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1. Introduction.

The purpose of these notes is to introduce the theory of the convergence, and specially,
to discuss the I'-convergence, of Dirichlet forms on fractals. A Dirichlet form is a sort
of "energy”, in some sense it is a generalization of the Dirichlet integral u — [ |gradul?
defined for u in open regions in R™. The investigation of Dirichlet forms on fractals began
in connection with the construction of a Brownian motion on a fractal. It is also closely
related to the construction of a Laplacian or in other words to the definition of harmonic
functions on a fractal. In some sense, in fact, we can say that, on fractals, Dirichlet
forms, Brownian motion, and harmonic functions are three different points of view of the
same problem. In the following I will discuss the notion of Dirichlet form, and also the
notion of harmonic function, as we will need it in relation with some properties of Dirichlet
forms. On the contrary, I will not discuss the notion of Brownian motion. However, as
we will see in the following, we cannot define those notions on fractals as in the case
of open regions in R”, mainly as fractals have usually an empty interior. The class of
fractals which I discuss here is that of finitely ramified fractals. More or less we are in
the following situation. We are given finitely many similarities in R” with v > 1. Let us
denote them by 4, ...,%r. Suppose they are contractions, i.e., their factors rq,...,r; are
< 1. Then, by a theorem of Hutchinson [4], there exists a unique nonempty compact K

k
in R” such that K = (J ¢;(K). We will call such a set K the fractal generated by the
=1

set of similarities. The finite ramification means, more or less that different copies ;(K)
of K can have at most finitely many (in general at most one) common points. This class
of fractals includes for example the Gasket, but not the Carpet. The construction of a
Dirichlet form on fractals which are not finitely ramified is much more complicated and will
be not discussed in these notes. A finitely ramified fractal can also be seen as the closure
of the union of an increasing sequence of finite sets V{0, .. V(") If we want to define
on the fractal a Dirichlet form, we meet the problem that usually, K has an empty interior,
hence we cannot define the gradient on it, at least in the usual sense. So, the usual way of
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constructing a Dirichlet form on K, consists in defining discrete Dirichlet forms on V(")
and then in taking the limit. There is the problem of the existence of such a limit form.
However, if the initial form FE is an eigenvector of a particular nonlinear minimization

operator, also called renormalization, in our language if E is an eigenform, then for every
function v defined on K, the sequence E(En) of discrete forms is increasing and thus has a

limit which we will denote by E(EOO). Hence, we have defined a Dirichlet form on K. In
Sections 2 and 3, I describe the construction of a Dirichlet form on finitely ramified fractals.
For the general theory of Dirichlet forms the reader can refer to [2]. The construction of
Dirichlet forms on finitely ramified fractals is described for example in [1], [8], [6]. [1]
and [8] specially stress the probabilistic point of view. [6] deals with Dirichlet forms and
Laplacian in a very general class of fractals, called p.c.f. self-similar sets, introduced by J.
Kigami in [5]. Note however, that, in order to simplify the presentation, I have preferred
not to give the general definition of Dirichlet form, but only to discuss a particular kind
of Dirichlet form. Moreover, I have thought better to start, in Section 2, with a specific
example, the Sierpinki Gasket. This, as I think that the Gasket is an example that permits
us to understand well what are the problems of the construction of a Dirichlet form in a
simple case. In Section 3, I first give a general definition of finitely ramified fractal, and
then I discuss in such a class the construction of a Dirichlet form. Such a construction
is more difficult in this general case, in which in the case of Gasket, by symmetry we
had an explicit eigenform. In finitely ramified fractals, the situation is not so simple.
There are finitely ramified fractals having no eigenforms, and however, the existence of an
eigenform is a nontrivial problem. However, many important examples of finitely ramified
fractals, in particular, the nested fractals introduced by T. Lindstrgm [9], have at least an
eigenform, and we will only consider fractals having at least an eigenform. Section 4 is
devoted to the investigation of the properties of the renormalization operator, and of the
properties of the related notion of harmonic extension. When E is not an eigenform we
cannot construct, at least in a direct way, a Dirichlet form starting with E, like in the case
of an eigenform, for the corresponding sequence of discrete forms is no longer increasing.
It could be proved that nevertheless, the discrete forms pointwise converge to a Dirichlet
form defined on K, but the proof is much more complicated. In case of E not eigenform,
we will study the I'-convergence of the sequence of discrete forms. We will prove that in
fact E(En) T-converges to the Dirichlet form on K associated to an eigenform E. We will

obtain E as the limit of a sequence of forms E(n) on V(O defined as J\NJ{’(E) where M; is
the renormalization operator divided by the eigenvalue p. The convergence of M{'(E) is
the most delicate point in the proof of I'-convergence. It is, in some sense, a problem of
convergence of the iterated of a map once we know that the map has a fixed point. In the
present case, the fixed point is the eigenform. In section 5, I discuss the I'-convergence on
the Gasket. Due to the symmetry of the Gasket, the proof of the convergence of J\Z{‘(E) is
much simpler than in the general case. There are many different proofs of this result in the
case of the Gasket. The proof presented here is probably not the simplest, but suggests
the way of proceeding in the general case. Then, following an argument due to S. Kozlov



7], we deduce the T-convergence result. In section 6, I prove the convergence of MJ*(E) in
the general case. I restrict, in fact, the class of fractals in order to simplify the argument,
avolding some technical difficulties. At the end of the section, I merely hint the idea in
the most general case. The class of fractals considered in the actual proof in Section 6,
however, includes most of the usual fractals, thus it is sufficient general for many purposes.
The idea of the proof consists in proving that, with respect to a special metric, related to
Hilbert’s projective metric, the iterated ]\Z{‘(E) get closer and closer. Note that in general
M is not a contraction and in fact can have different fixed points. Once the convergence
of 1\711”(E) is proved, the I'-convergence result follows as in the case of the Gasket. As these
notes are not intended for specialists of fractals, I have tried to stress the general ideas
rather than the details. So, in some cases, for example for the notion of finitely ramified
fractal, I have not used the most general definitions. For the same reason, I tried to give
proofs which are not necessarily the shortest, but requiring no non usually known results,
like as the general theory of Hilbert’s projective metric, in order to make these notes as
self-contained as possible.

I now fix some notation for the following. When we are in R", we will denote by d
the euclidean distance, and unless specified otherwise, we will denote by || || the euclidean
norm. Sometimes, we will use R4 where A is a set. In such a case, of course, on R4, we
put the norm and the metric, obtained by identifying R# with RM where M = #A. If
f is a map from a set X into itself, we will denote by f™ the n'*-iterated of f, i.e., the
composition of n maps equal to f. If X is a topological space, we will denote by C(X) the
set of the continuous functions from X into R. If A is a subset of a euclidean space, we
will denote by coA the convex hull of A.

2. Construction of an Energy on the (Gasket.

In this section we will introduce an ”energy” on a specific example of fractal, the Sierpinski
Gasket. Energy here, means an analogous of the Dirichlet integral, u — [ |gradul?, on
fractals. Probably, the reader has at least a rough idea of the notion of fractal. It is in
some sense, a set that contains copies of itself, at arbitrarily small scales. In order to make
these notions clear, before introducing the theory on general fractals, I prefer to describe
a specific example of fractal, the Sierpinski Gasket. I later will give a precise notion of
fractal (or self-similar set). The Gasket, in some sense, can be constructed like the Cantor
set, but starting from a triangle, instead of from a segment-line. More precisely, start with
an equilateral triangle T', whose vertices are denoted by Py, Py, P;, and consider the three
similarities ;, 1 = 1,2, 3, in R?, that are contractions with factor % and have P; as fixed
points, in formula v;(z) = P; + %(:z: — P;). Then the (Sierpinski) Gasket is the set K
defined by

3 [e°]
Ko=T, Knyr = | Jvi(Kn), K=[()Kn, (2.1)
n=0

=1



in other words, we split the initial triangle 7' into four similar triangles and remove the
central one. Then, we remove the central triangle in each of the three remaining triangles.
Then, we repeat the same process on each of the nine remaining triangles, and so on. In
Figure 1, we picture Ky, Ky and Ks.

Figure 1. The Sierpinski Gasket

In previous construction, we can fix the vertices, e.g., Py = (0,0), P, = (%, ?), Py = (1,0),

in order to have a precise triangle. Put now

V=V ={P,P, P}, Vi =1, ..i,(V?)

1yeeey? 3tn

for 11,...,1n = 1,2,3, where ¢;, ;. is an abbreviation for ¢;, o...0%; , and put

n

yn) — O Visoins yleo) — [j y(n)
n=0

11 ,..,0p=1

The sets V;

precisely, the copies of V(9 at the n'® step. They can, of course, also be interpreted as

v..in are called n-cells and are, in some sense, small copies of V(©  more

the sets of the vertices of the triangles t;, . ; (T'), which are copies of T at the n'* step.
More generally, put A;, ;. =i, i (A) for every A CR? I will call 4;, ;. an (nthA)
copy. Clearly, we have

VCKCT. (2.2)

Now, we want to define an "energy” on K. For the moment, I do give no precise notion
of what we mean by energy. The precise definition will be given when we treat the case
of general fractals. We try to define an object that in some sense resembles the Dirichlet
integral. Note however, that, clearly, the Gasket has an empty interior, so it is not possible
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to define the gradient on it. The way of constructing an energy is based on a finite-difference
scheme that I will now illustrate. Since it is easy to see that V(™ C V(1 and, as we
will see in the following, K is the closure of V(%) the idea consists in defining first an
energy E on V() then on V(™ as the sum of E on all n-cells, and finally in taking a sort

of limit. More precisely, let

E(w)= Y  (u(P;)—u(Py))’
1<51<j2<3
for all u : V(© — R. Note that E(u) > 0, and the equality holds if and only if u is constant
on V(. This is a trivial but crucial remark. Let

So(E) = E

3
Sn(E)(v) = Z E(wou;,,. . i,) forve RV(H),n > 1.

21,00yt =1

We can also write

Su(E)(v) = 3 (v(Q) — (@) forveRV" n>1,

where the sum is extended over all pairs (Q, Q') € V() % V(") which are close in the sense
that they lie in the same n-cell. Now, we would like to define an energy & for functions
defined on K as the limit of S,,(E), but we meet some problems. First, this limit may not
exist; moreover, it is possible to see that when it exists, it is 0 for too many functions, for
example it is 0 on all the linear functions; we on the contrary require that it is 0 only for
the constant functions. The way for overcoming such problems consists in introducing a
renormalization factor p, i.e., we take the limit of p%Sn(E). This i1s a natural device in
the sense that in classical cases, such as e.g., the Dirichlet integral we have to introduce a
renormalization factor. In the present case, however, the value of p is not much expected.
3

As we will see later, we have, in fact, p = <. In order to find the value of p, we now

. e . (0)
introduce a minimization operator. Namely, for u: RV~ — R, let

M, (E)(u) = inf{Sn(E)(v) 1 v € L(n,u)} Yu e RV (2.3)
where L(n,u) = {v € R v = uon V1, We will see in the following that the
infimum in (2.3) is in fact a mimimum. In terms of potential theory, M, (E) is the trace
of S,,(E) on V() For the moment let us study only M;. Put Py = ¢4 (P2) = 2(Pr),
Pis = 1 (Ps) = 3(P1), Pag = t2(P3) = t03(P). We so have

S1(E)(v) = (v(Pr) — v(Pr2))* + (v(P1) — v(P13))* + (v(Pr2) — v(Pr3))*
+H(o(P2) = v(Pr2))* + (0(P2) — v(P23))* + (v(Pr2) — v(Pa3))*
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+(0(Ps) = v(P13))* + (v(Ps) = v(P23))”* + (v(Pr3) — v(P2s))*
and M, (E)(u) is the infimum of

(w(Pr) — 2)* + (u(Pr) —y)* + (z —y)”
+Hu(Py) — 2)* + (u(Py) = 2)° + (z — 2)*
+(u(Ps) —y)* + (u(Ps) = 2)* + (y — 2)°

for z,y,z € R. As the function to minimize is convex, it attains its minimum at the points
at which its gradient is 0. Hence, (z,y, z) is a minimum point if and only if

de =y + 2z + u(Pl) + u(Pg)

4y =x—}—z+u(P1)+u( ) (24)
dz=x+y+ u(Pg) + u(Pg)

B

A simple calculation yields

o 5
v 5
)

We will denote by Hy.g)(u) : V() — R the so obtained solution of (2.4), i.e., the unique
function v € L£(1,u) such that M;(E)(u) = S1(E)(v). By substituting the value of v =
H,p)(u), we get

3

Mi(B)(u) = ZE(u),

thus M, (E) is a multiple of E. Is this a lucky case or not? To answer this question,
observe that H(y,p) is linear, so M;(E)(u) is quadratic in u, in other words it is a linear
combination of terms of the form (u(P;))? and of terms of the form u(P;, )u(Pj,). Moreover,
since, clearly Hy,p)(u + ¢) = H(1;p)(u) + ¢, we can replace u(P;) by u(P;) — u(Pr), and
thus we have that

M (E)(u) = a(u(Pz) — u(Py))* + b(u(Ps) —u(P1))* + d(u(Py) — u(Pr))(u(Ps) — u(Pr));

now by the well-known formula af = %(Oﬂ + 3?2 — (a o /3)2) with a — u(Pg) B u(Pl),
B =u(Ps) —u(Py), we have

My(E)(u) = a'(u(Py) — u(P1))* + ' (w(P3) — u(Pr))* + d'(u(Py) — u(P3))*
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for some o', V', d" and by the symmetry of the Gasket we must have a’ = b = d’ (I here do
not prove completely the last assertion, but a formal proof of it due to symmetry can be
easily given). In conclusion, there is a natural reason for which M;(E) is a multiple of E,
and the previous calculation can be used to the only aim of evaluating the factor % Note

that, by the definition of M;(E), we have

S1(E)(v) = Mi(E)(v)

for every v : V(1) — R where here, and similarly in other cases, we identify a function
v: V) 5 R with its restriction on V(%) Hence, putting p = % we have

SiB)(v) _ Mi(E)w) _ oo SolE)(v)
TSz S = B = 2R (2:5)

Suppose now v : V{®) — R. We are going to prove that, more generally, the sequence
w is increasing in n, so it has a limit, which will be the energy on K. To see this,

note that

—Sen(B)0) = 3 (23 Breti )

il,...,inzl in+1:1

21, 7ln=1
1 3
> Y Bt = oSuE))
i17...,in=1

In the above inequality we have used (2.5). Now put

1 _—

p n— 00

for v : K — R. We have thus constructed an energy on K. Note that of course E(Eoo)(v) can

amount to oo. An unexpected fact is that the linear nonconstant functions have infinite
energy. In fact, let v : K — R be linear (or more generally affine). We easily get that
E(woy, i) = (i)"E(v), hence S,(E)(v) = (%)"E(v), and E(En)(v) = (%)"E(v) It
follows that E(Eoo)(v) = 4oo unless E(v) = 0, i.e., v is constant. Thus the set of the
functions with finite energy is in some sense completely different from that in the case of
a region in R™. So, one could even suspect that E(Eoo) is identically +oc. In the rest of
this section we prove that this is not so. More precisely, we will prove the following two

: by
properties of E(oo).

a) E(Eoo)('u) = 0 if and only if v is constant.
b) The set of v € C(K) such that E(Eoo)(v) < +oo0 is dense in C(K).
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Thus, E(Eoo) attains a finite, but strictly positive value, at many functions. In order to
prove a), we need a Lemma.

