if |d| > 1 then

f1
d (u) =

{ 0 if u = d a.e.
+∞ otherwise.

Definition 2.43 The previous definition suggests an equivalence relation among
families of functionals based on development by Γ-convergence: we say that two
families (fε) and (f̃ε) are equivalent up to order α with respect to the data D if
they have the same development in the sense as above. Note that this definition
does not require that fε and f̃ε be defined on the same space.



Chapter 3

Discrete systems in Sobolev
spaces

We will consider the limit of energies defined on one-dimensional discrete sys-
tems of n points as n tends to +∞. In order to define a limit energy on a
continuum we parameterize these points as a subset of a single interval (0, L).
Set

λn =
L

n
, xni =

i

n
L = iλn, i = 0, 1, . . . , n. (3.1)

We denote In = {xn0 , . . . , xnn} and by An(0, L) the set of functions u : In → R.
If n is fixed and u ∈ An(0, L) we equivalently denote

ui = u(xni ).

Given K ∈ N with 1 ≤ K ≤ n and functions fj : R → [0,+∞], with j =
1, . . . , K, we will consider the related functional E : An(0, L) → [0,+∞] given
by

E(u) =
K∑
j=1

n−j∑
i=0

fj(ui+j − ui). (3.2)

Note that E can be viewed simply as a function E : Rn → [0,+∞].
An interpretation with a physical flavour of the energy E is as the internal

interaction energy of a chain of n+1 material points each one interacting with
its K-nearest neighbours, under the assumption that the interaction energy
densities depend only on the order j of the interaction and on the distance
between the two points ui+j − ui in the reference configuration. If K = 1 then
each point interacts with its nearest neighbour only, while if K = n then each
pair of points interacts.

Remark 3.1 From elementary calculus we have that E is lower semicontinuous
if each fj is lower semicontinuous, and that E is coercive on bounded sets of
An(0, L).

21
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Wewill describe the limit as n → +∞ of sequences (En) withEn : An(0, L)→
[0,+∞] of the general form

En(u) =
Kn∑
j=1

n−j∑
i=0

fjn(ui+j − ui), (3.3)

and show that it provides an energy defined on a Sobolev space. We use standard
notation for Sobolev and Lebesgue spaces. The letter c denotes a generic strictly
positive constant.

Since each functional En is defined on a different space, the first step is to
identify eachAn(0, L) with a subspace of a common space of functions defined on
(0, L). In order to identify each discrete function with a continuous counterpart,
we extend u by ũ : (0, L)→ R as the piecewise-affine function defined by

ũ(s) = ui−1 +
ui − ui−1

λn
(s− xi−1) if s ∈ (xi−1, xi). (3.4)

In this case, An(0, L) is identified with those continuous u ∈ W1,1(0, L) (ac-
tually, in W1,∞(0, L)) such that u is affine on each interval (xi−1, xi). Note
moreover that we have

ũ′ =
ui − ui−1

λn
(3.5)

on (xi−1, xi). If no confusion is possible, we will simply write u in place of ũ.

As we will treat limit functionals defined on Sobolev spaces, it is conve-
nient to rewrite the dependence of the energy densities in (4.14) with respect to
difference quotients rather than the differences ui+j − ui. We then write

En(u) =
Kn∑
j=1

n−j∑
i=0

λnψ
j
n

(ui+j − ui
jλn

)
, (3.6)

where
ψj
n(z) =

1
λn

fjn(jλnz).

With the identification of u with ũ, En may be viewed as an integral functional
defined on W1,1(0, L) by the equality

En(u) = Fn(ũ), (3.7)

where

Fn(v) =



Kn∑
j=1

j−1∑
l=0

1
j

∫ L−(j−1−l)λn

lλn

ψj
n

(1
j

j−1−l∑
k=−l

v′(x+ kλn)
)
dx

if v ∈ An(0, L)

+∞ otherwise.
(3.8)
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Note that in the particular case Kn = 1 we have (set ψn = ψ1
n)

Fn(v) =


∫ L

0

ψn(v′)dx if v ∈ An(0, L)

+∞ otherwise.

(3.9)

Definition 3.2 (Convergence of discrete functions and energies) With the
identifications above we will say that un converges to u (respectively, in L1, in
measure, in W1,1, etc.) if ũn converge to u (respectively, in L1, in measure,
weakly in W1,1, etc.), and we will say that En Γ-converges to F (respectively,
with respect to the convergence in L1, in measure, weakly in W1,1, etc.) if
Fn Γ-converges to F (respectively, with respect to the convergence in L1, in
measure, weakly in W1,1, etc.); i.e., if for all u
(i) (liminf inequality) F (u) ≤ lim infn Fn(un) for all un converging to u;
(ii) (limsup inequality) there exists un converging to u such that lim supn Fn(u) ≤
F (u).

We recall that since our functionals will always be equi-coercive then Γ-
convergence entails the desired convergence of minimum problems.

We will often use the following simple Γ-convergence result.

Theorem 3.3 Let ψn be locally equi-bounded convex functions and let ψ =
limn ψn. Then the functionals defined on W 1,1(0, L) by∫ L

0

ψn(u′) dt

Γ-converge with respect to the weak convergence in W 1,1(0, L) to the functional
defined on W 1,1(0, L) by ∫ L

0

ψ(u′) dt.

3.1 Convex energies

First we briefly recall the case when the energies ψj
n are convex. We will see

that in the case of nearest neighbours, the limit is obtained by simply replacing
sums by integrals, while in the case of long-range interactions a superposition
principle holds.

3.1.1 Nearest-neighbour interactions: an identification prin-
ciple

We start by considering the case K = 1, so that the functionals En are given
by

En(u) =
n−1∑
i=0

λnψn

(ui+1 − ui
λn

)
. (3.10)
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The integral counterpart of En is given by

Fn(v) =


∫ L

0

ψn(v′)dx if v ∈ An(0, L)

+∞ otherwise.

(3.11)

The following result states that as n approaches∞ the identification of En with
its continuous analog is complete.

Theorem 3.4 Let ψn : R → [0,+∞) be convex and locally equi-bounded. Let
En be given by (3.10)and let ψ = limn ψn (note that it is not restrictive to
suppose that such limit exists upon extraction a subsequence).

(i) The Γ-limit of En with respect to the weak convergence in W1,1(0, L) is
given by F defined by

F (u) =
∫

(0,L)

ψ(u′) dx. (3.12)

(ii) If

lim
|z|→∞

ψ(z)
|z| = +∞ (3.13)

then the Γ-limit of En with respect to the convergence in L1(0, L) is given by F
defined by

F (u) =


∫

(0,L)

ψ(u′) dx if u ∈W1,1(0, L)

+∞ otherwise

(3.14)

on L1(0, L).

This theorem can be seen as a particular case of many results. However,
since its proof is particularly simple we include it for the reader’s convenience.

Proof (i) By Theorem 3.3 we have Γ-lim infj Fj(u) ≥ F (u). Conversely, fixed
u ∈ W1,∞(0, L) let un ∈ An(0, L) be such that un(xni ) = u(xni ). By convexity
we have∫ xn

i+1

xn
i

ψ(u′) dt ≥ λnψ
( 1
λn

∫ xn
i+1

xn
i

u′ dt
)
= λnψ

(u(xni+1) − u(xni )
λn

)
;

hence, summing up, letting n → +∞ and using the pointwise convergence of
ψn to ψ, we get∫ L

0

ψ(u′) dt = lim
n

∫ L

0

ψn(u′) dt ≥ lim sup
n

En(un).

By a density argument we recover the same inequality on the whole W1,1(0, L).
(ii) If (3.13) holds then the sequence (En) is equi-coercive on bounded sets

of L1(0, L) with respect to the weak convergence in W1,1(0, L), from which the
thesis is easily deduced.
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3.1.2 Long-range interactions: a superposition principle

Let now K ∈ N be fixed. The energies En take the form

En(u) =
K∑
j=1

n−j∑
i=0

λnψ
j
n

(ui+j − ui
jλn

)
. (3.15)

In this case En can be seen as the superposition of K nearest-neighbour
functionals to which we can apply the result above. The theorem below can be
easily proven and is a particular case of the results in thye sequel.

Theorem 3.5 Let ψj
n : R → [0,+∞) be convex and locally equi-bounded. Let

En be given by (3.15) and for all j let ψj = limn ψ
j
n (note that it is not restrictive

to suppose that such limit exists upon extraction a subsequence). Let ψ1 satisfy

lim
|z|→∞

ψ1(z)
|z| = +∞ (3.16)

then the Γ-limit of En with respect to the convergence in L1(0, L) is given by F
defined by

F (u) =


∫

(0,L)

ψ(u′) dx if u ∈W1,1(0, L)

+∞ otherwise

(3.17)

on L1(0, L), where

ψ =
K∑
j=1

ψj . (3.18)

3.2 Non-convex energies

We now investigate the effects of the lack of convexity.

