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1 Composite materials and their effective properties

1.1 Introduction

The course is devoted to studying the properties of composite materials. Composite-
like materials are very common in nature as well as in engineering because they allow
to combine the properties of component materials in an optimal way, allow to create
media with such unusual and contradictory combination of properties as stiffness and
dissipativeness, stiffness in one direction and softness in the other one, high stiffness and
low weight etc.

The pore structure of the bonds, trunks of the wood, leafs of the trees provide an
examples when mixture of stiff and soft tissues can be treated as a composite and leads
to the desired properties. Steel is the other example of the composite. The fine structure
of the steel is grain-like mixture of monocrystals.

Engineers use composites for a long time. The well-known examples are given by
reinforced concrete, plywood or fiber reinforced carbon composites. Composite materials
are important for the optimal design problems because use of composite constructions is
often the only way to achieve the desirable combination of properties with the available
component materials. For examples, the honeycomb-like structures are light and possess
a high bending stiffness due to the special structure that can be treated as a composite
of stiff aluminum matrix and air (pores).

The common feature of all these examples is that locally unhomogeneous material
behaves as a homogeneous medium when the characteristic size of the inclusions is much
smaller then the size of the whole sample and the characteristic wavelength of external
fields. In such a situation the properties of the composite can be described by the
effective moduli that is some special kind of averaging of the properties of the components.
The branch of mathematics that study the behaviour of such materials is called the
homogenization theory. In this lecture we

1. formulate mathematical statement of the homogenization problem;
2. give two equivalent definitions of the effective properties of composite material;

3. study the direct problem of homogenization theory, i.e. the problem of calculation
of the effective properties for a composite of given structure;

4. find the effective properties of laminate composites and Hashin-Shtrikman assem-
blages of coated spheres.

The second lecture of the course devoted to the statement of the problem of bounds
on the effective properties, in the third one we describe the translation method for de-
riving such bounds and illustrate this method on the simplest example of the bounds on
conducting composite. The fourth lecture devoted to implementation of the translation
method to the two-dimensional isotropic elastic composite. We also touch some open
questions in this field. The main goal of the course is not only to give an introduction to
the problem of bounds on the effective moduli, but also to give rigorous, powerful and
simple method to attack the problems of such type.

Remark The actual course slightly differed from this lecture notes. It also included
the description of variational principles for the media with complex moduli with an ap-
plications to the problem of bounds on the complex effective conductivity of a composite.
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Last lecture of the course that is not reflected here was devoted to some bounds on conduc-
tivity of multiphase materials, description of optimal microstructures (namely, of matrix
laminate composite of high rank) that realize some of the bounds. We also discussed the
statement of optimal design problem and use of homogenization theory in optimal design.
Most of these results can be found in the mentioned at the references original papers. The
references on the original papers that are used in the course are given at the end of each
section.

1.2 Notations

Let introduce some notations that are used in the course. First, let us denote all vectors
and tensors as a bold characters, unit tensor as I

I = δiδj =







1 0 0
0 1 0
0 0 1





 , (1.1)

symbol (·) denotes the convolution of the tensors over one index, namely

a · b = aibi, A · b = Aijbjli, A · B = AijBjklilk, b · D · b = Dijbibj , (1.2)

etc., where ai, bi, Aij , and Bij are the elements of the vectors a, b and tensors A, and
B respectively in the Cartesian basis, li is the ort of the axis xi. We use summation
agreement that sum is taken over the repeating indices from 1 to N, where N is the
dimension of the space, N = 2 or N = 3. Two dots are used in the elasticity theory
notations as follows

ε · ·σ = εijσji, ε · ·C · ·ε = Cijklεjiεlk. (1.3)

We also denote as ∇ the Hamiltonian operator

∇ = li
δ

δx1
. (1.4)

1.3 Composite materials and their effective properties.

We begin with formulation of the homogenization problem for two isotropic conducting
materials. To study the effective properties of a mixture it is sufficient to deal with space
periodic structures. The case of random composite has some specific features but most of
the results are simplier to prove and describe for the periodic structures, generalization
on random case is a technical problem. A composite which is not periodic, but say
statistically homogeneous, can be replaced by a periodic one with negligible change in
its effective properties: one can take a sufficiently large cubic representative sample of
the statistically homogeneous composite and extend it periodically. For simplicity we
start with a description of a two-dimensional two-phase composite combined from two
conducting materials.
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We assume that each element of periodicity S is divided into the parts S1 and S2 with
the prescribed volume fractions m1 and m2 respectively, see Figure 1.

S1 ∪ S2 = S,
(volS1)/(volS) = m1,
(volS2)/(volS) = m2,

m1 + m2 = 1

(1.5)

We can assume that volS = 1 without loss of generality.

Figure 1: two-phase composite material.