Lemma 2.1. If v : V™ — R and E(En)(v) = 0, then v is constant on V(™).

3
Proof. By the definition of V(™) we have V{m+1) = | J 4;(V (™) for all m € N. Moreover,
=1
(VM) 0 ¢j(V(m)) D (VO N ¢j(v(0)) #+ @. Thus, if v is nonconstant on V(™ it is
also nonconstant on @/}i(V(”_l)), or in other words, v o t; is nonconstant on V("1 for
some ¢ = 1,2,3, and by a recursive argument, v o ¥;, ;, . ; 1s nonconstant on VO for

some 11,12, ...,1, = 1,2,3. Hence by the definition of E(En), we have E(En)(v) >0 =

Theorem 2.2. Ifv € C(K) and E(EOO)(U) = 0, then v is constant on K.

Proof. If v is continuous and nonconstant on K, since we know that the union of all
V(") is dense in K, it is nonconstant on V(™ for some n. So, using previous lemma,

E(Eoo)(“) > E(En)('u) >0. =

We are now going to prove b). To do this, it is useful to consider the notion of harmonic
extension on V. Given v : V(® — R we know that the function v := H,p)(u) can
be characterized as the unique solution of the system (2.4) where v(Py2) = z,v(Pi3) =
y,v(Pa3) = 2. Such a function v is called harmonic extension of u on V(). Note that (2.4)
says that the value of v at a point @ of V(1) \ V(9 is the mean value of the values at the
points of V(1) close to Q; this is an analogous property to the mean property of harmonic
functions in regions in R™. Another analogy is that harmonic functions also are a sort of
minimum of the Dirichlet integral. Note that we have

Eqy(Ha;py(w) = B(u) (2.6)

We will use harmonic extension to construct a function v defined on all K, by extending
harmonically v on V), then applying this process on every l-cell to obtain a function
defined on V(?), then applying the same process on every 2-cell and so on. However, in
order to know that in this way we have in fact defined a continuous function, we have
to prove that the oscillation on n-cells tends to 0. The harmonic extension satisfies the
following maximum principle:

Lemma 2.3. For every u € RV we have

Iél(ior)lu < H(y,p)(u)(Q) < max u vQevw \ v,
(weak maximum principle). Moreover, the inequalities are strict unless u is constant
(strong maximum principle).
Proof. It suffices to prove the first inequality, the proof of the second being analogous.
Put v = H(y,z)(u). If v does not attain its minimum at any point of VI VO then we
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have minv = v(Q) = u(Q) > minu for some Q € V), and the first inequality is trivial.
Suppose, on the contrary, there exists Q € V(1) \ V() at which v attains its minimum.
By virtue of (2.4), since v(P) > v(Q) =: m for each point P close to @), we have in fact
v(P) = v(Q) for each point P close to Q. In particular, v(P) = m for all P € V() \ V(©),
thus we can repeat the same argument at all P € V() \ V{0, But every point of V(9 is
close to some point in V' \ V) Thus, v = m on V(. In particular, since v = u on
V(© 4 is constant. m

We will now prove as a simple consequence of the maximum principle, that the oscillation of

the harmonic extension of v on every 1-cell is estimated by a constant times the oscillation
of u on VO, Let

S={ueRV" u(P)=0,|jul| =1} (2.7)
and, given a function f from a nonempty set A to R let

Oscaf = sup |f(z) = f(y)| =sup f —inf f.
r,yEA A

Corollary 2.4. There exists v €]0, 1| such that sup Oscy;(Hy,g)(u)) < v Oscy o (u) for
i=1,2,3

allv: V0O L R,

Proof. Suppose u € RV(O), u nonconstant. Then, by the strong maximum principle, for
every i = 1,2,3 and for every P € V(©) we have IIl(lI)lu < Hiy,py(u)(yi(P)) < max u and
1%4C ’ y(o

the inequalities are strict if P # P;. Hence, at least one of the two inequalities is strict for
every P € V(© and Oscy, (H(1;py(u)) < Oscyo)(u) for 1 = 1,2,3. Thus, putting

sup Oscy;(H(1,p)(u))

i=1,2,3

alu) =

we have a(u) < 1. Since « is continuous it has a maximum v < 1 on §. Since a(u + ¢) =

3

Oscy o (u)

a(u) for every ¢ € R, and « is 0-homogeneous, we have

a(u) =a(%) <4

(0)
for every nonconstant u € RV,

Given a function u : V(© — R, as hinted above, we want to extend it to a function
v on V() in the following way. Put v = u on V() then we define v recursively on
Vit V() for n > 0. For n = 0, v is the harmonic extension of u on V1), More
generally, suppose v is already defined on V("™ and extend v on V(1. Note that V{*+1) =

3
U ¢i17.,.’in(v(1)). So, we define v separately on every ¢i17.,.’in(v(1)). Let
il,...,inzl



0( iy in(P)) = Hig(vo s i) (i, (P)) YPEVO Vi, in=1,2,3, (2.8)

ing1 = Hl;E(v 0 @/)117’“1) 0 i, ., on V(© _ The right-hand side
makes sense, as we have already defined v on V(™). In some sense, by identifying a function
on ¢i1,...,in(v(1)) with a function on V1), (2.8) defines v on @/}ihm’in(v(l)) as the harmonic
extension of the restriction of v on ;z;il,,,,,in(V(O)). The problem in defining v on V(*+1)

in other words, v o v, .

by (2.8), is that we could suspect that a point ) can be represented as a point of y(nt1)

in different ways, for example

Q=i i, (P) = lbifl,...,i;lJrl(P/)a (2.9)

and that the definition of v(Q) via (2.8) can depend on such a representation. We are now
going to prove that this is not the case, so that (2.8) provides an actual definition of a
function v. The geometrical reason for this is that we see that different (n'*T) copies can
have as common points only their vertices, so that the points @ in V(1) \ V(") can be
represented in only one way as in (2.9). Such an argument can be considered as sufficiently
persuasive. However, I will give a formal proof. We have to prove that if (2.9) holds then

Hip(voi i) (i, (P)) = Hup(voy i) (%/)i;lJrl(Pl)) : (2.10)

If (41,.0yt) = (2},...,1}) then, as every map 1; is one-to-one, we must have by (2.9),

Vinyi (P) = ;[yl-/nJrl(P’), thus (2.10) holds. Suppose now (i1,...,1,) # (1},...,2,,). Then, it
suffices to prove that

Vinys (P), i, (P') € VO, (2.11)

so that by definition of harmonic extension, we have

Hip(voi, i) (i, (P)) = v<¢i1,...,in <¢in+1(P)))
=v(Q) = Hy;g(vo 'Qbi’l,...,i'n)(@bi’ (P"))

n+41

and (2.10) holds. In order to prove (2.11), we need the following lemma.
Lemma 2.5. Suppose (i1,...,in) 7# (¢}, ...,4,,). Then,

T; NTy

JREE

C Viyin NV ir

. .
1ye-oylm sty 1geeey oty

Proof. By the definition of t;, we have t;(T) Nty (T) C (VO Nep (V) if ,i" = 1,2,3,
i #1¢'. Thus, if i, #1),, and ¢; = ¢} for all [ < m, in view of the trivial fact that every 1,

m?
maps T into itself, we have
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i (T) O iy ir (T) S i, (T) N by, (T) S i, (VO) Ny (V).

Clearly, every 1; maps T \ V() into itself, hence so does Vipogryoin- 1t follows that

II7Z)2‘7IL+1""71:“ (T) m V(O) g ¢i71L+17~“1i‘1L(V(0))
hence, using also the fact that every ; is one-to-one,

= Yin <¢im+1,...,in(T) N Vm)) C pinnin(VO),

Yiyoonin (T) N it i (T) =iy iy (Cigoin (T)) N iy i (i ir (T)
C iy i (VO

The same argument is valid for ¢}, ...,7,, in place of i1, ..., 1,,, s0 we have proved the lemma.
|
Now, since we have supposed (i1, ...,1,) # (¢}, ...,1},), and the ©; are one-to-one, in view of

(2.9) and Lemma 2.5, (2.11) follows at once, and so (2.8) defines a function on V(). We
now want to prove that v is uniformly continuous on V() and hence it can be extended
continuously on K. We will get this by proving that the oscillation of v on the n-cells
tends to 0 as n tends to co. Let us give the following definition. For f: V() — R, define
Oscnf = sup Oscy =) f. We have

il,..7in:1727 1r--9tn

Lemma 2.6. Osc ,(v) = 0.
n—-roo

Proof. By (2.8) and Corollary 2.4, we have

Now,if P € V™, wehave P = ¢y, i ivir,in (@) for some Q € VO and ipg, . ip =

yeeeyln?

1,2,3. Thus, using (2.8) again and the maximum principle, a recursive argument yields

and thus
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,,,,,

Since this holds for every i1, ...,1,, we have proved the lemma. =

Corollary 2.7. v is uniformly continuous on V().

Proof. Let ¢ > 0 be given. Let n be such that Osc ,(v) < 5. Since

vevecr,
using Lemma 2.5 we get that for every i1,...,ipn, i],...,0,, = 1,2,3, either Vl(loo) ;. and
Viﬁo") , have nonempty intersection, or Tj,
13 9tn
being compact, they have a positive minimum distance. Let § > 0 be such that § is less
than the minimum of the distance of disjoint T3, . ; and T .. - Now, if PP e V()

and d(P, P') < §, we have P € Vl(lcjo)ﬂn, P c VZSOO) , for some 11, ...,1,, 1},

and Tir .1, are disjoint, and so, they

yeeesln

1" and there

RN 2%

and |[v(P') —v(Q)| < £, thus

29

O I

exists Q) € Vl(fo) N VZEOO) .. Hence, |v(P) —v(Q)| <

e

lo(P) —v(P')| <e.

2

We will call the continuous extension on K of v defined by (2.8), the harmonic extension of
u on K, and we will denote it by Ho.p)(u). I explicitly state the following lemma which

is implicit in the proof of Lemma 2.6.

Lemma 2.8. For every u : V(®) — R we have

minu < H(,p)(u) < maxu.
Proof. Put v = H(s;g)(u). By (2.8) and the maximum principle we have

PO ST i1, rin

so that, by a recursive argument we get

minuy =minv < min v < max v < maxv = maxu,
v (0) v (0) Vil in Vil in Vv (0) Vv (0)

hence, minu < v(P) < maxu, for every P € V() thus by continuity for every P € K.

n
The use of harmonic extension is illustrated in the following theorem.
Theorem 2.9. For every u € RV(O), we have

By (Hoorry (1)) = E(u).

12



Proof. Put H(.,p)(u) =: v. Using also (2.6), we get

3

1
EGinyv) = 5 Y E(wot,. in)
p il,...7in+1:1
1 3 3
i17...,in=1 in+1=1

for all n € N, thus E(En)(H(OO;E)(u)) = FE(u)foralln e N. =

Note that by Theorem 2.9 we see that H...p)(u) minimizes E(Eoo) among the functions

defined on K which amount to u on V{®). We need the following simple lemma.

Lemma 2.10. We have

3
K= {J tu..ilK).

21,0ty =1

3 -
Proof. We have V() = U ¢i1’...7in(V(“)). It now suffices to observe that K = V(o)

11,02 =1

and that ¢;, . ; are continuous. m

Given a continuous function v on K, we can now construct for every m € N, a function
denoted by v(p, ), which is in some sense the harmonic extension of the restriction of v

on V™ Namely, for every P € K, put

Y(m;E) (¢11,,zm(P)) = H(oo,E)(U © 77Z)i1,...,im)(P) .

Thanks to Lemma 2.5, such a definition is correct, and the function v(,,, ) is continuous, its
restriction on every K; . ; being continuous and the sets K;, . ; being closed subsets
of K covering K. Moreover, using an argument like that in Theorem 2.9, we have

13



so that v(p,, gy has finite energy. Also, we are going to prove that v(,,py — v uniformly.
In fact, for every Q € K let iy,...,1,, = 1,2,3, P € K be such that Q = ¢, . ; (P). By
the definition of v(,,r) and Lemma 2.8, we have v(,.5)(Q),v(Q) € [I inf v, sup vl

L3 R tn (¢

Since

1
diamK;, i, < (5)"diamK, (2.12)

(we have in fact the equality in 2.12) and v is uniformly continuous, v(,, ;) — v uniformly,
n—r0o0

as claimed. In conclusion,

Theorem 2.11. The set of functions with finite energy is dense in C(K). =

3. Dirichlet Forms on Finitely Ramified Fractals

In this section we want to extend the construction described in previous section from the
case of the Gasket to the case of more general fractals. First, I describe other examples of
fractals. The Vicsek set can be constructed analogously to the Gasket, by putting Ky to
be a square, Py, Py, P, Py its vertices, and Ps its centre, and ¢;(z) = P; + %(x — P;), and

Ky = L5J Yi(Ky,), then using (2.1). The Sierpinski Carpet is also constructed starting
i=1
from a square Ky, then splitting it into nine small squares of edge %, and considering the
eight similarities carrying it into the small squares but the central one. The Snowflake is
obtained from a hexagon, and seven similarities, six of them having for fixed points the
vertices of the hexagon, and the other one the center of the hexagon. The tree-like Gasket
is similar to the Gasket, but two of the three small triangles are disjoint. I finally recall
also the celebrated Cantor set, where the initial set Ky is a segment-line, and there are two
similarities having the end points of Ky for fixed points and of factor % What could be a
general definition of fractal? In all previous cases the set in R” is obtained using an initial
set and a finite number of contractive (i.e, having a factor < 1) similarities. By a slightly
deeper investigation we realize that the initial set is not essential in this construction, as,
for example in the case of the Gasket, we can start with V(%) instead of with T. In Figures

2, 3, 4, 5, we describe the previous fractals, by picturing K.