3.2.1 Nearest-neighbour interactions: a convexification prin-
ciple

In the case K = 1 the only effect of the passage from the discrete setting to the
continuum is a convexification of the integrand.

Theorem 3.6 Let ψn : R → [0,+∞) be locally equi-bounded Borel functions
satisfying (3.13), and suppose that ψ = limn ψ

∗∗
n . Let En be given by (3.10);

then the Γ-limit of En with respect to the convergence in L1(0, L) is given by F
defined by

F (u) =


∫

(0,L)

ψ(u′) dx if u ∈W1,1(0, L)

+∞ otherwise

(3.19)

on L1(0, L). In particular if ψn = ψ̂ then ψ = ψ̂∗∗

Proof The proof is a particular case of the results in the sequel.



26 CHAPTER 3. DISCRETE SYSTEMS IN SOBOLEV SPACES

3.2.2 Next-to-nearest neighbour interactions: non-convex
relaxation

In the non-convex setting, the case K = 2 offers an interesting way of describing
the two-level interactions between first and second neighbours. Such description
is more difficult in the case K ≥ 3. Essentially, the way the limit continuum
theory is obtained is by first integrating-out the contribution due to nearest
neighbours by means of an inf-convolution procedure and then by applying the
previous results to the resulting functional.

Theorem 3.7 Let ψ1
n, ψ

2
n : R → [0,+∞) be locally equi-bounded Borel func-

tions such that

lim
|z|→∞

ψ1
n(z)
|z| = +∞, (3.20)

uniformly in n, and let En(u) : An(0, L)→ [0,+∞) be given by

En(u) =
n−1∑
i=0

λnψ
1
n

(ui+1 − ui
λn

)
+

n−2∑
i=0

λnψ
2
n

(ui+2 − ui
2λn

)
(3.21)

Let ψ̃n : R → [0,+∞) be defined by

ψ̃n(z) = ψ2
n(z) +

1
2
inf{ψ1

n(z1) + ψ1
n(z2)) : z1 + z2 = 2z}

= inf
{
ψ2
n(z) +

1
2
(ψ1

n(z1) + ψ1
n(z2)) : z1 + z2 = 2z

}
, (3.22)

and suppose that
ψ = lim

n
ψ̃∗∗
n . (3.23)

Then the Γ-limit of En with respect to the convergence in L1(0, L) is given by
F defined by

F (u) =


∫

(0,L)

ψ(u′) dx if u ∈W1,1(0, L)

+∞ otherwise

(3.24)

on L1(0, L).

Remark 3.8 (i) The growth conditions on ψ2
n can be weakened, by requiring

that ψ2
n : R → R and

−c1ψ
1
n ≤ ψ2

n ≤ c2(1 + ψ1
n)

provided that we still have

lim
|z|→∞

ψ(z)
|z| = +∞.

(ii) If ψ1
n is convex then ψ̃n = ψ1

n +ψ2
n. If also ψ2

n is convex then we recover
a particular case of Theorem 3.5.
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Proof Let u ∈ An(0, L). We have, regrouping the terms in the summation,

En(u) =
n−2∑
i=0

i even

λn

(
ψ2
n

(ui+2 − ui
2λn

)
+
1
2
ψ1
n

(ui+2 − ui+1

λn

)
+
1
2
ψ1
n

(ui+2 − ui+1

λn

))

+
n−2∑
i=0

i odd

λn

(
ψ2
n

(ui+2 − ui
2λn

)
+
1
2
ψ1
n

(ui+2 − ui+1

λn

)
+
1
2
ψ1
n

(ui+1 − ui
λn

))

+
λn
2
ψ1
n

(un − un−1

λn

)
+
1
2
ψ1
n

(u1 − u0

λn

)

≥ 1
2

 n−2∑
i=0

i even

2λnψ̃n

(ui+2 − ui
2λn

)
+

n−2∑
i=0

i odd

2λnψ̃n

(ui+2 − ui
2λn

)
≥ 1

2

 n−2∑
i=0

i even

2λnψ̃∗∗
n

(ui+2 − ui
2λn

)
+

n−2∑
i=0

i odd

2λnψ̃∗∗
n

(ui+2 − ui
2λn

)
=

1
2

(∫ 2λn[n/2]

0

ψ̃∗∗
n (ũ

′
1) dt+

∫ (1+2[n−1/2])λn

λn

ψ̃∗∗
n (ũ

′
2) dt

)
, (3.25)

where ũk, respectively, with k = 1, 2, are the continuous piecewise-affine func-
tions such that

ũ′
k =

ui+2 − ui
2λn

on (xni , x
n
i+2) (3.26)

for i, respectively, even or odd.
Let now un → u in L1(0, L) and supnEn(un) < +∞; then un ⇀ u in

W1,1(0, L). Let uk,n be defined as in (3.26); we then deduce that uk,n ⇀ u as
n → +∞, for k = 1, 2. For every fixed η > 0 by (3.25) we obtain

lim inf
n

En(un) ≥ 1
2

(
lim inf

n

∫ L−η

η

ψ̃∗∗
n (u

′
1,n) dt+ lim infn

∫ L−η

η

ψ̃∗∗
n (u

′
2,n) dt

)

≥
∫ L−η

η

ψ(u′) dt

by Theorem 3.3, and the liminf inequality follows by the arbitrariness of η > 0.
Now we prove the limsup inequality. By an easy relaxation argument, it

suffices to treat the case when ψ̃n is lower semicontinuous, u(x) = zx and
ψ(z) = limn ψ̃n(z). With fixed η > 0 let zn1 , zn2 be such that zn1 + zn2 = 2z and

ψ2
n(z) +

1
2
(ψ1

n(z
n
1 ) + ψ2

n(z
n
2 )) ≤ ψ̃(z) + η

for all n sufficiently large. We define the recovery sequence un as

un(xni ) =
{
zxni if i is even
z(i− 1)λn + zn1 λn if i is odd.
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We then have

En(un) =
n−1∑
i=0

λnψ
1
n

(un(xni+1)− un(xni )
λn

)
+

n−2∑
i=0

λnψ
2
n

(un(xni+2)− un(xni )
2λn

)
≤ L

2
(ψ1

n(z
n
1 ) + ψ1

n(z
n
2 )) + Lψ2

n(z) ≤ Lψ(z) + Lη = F (u) + Lη,

and the limsup inequality follows by the arbitrariness of η.

Remark 3.9 (Multiple-scale effects) The formula defining ψ highlights a
double-scale effect. The operation of inf-convolution highlights oscillations on
the scale λn, while the convexification of ψ̃ acts at a much larger scale.

3.2.3 Long-range interactions: a ‘clustering’ principle

We consider now the case of a general K ≥ 1. In this case the effective energy
density will be given by a homogenization formula. As the statement of the
general result (which is postponed to the next section) will be quite complex,
we begin by treating the case of energy densities independent of n. We suppose
for the sake of simplicity that ψj : R → [0,+∞) are lower semicontinuous and
there exists p > 1 such that

ψ1(z) ≥ c0(|z|p − 1), ψj(z) ≤ cj(1 + |z|p). (3.27)

for all j = 1, . . . , K. Before stating the convergence result we define some energy
densities.

Let N ∈ N. We define ψN : R → [0,+∞) as follows:

ψN(z) = min
{ 1
N

K∑
j=1

N−j∑
i=0

ψj
(u(i+ j) − u(i)

j

)
u : {0, . . . , N} → R, u(i) = zi for i ≤ K or i ≥ N −K

}
.(3.28)

Proposition 3.10 For all z ∈ R there exists the limit ψ(z) = limN ψN(z).

Proof With fixed z ∈ R, let N,M ∈ N with M > N , and let uN be a
minimizer for ψN(z). We define uM : {0, . . . ,M} → R as follows:

uM(i) =
{
uN (i− lN) + lNz if lN ≤ i ≤ (l+ 1)N (0 ≤ l ≤ M

N − 1)
zi otherwise.

Then we can estimate

ψM(z) ≤ 1
M

K∑
j=1

M−j∑
i=0

ψj
(uM(i+ j) − uM(i)

j

)

≤ 1
N

K∑
j=1

N−j∑
i=0

ψj
(uN(i+ j) − uN(i)

j

)
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+
1
N

K∑
j=1

(2K − j)ψj(z) +
K∑
j=1

M − [M/N ]N +K − j

M
ψj(z)

≤ ψN(z) +
2K
N

K∑
j=1

ψj(z) +
N +K

M

K∑
j=1

ψj(z)

≤ ψN(z) + c
(2K
N

+
N +K

M

)
(1 + |z|p). (3.29)

Taking first the limsup in M and then the liminf in N we deduce that

lim sup
M

ψM (z) ≤ lim inf
N

ψN(z)

as desired

Remark 3.11 (i) c0(|z|p − 1) ≤ ψ1(z) ≤ ψ(z) ≤ c(1 + |z|p);
(ii) ψ is lower semicontinuous;
(iii) ψ is convex;
(iv) for all N ∈ N we have ψ(z) ≤ ψN (z) + c

N (1 + |z|p).