Suppose that these two parts are occupied by two isotropic materials with different
conductivities Σ1 = σ1I and Σ2 = σ2I respectively. The state of the media is described
by the linear elliptic system of differential equations of electrostatic

∇ · j = 0, j = Σ · e, e = −∇φ, (1.6)

where φ is the electrical potential, j is a current and e is an electrical field. The conduc-
tivity tensor Σ has the form

Σ(x) = (σ1χ1(x) + σ2χ2(x)) I, (1.7)

where χi(x), i = 1, 2 are the characteristic functions of the subdomains S1, S2

χi(x) =
{

1, if x ∈ Si

0, otherwise.
(1.8)

We denote also Σi = σi I, i = 1, 2

Remark: The conductivity equations (1.6) describe also heat conductance, diffusion
of particles or liquid in a porous medium, magnetic permeability etc. as it is summarized
in the following table, but we use the notations of electrical conductivity problem.
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Problem j e φ Σ

Thermal

Conduction

Heat current Temperature

gradient

Temperature Thermal

conductivity

Electrical

Conduction

Electrical

current

Electrical field Electrical

potential

Conductivity

Dielectrics Displacement

field

Electric field Potential Permittivity

Diffusion Particle

current

Gradient of

concentration

Concentration Diffusivity

Magnetism Magnetic

induction

Magnetic field

intensity

Potential Permeability

Stoke’s flow Current Pressure

gradient

Pressure Viscosity

Homogenized

flow in porous

media

Fluid current Pressure

gradient

Pressure Permeability

Described periodical structure acts in a smooth external field as a homogeneous
anisotropic conductor, that can be described by the effective properties tensor Σ0. There
exist two equivalent definitions of the effective properties tensor.

Let put the composite into the homogeneous external fields. The local fields in the
cell of periodicity are S-periodic. Let compute the average values of the current and
electrical fields over the cell of periodicity S

< j >=
∫

S
j(x)dS, < e >=

∫

S
e(x)dS, (1.9)

One can prove that these values are connected by linear relationship

< j >= Σ0· < e >, (1.10)

Here and below the symbol < · > denotes the average value of (·), i.e.

< (·) >=
∫

S
(·)dS/ volS, (1.11)

Definition 1. Symmetric, positive definite (2 × 2) tensor Σ0 defined by the above
procedure is called the tensor of effective conductivity of the composite.

Due to the linearity of the state law (1.6), the tensor Σ0 is independent of external
fields, that make this definition meaningful. Effective properties tensor Σ0 depends on
the properties of the components, on their volume fractions, and also strongly depends
on geometrical structure of the composite.

This derivation can be done rigorously using the technic of multiscale decomposition,
but we omit these details. Interested reader can find the details in the book by Sanchez-
Palencia.

Basing on this definition one can calculate the effective properties tensor for any given
microgeometry. Indeed, let study the following boundary value problem combining the
equations (1.6) with boundary conditions

φ = −e01x1, if x = {x1, x2} ∈ Γ. (1.12)
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Here e01 is some constant and Γ is the boundary of the periodic cell. Let assume that we
solve this problem either analytically or numerically and denote as j0 = j(x), e0 = e(x),
where j(x) and e(x) is the solution of (1.6), (1.12). One can check that e0 = {e01, 0}.
Indeed

e0 = −
∫

S
∇φdS =

∫

Γ
n e01dΓ = e01l1. (1.13)

Here l1 is the ort of the axis x1 and n is the external normal to the Γ. Now let us rewrite
the effective state law (1.10) in a component form

j01 = σ0
11e01 + σ0

12e02, j02 = σ0
21e01 + σ0

22e02, (1.14)

where σ0
ij are the elements of the effective conductivity tensor Σ0, and substitute the

value e02 = 0 in it. We immediately arrive at the relations

σ0
11 = j01/e01, σ0

21 = j02/e01. (1.15)

Similarly, by solving the equations (1.6) in conjunction with the boundary conditions

φ = −e02x2 if x = {x1, x2} ∈ Γ (1.16)

we arrive at the relations

σ0
22 = j02/e02, σ0

12 = j01/e02 (1.17)

where j01, and j02 are the averaged over the periodic cell current fields for the problem
with boundary conditions (1.16)

In general, for more complicated problems, we need to solve as many boundary value
problems as the dimension of the space of phase variables. Namely, this number is equal
to N for N -dimensional conductivity problem, equal to 3 for two-dimensional elasticity
and equal to 6 for the three-dimensional elasticity.

There exists the other definition of the effective properties tensor based on the energy
arguments.