14



Figure 2. The Vicsek set

Figure 3. The Sierpinski Carpet
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Py P,

Figure 4. The Snowflake

Py Ps Ps

Figure 5. The tree-like Gasket

What is the relationship between the similarities and the fractal obtained? The answer is:
if ¥, ..., Y are the similarities, then K is the unique nonempty compact subset of R” such

16



k
that K = |J ¢(K). In order to realize such a construction, we need some preliminary
=1

considerations. Fix v = 1,2, 3, ... in the following. Let K be the set of nonempty compact
subsets of R”. We equip K with the so-called Hausdorfl' distance, namely dg(Cq,C>2) =
sup{d(m,Cz) cx € Ch,d(y,Ch) 1y € C’z}. Such a distance in some sense measures how
much close are two sets. It is easy to prove that it is in fact a metric on K. We now prove
that it is complete.

Theorem 3.1. (K, dy) is complete.

Proof. Suppose (), is a Cauchy sequence in X, and prove that it has a limit. There exists
a subsequence of Cy,, that we will call D,, such that dg(Dy,Dpy1) < 2% for all n. We will
prove that D, has a limit and this suffices to conclude the proof. Let

D:{;I:ER”:EI:L'nEDnWithJ:: lim :z:n}

n— 00

We will prove that D is nonempty and compact and that D = lun D,,. In order to achieve

n—r0o0
this, observe that for all n = 1,2, 3, ... we have

1
Vee D, dyeD:d(z,y) < TEE (3.1)
3
‘v’xEDEI;r:nEDn:d(:r:,xn)§2—n. (3.2)
In order to prove (3.1), note that by the definition of dg, there exists a sequence (1, ..., T,

...) so that © = x,,, and for all m = 1,2,3, ..., 2y, € Dy, and d(zm, 2mt1) < 2% Then z,,
is a Cauchy sequence and its limit y belongs to D. Clearly, by the triangular inequality,
d(Ty,Tm) < 5m=r for all m > n, hence d(z,y) < 3z=r. Let us now prove (3.2). Let z € D,
Ym € Dm with # = lim yp,, and let m > n be such that d(z,ym) < 5. As above we

271
m—ro0
find z,, € Dy, such that d(z,,ym) < QTL%, and (3.2) follows at once. From (3.1) we see, in
particular, that D nonempty. Since D,, are bounded, in view of (3.2), so is D. In order to
prove that D is closed, suppose =, € D and z = lim z,, and prove that z € D. Using

n— o0

(3.2) we find y, € Dy, 1 d(yn,xn) < 2% Hence, x = lim y,, and 2 € D. From (3.1) and
11— 00
(3.2) it immediately follows that D = lim D,. =

n—> 00

Suppose now 1; are contractive similarities in R”, for i = 1,..., k, with factors r; €]0, 1],
1.e. we have

[0i(x) = i(y)l| = rille —yl| Vz,yeR”.
Let @ : K — K be defined as

17



We are searching for a fixed point of ®. We have the following

Theorem 3.2. & is a contraction of (K,dy), hence it has a unique fixed point K, and
moreover, ®"(A) — K for every A € K.

n—ro0
Proof. Let r = maxr;. Then, clearly, for every A, B € K we have dy(y;(A),i(B)) <
r dp(A, B) for each i = 1,...,k. From the definition of dy it easily follows that ® is a

contraction with factor r. =

In some important particular cases, we can also give a better characterization of ®"(A).

For example, if T € K is such that ®(T) C T, we easily see by recursion that ®"(T) is a
>0

decreasing sequence of sets. It easily follows that (| ®"(T) = K. In case of Gasket if T
n=0

is the triangle, we see that ®"(T') = K,, defined as in (2.1), so we find again K = [ T),.
0

On the other hand, if we denote by F the set of the fixed points of ; if @ # V@ZQ F,
we see that V' C ®(V), so &"(V) =: V(") is an increasing sequence, and we easily get
U V() = K. T stated this in the case of Gasket. Note, however, that in general, we

n=0

do not require that V is the set of the fixed points of all ; but of some ;. This is
important for the following. We will say that the set K as in Theorem 3.2 is the fractal
(or self-similar set) generated by the set ¥ = {¢; : : = 1,...,k} of contracting similarities.
Note that a fractal can be generated by different sets of similarities. However, for the
following we fix a set K as above with the associated similarities vy, ..., ¥k, and call P; the
fixed point of ¢; for + = 1,...,k, and put F = {P; : : = 1,...,k}. We have so explained
what we mean by fractal. The next problem is how to construct an energy on it. We
will do that by imitating the construction on the Gasket. However, as we will see, that
kind of construction is not possible on every fractal, but we have in fact to require some
additional hypotheses. Before analyzing what properties we need, we are going to give a
more precise notion of the so far vague word energy. We require of course that an energy
is a functional defined on K which is nonnegative, quadratic, and which takes the value 0
on the constant functions. It appears also to be natural to assume that it takes the value
0 only on constant functions and that it is finite on a dense set of continuous functions.
Moreover, it seems to be natural to require a property of compatibility with the fractal
structure. The need of giving a notion of energy generalizing the Dirichlet integral has
lead to the notion of Dirichlet form. Usually, a Dirichlet form is defined on an L? space.
Here, in order to avoid problems related to the construction of measures on the fractal, I

prefer to define it on C(K), although this is, in some sense, less natural.
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Definition 3.3. We say that a functional £ is a good Dirichlet form if it satisfies the
following properties

a) € is a quadratic form from C(K) to [0,+oo| in the sense that there exists a linear
subspace Z of C(K) such that £(v) < 4oo if and only if v € Z, and there exists £
Z x Z — R bilinear and symmetric such that

E(v) = é(v,v) >0

for allv € Z.

b)E((uA1)V0)<Ew) YveC(K) (Markov property).

¢) € is lower semicontinuous (with respect to the L™ topology).

d) E(v+c¢)=Ev) YveCC(K),VeeR, (thus, £ is 0 on all constant functions).

e) € is irreducible, i.e., £(v) = 0 = v constant.

f) There exists a set H C C(K) such that H is dense in C(K) with respect to the L™
topology, and £(v) < +oo for every v € H.

g)3p>0:5(v):%ég(vo¢i).

Properties a), b), ¢) characterizes the Dirichlet forms, d), e), {) are in some sense properties
of regularity of a Dirichlet form, and g) is the self-similarity property. The functional
E(Eoo) constructed on the Gasket in Section 2 is a good Dirichlet form. Indeed, a) is trivial,

b) easily follows from the analogous property of the function (z,y) — (z — y)* (i.e. if
s(t) = ((¢A1)V0), then (s(z)—s(y))* < (z—y)?); ¢) follows from the fact that E(Eoo) is the

sup of the continuous functionals E(En), d) is trivial, e) and f) have been proved in section
2, and g) can be easily proved with p = % on the base of the definition of E(En). We now
try to imitate the construction of E(Eoo) on a general fractal. To do this, we have to restrict
the class of fractals considered. We will see what properties of the Gasket we used in the
construction of E(EOO), and we will require that analogous properties hold in our fractals.
Here, in order to simplify the presentation, we will not try to define the widest class of
fractals suitable for these considerations, but we will restrict ourselves to consider a class of
fractals which is at the same time simpler to define and sufficient to include the most usual
cases. In the case of Gasket, we used the fact that ¢;(T\ V) C T\ V. Such a property
was crucial in the construction of the harmonic extension on K of a function defined in
V, which in turn allowed us to prove property f) of Def. 3.3. Also, we implicitly used the
fact that the points P; are different from each other, and that the points v;(P;) are not
in V(® unless i = j. So, we are lead to require the following property which includes the
previous two:

Definition 3.4. We say that K has the (strong) nesting property if P; # P;, when
j1 # j2, and there exists a set V =V C F, V = {Py,...,Py}, 2 < N < k, and, putting
T = coV, we have ¢;(T) C T and ¢;(z) ¢ V© if z € T\ {P;}, (thus, in particular,
P(T\VOYCT\VO®) foralli =1,....k, and in addition
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Di(T) N i (T) = i V) Napir (V) i a0 =1, ki # 4 (3.3)

Note that we used (3.3) in Lemma 2.5. In the case of the Gasket, V and T are as in
Section 2. In absence of the nesting property, we cannot even conclude that E(Eoo) is finite
for some nonconstant function. Note that the nesting property implies in particular that
every n-cell contains at most one point of V(© for n > 0. In addition,

Pi:'g/)h(Pj), ,j=1...N, h=1,.k = 1=53=h.

This means that every P; € V() belongs to precisely one 1-cell, i.e., V;. The phrase strong
nesting property is more appropriate, as usually nesting property has a weaker meaning,
and properly is a weaker version of (3.3), but in the following we conventionally omit the
word strongly. In some sense, in Def. 3.4, (3.3) is the most characterizing property, in
which it distinguishes the most usual fractals. In fact, the Vicsek set, the tree-like Gasket
and the Snowflake have the nesting property, but the Carpet has not, as (3.3) does not
hold. In our examples we have N = k& = 3 in the Gasket and in the tree-like Gasket,
N =4,k =5 in the Vicsek set, N = 6, £ = 7 in the Snowflake, so that we can in fact have
N < k. Another property we have to require is suggested by the Cantor set. There, if we
try to imitate the definition of M, (E) we easily see that we obtain 0, as, for every function
defined on V', which in this case is the set of the end-points of the segment-line, it can be
extended on V(1) by a function which is constant on each 1-cell. The reason is that the
Cantor set i1s too much disconnected, not so in a topological sense but in the combinatorial
sense that the 1-cells are disjoint. In order to give a precise notion of connectedness, we
recall the following definitions about graphs.

A graph is a pair (V,W) where V is a nonempty set and W is a subset of the set of the
subsets of V' having precisely two elements. The elements of W will be called the edges of
the graph. We will say that P,Q € V are close (in (V,W)) if {P,Q} is an edge. We will
say that P,() € V are connected (in (V,W)) if there exist n = 1,2..., Py,..., P, € V such
that Py = P, P, = Q, and {P;, Piy1} € W for1 =1,...,n — 1. In such a case, we will say
that (Py, ..., P,) is a path that connects P and Q (in (V,W)) and has length m. We will
say that (V, W) is connected, if any two points in V are connected. When V is clear from
the context we can identify the graph with W, and say for example that W is connected.

Now define V;, ;. = ¢i17._.7in(v(0)) for iy,...,1, = 1,...,k, where ¢;, __; 1is an abbrevi-

n

k o)
ation for ¥;, o...o; , and put v = U Vi, Voo = U V(") as in the case

11 4.0yin=1 n=0
of Gasket. Enumerate V = {Py, ..., Py}. Then we say that our fractal is connected if the
following graph is connected: G; = (V) W) where W is the set of {%(le),l/)i(Pjg)} for
i=1,..,k, ji,j2 = 1,.... N, j1 # j2. In other words, we require that for every P,Q € V(1)
there exists a finite sequence P, ..., Py, of points in V(") such that, P = Py, Q = P,,, and
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for every r = 1,....m — 1, P, P41 belong to some 1-cell, or also, that any two points in
V) can be connected by a path in V(! whose edges are contained in some 1-cell (de-
pending on the edge). It can be easily verified that the Vicsek set, the tree-like Gasket
and the Snowflake are connected. We will say that a fractal is (strongly) finitely ramified
if both it has the nesting property and it is connected. As for the nesting property, we
will omit the word strongly for sake of simplicity, although, the usual definition of finitely
ramified fractal is more general. We will construct a good Dirichlet form on every finitely
ramified fractal. At first glance, in the construction in Section 2 we used other properties
of the Gasket. For example, in the proof of the maximum principle, we used the fact,
that every point in V(1 \ V(0 is close to a point close to a fixed point in V(©). However,
this tells in other words that a point in V(1) \ V(% and a point in V() are connected in
G1 by a path of length < 3. and the connectedness can well replace this assumption. A
more serious difficulty is that, when we proved that AM;(E) is a multiple of E we heavily
used the very strong symmetry of the Gasket, for example in the Snowflake there is no
reason that the coefficients of (u(Py) — u(P,))? and of (u(Py) — u(Ps))? are equal, as P
and P; are connected in V(! in an essentially different way from P; and P;. In order
to avoid such a problem, we will consider more general quadratic forms on V%), We will
now describe the construction in detail. Suppose then K is a finitely ramified fractal with
similarities 11, ..., ¥r. We define D to be the set of functionals from RV into R satisfying
the following property:

there exist ¢;, j,(E)(= ¢, j,) > 0 (j1 # j2) with ¢, j, = ¢;, j, such that

Buwy= Y enn(u(Py)—ulPp)y (3.4)
1<51<j2EN

for all u : V(© — R.
Moreover, we define D to be the set of those E € D which are irreducible, i.e., E(u)=0if
and only if u is constant. Regarding the previous definitions, we are only interested in D.
However, in some cases, we will also need to consider the set D which has for example the
advantage that it is in some sense a closed set. The difference with respect to the case of
the Gasket is that in this case we consider forms with possibly different coefficients. Now,
we define S,,(E) and M, (E) as in Section 2, with the obvious variant that the indices in
the sum in the definition of S,(E) vary from 1 to k instead of from 1 to 3. In order to
imitate the construction in Section 2, we need an E € D such that there exists p > 0 with
M,(E) = pE, in other words, we have to prove the existence of an eigenvector for the
operator M; : D — D, which as we will see, is in general, nonlinear. Before discussing this
problem, however, we need a more detailed analysis of the previous notions. For example,
I have not proved that M; maps in fact D into D. First of all, we note that the coefficients
of E are unique (this enables us to use the notation ¢;, ;,(E)). This is a consequence of
the following remark.