We can state the convergence theorem.

Theorem 3.12 Let ψj be as above and let En be defined by (3.15). Then the
Γ-limit of En with respect to the convergence in L1(0, L) is given by F defined
by

F (u) =


∫

(0,L)

ψ(u′) dx if u ∈W1,p(0, L)

+∞ otherwise

(3.30)

on L1(0, L), where ψ is given by Proposition 3.10.

Proof We begin by establishing the liminf inequality. Let un → u in L1(0, L)
be such that supnEn(un) < +∞. Note that this implies that

sup
n

∫ L

0

|u′
n|p dt < +∞,

so that indeed un ⇀ u weakly in W1,p(0, L) and hence also un → u in L∞(0, L).
For all k ∈ {0, . . . , N − 1} let

Φn(k) =
∑
l∈N

∫
((k+Nl−2K)λn,(k+Nl+2K)λn)∩(0,L)

|u′
n|p dt.

We have
N−1∑
k=0

Φn(k) ≤ 2K
∫ L

0

|u′
n|p dt ≤ c,
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so that, upon choosing a subsequence if necessary, there exists k such that

Φn(k) ≤
c

N
.

For the sake of notational simplicity we will suppose that this holds with k = 0,
and also that n =MN with M ∈ N, so that the inequality above reads

M−1∑
l=0

∫
((Nl−2K)λn,(Nl+2K)λn)∩(0,L)

|u′
n|p dt ≤

c

N
. (3.31)

We may always suppose so, upon first reasoning in slightly smaller intervals
than (0, L) and then let those intervals invade (0, L).

Let vNn be the piecewise-affine function defined on (0, L) such that

vNn (0) = un(0)
(vNn )

′ = u′
n on (xni , x

n
i+1), Nl+K ≤ i ≤ N(l+ 1)−K − 1

(vNn )
′ =

un((Nl +N −K)λn)− un((Nl +K)λn)
(N − 2K)λn

=: zNn,l

on (Nlλn, (Nl+K)λn) ∪ ((N(l + 1)−K − 1)λn, N(l+ 1)λn).

The construction of vNn deserves some words of explanation. The function vNn is
constructed on each interval (Nlλn, (N +1)λn) as equal to the function un (up
to an additive constant) in the middle interval ((Nl+K)λn , (N(l+1)−K)λn),
and as the affine function of slope zNn,l in the remaining two intervals. Note that
the construction implies that the function

vNn,l : {0, . . . , N} → R

defined by

vNn,l(i) =
1
λn

vNn ((lN + i)λn)

is a test function for the minimum problem defining ψN (zNn,l), and that

K∑
j=1

N(l+1)−j∑
i=Nl

λnψ
j
(vNn (xni+j)− vNn (xni )

jλn

)

=
K∑
j=1

N−j∑
i=0

λnψ
j
(vNn,l((i+ j)) − vNn,l(i)

j

)
≥ NλnψN(zNn,l). (3.32)

Moreover, note that, by Hölder’s inequality, we have∫
(0,L)

|(vNn )′ − u′
n| dt ≤

(2K
N

L
)1−1/p

‖u′
n‖Lp(0,L) +

2K
N − 2K ‖u′

n‖L1(0,L),

so that, since un(0) = vNn (0) we have a uniform bound

‖vNn − un‖L∞(0,L) ≤
c

N
. (3.33)
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We have that

En(un) ≥
M−1∑
l=0

K∑
j=1

N(l+1)−K−j∑
i=Nl+K

λnψ
j
(un(xni+j) − un(xni )

jλn

)

=
M−1∑
l=0

K∑
j=1

N(l+1)−K−j∑
i=Nl+K

λnψ
j
(vNn (xni+j)− vNn (xni )

jλn

)

=
M−1∑
l=0

K∑
j=1

N(l+1)−j∑
i=Nl

λnψ
j
(vNn (xni+j)− vNn (xni )

jλn

)

−
M−1∑
l=0

K∑
j=1

Nl+K∑
i=Nl

λnψ
j
(vNn (xni+j) − vNn (x

n
i )

jλn

)

−
M∑
l=1

K∑
j=1

Nl−j∑
i=Nl−K−j

λnψ
j
(vNn (xni+j)− vNn (xni )

jλn

)

=:
M−1∑
l=0

K∑
j=1

N(l+1)−j∑
i=Nl

λnψ
j
(vNn (xni+j)− vNn (xni )

jλn

)
−I1

n − I2
n

≥
M−1∑
l=0

K∑
j=1

NλnψN (zNn,l) − I1
n − I2

n, (3.34)

the last estimate being given by (3.32).
We give an estimate of the term I1

n; the term I2
n can be dealt with similarly.

Let i < Nl + K ≤ i+ j; by the growth conditions on ψj and the convexity of
z �→ |z|p we have

ψj
(vNn (xni+j) − vNn (xni )

jλn

)
≤ c

(
1 +

∣∣∣vNn (xni+j)− vNn (xni )
jλn

∣∣∣p)
≤ c

(
1 +

1
j

i+j−1∑
k=i

∣∣∣vNn (xnk+1)− vNn (x
n
k )

λn

∣∣∣p)
≤ c

(
1 +K|zNn,l|p +

1
λn

∫
((Nl−2K)λn,(Nl+2K)λn)∩(0,L)

|u′
n|p dt

)
By (3.31) and the fact that |z|p ≤ c(1 + ψN(z)), we deduce that

I1
n ≤

M−1∑
l=0

K∑
j=1

Nl+K∑
i=Nl

λnc
(
1 + ψN (zNn,l) +

1
λn

∫
((Nl−2K)λn,(Nl+2K)λn)

|u′
n|p dt

)

≤ c

N
+

c

N

M−1∑
l=0

NλnψN(zNn,l). (3.35)
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Plugging this estimate and the analog for I2
n into (3.34) we get

En(un) ≥
(
1− c

N

)M−1∑
l=0

NλnψN (zNn,l) −
c

N
. (3.36)

By Remark 3.11(iv) we have

ψN(z) ≥ ψ(z) − c

N
(1 + |z|p) ≥

(
1− c

N

)
ψ(z) − c

N
.

From (3.36) we then have

En(un) ≥
(
1− c

N

)M−1∑
l=0

Nλnψ(zNn,l) −
c

N
(3.37)

Now, note that the piecewise-affine functions uNn defined by

uNn (0) = un(0) and (uNn )
′ = zNn,l on (Nlλn, N(l+ 1)λn)

are weakly precompact in W1,p(0, L), so that we may suppose that uNn ⇀ uN .
Then by Theorem 3.4 we have

lim inf
n

M−1∑
l=0

Nλnψ(zNn,l) = lim infn

∫ L

0

ψ((uNn )
′) dt ≥

∫ L

0

ψ((uN )′) dt, (3.38)

so that

lim inf
n

En(un) ≥
(
1− c

N

)∫ L

0

ψ((uN )′) dt− c

N
(3.39)

By (3.33) and the uniform convergence of un to u we have

‖uN − u‖L∞(0,L) ≤
c

N
. (3.40)

By letting N → +∞ we then obtain the thesis by the lower semicontinuity of∫
ψ(u′) dt.
To prove the limsup inequality it suffices to deal with the case u(x) = zx

since from this construction we easily obtain a recovery sequence for piecewise-
affine functions and then reason by density. To exhibit a recovery sequence for
such u it suffices to fix N ∈ N, consider vN a minimum point for the problem
defining ψN (z) and define

un(xni ) = vN (i−Nl)λn + zNlλn if Nl ≤ i ≤ N(l+ 1).

We then have

lim sup
n

En(un) ≤ LψN (z) +
c

N

K∑
j=1

ψj(z),

and the thesis follows by the arbitrariness of N .
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3.2.4 The general convergence theorem

By slightly modifying the proof of Theorem 3.12 we can easily state a general
Γ-convergence result, allowing a dependence also on n for the energy densities.

Theorem 3.13 Let K ≥ 1. Let ψj
n : R → [0,+∞) be lower semicontinuous

functions and let p > 1 exists such that

ψ1
n(z) ≥ c0(|z|p − 1), ψj

n(z) ≤ cj(1 + |z|p). (3.41)

for all j ∈ {1, . . . , K} and n ∈ N. For all N, n ∈ N let ψN,n : R → [0,+∞) be
defined by

ψN,n(z) = min
{ 1
N

K∑
j=1

N−j∑
i=0

ψj
n

(u(i+ j) − u(i)
j

)
u : {0, . . . , N} → R, u(i) = zi for i ≤ K or i ≥ N −K

}
(3.42)

Suppose that ψ : R → [0,+∞) exists such that

ψ(z) = lim
N
lim
n

ψ∗∗
N,n(z) for all z ∈ R (3.43)

(note that this is not restrictive upon passing to a subsequence of n and N). Let
En be defined on An(0, L) by

En(u) =
K∑
j=1

n−j∑
i=0

λnψ
j
n

(ui+j − ui
jλn

)
. (3.44)

Then the Γ-limit of En with respect to the convergence in L1(0, L) is given by
F defined by

F (u) =


∫

(0,L)

ψ(u′) dx if u ∈W1,p(0, L)

+∞ otherwise

(3.45)

on L1(0, L).