Definition 2. Tensor of the effective properties of a composite is defined as a tensor
of properties of the medium that in the homogeneous external filed e0 stores exactly the
same amount of energy as a composite medium subject to the same homogeneous field

e0 · Σ0 · e0 =< e(x) · Σ(x) · e(x) > . (1.18)

Here e(x) is the solution of the problem (1.6) with periodic boundary conditions and
with an additional condition e0 =< e(x) >. Using Dirichlet variational principle one
can write

e0 · Σ0 · e0 = inf
e : e = ∇φ
< e >= e0

< e(x) · Σ(x) · e(x) >, (1.19)

Similarly, by using Thompson variational principle, one can write

j0 · Σ−1
0 · j0 = inf

j : ∇ · j = 0,
< j >= j0

< j(x) · Σ−1(x) · j(x) >, (1.20)
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The definitions (1.10) and (1.19)-(1.20) are equivalent. The first one is useful to
compute the effective properties for given structures, the second one is a key that pro-
vides an opportunity to use variational methods to construct the bounds on the effective
properties. To prove the equivalence we mention first that

< e(x) · Σ(x) · e(x) >=< e(x) · j(x) >= e0 · j0 +
∑

k 6=0

ê(k) · ĵ(k), (1.21)

where we used the Fourier transformation and the Plancherel’s equality to justify the
second equality. Here k is a wave vector of the Fourier transformation, ê(k) and ĵ(k)
are the Fourier coefficients of the electrical and current fields respectively. Electrical field
is a potential one

e = −∇φ. (1.22)

Current field is divergence free (∇ · j = 0); therefore one can introduce vector potential
A such that

j = ∇× A, (1.23)

where (×) is a sign of vector product. Conditions (1.22) and (1.23) can be presented in
terms of the Fourier images of these fields as

ˆe(k) = −k ˆφ(k), ˆj(k) = k × Â(k). (1.24)

Therefore

ˆe(k) · ˆj(k) = φ(k)k · k × Â(k) = 0. (1.25)

Let define the effective properties tensor via energy relationship (1.19). Substituting
(1.19), (1.25) into (1.21) we arrive at the relation

e0 · Σ0 · e0 = e0 · j0 (1.26)

that is valid for any field e0. Therefore j0 = Σ0 · e0 as it is stated by (1.10); thus we
proved the equivalence of two definitions.

1.4 Examples of calculations of the effective moduli of some

particular structures

For the most of the structures the effective properties can be calculated only numerically
because the boundary value problems (that are needed to be solved to find these moduli)
can be solved only numerically. But there exist a limited number of special classes of
composites that allow the analytical calculation of the properties, these composites are
of special interest and we study them in more details.
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1.4.1 Laminate composite.

Let us assume that the component materials are laminated in a proportions m1 and m2

and let denote the ort in the direction of lamination as n, and the ort along the laminate
as t, see Figure 2.

Figure 2: laminate composite of two phases.

To calculate the effective properties let put this composite into the homogeneous
external field e0. The local fields in the materials are peace-wise constant in this case,
namely

e(x) = e1χ1(x) + e2χ2(x), j(x) = j1χ1(x) + j2χ2(x) (1.27)

Now the average fields are calculated as

e0 = m1e1 + m2e2, j0 = m1j1 + m2j2. (1.28)

Due to the differential restriction on the electrical and current fields the following jump
conditions should be satisfied on the boundary of the layers

(e1 − e2) · t = 0, (j1 − j2) · n = 0. (1.29)

Therefore, by taking into account the jump conditions (1.29) for the electrical field we
get

e1 = e0 + e′n, e2 = e0 −
m1

m2

e′n, (1.30)

where e′ is some scalar constant. Note also that

j1 = Σ1 · e1, j2 = Σ2 · e2. (1.31)

Let assume now that the field e0 is given and let calculate j0. The following equalities
are obvious consequences of (1.30)-(1.31)

j0 = m1j1+m2j2 = m1Σ1 ·e1+m2Σ2 ·e2 = (m1Σ1+m2Σ2)e0+m1e
′(Σ1−Σ2)·n (1.32)

The constant e′ can be found from jump conditions (1.29) for the current field. Namely,
from the equations (1.30) -(1.31) we get

j1 − j2 = (Σ1 − Σ2) · e0 +
e′

m2
(m2Σ1 + m1Σ2) · n (1.33)
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Projecting (1.33) on the direction n we obtain

e′ = −m2[n · (m2Σ1 + m1Σ2) · n]−1n · (Σ1 −Σ2) · e0 (1.34)

Combining (1.32) and (1.34) we get the result

j0 = Σ0 · e0, (1.35)

where

Σ0 = (m1Σ1 +m2Σ2)−m1m2(Σ1−Σ2) ·n[n ·(m2Σ1 +m1Σ2) ·n]−1n ·(Σ1−Σ2) (1.36)

In a more general setting for the state law

J = D · E (1.37)

with the jump conditions on the boundary with the normal n

P (n) · (E1 − E2) = 0, P⊥(n) · (J1 − J2) = 0 (1.38)

we obtain
D0 = m1D1 + m2D2− (1.39)

−m1m2(D1−D2)·P⊥(n)[P⊥(n)·(m2D1+m1D2)·P⊥(n)]−1P⊥(n)·(D1−D2). (1.40)

Here P⊥(n) is a projector operator on the subspace of the discontinuous components of
the vector E on the boundary with the normal n.