Remark 3.5. Given 51,52 = 1,....k let uj, j,, vj, j, be the functions in RV that take
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the value 0 at every P different from Pj,, P;,, and such that

]2

Uj, o (P ) = wjy o (Piy) = vjy o (Py) = 1, w5, 5,(Pj,) = —1.

Then, if E is defined as in (3.4) (not necessarily cj, j, > 0), we must have ¢j, ;, =

(E(vj, j») — E(uj, j,)), as can be easily verified. =

We now want to prove that My maps in fact D into D. In the case of Gasket, we evaluated
precisely M;(E). We did this by solving explicitly the system in (2.4). Clearly, this is
not possible in the general case. However, it is not necessary to solve explicitly such a
kind of system, but it is sufficient to prove that it has a unique solution. For in such a
case it depends linearly on « and we can proceed as in Section 2. We need some further

considerations on graphs in V).

Remark 3.6. It is easy to see that the irreducibility condition for £ € D amounts to
the fact that the graph on V(%) whose edges are the sets {P},, P;,} such that ¢j, ;, > 0,
is connected. We will denote such a graph by G(E). Note that, roughly speaking, the
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irreducibility condition amounts to the fact that there are not too many coefficients equal
to 0. For example, if N = 3, this means that at most one of the coefficients ¢y 2,¢13,¢23
1s0. =

Fix E € D. We call G1(E) the graph in V(") whose edges are the sets of the form
{i(P;,), i(Pj,)} with i = 1,....k, j1,j2 = 1,.., N, j1 # j; and ¢, j, > 0. We say that
two points Q and Q' in V(1) are close (resp. E-close) if they are close in G; (resp. in
Gi(E)). So, two points are close if they lie in the same cell. We say that () and Q' are
connected (resp. E-connected) if they are connected in Gy (resp. in Gi(E), i.e., if there
exists a path (Q1,...,Qm) With Q1,...,Qm € V. m > 1 and Q@ = Q, Qm = Q', and
@ and Q;41 are close (resp. E-close). In such a case we say that the path connects
(resp. E-connects) @ to @'. We say that ) and @' are strongly connected (resp. strongly
E-connected), and that the path strongly connects (resp. strongly E-connects) @ to @', if
we can also assume Qy, ..., Qm_1 ¢ V{®. Note however, that by our assumptions any two
points in V(1) are connected.

Remark 3.7. It easily follows from Remark 3.6 that any two points that lie in the same
1-cell V; are E-connected by a path (P, ..., Pp,) with P, € V; for each h. It follows that,
if i > N, so that V; contains no points of V(%) then any two points in V; are strongly
E-connected. If, instead, i < N, so that P; is the unique point in V() 0 V;, then any point
in V; is strongly E-connected to P;. =

Lemma 3.8. Every point Q € V() is strongly E-connected with some point of V%),

Proof. Fix Q' € V(. Since the fractal is connected, there exist Q1,...,Qm € V() such
that Q1 = Q, Q. = Q' and for every h = 1,...,m — 1, Qp, and Q41 are close. Thus, by
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Remark 3.7 Q;, and Q41 are E-connected, and therefore ) and Q' are E-connected. In
a path (Q1,...,Q;) E-connecting Q and @', let Q" be the first element Q; € V(°). Then
it is easy to see that @ and Q" are strongly E-connected. =

Note that, unlike the case of the Gasket, in general we cannot conclude that @) is E-
connected with any point of V(©). For example in the tree-like Gasket, if ¢j,.js = 0 the point

P, is not E-connected with P3. As in Section 2, we define L(n,u) = {v € RY'"™ :v =uon
V(1. We can characterize the minimum point of M;(E) in £(1,u) like in section 2.

Lemma 3.9. Ifu € RV(O), then a function v € L(1,u) satisfies My (E)(u) = Sy (E)(v) if
and only if

> s (v (0i(Py) = v(8a(Py)) ) =0, ¥P e VAV (3.5)

where the sum is extended over all 1 = 1,....k, 71,72 = 1,..., N such that j; # j» and
p :¢i(Pj1)‘ .

Lemma 3.10. Supposeu € RV andv € L(1,u) satisfies My (E)(u) = S1(E)(v). Suppose
P c VID\ VO and v(P) = maxv or v(P) = minv. Then, we have v(Q) = v(P) whenever
Q € VW is strongly E-connected to P.

Proof. Suppose for example v(P) = maxv =: M. It follows from the hypothesis that
v(P') = v(P) if P' is E-close to P, for, in the contrary case, the left-hand side in (3.5)
would be strictly positive. Now, let (Py, ..., Py,) be a path strongly E-connecting P to Q.
By recursion, v(P,) = M for all r = 1,...,m, and in particular, v(Q) =M. =

Proposition 3.11. Ifu € RV and v € L(1,u) satisfies My(E)(u) = S1(E)(v), then v
satisfies the maximum principle: for every P € V(1)

minu < v(P) < maxu.

Proof. We prove for example the second inequality. Suppose that v(P) = maxv =: M
for some P € VIV \ V(O Using Lemma 3.8 and Lemma 3.10, we conclude that v(Q)(=
u(Q)) = M for some Q € VO, Thus, M < maxu. =

Remark 3.12. The strong maximum principle in general does not hold. For example, in
the tree-like Gasket if E is the form defined before Lemma 3.9, and u(Py) = u(P;) = 0,
then Hiy.py(u) = 0 on the I-cell Vi. =

Theorem 3.13. For every u € RY'” there exists a unique v € L(1,u) satisfying
Mi(E)(u) = S1(E)(v).
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Proof. Clearly, v € £(1,u) and satisfies My (E)(u) = S1(E)(v), if and only if v satisfies
the equations in (3.5) and, in addition, the equations v(P) = u(P) for P € V(. Thus,
we have a linear system with N equations and N unknowns v(P),...,v(Pn). Therefore,
we have to prove that the corresponding homogeneous system has no nontrivial solutions.
But the homogeneous system is the system corresponding to u = 0. By the maximum
principle, the unique solution to such a system is the function v =0. =

We now define H(y,p)(u) as in Section 2. Clearly, H(q,) has the following properties:

a) H(y,p) is linear, thus continuous.

b) Hiy.py(u +¢) = Hy,py(u) 4 ¢ for all u € RY'” and ¢ € R.

We need another further lemma.

Lemma 3.14. If v : V(™ — R and S,(E)(v) = 0, then v is constant on V"),

Proof. We imitate the proof of Lemma 2.1. Observe that for every m € N, if v : V(m+1)

R has a constant value ¢; on every ¢i(V(m)), i =1,...,k, then v is constant on V(m+1),

Indeed, in particular, v = ¢; on the 1-cell V;. Since the fractal is connected, ¢; is inde-
k

pendent of i, say ¢; = ¢ for each i, and since V{m*1) = |J ¢;(V{™)), v = ¢ on V(m+1) as
=1

claimed. It follows that, if v is nonconstant on V("), then v oy, i, ..., is nonconstant on

VO for some 11,19, ...,in = 1,..., k, thus Sp(E)(v) >0. =

Theorem 3.15. M;(E) € D.

Proof. We easily get, proceeding as in Section 2, that M;(E) has a representation as in
(3.4) for suitable coefficients ¢ . (

a) M, (E) is irreducible.

b) c;'mé > 0.

Let us prove a). We have Mi(E)(u) = Si1(E)(H,g)(u)). If u is nonconstant, so is
Hy.py(u). Hence, in view of Lemma 3.14, M;(E)(u) > 0. Let us prove b). We use
Remark 3.5. Let ji,72 = 1,.... N, j1 # j2, and uj, j,, vj, jo be as in Remark 3.5. Let

w = Hy.p)(vj, j,). Since |w| € L(1,uj, ;,), by the definition of M;(E) we have

= ¢

]2,]‘1)7 J1,J2 = 1,..., N, 71 # j2. It remains to prove

My (E)(uj, j,) < S1(E)(|w]) < S51(E)(w) = Mi(E)(vj, 5) , (3.6)
the second inequality being an immediate consequence of the formula
(lal = [b)* < (a = 0)*. (3.7)
Now, b) follows from Remark 3.5. =

Next, we discuss the problem whether there exist E € D and p > 0 such that M, (E) = pE.
In such a case we say that E is an eigenform and p is its eigenvalue. In many fractals an
eigenform exists.
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Put E to be that form having all coefficients equal to 1.

Then, we have seen that in the Gasket E is an eigenform. Although the Vicsek set is
less symmetric than the Gasket, it is not difficult to see that its symmetry properties are
sufficient to guarantee that E is an eigenform (in some sense the kind of connection of two
different points P, P’ € V() through V(') is independent of P, P’). In the tree-like Gasket
a direct calculations shows that every form E with ¢y 3 = 0 is an eigenform with eigenvalue
%. In fact, let @ = ¢1 2, b = c2,3. In the definition of M; we minimize the functional

a(u(Pr) — 2)” + a(u(Py) — 2)* + b(u(Py) — y)? + b(u(P2) — )? + bz — 2)? + alt — )",

where v being the function to minimize, we put Pio = 1 (P2) = ¢2(P1), Pos = ¢3(P2) =
V2 (P3), Py = 1 (P3), Ps = 3(Py), x = v(Pi2), y = v(Pa3), 2 = v(Py), t = v(Ps). Clearly,
for the minimum v we must have * = z, y = ¢, and we have to minimize separately the
functions a(u(P;) — )% + a(u(Ps) — x)? with respect to z and b(u(Ps) —y)? + b(u(Pz) — y)?
with respect to y. Clearly, the result is

Sa(u(Py) — u(Py))? + gH(u(Py) —u(P2))? = 3 B(u).

For the Snowflake the problem is more complicated. Here, and in general, the map
M, considered as a map from the coefficients of E to the coefficients of M;(E), is a
rational function. This, as the solution H(y,p)(u) of system (3.5) is given by the quo-
tients of two determinants which are polynomial functions of the coefficients of E, and
Mi(E)(u) = S1(E)(H1,r)(u)). So, we cannot expect that M; is linear, and when ad hoc
arguments such as symmetry do not work, the problem of the existence of an eigenform
is not trivial. A result of Lindstrgm [9], states that in every nested fractal there exists an
eigenform. A nested fractal is defined to be a fractal having properties similar to that of
finite ramification, and further the following additional symmetry property:

If j1,j2 = 1,...,N, j1 # ja2, then the symmetry ¢;, ;, with respect to Wj, ;, = {z :
|lz=Pj, || = llz— Py
on both sides of W}, ;, is mapped to itself.

See [9] for the precise definition. It is easy to see that the Gasket, the Vicsek set, and
the Snowflake are nested, and the tree-like Gasket is not nested. In particular, on the

}, maps n-cells to n-cells for n > 0 and any n-cell containing elements

Snowflake there exists an eigenform. It is not difficult to see that not all fractals have
an eigenform. A rather general criterion for the existence of an eigenform valid also for
nonnested fractals was given by C. Sabot in his doctoral thesis (1995) (cf. [18]).

From now on, we assume that in our fractal there exists an eigenform, and E will
denote a fixed eigenform.

We can now repeat for E the same construction as that for E on the Gasket and use the
same definitions of E(En), and of harmonic extension H(ooE)(u)' We get
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Theorem 3.16. For every v : K — R, E( )( v) Is increasing with respect to n. If we put

E(Eoo)(v) = hm E( )(v), then E(oo) is a good Dirichlet form on K.

Proof. We 1m1tate the proof in Section 2. We have to modify slightly the proof of Corollary
2.4. When there, we stated that the number ~ is less than 1, we used the strong maximum
principle, which, as seen in Remark 3.12, is no longer valid in this situation. However,
a little modification of that argument, using substantially the maximum principle, is still
valid. We have to prove that Oscy;(v) < Oscy o) (), whenever u is a nonconstant function
from V(© to R and v = H(I;E)(u), and ¢+ = 1,...,k. To this aim, using the maximum
principle, it is sufficient to prove that v cannot attain in the same 1-cell V; both its
maximum and its minimum on V(). Suppose on the contrary, max v = v(t;(P},)), minv =
v(vi(Pjy)), ]1,]2 =1,...,N. In view of Remark 3.7, either ¢« > N and ¢;(P;, ) and ¥;(P;,)
are strongly E- connected ori < N and ¢;(P;, ) and ¢;(P},) are both strongly E- connected
to P;. By Lemma 3.10, in the former case v(v;(P;,)) = v(¢i(Pj,)), in the latter case
o(¢i(Pj,)) = v(P;) = v(vi(P),)). Hence, maxu = minu, and v, so u, is constant, a

contradiction. =

Note that it is easy to prove that any positive multiple of an eigenform is an eigenform as
well. So, a natural question is: is the eigenform unique up to a multiplicative constant?
The answer is: in many cases yes, but not always. The first example of nonuniqueness was
given by V.Metz in [10], where it was proved that in the Vicsek set, there are infinitely
many eigenforms not multiple of each other. A simpler (but less symmetric example) is
the tree-like Gasket, as we previously saw. We are now going to prove that, independently
of the uniqueness, the eigenvalue p does not depend on the eigenform, thus it is related to
the fractal, and it can be called the renormalization factor of the fractal. We need some
preparatory considerations.

Lemma 3.17. For any E, E' € D the ratio

has positive minimum, which I will denote by A\_(E,E') and maximum, which I will
denote by Ay (E, E') on the set of nonconstant u € RV
minimum and the maximum of A on the set S, defined in (2.7).