Proof Let un → u in L1(0, L). We can repeat the proof for the liminf inequal-
ity for Theorem 3.12, substituting ψj by ψj

n and ψN by ψN,n. We then deduce
as in (3.38)–(3.39) that

lim inf
n

En(un) ≥
(
1− c

N

)
lim inf

n

∫ L

0

ψN,n((uNn )
′) dt− c

N

≥
(
1− c

N

)∫ L

0

ψN((uN )′) dt−
c

N
,

where ψN = limn ψ
∗∗
N,n and the thesis by letting N → +∞.



34 CHAPTER 3. DISCRETE SYSTEMS IN SOBOLEV SPACES

To prove the limsup inequality it suffices to deal with the case u(x) = zx
since from this construction we easily obtain a recovery sequence for piecewise-
affine functions and then reason by density. To exhibit a recovery sequence for
such u it suffices to fix N ∈ N, consider z1,n, z2,n and ηn ∈ [0, 1] such that

ψ∗∗
N,n(z) = ηnψN,n(z1,n) + (1 − ηn)ψN,n(z2,n), z = ηnz1,n + (1− ηn)z2,n.

Let vN1,n, vN2,n be minimumpoints for the problem defining ψN,n(z1,n), ψN,n(z2,n),
respectively. For the sake of simplicity assume that there exists m such that
mNηn ∈ N for all n. Define

un(xni ) =


vN1,n(i−Nl)λn + zmNlλn if mNl ≤ i ≤ mNl +mNηn

vN2,n(i−Nl−mNηn)λn + zmNl + z1,nmNηnλn
if mNl +mNηn ≤ i ≤ mN(l + 1).

By the growth conditions on ψj
n it is easily seen that (zk,n) are equi bounded

and that
sup{vNk,n(i) − zk,ni : i ∈ {0, . . . , N}, n ∈ N} < +∞,

so that un converges to zx uniformly. We then have

lim sup
n

En(un) ≤ L lim sup
n

ψ∗∗
N,n(z)

and the thesis follows by the arbitrariness of N .

3.2.5 Convergence of minimum problems

From Theorem 3.13 we immediately deduce the following theorem.

Theorem 3.14 Let En and F be given by Theorem 3.13, let f ∈ L1(0, L) and
d > 0. Then the minimum values

mn = min
{
En(u) +

∫ L

0

fu dt : u(0) = 0, u(L) = d
}

(3.46)

converge to

m = min
{
F (u) +

∫ L

0

fu dt : u(0) = 0, u(L) = d
}
, (3.47)

and from each sequence of minimizers of (3.46) we can extract a subsequence
converging to a minimizer of (3.47).

Proof Since the sequence of functionals (En) is equi-coercive, it suffices to
show that the boundary conditions do not change the form of the Γ-limit;
i.e., that for all u ∈ W1,p(0, L) such that u(0) = 0 and u(L) = d and for
all ε > 0 there exists a sequence un such that un(0) = 0, un(L) = d and
lim supnEn(un) ≤ F (u) + ε.
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Let vn → u in L∞(0, L) be such that limnEn(vn) = F (u). With fixed η > 0
and N ∈ N let Kn ∈ N be such that

lim
n

Knλn =
η

N
.

For all l ∈ {1, . . . , N} let φN,l
n : [0, L] → [0, 1] be the piecewise-affine function

defined by φN,l
n (0) = 0,

φN,l
n

′
=

{
1/(Knλn) on ((l− 1)Knλn, lKnλn)
−1/(Knλn) on ((n− lKn)λn, (n− lKn +Kn)λn)
0 otherwise.

Let
uN,l
n = φN,l

n vn + (1− φN,l
n )u.

We have

En(uN,l
n ) ≤ En(un) + c

(∫ η+Kλn

0

(1 + |u′|p) dt+
∫ L

L−η−Kλn

(1 + |u′|p) dt
)

+c
(∫

((l−1)Kn−K)λn,(lKn+K)λn)∩(0,L)

|u′
n|p dt

+
∫

((n−lKn−K)λn,(n−lKn+Kn+K)λn)∩(0,L)

|v′n|p dt

+
∫ L

0

1
(Knλn)p

|vn − u|p
)

≤ En(un) + c
(∫ 2η

0

(1 + |u′|p) dt+
∫ L

L−2η

(1 + |u′|p) dt
)

+c
(∫

(((l−2)η/N,((l+1)η/N)∪(L−(l+1)η/N,L−(l−2)η/N))∩(0,L)

|v′n|p dt
)

+c
Np

ηp
‖vn − u‖pL∞(0,L)

for n large enough. Since

N∑
l=1

∫
((l−2)η/N,((l+1)η/N)∪(L−(l+1)η/N,L−(l−2)η/N)∩(0,L)

|u′
n|p dt

≤ 2
∫ L

0

(1 + |v′n|p) dt ≤ c,

for all n there exists ln ∈ {1, . . . , N} such that

En(uN,ln
n ) ≤ En(vn) + c

(∫ 2η

0

(1 + |u′|p) dt+
∫ L

L−2η

(1 + |u′|p) dt
)

+
c

N
+ c

Np

ηp
‖vn − u‖p

L∞(0,L)
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Setting un = uN,ln
n we then have

lim sup
n

En(un) ≤ F (u) + c
(∫ 2η

0

(1 + |u′|p) dt+
∫ L

L−2η

(1 + |u′|p) dt
)
+

c

N
,

and the desired inequality by the arbitrariness of η and N .

3.3 Infinite-range interactions

We now treat an example where interactions at all length must be taken into
account, giving in the limit a non-local term (Dirichlet form). In order to
highlight this effect, isolating it from all non-convex behaviour we will treta the
quadratic case only. For the sake of simplicity we replace λn by a continuous
parameter ε.

For all ε > 0 let ρε : εZ → [0,+∞). With fixed a bouded open interval
(a, b), consider the discrete energies∑

x,y∈εZ∩(a,b)
x �=y

ε ρε(x− y)
(u(x)− u(y)

x− y

)2

(3.48)

defined for u : εZ → R. Note that we may assume that ρε is an even function,
upon replacing ρε(z) by ρ̃ε(z) = (1/2)(ρε(z) + ρε(−z)). We will tacitly make
this simplifying assumption in the sequel.

We will consider the following hypotheses on ρε:
(H1) (equi-coerciveness of nearest-neighbour interactions) infε ρε(ε) > 0;
(H2) (local uniform summability of ρε) for all T > 0 we have

sup
ε

∑
x∈εZ∩(0,T )

ρε(x) < +∞.

Remark 3.15 Note that (H2) can be rephrased as a local uniform integrability
property for ερε on R2: for all T > 0

sup
ε

∑
x,y∈εZ

x �=y,|x|,|y|≤T

ερε(x− y) < +∞.

As a consequence, if (H2) holds then, up to a subsequence, we can assume that
the Radon measures

µε =
∑

x,y∈εZ, x �=y

ερε(x− y)δ(x,y)

(δz denotes the Dirac mass at z) locally converge weakly in R2 to a Radon
measure µ0, and that the Radon measures

λε =
∑
z∈εZ

ρε(z)δz
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locally converge weakly in R to a Radon measure λ0. These two limit measures
are linked by the relation

µ0(A) =
1√
2

∫
R

|As|dλ0(s), (3.49)

where |As| is the Lebesgue measure of the set

As = {t ∈ R : (s(e1 − e2) + t(e1 + e2))/
√
2 ∈ A}.

If (H1) holds then we have the orthogonal decomposition

λ0 = λ1 + c1δ0, (3.50)

for some c1 > 0 and a Radon measure λ1 on R. We also denote

µ = µ0 (R2 \∆) (3.51)

(the restriction of µ0 to R2 \∆, where ∆ = {(x, x) : x ∈ R}. By the decompo-
sition above, we have

µ0 = µ+
1√
2
c1H1 ∆,

where H1 stands for the 1-dimensional Hausdorff measure.

Each function u : εZ → R will be identified, upon slightly abusing notation,
with its extension to a function u ∈ L1

loc(R) which is continuous on R and
affine on each interval (iε, (i+1)ε). We denote by Aε the set of such functions.
The energy (3.48) is extended to an equivalent functional defined on L1(a, b) by
setting

Fε(u) =


∑

x,y∈εZ∩(a,b), x �=y

ε ρε(x− y)
(u(x)− u(y)

x− y

)2

if u ∈ Aε

+∞ otherwise.