The derivation is literally the same. We just need to use more general projection
operator and more general definition of the convolution (·).

1.4.2 Hashin structures

The other example of the structures whose effective moduli can be computed analytically
was suggested by Hashin and used by Hashin and Shtrikman in order to prove the attain-
ability of the bound on the effective properties of a composite. They study the following
process. Let put into the space filled by the conducting material with the properties σ0

an inclusions consisting of a core of the material σ1 and surrounded by the sphere of the
material σ2, see Figure 3.

Figure 3: Hashin-Shtrikman construction.
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Let put this construction into the homogeneous on infinity electrical field e0. In the
polar coordinates we look for the solution of the conductivity problem in a form

φ1 = a1r cos α, in the core, (1.41)

φ2 = (a2r + b2/r
2) cos α, in the coating, (1.42)

φ0 = a0r cos α, in the medium, (1.43)

where r is a radial coordinate r =
√

x · x, α is an angle between the direction of the
applied field v and radius vector x. The electrical and current fields in this case expressed
as

e1 = −∇φ1 = −a1v = −a1[cos αvr − sin αvα], (1.44)

j1 = σ1e1 = −σ1a1[cos αvr − sin αvα], (1.45)

e2 = −∇φ2 = −[a2 − 2b2/r
3] cos αvr + [a2 + b2/r

3] sin αvα], (1.46)

j2 = σ2e2 = −σ2[a2 − 2b2/r
3] cos αvr + σ2[a2 + b2/r

3] sin αvα], (1.47)

e0 = −∇φ0 = −a0v = −a0[cos αvr − sin αvα], (1.48)

j0 = σ0e0 = −σ0a0[cos αvr − sin αvα], (1.49)

where vr and vα are the unit radial and tangential vectors in terms of which v = cos αvr−
sin αvα. These potentials satisfy the conductivity equations in each of the regions. We
only need to find the constant to satisfy the jump conditions on the interface of these
regions. Continuity of the potential leads to the conditions

a1 = a2 + b2/r
3
1, a0 = a2 + b2/r

3
2 (1.50)

Jump conditions on the current field give

σ1a1 = σ2[a2 − b2/r
3
1], σ0a0 = σ2[a2 − 2b2/r

3
2]. (1.51)

By substituting (1.50) into (1.51) we arrive at the system of equations

a2 = −b2[σ1 + 2σ2]/[r3
1(σ1 − σ2)] = −b2[1 + 3σ2/(σ1 − σ2)]/r

3
1 (1.52)

a2 = −b2[σ0 + 2σ2]/[r3
2(σ0 − σ2)] = −b2[1 + 3σ2/(σ0 − σ2)]/r

3
2. (1.53)

From these equations we deduce that

1

σ0 − σ2
=

1

m1

1

σ1 − σ2
+

m2

3m1σ2
, (1.54)

where
m1 = 1 − m2 = r3

1/r
3
2, (1.55)

m1 and m2 are the volume fractions of the materials in the inclusion. If the constant
σ0 satisfies the relation (1.54) the solution of the conductivity problem for the described
geometry is given by (1.41)-(1.43). As we see, the field outside the inclusion is exactly
the same as it would be without it. It means that we can put the other inclusions in
the space without changing the average electrical field. Let fill all the space by such
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inclusions (we need infinitely many scales of the inclusion’s sizes to do it). Resulting
medium possesses the effective conductivity constant σ0. It consists of the materials σ1

and σ2 taken in the proportions m1 and m2.
We can do the same for the two-dimensional conductivity, the result is given be the

relation
1

σ0 − σ2

=
1

m1

1

σ1 − σ2

+
m2

2m1σ2

. (1.56)

Let denote the conductivity of such a medium as σ2
HS = σ0 Changing the order of the

materials in a structure (i.e. studying the composite with inclusions consisting of the
core of the second material surrounded by the first material) we obtain the other media
with conductivity (in two dimensions)

1

σ1
HS − σ1

=
1

m2

1

σ2 − σ1
+

m1

2m2σ1
(1.57)

As we will see later, conductivity σ0 of any isotropic composite lies between these values

σ0 ∈ [σ1
HS, σ2

HS] (1.58)

1.5 Conclusions

As we see, the effective properties of the composite depend on the properties of component
materials, their volume fractions in the composite, but also depend very strongly on the
microstructure. When the microstructure is known the properties of the composite can
be computed. We face absolutely different situation when we know a little or nothing
about the microstructure of the material but are interested in their effective moduli. Such
problems often arise in optimal design of composite materials when we want to create
the composite that is the best according to some optimality criteria In this situation the
microstructure is unknown, it needs to be determined. But some a-priory information
that does not depend on the structure would be helpful and desirable. We address this
kind of problems in the next lecture.