. They are also, respectively, the

Proof. Since A(u) = A(sziglg”) for every nonconstant u € RV(O), it suffices to observe

that A is continuous, thus it has a maximum and a minimumon S. =
Remark 3.18. We clearly have

A_(E,E"YE<E' <)\ (E,E"E
for every E,E' € D. =
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We now state some simple properties of S, and M,, which we will use in the following
without explicit mention.

a) Sp(aE) = aS,(E), M,(aE) = aM,(E),

b) E<E = S,(E)<S,(E"),M,(E) <M,(E"),

where E,E' € D, a > 0. By the expression E < E' we mean E(u) < E'(u) for all
u € RV and similarly for S,(E) and M,(E). Note that E < E’ does not amount
to ¢, j,(E) < ¢j,,j,(E") for every ji,j2 = 1,...,N, j1 # j2; for example, if N = 3 and
6172(E/) = 6173(E/) == 3, 62’3(E/) = 0, and (,‘172(E) = (;1’3(E) = (;273(E) = ]_, using the
simple inequality (a + b)? < 2a* + 2b%, we have E < E’. We remark that in the previous
considerations we did not require that the forms are eigenforms. Now, suppose we are
given two eigenforms E and E’ with eigenvalues respectively p and p’. We will prove that
p =p'. In fact, we have aE < E’ < bE for some a,b > 0, by Remark 3.18. Using a) and
b), we get M*(E) = p"E, M*(E') = p'"E', and ap"E < p'" E' < bp™E, for every n € N.
Hence, if p # p/, we have that either E or E' is identically 0, contrary to the assumption
E . E' e€D.

4. Main Properties of Renormalization
and Harmonic Extension

In previous sections, we studied the convergence of E(En) when F is an eigenform. We now

want to study the corresponding problem when E is any element of D. The first remark is
that, as we know that the eigenvalue p is independent of the eigenform, we can well define

for any E € D. We are now going to study the following problem: Is the sequence E(En)
convergent in this more general case? In this case, unlike the case of an eigenform there is
no reason that the sequence E(En) is increasing. So, the answer is less simple. In order to
attack the problem, we need a more careful investigation of the renormalization operator
M, (E) and of the harmonic extension on V(") that, so far, we merely hinted. This is what
we will do in this section. We will prove in particular that M, 4., (E) = M,,(M,(E)). This
will turn out to be a consequence of the nesting property, for, in order to minimize the
sum of the copies of E on the (n 4+ m)-cells, we can minimize for fixed values on yim)
independently on the different n-cells as they only overlap at points in V(™ and then
minimize the sum of such minima among the possible values on V(™). The statement of
Theorem 4.3 is thus, in some sense intuitive. However, I will give a complete proof of it. In

order to do this, we need two Lemmas. We will use the notation H(y, »;g) for Hmm, (B))-
Lemma 4.1. Suppose (i1, ...,in) # (¢1,...,4,,). Then,
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Proof. Note that K C T, hence K;, . ; N Ki'17~~~7i’n CT;, . i, N Ti'l,...,i'n- Then, the proof

is exactly the same as that in Lemma 2.5. =

Lemma 4.2. Supposen € N. Suppose P = ¢, ., (Q) = i o (Q") withiy, ...,in, 17, ...,
il =1,.,kand Q,Q € K, and (i1,...,in, Q) # (i,,...,7.,Q"). Then, Q,Q" € V(.

Proof. We have (i1,...,1,) # (#},...,1,), for in the contrary case, @ = @Q'. Hence, by
Lemma 4.1, Q,Q' ¢ V(®. =

Theorem 4.3.
i) For every n € N and E € D and u € RV the inf in the definition of M, (E) is in fact
a minimum. It is unique and we will denote it by Hy.p)(u). Moreover, M,(E) € D.

ii) For every n,m € N and E € D and u € RV(O), we have
Hngmig) (1) 0 Vi inim = Henymy (Himonm) (1) 0 iy i) © Wi g i -
iii) For every n,m € N and E € D, we have

Mpym(E) = My (M, (E)).

Proof. Suppose i) holds for n and m (for all E and u), and prove that the function
7: V(tm R defined by

(B (Q)) = Hensry (Himmiy(0) © iy i) Q) Q €V it i = 1,k

satisfies

veLn+mu), Spim(E)(v)> My (;M,l(E))(u) Yo € L(n +m,u), (4.1)

and the equality holds if and only if v = ©. Since we already know that i) holds for
n = 1, a recursive argument then yields 1), ii) and iii). First, note that the definition
of T is correct, i.e., it does not depend on the representation of P € V("tm) a5 P =
Yiy i (Q) With 11, .cim = 1,0k, Q € VW If P € V(™ then P = vy ;i (Q') for
some it ,....i" = 1,..,k Q" € VO, Thus, either (i1,...,im) = (i}, ...,7,,), then Q = Q' €
VO or (i1,..yim) # (i), ...,4" ), and using Lemma 4.2 we have Q € V() again. Hence,
the definition of ¥ gives ¥(P) = H(y n;5)(u)(P). If, on the contrary, P ¢ V) i view of
Lemma 4.2 the above representation of P is unique. Next, we prove that v € L(n + m,u).
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We just proved that ¥ amounts to H, n.z)(u) on V) O v which in turn amounts to
w on V. Finally, if v € £(n + m,u), we have

k k

SurmE)0) = D (X B0 viin 0 Yigniing))
i1reim=1 imptrrimin=1
K k
= Y Su(BE)voti. .i.)= Y MuE)(vjyemn 0¥ i)
11yeeylm=1 11 yeenslyp =1

= Sm(Ma(E)) (o) > Min (Mo(E)) (w)

and, the first inequality is in fact an equality if and only if

0o iy i = Hinp (U|v(m) o Virin)

on V™ for all iy,....im = 1,...,k, the second is an equality if and only if Vyim) =
H(mm n;p)(u), if and only if

VO Viy, i = Hmnm) (W) 0¥iy i,
on VO for all iy,...,im = 1,...,k. Hence, the equality holds in (4.1) if and only if v = .

Corollary 4.4. We have M, = M. =

It follows that, if E is an eigenform then M,(E) = p"E, so that E(,,y = E. Now, for every
E € D, we put
M, (E)
pn
when E € D. We easily deduce from Theorem 4.3 that

M,(E) = E(,) :=

Etntm) = (En))(m)
for all E € D and n,m € N, thus M, = ﬂ711”. Clearly, E € D is an eigenform if and only

if it is a fixed point of M;. In order to investigate the convergence of E(En) we need some

information on the convergence of E(,). We will prove in fact that the sequence E(En) 18

[-convergent to EN(EOO) where E is the limit of E(n). The proof of the convergence of E,)

is the real problem in the proof of I'-convergence of E(En) when E is not an eigenform.

Clearly, when E is an eigenform, F(,y) = F — E. In order to prove the convergence of
n—r0o0

E(y), it will be useful to study the behaviour of H(,.p)(u) on the single n-cells, in other
words, to study H(p,g)(u) 0, . i,. In this connection, another consequence of Theorem
4.3 is that we can split the map u +— Hp,py(u) 0, ., into the composition of maps like

29



u + Hy,g)(u) o 9;. We need thus a reformulation of Hy,g)(u) o ¢; which represents it as
a function of u. So, put

Ti.p(u) = Heyypy(u) o9y

for every 1 = 1,....k; E € D; u € RV, Put also Tin:e = Tiym, (k). In previous
definitions, we omit E when is clear from the context, and in such a case, we write T3, T; ,,.
The following properties can be easily verified. We have already discussed some of them
in terms of properties of the map u + Hy,g)(u).

Proposition 4.5. Let u € RV(O),E € D. We have
i) T; is linear.

ii) T;(u + ¢) = T;(u) 4 ¢ if ¢ is constant.

i1i) T (uw)(P;) = u(P;).

iV') Ti;aE = Ti;E ifa > 0. ]

Note that thanks to iii), 7; maps the space

I = {ue RV : u(P) = 0}

into itself, and by ii) T} is completely determined by its values on II; ~ R¥ =1, Thus, T; can
be considered as a linear operator from RV~ into itself. Another trivial remark is that,
by iv), we have T; ar (p) = i, B, - Putting n = 1 in Theorem 4.3 ii), a simple recursive
argument on m yields

Lemma 4.6. Let u € RV(O), E € D. Then
H(mE)(u) o 77Z)i17~~~1in = 4i,00 Tin—171 00 Til,n—l(u) on V' )
in particular, if E is an eigenform, we have

H(nvE)(u) o ¢i1,...,in =44, 0 Tin—1 0---0 Ti1 (u) .

|
Corollary 4.7. Let E € D, u € RV(O), Q € V(" Then

minu < H,.py(uv) < maxu.

V(o) v (0)

Proof. We have Il’l(lI)lu <Tip(u) < maxu for every 1 = 1,.... k. We conclude by a recursive
V(o V(o
argument. =
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So far, I discussed about the convergence of sequences in D, but I did not specify by what

a sense | mean the convergence. It will be better to consider, a priori, the convergence on

D instead of on D, as D is closed. We can define a norm || || on the linear space generated

by D as ||E|| = sup |E(u)|. Note that if ||E|| = 0, then as E is 2-homogeneous and satisfies
ueS

E(u) = E(u —u(Py)), it follows E(u) = 0 for all u € RV(O), so that || || is in fact a norm.
We have:

Lemma 4.8. Given E,,, E € D, the following properties are equivalent
a) E, — E pointwise,

n— 00

b) E,, — E uniformly on compact subsets of RV(O),

n— 00

c) B, — E in the norm || ||,

d) c]-hl(%on)njgoch’h(E) for all j1,72 =1,...,N, j1 # ja2.

Proof. Clearly, we have d) = b) = a). Also, a) = d) by Remark 3.5. Since the set &
is compact, we have b) = ¢). Finally, as E(u) = |ju — u(P1)||2E<%) for every

nonconstant u € RV(O), ¢c)=a). =

So, the convergence in D (a fortiori in f)) will be meant to be in one of the four equivalent
formulations in Lemma 4.8. Also, we will consider on D and on D the topology induced
by such a convergence. In this way the main functions we defined on D are continuous.

Lemma 4.9. We have

i) The map from D x RV to RV defined by (E,u) — H,g)(u), is continuous.
ii) The map from D x RV to R defined by (E,u) > M,(E)(u) is continuous.
iii) M, is continuous from D to D.

iv) Ay and A_ are continuous from D x D to 0, 400,

Proof. Provei). Suppose Ej, E € D, up,u € VO, E, —s E. up, —> u, and prove that
h—o00 h—o0

H(l;Eh)(uh) hjo H(l,E)(u) (42)

By the maximum principle we have m(ir)luh < H(l-Eh)(uh) < m(a))cuh . Thus, the functions
V(o ' V(o

H.p,)(un) are uniformly bounded and if (4.2) does not hold, we have

Hm,) (un) — v

with v # Hy,5)(u), for some strictly increasing sequence of naturals h;. Thus, v satisfies
(3.5), and v = Hy,)(u), contrary to our assumption. ii) easily follows from i), in view of
the formula My (E)(u) = S1(E) (H(l;E)(u)). iii) is an immediate consequence of ii) and of
the formula M, (E) = M7 (E). We now prove iv). Suppose E}, v E, E; = E’. Given
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a nonconstant u € RV(O), let @ > 0 be such that E(u) > o« and let h € N be such that
Ey(u) > 5 for h > h. By simple calculations, for every h > h and u € S we get

Ej(w) _ E'(u)
En(u)  E(u)

| Ej(u)E(u) — Ep(u)E'(u)|

2
< = (BB — Bl + | B4lIIE; — E'll) — 0,
o h—o0
so that d) easily follows. =

Corollary 4.10. If E € D and E(,) — E', then E' is an eigenform.

n— 00

Proof. Since E' = lim (Ml)"(E), and M, is continuous, then E’ is a fixed point of Mj.
n—r0o0
|

Lemma 4.9 and Corollary 4.10 will be used without mention in the following. Another
equivalent way of expressing the convergence in D is given by the following corollary.

Corollary 4.11. Given E,,,E € D, then E, — E if and only if At(E,E,) — 1.
n—r00

n— 00

Proof. Part ”if” follows from Remark 3.18. Part "only if” follows from Lemma 4.9 iv. =

In some sense, the functions Ay provide a way of measuring how much far two different
E.E’ € D are. We are so lead to give the following definition.
Given E,E' € D let

ME, E') = In(\4(E, E")) — In(\_(E, E")).

A is a particular case of Hilbert’s projective metric. For the theory of Hilbert’s projective
metric see for example [14]. We have in fact, as can be easily verified, that A is a semimetric
on D, in the sense that it has all properties of a metric but the property that the distance is
0 only if the two elements are the same. More precisely, we have \(E, E’) = 0 if and only if
E'is a (positive) multiple of E (or, E is a (positive) multiple of E’). In particular, E € D
is an eigenform if and only if \(E, E(;)) = 0. Also, we clearly have A\(aE,bE"') = \(E, E')
for every a,b > 0. Thus, A induces a metric on the projective space pr(D) generated by
D, that is the space of equivalence classes on D, mod the relation where two elements are
equivalent if they are multiple of each other. Moreover,

Lemma 4.12. Given E, E' € D we have

i) \_(My(E),M(E")) = )\_(E(l),Eél)) > \_(E,E")
ii) Ay (My(E),M;(E")) = /\+(E(1),E£1)) <A\ (E,E")
iii) \(My (E), Mi(E")) = M(Eqy, Ely)) < ME, E').
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Proof. In i), ii), iii), the equalities are trivial, so we have to prove the inequalities. By

Remark 3.18 we have A\_(E, E"\M,(E) < My (E') < A4 (E,E")M;(E), hence,

\ (BB < ME)W)

S m < A_,_(E,E')

(0) . . ceen . .
for every nonconstant « € RY", and i) and ii) follow at once, and iii) is an immediate

consequence of i) and ii). =

Now, since E(yy is a multiple of M;(E) for E ¢ D, in view of Lemma 4.12 we get that
the map M, is a weak contraction on pr(D) with respect to A\. This fact suggests that a
way for proving that the iterated M, = ]\NJ{‘ converges could be to try to prove that the
above considered map is in fact a strong contraction. Unfortunately, this is not true in
general, as we saw that we can have two different eigenforms not multiple of each other,
which corresponds to two different (on pr(ﬁ)) fixed points of M;. However, we can modify
such an argument in this way: In order to prove that the sequence E(,) tends to some
eigenform FE, since the distance A\ between E and E(,) is decreasing in view of previous
lemma, we can try to prove that it is not eventually constant, so that we can hope that it
tends to 0. We will use this argument on the Gasket in next section. We are so lead to
investigate the cases in which in Lemma 4.12 iii) we have the equality. For the moment,
however, let us discuss some simple consequences of Lemma 4.12. Given an eigenform E
and real numbers a,b with b > a > 0, let us put

Upsir = {Eeﬁ:aﬁgEng}(: {E€D:a<\_(E E)\(E,E) gb})

and write U, 3 for U, , . Since E is an eigenform and thus E(l) = E, it immediately

follows from Lemma 4.12 that J\Nll maps U, 3 into itself. Thus if E € U, 3, then every E(n)
lies in U, 3. Moreover, U, ; is (sequentially) compact. We have in fact:

Lemma 4.13. Every sequence in U, 3 has a subsequence convergent to some element of
Uap.