(3.52)

We will investigate the Γ-limit of Fε.

Theorem 3.16 (Compactness and representation) If conditions (H1) and
(H2) hold, then there exist a subsequence (not relabelled) of {ε} converging to
0, a Radon measure µ on R2 and a constant c1 > 0 such that the energies Fε

Γ-converge to the energy F defined on L1(a, b) by

F (u) =


c1

∫
(a,b)

|u′|2 dt+
∫

(a,b)2

(u(x)− u(y)
x− y

)2

dµ(x, y)

if u ∈ W 1,2a, b)

+∞ otherwise,

(3.53)

where the measure µ and c1 are given by (3.51) and (3.50), respectively.
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Remark 3.17 By taking (3.49) into account, we can also write (3.53) in the
form

c1

∫
|u′|2 dt+

∫ ∫
(u(t + s) − u(t))2 dλ(s) dt, (3.54)

with λ =
√
2 s2λ1 and λ1 given by (3.50).

Proof Upon passing to a subsequence we may also assume that the measures
µε in Remark 3.15 converge to µ0. Then, µ and c1 given by (3.51) and (3.50)
are well defined as well. Hence, it suffices to prove the representation for the
Γ-limit along this sequence.

We begin by proving the liminf inequality. Let uε → u in L1(a, b) be such
that supε Fε(uε) < +∞. By hypothesis (H1) the sequence uε converges weakly
in W 1,2(a, b). Note moreover that for all η > 0 the convergence

uε(x)− uε(y)
x− y

−→ u(x)− u(y)
x− y

as ε → 0 is uniform on (a, b)2 \∆η), where ∆η = {(x, y) ∈ R2 : |x− y| > η}.
With fixed m ∈ N, we have the inequality

Fε(uε) ≥
∑

x,y∈εZ∩(a,b)
|x−y|≤4/m, x �=y

ρε(x− y)ε
(uε(x) − uε(y)

x− y

)2

+
∑

x,y∈εZ∩(a,b)
|x−y|>4/m

ε ρε(x− y)
(uε(x)− uε(y)

x− y

)2

=: I1
ε (uε) + I2

ε (uε). (3.55)

We now estimate these two terms separately.
As for the first term, there exist positive αε converging to 0 as ε → 0 such

that

lim
ε
2

[αε/ε]∑
k=1

ρε(εk) ≥ c1 −
1
m
.

Let (a′, b′) ⊂ (a, b). For all N ∈ N and ε small enough we then have∑
x,y∈εZ∩(a′,b′)
|x−y|≤αε, x �=y

ρε(x− y)ε
(uε(x)− uε(y)

x− y

)2

≥
N∑
i=1

2
[αε/ε]∑
k=1

∑
x,y∈εZ∩(yi−1,yi)

|x−y|=εk

ερ(εk)
(u(x)− u(y)

x− y

)2

≥
N∑
i=1

2
[αε/ε]∑
k=1

(b′ − a′)
N

ρ(εk)
(u(yi)− u(yi−1)

yi − yi−1

)2

+o(1)
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as ε → 0, where we have set

yi = a′ +
i

N
(b′ − a′),

we have used the fact that uε → u uniformly and the convexity of z �→ z2. The
same reasoning applied to a set I ⊂ (a, b) which can be written as a finite union
of open intervals shows that

lim inf
ε

I1
ε (uε) ≥

(
c1 −

1
m

) ∫
I

|u′|2 dt.

From this inequality and the arbitrariness of I, we easily obtain that

lim inf
ε

I1
ε (uε) ≥

(
c1 −

1
m

) ∫
(a,b)

|u′|2 dt.

As for the second term, it suffices to remark that for all η > 0

lim
ε

(uε(x) − uε(y)
x− y

)2

=
(u(x)− u(y)

x− y

)2

uniformly on (a, b)2 \∆η as ε → 0, so that, by the weak convergence of µε we
have

lim inf
ε

I2
ε (uε) ≥

∫
(a,b)2\∆4/m

(u(x)− u(y)
x− y

)2

dµ(x, y).

By summing up all these inequalities and letting m → +∞ we eventually
get

lim inf
ε

Fε(uε) ≥ c1

∫
(a,b)

|u′|2 dt

+
∫

(a,b)2

(u(x)− u(y)
x− y

)2

dµ(x, y).

The limsup inequality for smooth functions easily follows by comparing with
the pointwise limit, once we remark that by (3.49) the limit measure µ does not
charge ∂(a, b)2. The proof is concluded by a density argument.
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Chapter 4

Discrete systems and
free-discontinuity problems

We now consider dyscrete systems leading to minimization problems for func-
tionals whose natural domains are sets of functions which admit a finite number
of discontinuities. The set of these discontinuities will be an unknown of the
problems, and for this reason the latter will be called ‘free-discontinuity prob-
lems’.

4.1 Piecewise-Sobolev functions

To have a precise statement of free-discontinuity problems, it will be useful to
define some spaces of piecewise weakly-differentiable functions.

Definition 4.1 We say that a function u : (a, b)→ R is piecewise constant on
(a, b) if there exist points a = t0 < t1 < · · · < tN < tN+1 = b such that

u(t) is constant a.e. on (ti−1, ti) for all i = 1, . . . , N + 1. (4.1)

The subspace of L∞(a, b) of all such u is denoted by PC(a, b). If u ∈ PC(a, b)
we define S(u) as the minimal set {t1, . . . , tN} ⊂ (a, b) such that (4.1) holds.

At all points t ∈ (a, b) we define the values u(t+) and u(t−) as the values
taken a.e. by u on (t, t+ ε) and (t − ε, t), respectively, for ε small enough, or,
equivalently,

u(t+) = lim
ε→0+

1
ε

∫ t+ε

t

u(s) ds, u(t−) = lim
ε→0+

1
ε

∫ t

t−ε

u(s) ds.

In the same way we define u(a+) and u(b−). We finally define the functions
u+ : [a, b)→ R and u− : (a, b]→ R as u±(t) = u(t±).

41
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Definition 4.2 Let 1 ≤ p ≤ +∞. We define the space P-W1,p(a, b) of piecewise-
W1,p functions on the bounded interval (a, b) as the direct sum

P-W1,p(a, b) = W1,p(a, b) + PC(a, b), (4.2)

i.e. u ∈ P-W1,p(a, b) if and only if v ∈ W1,p(a, b) and w ∈ PC(a, b) exist
such that u = v + w. Note that W1,p(a, b) ∩ PC(a, b) equals the set of constant
functions, so that u and v are uniquely determined up to an additive constant.
The function u inherits the notation valid for v and w; namely, we define the
jump set of u and the weak derivative of u as

S(u) = S(w) and u′ = v′, (4.3)

respectively. Moreover, the left and right-hand side values of u are defined by

u±(x) = v(x) +w±(x). (4.4)

Remark 4.3 Clearly, u ∈ P-W1,p(a, b) if and only if there exist a = t0 <
t1 < . . . < tN = b such that u ∈ W1,p(ti−1, ti) for all i = 1, . . . , N . With
this definition S(u) is interpreted as the minimal of such sets of points, and
u ∈ L2(a, b) is defined piecewise on (a, b) \ S(u).

4.2 Some model problems

Even though the treatment of minimization problems for functionals defined
on P-W1,p(a, b) with p > 1 will be easily dealt with by combining the results
that we have already proved for functionals defined on Sobolev functions and on
piecewise-constant functions we illustrate their importance with two examples.

4.2.1 Signal reconstruction: the Mumford-Shah functional

As for functionals defined on piecewise-constant functions a model for signal
reconstruction can be proposed using piecewise-Sobolev functions. Mumford
and Shah proposed a model which can be translated in dimension one in the
following: Given a datum g (the distorted signal) recover the original piecewise-
smooth signal u by solving the problem

min
{
c1

∫
(a,b)

|u′|2 dt+c2#(S(u))+c3
∫

(a,b)

|u−g|2 dt : u ∈ P-W 1,2(a, b)
}
. (4.5)

The parameters c1, c2, c3 are tuning parameters. A large c1 penalizes high gra-
dients, a large c2 forbids the introduction of too many discontinuity points, and
c3 controls the distance of u to g.

4.2.2 Fracture mechanics: the Griffith functional

A simple approach to some problems in the mechanics of brittle solids is that
proposed by Griffith, which can be stated more or less like this: Each time
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a crack is created, an energy is spent proportional to the area of the fracture
site. We consider as an example that of a brittle elastic bar subject to a forced
displacement at its ends, so that volume integrals become line integrals and
surface discontinuities turn into jumps. In this case, if g denotes the external
body forces acting on the bar, the deformation u of the bar at equilibrium will
solve the following problem:

min
{∫

(a,b)

f(u′) dt+ λ#(S(u)) −
∫

(a,b)

gu dt

: u(a) = ua, u(b) = ub, u+ > u− on S(u)
}
. (4.6)

on the space of functions u ∈ P-W1,p(a, b), for some p > 1. The function f
represents the elastic response of the bar in the unfractured region, while the
condition u+ > u− derives from the inpenetrability of matter.