1.6 References
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1979).

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic
behavior of multiphase materials, J. Mech. Phys. Solid, 11, (1963), 127 - 140.

E. Sanchez - Palencia, Nonhomogeneous Media and Vibration Theory (Lecture Notes
in Physics 127, Springer - Verlag, 1980).

2 Bounds on the effective properties of composite

materials

As we saw, the effective moduli of the composite strongly depend on their microstruc-
ture. To illustrate it let study the example of the two-dimensional conductivity prob-
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lem. For such a case the tensor of effective properties is a second order tensor that can
be completely characterized by two rotationally invariant parameters, namely, by their
eigenvalues λ1 and λ2, and by the orientation φ. The space of invariant characteristic is
two-dimensional and can be easily illustrated, see Figure 4.

Figure 4. Plane of invariants of conductivity matrices in two dimensions.

Let us put on this plane the effective properties of the structures that we calculated
at the last lecture. Let rewrite the formula for the effective conductivity of laminate
material in the basis that is connected with the normal n to the laminates. We get

λ1 = σh = (m1/σ1 + m2/σ2)
−1, λ2 = σa = m1σ1 + m2σ2 (2.1)

Points A and B on the Figure 3 correspond to the laminate composites with the normal
to layers n oriented along and perpendicular to the direction of the x1 axis, respectively.
Note, that the diagonal of the first sector (see Figure 4) is the axis of symmetry for the
picture, because we always may rotate composite possessing the eigenvalues (λ1, λ2) and
get the material with the pair of eigenvalues (λ2, λ1). Points C and D correspond to the
Hashin-Shtrikman assemblages of coated circles. They differ by the order of the materials:
for the more conducting one (with the higher conductivity) the inclusion consists of
the core of the less conducting material surrounded by the circle of more conducting
material and vise-versa for the other point. All these media were composed from the same
amounts of the same component materials, but the effective properties of these media are
absolutely different. The only reason is the difference in the microstructure. Arbitrary
composite corresponds to some point G in the plane (λ1, λ2). The question arises how far
can we change the properties by changing the microstructure of a composite, how large
is the region in the space of invariants of the effective properties tensors that corresponds
to some composite materials. Let me give two definitions that are essential:

Definitions:

1. Gm -closure: Let assume that we have in our disposal the set {U} of the com-
ponent materials. The set of the effective properties tensors of the composites combined
from the given amounts of the component materials is called the Gm-closure of the set U



Bounds on Effective Moduli 181

and is denoted as GmU -set.

GmU = ∪χi(x):<χi(x)>=mi
D0(χi(x)) (2.2)

The union of all such GmU sets over the volume fractions mi is called G-closure of
the set U and is denoted as GU

GU = ∪mi
GmU, (2.3)

see Figure 4 for the conductivity example.
In the other words, G-closure or GU -set is the set of the effective properties of all

the composites that can be prepared from arbitrary amounts of the component materials.
Knowledge of these sets is important for many reasons. They provide a benchmark

for testing experimental results and approximation theories, and can provide an indicator
as to whether the average response of a given composite is extreme in the sense of being
close to the edge of these sets. There exists a simple way (2.3) to find G-closure if we
know the Gm-closure set. Therefore we concentrate our attention on the problem of
finding Gm-closure.

There is no direct and straightforward way (at least it is not known) to find GmU
set. The way how people do it is the following:

1. First one need to construct the bounds on the effective properties of composites
that do not depend on microstructure. They depend on the properties of component
materials, their volume fractions, but do not depend on the details of the microstructure.
They are valid for a composite material of any structure with fixed volume fractions of
the components. In the space of invariants of the effective properties tensors they define
the set PmU such that

GmU ⊂ PmU. (2.4)

2. Then one can look for the set of the effective properties tensors of a particu-
lar structures combined from given component materials (laminate composite, laminate
composite of laminate composite, Hashin-Shtrikman - type structures etc.) to define the
set LmU such that

LmU ⊂ GmU. (2.5)

It gives the bound of the GmU -set from inside. If both bounds coincide it allows us to
define GmU itself;

If LmU = PmU, then LmU = GmU = PmU. (2.6)

The goal of our course is to describe the method for constructing geometrically inde-
pendent bounds on the effective properties of a composite, i.e. the method to find the
PmU -set. We also describe the microgeometries that are candidates to be optimal, i.e.
that are extremal in the sense that they correspond to the bounds of the G-sets. It is now
recognized that optimal bounds are important in the context of structural optimization:
the microstructures that achieve the bounds are often the best candidates for use in the
design of a structure.