Proof. Let E, be a sequence in U, ;. Because of Remark 3.5, the coefficients ¢;, ;,(Ey)
are estimated by gEA(vjhh). Thus, E,, has a subsequence convergent to some functional
E and we immediately see that E € D. Moreover, we clearly have aF < E < bE. Thus, if
u € RV is nonconstant we have E(u) > aE(u) > 0, so that E € D. Moreover, E € U, 3.

Corollary 4.14. For every E € D there exists a strictly increasing sequence of naturals
nyp and E' € D such that E,,) h—> E'. =
—0o0

The problem is thus to prove that all the sequence E,) converges to the same limit E'.
The use of U, 3 is the point in which we need the existence of an eigenform. Lemma 4.13,
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in fact, states that in some sense the sequence E(,) is bounded with respect to A. Another
consequence of Lemma 4.12 is the following.

Corollary 4.15. Given E, E' € D, put A = /\:I:(E(n)aEén)

i) At n Is decreasing and A_ ,, is increasing, thus X, is decreasing
ii) If we set Ay = lim Ay , we have 0 < A_ < A} < +o0.
’ n—00

)s An = ME(n), E{

(n)). Then

Proof. Since E(n41) = (E(n))(1), 1) is an immediate consequence of Lemma 4.12, putting
there (E(,)) in place of E and (E(,,) in place of E'. For ii), note that 0 < A_ g < A_, <

(n)
/\—f-,n < A+70 < 4o00. |

Corollary 4.16. IfE,E’' € D and E’ is an eigenform and E(,,y — E' for some strictly

h— o0

increasing sequence of naturals ny, then E,y — E'.
n—ro0

Proof. By Corollary 4.11, Ax+(E', E(,,,)) R 1. On the other hand, since E(’n) = E’, there
— 00

exists lim Ax(E’, E(,)) = 1. By Corollary 4.11 again, E,) — E'. =
n—>r00

n— 00

We have just seen that Ay, < Ay and A\_, > A_,. In order to know whether the
operator M, contracts the distance ) for some n, we need to know when such inequalities
are in fact equalities. To this aim, we study the set of functions in RV(O), which are in
some sense extrema for the ratio % For E,E' € D put

(A* =)AX(E,E') = {u e RV : B'(v) = A\+(E,E')E(u)} .

By definition such sets include the constant functions. Since in some cases we need to
use only nonconstant functions, put (A* =)A*(E, E’) to be the set of the functions in
A*(E, E') which are not constant. Put also

(A" =)AF"(E, E') = A(Mu(E), Ma(E")( = AX(E(n), E{n)))) -

(A*" =)A*™(E,E') = A*(M,(E), My (E"))( = A*(En), E{,,y))) -

Proposition 4.17. Let E,E' € D. Then

i) AT is closed.

i) u € AT = cqu4 ey € AT Veq,e €R.
i) E' 1s a multiple of E <— At NA- 40
w) AT £(. =

Note that, if Ay , = At o, then

A E) = {ueRY" : M, (E")(u) = At.oMa(E)(u)} .

Now, we can state the following result.
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Lemma 4.18. Let E and E' and A\ , be as in Corollary 4.15. If we have Ay , = Ay o,
then for every u € A®™ we have

Hip:my(u) 0 Wiy i = Hinyy(u) 0 iy i, € A%
for all i1,...,0, = 1,..., k.
Proof. Let u € A™™. Then

My (E")(u) = Su(E")(H(n,pry(u)) =

k
Y E(Hmpy(u) o, i) = Z A0 E(Hn;pry () 0 iy i)
i17...7in=1 Zl ln—l

= A 0Sn(E) (Hnsr) (1)) = Ao Mn(E)(u) = My (E")(u)

so that the two inequalities are in fact equalities. From the fact that the first inequality
is an equality we deduce H, gy(u) 0 ;... € A™, and from the fact that the second
inequality is an equality we deduce Hppy(u) 0 ¥y i, = Heppry(u) oy, ., , for all

11,52 = 1, ..., k. We have proved the Lemma for the case where + is —. We can proceed
similarly in the case where + is +, taking in account that A\; (E, E') = (/\_(E/, E)>_1. .

Corollary 4.19. In the same hypotheses as in Lemma 4.18, for every m with 0 < m <n
we have

Adm = A0, (4.3)

and for every u € A"

H(n—m,m;E) (u) o 77bi17~~~7in— - H(n m,m;E") ( ) ¢11 E Ai’m (44)
for all i1,....0p—m = 1, ..., k.

Proof. From Corollary 4.15, (4.3) follows at once. Thus, as we have

e At (Mn—m (M (E)), My (Mm(E’))> :

(4.4) follows from Lemma 4.18. =

Note that the first equality in (4.4) for every i1,...,in—m = 1,...,k, simply amounts to
Hp—mmp)(u) = Hp_p mpy(u). Roughly speaking, whenever we have Ay, = Axg,
every function u € AT" produces, via its harmonic extension, functions in A*™ for all
m < n, at every (n —m)-cell, in particular, for m = 0, functions in A% at every n-cell.

Remark 4.20. Note that, given E, E' € D, if \(E(y), E{,\) = ME, E') then A4 (E(ny, E{,,))
= \:(E,E'). =
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5. Homogenization on the Gasket

In this section we assume that the fractal is the Gasket. We first prove that for every E € D,
the sequence FE|,) converges, then we prove that the sequence Ezn 1s I'-convergent. We
call this phenomenon homogenization. Analogous convergence results also hold for general
fractals, but I prefer first to illustrate the process in the Gasket, because the proof is more
natural and so can be better understood. A property typical of the Gasket (and of other,
but not of all, fractals), is that the limit form of E,) is a multiple of E. The proof of the
convergence of E(,) on the Gasket presented in this section has not been published, but
the idea is sketched in the introduction of [16]. The proof in general fractals presented
in Section 6 follows more or less the approach of [16] (or also, of [15]). In Section 4 we

studied what happens if )\i(E(n),Eén)) = At (E, E’) in the general case E, E' € D. Put
now E = E, so that Eny = E, and put E in place of E’. Since E is an eigenform, then
(4.4) yields H(n_mf)(u) O Wiy, in_m € AT™ iy e AT, Hence, in view of Lemina 4.6,

we get

Proposition 5.1. If E € D and M (E, Ewy) = A\+(E,E) and u € A*(E, E(,)), then
TZ"E(U) € A*(E,E) for every i = 1,2,3 andn € N. =

Let T; := T,  in the rest of this section. The plan of the proof of the convergence of E(y)
is more or less the followmg First, we will prove that if such a convergence does not take
place for some E € D, then we have M (E, E(n)) = M\+(E,E) for some E € D; then, we
will use Prop. 5.1 to deduce that AT and A~ contain some eigenvectors of T}, obtained
as a limit of T} and, finally we will prove that these eigenvectors are the same, so that by
Prop. 4.18, E is a multiple of E, and thus E(n,y = E. In order to prove the first step in
such a plan of proof, I will use the following notation. I will say that E € D approaches E
if \(E, Ewmy) < M E, E) for some n thus for sufficiently large n. I will say that E goes to

Eif E(y) tends, as n — oo, to a multiple of E. Then

Lemma 5.2. If every E € D which is not a multiple of E approaches E, then every E € D
goes to E.

Proof. Let E € D. By Corollary 4.14 there exist a strictly increasing sequence of naturals
np and E' € D such that E,,) . E’. For every m € N we have
—o0

/\(Ea Eém)) = A(E, hli_?olo(E(nh))(m)) = )‘(Ea hli—>Holo E(m—i-nh))
hm MNE, E(min,)) = lim MNE, Ewy),

n— 00

the last equality depending on the fact that the last limit exists. Thus, E’ does not
approach E and by hypothesis, E' = oF for some positive a, in particular it is an eigenform.
By Corollary 4.16, E(,,) — E'. =

n— 00
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In order to investigate the convergence of T}, I first introduce the problem by some pre-
liminary considerations. If u € RV we identify u with a vector of R® by putting
u = (u(Pr),u(Py),u(P3)). By this identification, T} is a linear operator from R? into
itself. Suppose for example j = 3. Then T3 maps R? x {0} into itself. We have
Ts(z,y,0) = (H(El)(:r:,y,O)(;/)g (Pi))i=1,2,3> = (%x—l— %y, %LE—I— %y,O) (see solution of (2.4)).
Hence, putting e; = (1,0,0), e2 = (0,1,0), e3s = (0,0,1), we get T5(ey) = (%,%,0),
Ts(ez) = (%, %, 0). The important point in these formulas is that

Ts(e1) = (a,b,0),T5(e2) = (b,a,0) with a,b>0. (5.1)

This can be deduced by the symmetry of P; and P, and by the strong maximum principle,
with no explicit calculations. On the base of the form of T3 we can see that T3 maps
the positive cone D3 := {v € R* : vy > 0,v3 > 0,v3 = 0,v # (0,0,0)} into the cone
D} :={v e R?*:v; >0,v3 >0,v3 = 0}. Suppose now that \(E, Eqy) = ME, E), and take
Up € Ai(F, E(,)). Suppose that it attains its minimum at Ps. If it attains its minimum at
another point, we can proceed similarly; moreover, a similar argument works if it attains
its maximum at P;. By Lemma 4.17 ii), we can and do assume u,(P;) = 0, so that
Uy, € Dg, in particular u, is nonconstant. We have T3 (u,) € A%, In order to study the
asymptotic behaviour of w,, := T3 (u, ), note that it clearly tends to 0, but we can ask to
what kind of configuration it tends, in other words, what is the limit of the normalized

vector v, 1= ”z’]—”” (if such a limit exists). Since T3 in some sense has the effect of mixing
n

the first two components in a symmetric way, we can expect that v, — g (1,1,0);
n—>r00

however, since the point u, depends on n, this cannot be simply proved on the base on
the convergence of the iterated, but we need a sort of uniform convergence. We now come
to give the precise statement of the convergence of T". Let

D;:={veR?:v;>0forl#jv;=0v+#(0,0,0)},

Di:={veR’:v>0forl#juv;=0,}.

_ _ - _ - e T (v
Let vy = (0,4,?), Uy = (4,0,4), U3 = (?,4,0). Let TT'(v) = % when
TP (v) # 0. Let g(v) = m;.ix ’Ui, where the maximum and the minimum are taken over
min v;
i =1,2,3 with v; > 0, when v € D}. Then
Lemma 5.3. We have T}(Dj) — v, in the sense that
n—ro0
sup (q(Tf(v))) njgol. (5.2)

UEDJ‘
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Proof. We suppose for example 7 = 3, the other cases being analogous. Define functions
¢1:¢2 on Dy by q1(v) = 32, g2(v) = ;L. Thus

q = max{q1,q} .
Note that g1, ¢2, and so ¢, are continuous with values in |0, +oo[ . By (5.1) we have

1 2
¢ (Ts (v)) = gvl + ?02 _ 2q1(v) +1
FU1F 502 q1(v) +2

and a similar formula holds for ¢3(T5(v)). In other words, for ¢ = 1,2, we have ¢;(T5(v)) =
f(qi(v)) where

Note that f satisfies
2) F(1) =1
b) f is strictly increasing on |0, +oo|.
¢) f(t) <t for every t > 1.
We deduce ¢(T3(v)) = f(q(v)). Also, for every ¢t > 1,
(@) 1 (5.3)

Moreover, the convergence in (5.3) is uniform on every interval of the form [1, ¢] with ¢ > 1,
for, by b) we have 1 < f7(t) < f"(¢) for t € [1,¢]. Now, ¢ has a maximum M > 1 on
T3(D3) as q is continuous and 0-homogeneous, and the set of unit vectors in Dj, so its
image via T3, is compact. Since ¢(T3'(v)) = f"(q(v)), we have

sup q(T3"(U)) — 1.

UEDS n—oo

Corollary 5.4. Given a strictly increasing sequence ny, of naturals, and vy, € T]?”‘h (D;),
we have vy, — U .
h—o0
Proof. Let for example j = 3. By Lemma 5.3 we have ¢(vy) h—> 1. If w is a limit point
—00
of vy, then w € Dj, for, in the contrary case, a subsequence of g(vp) h—> tends to +oc.
— o0

Hence, by continuity, ¢(w) = 1, which implies w = v3. Since T3 is the unique limit point

of vy, then vy, — v3. =
h—o0

Theorem 5.5. Every E € D goes to E.