4.3 Functionals on piecewise-Sobolev functions

We consider energies on P-W1,p(a, b) of the form

F (u) =
∫

(a,b)

f(u′) dt+
∑
S(u)

ϑ(u+ − u−). (4.7)

Lower-semicontinuity and coerciveness properties for such functionals will easily
follow from the corresponding properties on W1,p(a, b) and PC(a, b).

Theorem 4.4 Let p > 1.
(i) (Coerciveness) If (uj) is a sequence in P-W1,p(a, b) such that

sup
j

(∫
(a,b)

|u′
j|p dt+#(S(uj))

)
< +∞ (4.8)

and for all open sets I ⊂ (a, b) we have lim infj infI |uj| < +∞, then there
exists a subsequence of (uj) (not relabeled) converging in measure to some u ∈
P-W1,p(a, b). Moreover, we can write uj = vj + wj with vj ∈ W1,p(a, b) and
wj ∈ PC(a, b), with vj weakly converging in W1,p(a, b) and wj converging in
measure.

(ii) (Lower semicontinuity) If f : R → [0 +∞] is a convex and lower semi-
continuous function, and if ϑ : R → [0+∞] is a subadditive and lower semicon-
tinuous function then the functional F defined in (4.7) is lower semicontinuous
on P-W1,p(a, b) with respect to convergence in measure along sequences (uj)
satisfying (4.8).

Proof (i) Let vj ∈W1,p(a, b) be defined by

vj(t) =
∫ t

a

u′
j(s) ds.
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Since vj(a) = 0 for all j, the sequence (vj) is bounded in W1,p(a, b) by Poincarè
inequality, and hence we can extract a weakly converging subsequence (that
we still denote by (vj)) that weakly converges to some v in W1,p(a, b). Now,
set wj = uj − vj ∈ PC(a, b). Since vj → v in L∞(a, b), upon extracting a
subsequence, (wj) converges in measure to some w ∈ PC(a, b). The sequence
(uj) satisfies the required properties with u = v +w.

(ii) Let (uj) satisfy (4.8) and uj → u in measure. Then by (i) we can write
uj = vj + wj with vj ∈ W1,p(a, b) and wj ∈ PC(a, b), wj → w weakly in
W1,p(a, b) and vj → v ∈ PC(a, b) in measure. We then get

F (u) = F (v) + F (w) ≤ lim inf
j

F (vj) + lim inf
j

F (wj) ≤ lim inf
j

F (uj)

as desired.

Corollary 4.5 Let f, ϑ : R → [0,+∞] be functions satisfying

c|z|p ≤ f(z) and c ≤ ϑ(z) (4.9)

for all z ∈ R, then the functional F defined in (4.7) is lower semicontinuous on
P-W1,p(a, b) with respect to convergence in measure if and only if f is convex
and lower semicontinuous and ϑ is subadditive and lower semicontinuous.

Proof Let F be lower semicontinuous. Then also its restrictions to W1,p(a, b)
and to PC(a, b) are lower semicontinuous; hence, we deduce that f is convex
and lower semicontinuous and ϑ is subadditive and lower semicontinuous. The
converse is a immediate consequence of Theorem 4.4.

4.4 Examples of existence results

As examples of an application of the lower semicontinuity theorems on the
space P-W1,p(a, b) we prove the existence of solutions for the problems outlined
in Section 4.2.

Example 4.6 (Existence in Image Reconstruction problems) We use the no-
tation of Section 4.2.1. Let g ∈ L2(a, b) and let (uj) be a minimizing sequence
for the problem

m = inf
{
F (u) + c3

∫
(a,b)

|u− g|2 dt : u ∈ P-W 1,2(a, b)
}
, (4.10)

where
F (u) = c1

∫
(a,b)

|u′|2 dt+ c2#(S(u)).

By taking u = 0 as a test function, we get that m ≤
∫
(a,b)

|g|2 dt. Moreover,
we immediately get that (uj) is bounded in L2(a, b); hence, it satisfies the hy-
potheses of Theorem 4.4(i). We can thus suppose that uj → u ∈ P-W1,p(a, b)
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in measure and a.e., so that by Theorem 4.4(ii) (with p = 2, f(z) = |z|2 and
ϑ(z) = 1) F (u) ≤ lim infj F (uj), and by Fatou’s Lemma∫

(a,b)

|u− g|2 dt ≤ lim inf
j

∫
(a,b)

|uj − g|2 dt,

so that u is a minimum point for (4.10).

Example 4.7 (Existence in Fracture Mechanics problems) We use the notation
of Section 4.2.2. In this case we may have to specify the boundary conditions
better, as S(u) may tend to a or b; i.e, the elastic bar may break at its ends.
The minimization problem with relaxed boundary condition takes the form

m = inf
{
F (u)−

∫
(a,b)

gu dt+ϑ(u(a+)−ua)+ϑ(ub−u(b−)) : u ∈ P-W1,p(a, b)
}
,

(4.11)
where

F (u) =
∫

(a,b)

f(u′) dt+
∑
S(u)

ϑ(u+ − u−),

f is some convex function, which we suppose satisfies f(z) ≥ |z|p − c, and ϑ is
defined by

ϑ(z) =

{+∞ if z < 0
0 if z = 0
1 if z > 0.

Note that ϑ takes care of the inpenetrability condition, which needs not be
repeated in the statement of the minimum problem in the form (4.11).

We deal with the case ub > ua, and suppose f(0) = 0 and λ = 1. We may
use u = (ua + ub)/2 as a test function, obtaining

m ≤ F (u) + ϑ(u(a+)− ua) + ϑ(ub − u(b−)) = 2ϑ
(ub − ua

2

)
= 2.

Let (uj) be a minimizing sequence for (4.11). We set uj = vj + wj with vj ∈
W1,p(a, b), wj ∈ PC(a, b) and vj(a) = 0. By the Poincarè inequality and the
continuous imbedding of W1,p(a, b) into L∞(a, b) we obtain that

‖vj‖L∞(a,b) ≤ c‖v′j‖Lp(a,b). (4.12)

Note that the condition u+
j > u−

j implies that wj is increasing, so that

‖wj‖L∞(a,b) ≤ |ua|+ |ub|+ c‖v′j‖Lp(a,b). (4.13)

From the condition∫
(a,b)

f(u′
j ) dt+

∑
S(u)

ϑ(u+
j − u−

j )−
∫

(a,b)

guj dt ≤ c
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we then get in particular∫
(a,b)

|v′j|p dt−
∫

(a,b)

gvj dt−
∫

(a,b)

gwj dt ≤ c,

from which we deduce by (4.12)-(4.13)∫
(a,b)

|v′j |p dt− c‖vj‖L∞(a,b) − c‖wj‖L∞(a,b) ≤ c

and, from the inequalities above, eventually∫
(a,b)

|v′j|p dt ≤ c.

Hence, we may assume that vj weakly converge in W1,p(a, b), and by (4.13) we
obtain that (wj) is a bounded sequence in L∞(a, b). Hence (uj) satisfies the
assumptions of Theorem 4.4(i), so that we may assume that it converges to u
in measure. Moreover, we may assume that wj converges a.e. and in L1(a, b),
so that we get that u is a minimum point for (4.11) by using Theorem 4.4(ii).

4.5 Discrete systems with (sub)linear growth

We now study discrete systems with integrands satisfying a growth condition of
the form

ψ(z) ≤ C(1 + |z|);
in particular we will deal with integrands of strictly-sublinear growth. It is clear
that convexification arguments in this case cannot apply since they would give
trivial results (the convex envelope of such functions is constant). In this case a
further principle of separation of scales applies. We will describe it through
a series of simple examples.

4.5.1 Discretization of the Mumford Shah functional

A simple case of functionals En En : An(a, b)→ [0,+∞] of the form

En(u) =
n∑

i=1

λnfn(ui − ui−1). (4.14)

is obtained by taking

ψn(z) =
1
λn
min{λnz2, 1} =: 1

λn
ψ(λnz2). (4.15)

Note that we have

lim
n

ψn(z) = z2, lim
n

λnψn

( z

λn

)
= 1 (4.16)

for all z ∈ R and for all z �= 0, respectively.
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Theorem 4.8 If ψn are as above then the functionals En Γ-converge to the
functional

F (u) =
∫ b

a

|u′|2 dt+#(S(u)) (4.17)

on P-W 1,2(a, b).

Proof Note that

Fn(ũn) =
∫ b

a

|ũ′
n|2 dt+#(S(ũn)).

If supnE(un) < +∞ and un → u then ũn → u in measure so that u ∈
P-W 1,2(a, b) and

lim inf
n

En(un) = lim inf
n

Fn(ũn) = lim inf
n

F (ũn) ≥ F (u)

by Theorem 4.4.
Vice versa, a recovery sequence for a function in P-W 1,2(a, b) is easily ob-

tained by taking un(xi) = u(xi) on In.