There exist just few examples where the whole G or Gm sets are known. They
include the bounds on the conductivity tensor of two- and three-dimensional two-phase
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composite, bounds on effective complex conductivity for two-phase two-dimensional com-
posite, coupled problem of two second order diffusion equations for two-dimensional two-
component composite. There are much more problems for which some bounds on the
properties are known, there exist the composites that correspond to some parts of bounds,
but there are no such structures for some other parts of the boundary. Among such exam-
ples are three-dimensional two-phase complex-conducting composites, elastic composite,
bounds on the effective properties for three-phase composites, etc. Now we are going
to discuss the method of constructing geometrically independent bounds on the effective
properties of composite materials.

2.1 Bounds on the effective properties tensor

For a long time people tried to suggest different approximations for the effective moduli
of the mixtures. Voigt suggested the arithmetic mean

D0 =< D(x) >=
∑

i

miDi (2.7)

as a good approximation for the effective properties. The other approximation was
suggested by Reuss who proposed the harmonic mean expression for the effective moduli
of a composite

D0 =< D−1(x) >−1= [
∑

i

miD
−1
i ]−1 (2.8)

Wiener proved that (2.7) and (2.8) are actually the upper and low bounds on the effective
moduli of the mixture. These bounds are now known as Reuss-Voigt bounds or, in the
context of elasticity, as Hill’s bounds

< D−1(x) >−1 ≤ D0 ≤ < D(x) > (2.9)

Remark: We say that A ≥ B if the difference of these two tensors C = A − B is
positive semidefinite tensor , i.e. all the eigenvalues of this tensor C are greater or equal
to zero.

Note that for the conductivity case these bounds are exact in a sense that there exists
a composite (namely, laminate composite) that has one eigenvalue (across the laminate)
equal to the harmonic mean of the component conductivities whereas the other ones are
equal to the arithmetic mean of phases conductivities. So, in the Figure 4 these bounds
form the square that contains GmU set and this square is the minimal one because two
corner points of it correspond to the laminate composites.

Now I’d like to show how to prove these bounds, because it is the key point of the
following discussion.

2.2 Proof of the Reuss-Voigt-Wiener bounds.

To prove the bounds one can start with the variational definition of the effective proper-
ties. Namely, we have

e0 · D0 · e0 = inf
e=∇φ,<e>=e0

< e · D · e > . (2.10)
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By substituting the constant field e(x) = e0 into the right hand side of the equation
(2.10) we get

e0 · D0 · e0 ≤ < e0 · D · e0 > = e0· < D > ·e0. (2.11)

These arguments are valid for any value of the average field e0. Therefore we can deduce
the inequality for the matrices

D0 ≤ < D > (2.12)

from the inequality (2.11) for the quadratic forms. Similarly,

j0 ·D−1
0 ·j0 = inf

j :∇·j=0,<j>=j
0

< j ·D−1 ·j > ≤ < j0 ·D−1 ·j0 > = j0· < D−1 > ·j0,

(2.13)
and therefore

D−1
0 ≤ < D−1 > . (2.14)

Reuss bound follows immediately from this statement.
As we see the procedure is based on the assumption that either electrical or current

field is constant throughout the composite. It may be true for some structures and some
fields, as we will see. In that situations the bounds are exact in a sense that there exists
a composite that has the effective properties tensor that corresponds to the equality in
the expressions (2.9) .

2. Variational proof.
The other proof (that is not so elementary but more useful for us because it can be

improved in order to receive more restrictive bounds) is the following. As earlier we start
with the variational definition of the effective properties tensor but now we construct the
bound by omitting the differential restrictions e = −∇φ on the fields. Namely,

e0 · D0 · e0 = inf
e:e=∇φ,<e>=e0

< e · D · e > ≥ inf
e:<e>=e0

< e · D · e > . (2.15)

Note, that when we drop off the differential restriction we decrease the value of the
functional. The last problem is the standard problem of calculus of variations and can
be easily solved. The main idea is that we drop of the local (i.e. point-wise) restrictions
that we can not investigate, but save the integral restrictions that are easy to handle.
Let take into account the remaining restriction by vector Lagrange multiplier γ

inf
e:<e>=e0

< e · D · e >= sup
γ

inf
e

< e · D · e + 2γ · (e − e0) > (2.16)

Stationary conditions lead to the equations

2D · e + 2γ = 0, (2.17)

or
e = −D−1 · γ. (2.18)