Proof. By Lemma 5.2 it suffices to prove that given E € D that does not approach
E, then E is a multiple of E. Take u, € A*(E, E(y)). Clearly, there exists a strictly
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increasing sequence of naturals nj such that all u,, attain their minima at a unique point
P;, and their maxima at a unique point Pj,, with j; # j2 . By Prop. 4.17 ii we also have
Wy, = Up, —Un, (Pj,) € AY(E, E,,)), wh, = tn,(Pj,)—un, € AT(E, E(,,)). Moreover,

m—

wn, € Dy, wy, € Dj,. Thus, vy, :=T7" (wy,) € AT by Prop. 5.1, and by Corollary 5.4,

VT Tj,, hence 7;, € AT. By proceeding in a similar way, v}, = T (wy,) € AT,

and v, e v;, € AT. By the same argument there exist ji,j3, with j; # j5 such that

v, ,v;r € A7. Since we have only three points in V) there exists v; € At n .%Nl_, and, by
1 2

Prop. 4.17 iii, E is a multiple of E. =

Remark 5.6. The argument in the proof of Theorem 5.5 heavily relies on the fact that
N = 3. Aiming to possible extension of the proof to more general fractals, it could be useful
to observe that a modification of that argument does not use N = 3, but uses the strong
symmetry of the Gasket, which implies in particular that v; is symmetric with respect
to the components different from ;. We saw in proof of Theorem 5.5 that there exists
j(= j7(0)) = 1,2,3 such that v; € AT(E, E). On the other hand, clearly, E(,) does not
approach E, so that we can apply the same argument to E(,) and there exists j(n) =1,2,3
such that v, € AT (E, E(,)). We can now repeat the previous argument. Let nj be a
strictly increasing sequence of naturals and let j = 1,2,3 be such that j(nj) = j for all h.

Then, by Prop. 5.1, 1/?;(5]—-) € AT, and, since vy € Dy, by Corollary 5.4

T (55) — U= € A*.

J h—oo 7

On the other hand, for j # 7, U5 1= (1,1,1) — \/iﬁjf € DjN AT, hence

7% (5 e AT
Tjh(vjf) — v, € AT

h—o0

In conclusion, v; € At for every j, and by the same argument, v; € A~ for every j, so

that AtNA~ #£¢. =

Corollary 5.7. Every eigenform is a multiple of E.
Proof. It suffices to observe, that if E € D is an eigenform, then £ = E(,) — aE, for

n—roo
someag>0. =m

We will consider Theorem 5.5 as a starting point to prove the I'-convergence of E(En).

However, Theorem 5.5 is interesting in itself. Let now E € D and E = lim E(n). We are

n—+4oo

going to prove that E(Eoo) =T(X—) lim EZX. where X = R with the metric L. Note

ntoo  (7)
that, since F is an eigenform, ENEOO is defined. The argument of the proof of I'-convergence
is due to S. Kozlov [7], who proved the I'-convergence on the Gasket for forms E having
two of the three coefficients equal, with respect to a topology which is different from L™,
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and induces a sort of Sobolev space on the Gasket. In any case the proof of [7] also works
for general fractals once we know that the sequence E(,) is convergent. In these notes, we
follow the approach of [15], while in [17] the problem is treated by a slightly more general
point of view in the sense that the I'-convergence with respect to different topologies is
investigated there. Recall that, given a sequence of functionals F), from a metric space X
with values in RU {+o00} U {—o0}, F,, are said to be I'(X —)-convergent to a functional F
if for every x € X

i) there exist x,, — x such that F,(z,) — F(z).

n—+4oo n—+oo

ii) For every z, — x we have liminf F} (2, ) > F(z).

n—+oo n—+oo
In order to obtain the I'-convergence result, for every m,n € N with n > m and for every

v: V™ 5 R, we define U(n,m) : K — R to be the harmonic extension with respect to E
(or to E, which is the same as E is a multiple of E) of © : V() 5 R defined by

0(ir,.in (P)) = Hinomim) (00 ¥y i) © iy in(P), P eV

The definition of v is correct by the same argument as in Section 2, via Lemma 2.5. Then,

we define v(,) = V(n,[2]). We have

Lemma 5.8. For every v € C(K), v(,) — v with respect to L.
n—r00

Proof. Forevery Q € K let iy,...,1, = 1,....,k, P € K be such that Q = ¢, . ; (P). Then,

by the definition of harmonic extension,

0 (Q) = V) (Vi (P)) = Hiogyy (70 s, ) (P)

and by Lemma 2.8 we have

O(n)(Q) € [minv oy, i, maxv o, ...

Moreover, by Corollary 4.7 we get

vy (Q) € {1‘1;1(101811) 0 1/}1-1,...,1‘[%],151%})(1) 0 @bil,...,i[%],} )

In conclusion,

hence |v(,)(Q) —v(Q)] < sup v — inf v, and by the uniform continuity of v on

K, ., i[%]

K and (2.12), v(n;p) — v uniformly. =
11— 00
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Lemma 5.9. For every v € C(K) we have

By (v(m) = (Bn-12)))2) (v) < Efy(v).

Proof. We first observe that

It follows that
Sn(E)(vny) = 5

By dividing by p" we get the Lemma. =
Theorem 5.10 We have
- Y _ gy
D(X-) lim Eq = Eq

where X = C(K) with the metric L*°.
Proof. By Corollary 4.11, for every ¢ > 0 we have

(1-e)E<E <(l+¢)E (5.4)

for sufficiently large n. Now, given v € X, by Lemma 5.8 v(,) — v in X. Also, by
n—r00
Lemma 5.9 and (5.4),

By (v(m) = (Ba13))i13 (v) € [(1 = &) E{fg) (v), (1 + ) Effy) (v)]

for sufficiently large n, so that E(En)(v(n)) — E(Zm)(v). It remains to prove that given
n—r0o0
v, — vin X, then
n—+4oo
s e 3 )
lim me(n)(vn) > B )(v),

n—+4oo

and it is clearly sufficient to show that for every m € N
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o ¥ noy
lim inf B, (vn) 2 Egny (v) - (5:5)
By Lemma 5.9 and (5.4) and since E(En) is increasing, if 0 < ¢ < 1, for sufficiently large n
we have

Ey(vn) > (E(n—[%]))(z[g])(vn) > (1- 5)E(E[g])(vn) > (1- 5)E(Zm)(vn)-

Since v, — v and EZ

is continuous from X to R, we get
n—+oo (m)

liminf E7,)(va) > (1 —¢) liminf B¢, (va) = (1 — ) Ef, (v).

n—-+4oo n—-+oo

Since this holds for any ¢ €]0, 1], (5.5) follows. =

6. Homogenization on General Fractals

In this section we will extend the results of Section 5 to arbitrary finitely ramified fractals.
The difficulty in imitating the proof in Section 5 consists in extending Theorem 5.5. Note
however, that in general, we cannot expect that E(,) tends to a multiple of a fixed eigen-
form, for in such a case, we could prove as in Corollary 5.7, that the eigenform is unique
up to a multiplicative constant, and this is no longer true in the general case. We remark
that if N = 2, then for every E € D, we have

E=c(u(P)—u(P))’,  M(E)=c(uP)—uP,))*

for some ¢, ¢’ > 0. Hence, E is in any case an eigenform, and the convergence of E,, takes
trivially place. Thus, we can assume N > 3. What properties of the Gasket have we used
in the proof of the convergence of E(,,)7 We essentially used either N = 3 or the very strong
symmetry of the Gasket. If the fractal is less symmetric, one could prove an analogous of
Lemma 5.3, but the limit vector is not symmetric with respect to the components different
from j. Hence such a vector does not attain its maximum at all P € V(© P +£ P;, and
the proof in Remark 5.6 does not work. Since in the present case, we want to prove the
convergence of E(,) to an eigenform that, in case of nonuniqueness, may well depend on
E, and we cannot expect to know in advance what eigenform is the limit, we will not try
to prove that /\(E,E(n)) tends to 0 for some specific eigenform E. We will instead try to
prove that A, := A E(yn), E(;+1)) tends to 0. Note that E(,11) = (E(1))(n), so that we
can use Corollary 4.15 and Corollary 4.19 with E(qy in place of E'. In particular, A, is
decreasing. We say that E is A-contracting if we have \,, < A\g for some, so for sufficiently
large, n. We have the following analogous to Lemma 5.2.

Lemma 6.1. If every E € D which is not an eigenform is A-contracting, then for every
E € D there exists an eigenform E such that E,y — E.

n— o0
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Proof. Let E € D. By Corollary 4.14 there exists a strictly increasing sequence of naturals
np, and E’ € D such that E,,) h—> E'. For every m € N we have
—> 00

N By Blm41)) = A0 (B, B0 (B, )mt1)) =

h—o00 h—oc0 n—00

Thus E’ is not A-contracting, and by hypothesis it is an eigenform. By Corollary 4.16
E(n) — E". ]
n— 00

Actually, in the argument of the proof of convergence on the Gasket, when we stated
that ¢ and b in (5.1) are positive, we used also the strong maximum principle. The strong
maximum principle, in fact, will play an important role also in the argument in this section.
This will lead us to restrict the class of fractals. The convergence result can be proved
for all finitely ramified fractals, using a variant of the strong maximum principle, but the
proof is considerably more technical and will be omitted. I will hint the idea at the end of
this section. We saw in Prop. 3.11 and Remark 3.12 that Hy,p)(u) satisfies the maximum
principle, but in general not the strong maximum principle when E € D. We now see that,

if

cj17j2(E) >0 \V/jlajZ D1 7&]2 (61)

then H(q.z (u) satisfies even the strong maximum principle. Note that, if E € D satisfies
(1;E) g P P )
(6.1), then E-close amounts to close and E-connected amounts to connected.

Proposition 6.2. Suppose that E € D and (6.1) holds. Suppose u : V(® — R, and
v := H,p)(u) attains its maximum or its minimum at a point Q of VN VO, Then u
is constant on V{0,

Proof. We first prove that any point Q@ € V1) \ V(© is strongly E-connected to any
point Q' € V(© . The proof of Lemma 3.8 shows that there exists a path (Q1,.,Qm)
E-connecting @ to Q'. We will prove that if such a path has minimum length among the
paths E-connecting @ and @', then Qs,...,Qm_1 ¢ V%), Suppose on the contrary Q; =
Py € VO with 1 < i < m. As V}, is the unique 1-cell containing Py, then Q;_1,Qipq € Vi
Hence the path (Q1,...,Q;_y,Q7,4, -, @m) E-connects @ and Q' and has length m — 1,
which contradicts our assumption. Now, from Lemma 3.10, if v attains its maximum or

its minimum at @, then v =v = v(Q) on V(®, u

We cannot apply directly Prop. 6.2 to prove the convergence of E(,), as E does not
necessarily satisfy (6.1), but we now will see that a relatively mild condition on the fractal
implies that every M, (E) satisfies (6.1). We first give a sufficient condition on E in order
that M, (E) satisfy (6.1). It can be easily proved that it is also a necessary condition.

43



Lemma 6.3. Suppose that E € D and every two points in V() are strongly E-connected.
Then M, (E) satisfies (6.1).

Proof. The proof is a variant of that of b) in Theorem 3.15. Let ji, j2, 4}, j,, U}, jo, W be
as in Theorem 3.15. It suffices to prove that M;(E)(vj, j,) > Mi(E)(uj, j,), hence that in
(3.6) at least one of the two inequalities is strict. If the second one is not strict, we have
E(|lw]oi) = E(wot;) for all = 1,...,k, and thus w cannot attain opposite signs at two
points which are E-close, as the inequality in (3.7) is strict when a and b have opposite
signs. Let now (Q1,...,@m) be a path strongly E-connecting Pj, to P;,. Here m > 2 as
Pj, and Pj, cannot lie in the same 1-cell. Since w(Qq) = w(P;,) = vj, j,(Pj,) = 1 and
w(Qm) = w(Pj,) = vj, j,(Pj,) = —1, there exists h = 2,...,m — 1 such that w(Qs) = 0,
and, by taking the minimal h, we can assume |w(@Qp—1)| > 0. Since @ and Qp_; are E-
close, |w| does not satisfy (3.5) at Q. Hence, [w| # H,p)(uj, j,), and the first inequality
in (3.6) is strict. =

We now require that the fractal has a strong connectedness property. The argument in
proof of Prop. 6.2 shows that any two points in V(9 are strongly connected. We require
a slightly stronger condition. We say that the fractal is strongly connected if for every
Q,Q" € VO there exist Q1,...,Qm € V) such that Q; = Q, Q. = Q' and, for every
h =1,..,m — 1 there exists i(h) = 1,...,k such that Qu,Qnrt1 € Vs, and in addition,
i(h) > N for h = 2,...,m — 2. Note that the last condition means that all cells but the
first and the last contain no points of V(9. Tt is easy to see that the Gasket, the Vicsek
set and the Snowflake are strongly connected, while the tree-like Gasket is not so.

Proposition 6.4. Suppose that the fractal is strongly connected and E € My(D). Then E
satisfies (6.1). Thus H(y,p)(u) satisfies the strong maximuimn principle for every u € RV,

Proof. Let E = M,(E'), E' € D. We will prove that every two points in V(%) are strongly
E'-connected. The proof imitates that of Lemma 3.8. Fix Pj,, P;, € VO, Let (Q1, ..., Q)
be a path as in definition of strongly connected fractal. For any A = 1,...,m — 1, the
points Q4 and Qp41 are E'-connected by a path which remains in Vj(), in particular, for
h=2,..,m—2, it remains in V\ V) Since @, € Vj, (the unique 1-cell containing P;, ),
by Remark 3.7 @), is strongly E’-connected to Pj,. For the same reason, ;,—1 is strongly
E'-connected to Pj,. In conclusion, we have found a path that strongly E’-connects Pj,

and Pj,. =

From now on, unless specified otherwise, we will assume that the fractal is strongly con-
nected.

We will write any u € RV as (u(Py),...,u(Pn)). In this way, v will be identified to a
vector in RYN. We will denote by ey, ..., en the vectors of the canonical basis in RV,
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Corollary 6.5. Suppose E € My(D). Then for everyi =1,....k, 7 =1,..., N we have

=1 ifi=j=h
Tip(en)(Pj){ =0 ifi=j#h
€0,1]  ifi#j.

Proof. We have T gp(en)(P;) = Hi,p)(en)(¥i(P})). If 1 # j we have o;(P;) € A \ V()
so the conclusion follows from the strong maximum principle. If ¢ = j the results is trivial.