Remark 4.9 The same proof as above shows that if we take

ψn(z) =


1
λn
min{λncz2, α} if z ≥ 0

1
λn
min{λncz2, β} if z ≤ 0,

(4.18)

then the limit is

F (u) = c

∫ b

a

|u′|2 dt+ α#({t ∈ S(u) : [u] > 0}) + β#({t ∈ S(u) : [u] < 0})
(4.19)

on P-W 1,2(a, b).

4.6 Fracture as a phase transition

We now deal with the case of functionals En with ψn(z) = J(z/λn); i.e,

En(u) =
n∑

i=1

λnJ
(ui − ui−1

λn

)
Let J : R → [0,+∞] satisfy the following conditions: J = +∞ on (−∞, 0], J is
continuous on [0,+∞), there exists C > 1 such that J is convex on (0, C] with
minimum in 1 and concave on [C,+∞), and there exists the limit J(+∞) ∈ R.

Theorem 4.10 Under the hypotheses above the functionals defined on An(a, b)
by En Γ-converge to the functional F defined by

F (u) =
∫

(a,b)

f(u′) dt
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on P-W1,1(a, b), with f(z) = J(z ∧ 1), and the functionals

E(1)
n (u) =

1
λn
(En(u) −minF ))

Γ-converge to the functional E(1) given by

E(1)(u) =


(J(+∞)− J(1))#(S(u)) if u is piecewise affine on (a, b)

u′ = 1 and u+ > u− on S(u)

+∞ otherwise

on P-W1,1(a, b). This functional is the first-order Γ-limit of (En).

Proof The existence of the ‘zero-order’ Γ-limit F and its representation follow
immediately by a comparison argument since F ≤ En for all n.

Note that minF = J(1) = minJ so that we can suppose that

E(1)
n (u) =

n∑
i=1

(
J
(u(xi)− u(xi−1)

λn

)
− J(1)

)
.

We check now the first-order Γ-limit. We first give an estimate from below by
comparison. Let γ > 0 be given such that

J(1) + γ(z − 1)2 ≤ J(z) for z ≤ 1,

J(1) + min{γ(z − 1)2, J(+∞)− γ} ≤ J(z) for z ≥ 1.

We then have

E(1)
n (u) ≥

n∑
i=1

ψn

(u(xi)− u(xi−1)
λn

)
,

whenever n is large enough and ψn is given by (4.18), where α = J(+∞)− γ −
J(1), and c and β are arbitrary.

Upon changing variables and considering v(t) = u(t) − t, we can apply
Remark 4.9 to estimate from below the Γ-limit by

F (u) = c

∫ b

a

|u′ − 1|2 dt+ (J(+∞)− γ − J(1))#({t ∈ S(u) : [u] > 0})

+β#({t ∈ S(u) : [u] < 0}). (4.20)

Since c, β and γ are arbitrary positive numbers we obtain the desired estimate
from below.

To complete the proof it suffices to exhibit a recovery sequence for such a
u. Let un be defined simply by un(xi) = u(xi). It suffices to consider the case
of a single jump: S(u) = {x0}, with u(x0+) = z, u(x0−) = 0. In this case we
trivially have

lim
n

E(1)(un) = lim
n

(
J
( z

λn

)
− J(1)

)
= J(+∞) − J(1),

and the proof is concluded.



Chapter 5

Discrete systems leading to
phase transitions

If the function ψ giving the limit energy density in Theorem 3.13 is not strictly
convex, converging sequences of minimizers of problems of the type (3.46) may
converge to particular minimizers of (3.47). This happens in the case of next-
to-nearest interactions, where the formula giving ψ is of particular help.

5.1 Equivalence with phase transitions

We consider next-to-nearest-neighbour energies of the form

En(u) =
n−1∑
i=0

λnψ
1
(ui+1 − ui

λn

)
+

n−2∑
i=0

λnψ
2
(ui+2 − ui

2λn

)
, (5.1)

and ψ̃ : R → [0,+∞) defined by

ψ̃(z) = ψ2(z) +
1
2
inf{ψ1(z1) + ψ1(z2)) : z1 + z2 = 2z}

= inf
{
ψ2(z) +

1
2
(ψ1

n(z1) + ψ1(z2)) : z1 + z2 = 2z
}
, (5.2)

We show that for some type of second-neighbour interactions the energies
En are equivalent (in the sense of Definition 2.43) to functionals of the form

Fn(u) =
∫ L

0

(W (u′) + c1λ
2
n|u′′|2) dt+ c2

with respect to Dirichlet boundary data. From Theorem 3.7 we may take

W = ψ̃.

In the following section we characterize c1 and c2, that are given the interpre-
tation of the effect of surface tension and boundary layers, respectively.

49
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5.2 Study of minimum problems

We examine the case when ψ̃ in (3.22) is not convex and of minimum problems
(3.46) with f = 0. Upon some change of coordinates it is not restrictive to
examine problems of the form

mn = min{En(u) : u(0) = 0, u(L) = d}, (5.3)

. We will treat in detail only the case d = 0. We may also suppose
(H1) we have

min ψ̃ = ψ̃(1) = ψ̃(−1). (5.4)

For the sake of simplicity we make the additional assumptions
(H2) we have

ψ̃(z) > 0 if |z| �= 1; (5.5)

(H3) there exist unique z+
1 , z+

2 and z−1 , z−2 such that

ψ2(±1) + 1
2

(
ψ1(z±1 ) + ψ1(z±2 )

)
= min ψ̃, z±1 , z±2 = ±2;

We set

M+ = {(z+
1 , z+

2 ), (z
+
2 , z+

1 )}, M− = {(z−1 , z−2 ), (z
−
2 , z−1 )} (5.6)

M = M+ ∪M−. (5.7)

(H4) we have z+
i �= z−j for all i, j ∈ {1, 2};

(H5) all functions are C1.
Under hypotheses (H1)–(H2) Theorem 3.13 simply gives that mn → 0 and

that the limits u of minimizers satisfy |u′| ≤ 1 a.e. We will see that indeed they
are ‘extremal’ solutions to the problem

min{F (u) : u(0) = 0, u(L) = 0}. (5.8)

The effect of the non validity of hypotheses (H3)–(H5) is explained in Remark
5.5.

The key idea is that it is energetically convenient for discrete minimizer
to remain close to the two states minimizing ψ̃, and that every time we have
a transition from one of the two minimal configurations to the other a fixed
amount of energy is spent (independent of n). To exactly quantify this fact we
introduce some functions and quantities.

Definition 5.1 (Minimal energy configurations) Let z = (z1, z2) ∈ M;
we define uz : Z → R by

uz(i) =
[ i
2

]
z2 +

(
i−
[ i
2

])
z1, (5.9)

and uz
n : λnZ → R by

uz
n(x

n
i ) = uz(i)λn (5.10)
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Definition 5.2 (Crease and boundary-layer energies) Let v : Z → R.
The right-hand side boundary layer energy of v is

B+(v) = inf
N∈N

min
{∑
i≥0

(
ψ2
(u(i+ 2)− u(i)

2

)
+ ψ1(u(i+ 1)− u(i))−min ψ̃

)
: u : N ∪ {0} → R, u(i) = v(i) if i ≥ N

}
,

The left-hand side boundary layer energy of v is

B−(v) = inf
N∈N

min
{∑
i≤0

(
ψ2
(u(i) − u(i− 2)

2

)
+ ψ1(u(i) − u(i− 1))−min ψ̃

)
: u : −N ∪ {0} → R, u(i) = v(i) if i ≤ −N

}
,

Let v± : Z → R. The transition energy between v− and v+ is

C(v−, v+) = inf
N∈N

min
{∑
i∈Z

(
ψ2
(u(i+ 2)− u(i)

2

)
+ ψ1(u(i+ 1)− u(i))−min ψ̃

)
: u : Z → R, c± ∈ R, u(i) = v±(i) + c± if ± i ≥ N

}
.

Remark 5.3 Condition (H4) implies that

C(uz+
, uz−

) > 0, C(uz−
, uz+

) > 0

if z± ∈ M±.

We can now describe the behaviour of minimizing sequences for (3.46).

Theorem 5.4 Suppose that (H1)–(H5) hold. We then have:
(Case n even) The minimizers (un) of (3.46) for n even converge, up to

subsequences, to one of the functions

u+(x) =
{
x if 0 ≤ x ≤ L/2
L− x if L/2 ≤ x ≤ L, u−(x) =

{
−x if 0 ≤ x ≤ L/2
−(L − x) if L/2 ≤ x ≤ L

.

Let

D := min
{
B+(uz+

) + C(uz+
, uz−

) +B−(uz−
),

B+(uz−
) +C(uz−

, uz+
) + B−(uz+

) : z+ ∈ M+, z− ∈ M−}.