Note that the equation (2.17) requires the current field j = D ·e to be constant through-
out the composite. Here the constant vector parameter γ can be found from the restric-
tion < e >= e0, namely

γ = − < D−1 >−1 ·e0 (2.19)
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By substituting (2.18), (2.19) into (2.15) we get

< e · D · e > = < e0· < D−1 >−1 ·D−1 · D · D−1· < D−1 >−1 ·e0 >

= e0· < D−1 >−1 ·e0 (2.20)

that proves the Reuss bound. Note that the condition

D(x) ≥ 0, (2.21)

is required in order for the stationary solution of the problem to be a minimum of the
functional. This condition for the two-phase composite can be rewritten as

D1 ≥ 0, D2 ≥ 0. (2.22)

It will be essential in a future for the procedure of improving of Reuss-Voigt bounds.
Similarly, one can get Voigt bounds starting from the variational principle in terms

of the current fields.
As we see, any information about the microstructure of the composite disappears from

the problem when we drop off the differential restrictions on the fields like e = −∇φ. So,
the key idea to improve the bound is to take these differential restrictions into account
by some way. We concentrate our attention on so called translation method that use the
integral corollaries of the differential restriction to improve the Reuss-Voigt bounds, but
before I’d like to mention very briefly the other methods that can be used to obtain the
bounds on the effective properties.

1. Hashin-Shtrikman method was suggested by the authors in 1962 when they as-
sumed the isotropy of the composite and found the bounds on the effective conductivity
and on the bulk and shear moduli of elastic composites. This method was reformulated
for the anisotropic materials later by Avellaneda, Kohn, Lipton, and Milton and the
bounds that can be obtained by this method are proved to be equivalent to the trans-
lation bounds for some special choice of the parameters. Whereas Reuss-Voigt bounds
require one of the fields to be constant throughout the composite, this method requires
the constant field only in one of the phases and allows fluctuations of the fields in the
others components.

2. Analytical method (see Bergman, Milton) is based on the analytic properties of the
effective conductivity as a function σ0 = σ0(σ1, σ2) of the two component conductivities.
In fact, because this is a homogeneous function it suffices to set one of the component
conductivities equal to 1 and to study the effective conductivity as a function of the
remaining component conductivity σ0 = σ1σ0(1, σ2/σ1). The resulting function of one
complex variable is essentially a so called Stieltjes function and many of the bounds on
the complex effective conductivity correspond to bounds on this Stieltjes function. This
method has an advantage of being able to handle complex moduli case, but it is difficult to
generalize it to more general problems because it requires studying of analytic functions
of several variables. This theory is not too developed to be used for the construction of
the bounds.

3. Translation method was suggested in different but close forms by Murat & Tartar
and Lurie & Cherkaev around ten years ago. The main idea of the translation method
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is to bound the functional (2.10) (and therefore the effective tensor D0) by taking into
account the differential restrictions

e = −∇φ (2.23)

through their integral corollaries

〈e · T e〉 ≥ 〈e〉 · T 〈e〉, (2.24)

which are hold for every field e satisfying (2.23) for some special choices of the matrix
T . Here T is the so called translation matrix which may possess several free parameters.
The choice of this matrix is dictated by the differential properties (2.23) of the field e.
Functions that possess properties similar to (2.24) under averaging are called quasiconvex
functions. For a general discussion of quasiconvexity and methods for finding quadratic
quasiconvex function see, for example, Tartar, Ball, and Dacorogna.

We discuss this method in details in the next lecture.

2.3 References

Avellaneda, M. Optimal bounds and microgeometries for elastic composites, SIAM J.
Appl. Math.,47,1987, p.1216.

Ball, J.M., Currie, J.C., and Oliver , P.J. 1981 Null Lagrangians, weak continuity and
variational problems of arbitrary order, J. Funct. Anal., 41, 135-174.

Baker, G.A. 1969 Best error bounds for Padé approximants to convergent series of
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3 The translation method to bound the effective

moduli of composites.

The translation method is based on the variational definition of the effective properties
and on bounds on some energy type functionals. It consists of several well-formulated
steps, namely

1. choosing appropriate functionals to study;
2. studying the differential properties of the phase variables in order to define

quadratic quasiconvex functions.
3. finding the lower bounds for these functionals by using existence of the quasiconvex

quadratic forms; finding the bounds on effective properties tensor by using the bounds
for the functionals;

4. checking the attainability of the bounds by examining particular microstructures.
We discuss first three steps in this and in the next lecture, last lecture of the course

is devoted to the description of optimal structures.

3.1 Choosing appropriate functionals.

Let start with figure similar to the Figure 4 that was discussed during the previous
lecture.

Figure 5: Construction of the functionals that give the bound for the GmU set for
the conductivity problem.