In previous section, in order to prove the convergence of E(,), we were lead, in view of
Lemma 5.2, to investigate the implications of the equality A4 (E, E(,)) = A+(E, E). In the
present case, in order to prove the convergence of E,), in view of Lemma 6.1, we have
to investigate the implications of the equality AM(E, E(1)) = M E(n), E(n41)). Consequently,
instead of using a version of Corollary 4.19 in the case in which E is an eigenform, we will
use a version of Corollary 4.19 in the case E' = E(;). However, also in the present case, it
will be sufficient to consider the case 11 = ... = 17,,,. We have

Lemma 6.6. Suppose E € D. Let Atn = At(E(n), E(nyry) for all n. If we have
At n = At 0, then for allm with 0 <m < n we have Ay ,, = Ay and ifu € Ai’”(E,E(l))

Timo 0T no1(u) =T my10--0T;,(u) € Ai’m(E, Ewy).

Proof. It suffices to put E' = E(y), i1 = -+ = iy, = ¢ in Corollary 4.19, and to use Lemma
4.6, taking in account the definition of Hi,_py m;p)- =

We need an analogous of Lemma 5.3 suitable for Lemma 6.6. Roughly speaking, we want
to prove that the normalization of the composition of m linear operators, under suitable
conditions, contracts the positive cone to a unique vector, which in this case may well be
nonsymmetric. However, there is a more relevant difference with the case of Section 5,
that is that, as suggested by Lemma 6.6 we need to consider the case where the operators
are different. I will give a general theorem for operators in RM™ and then I will apply this
to our case. Let M > 2 be fixed for the following (in case M = 1, Theorem 6.8 is trivially
satisfied with w = 1). We define

D={veRY:v;>0Vi=1,...M,0 #0},

D'={veRM:v;>0Vi=1,.,M}.

Let also D = {v € D : |jv|| = 1}, D' = {v € D' : ||v|| = 1}. Let A be the set of linear
operators T : RM — RM that map D into D’ or equivalently such that T(e;) € D’ for all
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i=1,...,M. Let N': RM\ {0} — RM be defined as N'(v) = - We will now introduce

on D' a semimetric that we implicitly used in the proof of Lemma 5.3 with M = 2. Given
u,v € D' put

Ay (u,v) = izrlr?.),{M Z—Z, A (u,v) = i=1;r71.i.1.17M Z—Z, N(u,v) =1In(N, (u,v)) — In(A_(u,v)).

The definition of \' resembles that of A on D, and in fact it is another case of Hilbert’s
projective metric. It satisfies the same properties as A\: we have X' (u,v) = 0 if and only
if v is a multiple of u, M (au,bv) = XN (u,v) for every a,b > 0. Thus, X' induces a metric
on the projective space pr(D’) generated by D', that is the space of equivalence classes
on D', mod the relation where two elements are equivalent if they are multiple of each
other. In particular, on D', it induces a metric, which we denote as A as well. It is not
difficult to see that such a metric is equivalent to the euclidean one, in the sense that they
generate the same topology. The proof is rather simple. However, as we will not use that
statement, I will not discuss it. We instead will use a weaker form in Theorem 6.8. We
will denote the diameter of a subset A of D with respect to A’ by diamA. The use of ) is
illustrated by the following lemma.

Lemma 6.7. If u,v € D' and T € A then we have \'(T(u),T(v)) < MN(u,v) and the
inequality is strict unless ' (u,v) = 0.

Proof. For all : = 1,..., M, we have

M=

P

T(w): /= i,jUj
T M

(w); Y. @ ju;
j=1

where a; ; = (T(ej))l. > 0. We have a; jv; < N\ (u,v)a; ju; and, if X (u,v) # 0, i.e., v is
not a multiple of u, the inequality is strict for at least one j. Suppose X (u,v) # 0, thus
;EZ))’Z < N (u,v) for every ¢ = 1,..., M. Hence, N (T(u),T(v)) < N, (u,v) and similarly,
AN (T(w), T(v)) > N_(u,v), thus N(T'(u),T(v)) < N(u,v). If N(u,v) = 0, the result is

trivial. =

The following theorem is specially interesting in the case in which the operators coincide.
This is a form of the well-known Perron-Frobenius Theorem. For information on the
Perron-Frobenius theory see for example [19].

Theorem 6.8. Let A’ be a compact subset of A. Let Ty,...,T,,... be a sequence of
operators in A’'. Then there exists w € D' such that

N(Tyo..0Ty(D)) — w

T n—oo

46



in the sense that sup {d(w,v) tv € N(Tl 0...0 Tn(D))} — 0.

n— 00

Proof. For every T € Alet T = N o T. Then, we have

/\/(Tl 0...0 Tn(D)) —Tyo0...0 Tn([)) Vné€N.

Thus, putting Tm’n = Tm 0...0 Tn when m < n, we have to prove that there exists w € D’
such that

sup{d(w,v) VNS Tlm(f))} — 0. (6.2)

n— 00

Let o : D x A" — D' be defined as a(v,T) = T(U) It is continuous, hence B :=Imna is a
compact subset of D', thus, M :=diam(B) < +oo. We have T},(D) C B C D. It follows

BOTi1(D)DTi5(D)2...D2Tha(D)D ... (6.3)
We will prove that
diam(T} (D)) — 0. (6.4)

For every n > 0 let F,, = {(u,v) € Bx B : X(u,v) > n}andlet §: A" x F;, — R be defined

as

B(T,u,v) = N(u,v) — A’(T(u),T(U)) .

Since A’ x F, is compact, # has a minimum m,, on it which, by Lemma 6.7, is positive.
We will now prove that, given n = 1,2, 3, ... such that M —nm, <7, we have

diamT17n+1(l~)) S n. (65)

As 1 is arbitrary, this implies (6.4). Let u,v € D. As Tn_|_1(u), T,H_l('u) € B, we have

)\/(Tn+1(u),fn+1(1j)) § M.

Now, if /\’(Tm’n+1(u),fm7n+1(v)) < n for some m < n + 1, by Lemma 6.7 we have
/\’(T17n+1(u),7~’1’n+1(v)) < n. In the contrary case, we have (Tm7n+1(u),fm’n+1(v)) € F,
for all m < n + 1. Hence, in view of the definition of m,, by a recursive argument we get
/\’(T17n+1(u),7~”1’n+1(v)) < M —nm, <n, and /\’(T17n+1(u),7~”1’n+1(v)) < n again. Thus,
we have proved (6.5), and hence also (6.4). Since by (6.3) Tlm(f?) is a decreasing sequence

of nonempty compact subsets of B, there exists w € [ Tl’n(D), and, by (6.4) we have

n=1

sup{/\’(w,v) TV E TLn(IN?)} — 0.

n— 00
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On the other hand, since \’ generates on the euclidean compact set B a topology weaker
than the euclidean one, A is equivalent to the euclidean metric. Hence, we get (6.2), and
the theorem is proved. =

Corollary 6.9. Under the hypotheses of Theorem 6.8, given a strictly increasing sequence
np of naturals and vy, € D we have N(Tl 0..0T,, (vh)) h—> w. =m
—oo

Corollary 6.10. Let + = 1,...,k be fixed. Let D = {’U € RV . o(P;) = 0,v(Py) >
0 Vi'#£i,v# 0}. Fix E € D. For every m = 1,2, ..., there exists wy, € RV such that,
for every strictly increasing sequence ny, of naturals and for every vy, € D, we have

N(Ti,m 0---0 Tiﬂlh (Uh)) — Wm .
" h—oo

Proof. As previously seen, the operators T; , can be identified to linear operators from
RN~ into itself, as they map the (N — 1)-dimensional linear space II; into itself. By this
identification, D corresponds to the previously defined D, with N —1 in place of M. Given
a,b > 0 such that % € Uqyp, for all m > 1 we have E(p,y = M, ((%)(m_l)) € Mi(Uap),
hence T} ,,, = Ti5,,, € Ti;m (v, ,)- By Lemma 4.13 and Lemma 4.9, the set T}, (v, ,) 18
compact, and by Corollary 6.5 it is contained in A. We can now use Corollary 6.9. =

We are now ready to prove the main theorem in this section.

Theorem 6.11. For every E € D there exists E € D such that Eny — E.

n— 00

Proof. By Lemma 6.1 it suffices to prove that, given any non A-contracting E € D, then E
is an eigenform. For every natural n let u, € /~l+’”(E, E(1y). Let nj, be a strictly increasing
sequence of naturals and let ¢ = 1,..., N be such that minu,, = uy,(P;) for all h € N. We
can assume that u,, (P;) = 0, so that u,, € D where D is defined as in Corollary 6.10.
Since E is not A-contracting, by Remark 4.20 we can apply Lemma 6.6, hence

Um,np, = N(Tiﬂno' ’ 'OTimh—l(unh )) = N(Tl}m-l-lo' : 'OTi7"h (unh)) € ‘Zl+7m(E7 E(l)) (6'6)
for all m > 1. So, using Corollary 6.10, there exists w,, € RV such that

Um,ny, ? Wm = W41 -
’ h—o0

Hence, there exists a unit vector w € RV(O) such that w,, = w for all m > 1. It follows

from (6.6) that w € /~l+’m(E,E(1)) for all m > 1, so that E,,41)(w) = Ay 0 E(m)(w), hence
E(m)(w) = /\TﬁlE(l)(w),
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for all m > 1. By the same argument, there exists w’ € /Nl_’m(E, E(1y) such that

E(my(w') = A" 51 By (w')

for all m > 1. But we know that for some a,b > 0 we have E(m) € Uap for all naturals m.

Thus,

ty>

~

E(my(w) < bE(w) = bE(w') (w) < LE(m)(w'),

(w')

where L = %EE((:]/)). This is possible only if A_ o = Ay o, i.e., only if E is an eigenform. =

b

We can now prove a I'-convergence result in the exactly same way as in Section 5. Namely

Theorem 6.12. Let E ¢ D. We have

N(X-) lim Ep, = EQ,

n—+oo

where E = lim E(,) and X = C(K) with the metric L. .

n—ro0
As we previously seen, Theorem 6.11 holds, even if the fractal is not strongly connected.
I now sketch the idea of the proof in this case. The problem is that, as previously hinted,
the strong maximum principle does not hold. So, we cannot use Theorem 6.8 to deduce
Corollary 6.10. However, we can prove the following variant of Theorem 6.8.

Theorem 6.13. Suppose T\, .., Ty, ..., Tno are linear maps from RN to RY, and there
exists B C {1,..., N} such that

i) (Tu(e;));» =0ifj € B,j' ¢ B, ne€ NU{oo}.

ii) B = By, UB;y, where By, = {j € B: (Th(e;));y >0Vj' € B}, By, = {j € B :
(Tn(ej));» =0V 3" € B}, and By , # @, for every n € NU {o0}.

iii) There exists 0 : N — N strictly increasing with T,(,) — T, and By 4(n) = B1, o for
every n € N.

Then, putting D' = {v € RY : v; > 0Vj € B,v; = 0Vj ¢ B}, there exists v € D’
such that, for every strictly increasing sequence of naturals ny,, for every vy, € D' we have
N(Tyo...0Ty, (vr)) hjoﬁ.

In other words, in Theorem 6.13, we have a linear subspace V of RY that is mapped into
itself by all T),, i.e., {v € RV : v; = 0 Vi ¢ B}. This is analogous to II;, in the case
of operators T; . on strongly connected fractals. Moreover, in place of the condition
that all e; are mapped into the interior of the positive cone, we have here the condition
that they are mapped either into the interior of the positive cone or in 0, and the set of
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those e; mapped into the interior of the positive cone may depend on n. Theorem 6.13
fits in the situation of fractals which are not strongly connected. In fact, the positivity of
T; n.r(€;)(Pjr) is related to the graph G(E,). Usually, G(E,) can change at any step, and
it need not satisfy the hypotheses of Theorem 6.13 if we do not require some additional
hypothesis. However, this is the case if E is not A-contracting. More precisely, we have:

Lemma 6.14. There exists ny > 1 such that, if h > ny+ns+n3, E € D ue AT h(E, Ey)
with Ay »(E, E1y) = A+(E,E(y)), then there exist m with 0 < m < ns3, 11,...,0m =
1.k, j=1,.,N, BCV©O\{P;}, a=1,-1, such that

i) a( m h—m () 0 i, c) € D' where D' is as in Theorem 6.13, and c is a suitable
constant. It turns out that ¢c=Hphom(u)oti, i (P;).

ii) Putting T,, = T} n+n,, then for suitable By ,, B3, 1) and ii) of Theorem 6.13 are
satisfied.

Of course, we here identify RV with RY, and, by this identification, v(P;) corresponds
to vj. In other words, while in the case of strong maximum principle we can start with
a function u € D, which is mapped into D’ by one operator T} ,, in the present case 1)
tells that we have to use m operators before mapping u into D’. After doing this, on
the base of ii), we are able to apply Theorem 6.13. We have, in fact, still to verify iii)
of Theorem 6.13, which however will follow from a compactness argument. Lemma 6.14
plays in this more general case the role that Corollary 6.5 played in the case of strongly
connected fractals . The proof of Theorem 6.13 is a not too complicated variant of the
proof of Theorem 6.8. On the contrary, the proof of Lemma 6.14 is the most delicate step
in the proof of convergence of F(,). At this moment, I do not know any simplification of
that proof. Using Theorem 6.13 and Lemma 6.14 it is possible to prove again Theorem
6.11, and consequently, Theorem 6.12. In the proof of Theorem 6.11, however, there are
some additional technical points with respect to the case of strongly connected fractals.
Complete details can be found in [16], Section 4. There, Theorem 6.11 was proved in
the more general setting of combinatorial fractal structures. The idea of investigating
combinatorial fractal structures, firstly considered in [3], is motivated by the fact that
Sn(E), M,(E) and so on only depend on the graph G;(E) and not on the geometry of
the fractal. Theorem 6.11 was proved in [16] (or in [15]) in its full generality, i.e., fractal
structures having an eigenform. For previous proofs in particular cases see for example [7]
and [11], Example 8.8 and references therein for the case of Gasket, [12] for nested fractals
with coefficient only depending on the distance; in [13] the result in strongly symmetric
fractals (e.g., the Gasket) was announced without proof.
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