If (un) converges (up to subsequences) to u± then there exist z+ ∈ M+, and
z− ∈ M− such that

D = B+(uz+
) + C(uz+

, uz−
) + B−(uz−

) (5.11)

and
En(un) = Dλn + o(λn). (5.12)
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(Case n odd) In the case n odd the same conclusions hold, upon substituting
terms of the form

B+(uz±
) +C(uz±

, uz∓
) + B−(uz∓

)

by terms of the form

B+(uz±
) + C(uz±

, uz∓
) +B−(uz∓

),

where we have set (z1, z2) = (z2, z1).

Proof We only deal with the case n even, as the case n odd is dealt with
similarly.

Let un be a minimizer for (3.46). We may assume that un converge in
W1,p(0, L) and uniformly. By comparison with En(u) we have

En(un) ≤ Lmin ψ̃ + cλn. (5.13)

We can consider the scaled energies

E1
n(u) =

1
λn
(En(u)− Lmin ψ̃). (5.14)

Note that we have

E1
n(u) =

n−2∑
i=0

(
ψ2
(ui+2 − ui

2λn

)
+
1
2

(
ψ1
(ui+2 − ui+1

λn

)
+ ψ1

(ui+1 − ui
λn

))
−min ψ̃

)
+
1
2

(
ψ1
(un − un−1

λn

)
+ ψ1

(u1 − u0

λn

))
−min ψ̃. (5.15)

From (5.13) and (5.15) we deduce that

n−2∑
i=0

(
ψ2
(un(xni+2) − un(xni )

2λn

)
+
1
2

(
ψ1
(un(xni+2) − un(xni+1)

λn

)
+ ψ1

(un(xni+1)− un(xni )
λn

))
−min ψ̃

)
≤ c.

We infer that for every η > 0 we have that if we denote by In(η) the set of
indices i such that

ψ2
(un(xni+2)− un(xni )

2λn

)
+
1
2

(
ψ1
(un(xni+2)− un(xni+1)

λn

)
+ ψ1

(un(xni+1)− un(xni )
λn

))
≤ min ψ̃ + η

then
sup
n

In(η) < +∞.



5.2. STUDY OF MINIMUM PROBLEMS 53

Let ε = ε(η) be defined so that if

ψ2
(z1 + z2

2

)
+
1
2

(
ψ1(z1) + ψ1(z2)

)
−min ψ̃ ≤ η

then
dist ((z1, z2),M) ≤ ε(η).

Choose η > 0 so that

2ε(η) < min{|z+ − z−|, z+ ∈ M+, z− ∈ M−}.

We then deduce that if i− 1, i �∈ In(η) then there exists z ∈ M such that∣∣∣(un(xni+1) − un(xni )
λn

,
un(xni+2)− un(xni+1)

λn

)
− z
∣∣∣ ≤ ε

and ∣∣∣(un(xni ) − un(xni−1)
λn

,
un(xni+1)− un(xni )

λn

)
− z
∣∣∣ ≤ ε

Hence, there exist a finite number of indices 0 = i0 < i1 < i2 < · · · < iNn = n
such that for all j = 1, . . . , Nn there exists znj ∈ M such that for all i ∈
{ij−1 + 1, . . . , ij − 1} we have∣∣∣(un(xni+1) − un(xni )

λn
,
un(xni+2)− un(xni+1)

λn

)
− znj

∣∣∣ ≤ ε.

Let {j0, j1, . . . , jMn} be the maximal subset of {i0, i1, . . . , iNn} defined by the
requirement that if znjk

∈ M± then znjk+1 ∈ M∓. Note that in this case we
deduce that En(un) ≥ cMn, so that Mn are equi-bounded. Upon choosing a
subsequence we may then suppose Mn = M independent of n, and also that
xnjk

→ xk ∈ [0, L] and znjk
= zk. By the arbitrariness of η we deduce that

limn un = u, and u is characterized by u(0) = u(L) = L and u′ = ±1 on
(xk−1, xk), the sign determined by whether zk ∈ M+ or zk ∈ M+. Let y0 =
0, y1, . . . , yN = L be distinct ordered points such that {yi} = {xk} (the set of
indices may be different if xk = xk+1 for some k). Choose indices k1, . . . , kN
such that xnkj

→ (yj−1 + yj)/2. Let zj be the limit of znjk
related to the interval

(yj , yj+1). We then have, for a suitable continuous ω : [0,+∞)→ [0,+∞),

k1−2∑
i=0

(
ψ2
(un(xni+2) − un(xni )

2λn

)
+
1
2

(
ψ1
(un(xni+2)− un(xni+1)

λn

)
+ ψ1

(un(xni+1) − un(xni )
λn

))
−min ψ̃

)
≥ B+(uz1)− ω(ε)

kj+1−2∑
i=kj

(
ψ2
(un(xni+2)− un(xni )

2λn

)
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+
1
2

(
ψ1
(un(xni+2)− un(xni+1)

λn

)
+ ψ1

(un(xni+1)− un(xni )
λn

))
−min ψ̃

)
≥ C(uzj , uzj+1)− ω(ε) for all j ∈ {1, . . . , N − 1},

n−2∑
i=kN

(
ψ2
(un(xni+2)− un(xni )

2λn

)
+
1
2

(
ψ1
(un(xni+2)− un(xni+1)

λn

)
+ ψ1

(un(xni+1)− un(xni )
λn

))
−min ψ̃

)
≥ B−(uzN )− ω(ε).

By the arbitrariness of ε and the definition of D we easily get lim infn E1
n(un) ≥

D, and by Remark 5.3 that if u �= u± then lim infn E1
n(un) > D.

It remains to show that lim supnE1
n(un) ≤ D; i.e., for every fixed η > 0

to exhibit a sequence un such that un(0) = un(L) = 0 and lim supnE1
n(un) ≤

D + cη. Suppose that

D = B+(uz+
) +C(uz+

, uz−
) +B−(uz−

),

with z+ = (z+
1 , z+

2 ), z
− = (z−1 , z−2 ), the other cases being dealt with in the same

way. Let η > 0 be fixed and let N ∈ N, v+, v−, v : Z → R be such that

v+(i) = uz+
(i) for i ≥ N,

v−(i) = uz−
(i) for i ≤ −N,

v(i) =

uz+
(i) for i ≤ −N

uz−
(i) for i ≥ N

,

and

∑
i≥0

(
ψ2
(v+(i+ 2)− v+(i)

2

)
+ ψ1(u(i+ 1)− u(i))−min ψ̃

)
≤ B+(uz+

) + η

∑
i≤0

(
ψ2
(v−(i) − v−(i− 2)

2

)
+ ψ1(u(i) − u(i− 1))−min ψ̃

)
≤ B−(uz−

) + η

∑
i∈Z

(
ψ2
(v(i+ 2)− v(i)

2

)
+ ψ1(v(i + 1)− v(i)) −min ψ̃

)
≤ C(uz+

, uz−
) + η.
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We then set

u(xni ) =



(v+(i) − v+(0))λn if i ≤ N

uz+

n (xni )− v+(0)λn + z1
n(xni − xnN)

if N ≤ i ≤ n
2 −N

v
(
i− n

2

)
λn − L

2 if n
2 −N ≤ i ≤ n

2 +N

uz−
n (xnn−i)− v−(0)λn + z2

n(xni − xnn−N)
if n

2 +N ≤ i ≤ n−N

(v−(n− i)− v−(0))λn if n−N ≤ i ≤ n,

where

z1
n =

uz+(n
2

)
λn − L

2 + v+(0)λn(
n
2
− 2N

)
λn

z2
n =

uz−(n
2

)
λn + L

2
+ v−(0)λn(

n
2 − 2N

)
λn

.

Note that limn z
1
n = limn z

2
n = 0. Using (H5) we easily get the desired inequality.

Remark 5.5 From the proof above it can be easily seen that hypotheses (H3)–
(H5) may be relaxed at the expense of a heavier notation and some changes in
the results. Clearly, if (H3) does not hold then the sets of minimal pairs M+,
M− are larger, and the definition of D must be changed accordingly, possibly
taking into account also more than one transition.

If hypothesis (H4) does not hold then C(uz+
, uz−

) = C(uz−
, uz+

) = 0 for
some z+ ∈ M+, z− ∈ M−. In this case the energetic analysis of E1

n is not
sufficient to characterize the minimizers, as we have no control on the number
of transitions between u′ = 1 and u′ = −1.

Condition (H5) has been used to construct the recovery sequence (un). It
can be relaxed to assuming that ψ̃ is smooth at ±1; more precisely, it suffices
to suppose that

lim
z→±1

ψ̃(z) −min ψ̃
|z ∓ 1| = 0. (5.16)

If this condition does not hold the value D is given by a more complex formula,
where we take into account also the values at 0 of the solutions of the boundary
layer terms.

The proof of Theorem 5.4 easily yields the corresponding Γ-limit result for
E1
n. We leave the details to the reader.
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