It shows approximate form of the GmU set for the conductivity problem. Let study
what kind of functionals we need to estimate in order to obtain the desired bound for the
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GmU set. Let minimize (over all microstructures, i.e. over all characteristic functions χi)
the energy stored by the composite in the homogeneous external field e01

W01 = inf
χi:<χi(x)>=mi

e01 · D0(χi) · e01. (3.1)

We find out first, that it is optimal to rotate composite so that the minimal conductivity
direction be oriented along the vector e01. In fact, the structure tries to minimize the
lowest eigenvalue because

W01 = inf
χi:<χi(x)>=mi

λmin(χi)e01 · e01 (3.2)

It means that the optimal composite corresponds to the corner point of the set GmU , see
Figure 5, say to the point A if the direction e01 coincides with the axis λ1. As we see,
this functional reflects only properties of the medium in the direction of the applied field
e01 and can not ”feel” the properties in the orthogonal direction. Let now minimize the
energy stored by the composite placed into the external field e02 that is orthogonal to
e01

W02 = inf
χi:<χi(x)>=mi

e02 · D0(χi) · e02 (3.3)

The optimal composite (that gives a solution to the problem (3.3)) corresponds to the
points B on the Figure 5 and possesses the minimal conductivity direction λ2 oriented
along the vector e02. As we see, by bounding the functionals W01 and W02 we can only
bound the minimal eigenvalue of the conductivity matrix that corresponds to the Reuss
bounds. We can bound the eigenvalues of the conductivity matrix only independently.
It happens because the functional of the type (3.2)-(3.3) reflects the properties of the
medium only in one particular direction. In order to take into account the properties
of the composite in the other direction we may combine the above two functionals and
study the quadratic form

We = W01 + W02 = inf
χi:<χi(x)>=mi

[e01 · D0(χi) · e01 + e02 · D0(χi) · e02]

= inf
χi:<χi(x)>=mi

[λ1(χi)e01 · e01 + λ2(χi)e02 · e02] (3.4)

This functional is a weighted sum of the eigenvalues. In order to minimize such functional
the composite has to minimize the sum of its eigenvalues. Bound for this functional
shows how far can we move the point that corresponds to the effective properties of the
composite in the direction of arrow on the Figure 5. They define the position of the
straight line that is tangential to the set PmU : GmU ∈ PmU . Changing the ”weights”
of each eigenvalue (by changing an amplitude of the vectors e01 and e02) we change this
direction within the third sector as it is shown in the Figure 5. As we see, one can
construct the lower bound of the set GmU for the two-dimensional conducting composite
by bounding the functional (3.4). In the three dimensional space we need to study also
the functional that is the sum of three terms. Each of these terms is an energy stored by
the composite in the homogeneous external field. These three fields should be orthogonal
to each other in order for the functional to reflect the properties of the medium in three
orthogonal directions. In order to find the upper bound we need to construct an energy
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type functional that “move” the composite in the direction toward the upper bound,
namely

Wj = W01 + W02 = inf
χi:<χi(x)>=mi

[j01 · D−1
0 (χi) · j01 + j02 · D−1

0 (χi) · j02]

= inf
χi:<χi(x)>=mi

[λ−1
1 (χi)j01 · j01 + λ−1

2 (χi)j02 · j02] (3.5)

By using similar arguments one can define the functionals to be minimized for any
specific problem under study. The key idea is the following: to find the bound one need
to find the energy type functional that achieves its minimum on the boundary that one
is looking for.

3.2 Formulation of the variational problem and specific features

of this problem.

Now we want to transform the functional under study into some standard form and to
study the properties of the resulting variational problem. Let us do it on the example of
the functional We. By using the variational definition of the effective properties tensor
we can rewrite (3.4) as

We = inf
χi: χi=mi

inf
e1 : e1 = ∇φ1,
< e1 >= e01

inf
e2 : e2 = ∇φ2,
< e2 >= e02

< e1 ·D(χi) ·e1+e2 ·D(χi) ·e2 > .

(3.6)
It is a quadratic form that can be rewritten as

We = W = inf
χi: χi(x)=mi

inf
E:<E>=E0,E∈EK

< E · D(χi) · E >, (3.7)

where E is a vector of phase variables, E = (e1, e2) in this example, EK is the set of
admissible vector fields E

EK = {E : E(x) is S − periodic and satisfy some differential restrictions}, (3.8)

and D is the block-diagonal matrix of properties

D =
(

D 0
0 D

)

(3.9)

in this example. The definition of the set EK includes the differential restrictions that
depend on the particular problem. For the problem under study, the differential restric-
tions require for the first and the last two elements of the vector E to be gradients of
some potentials, i.e.

EKe = {E : E(x), E = (E1, E2, E3, E4) = (e1, e2), e1 = −∇φ1, e2 = −∇φ2}.
(3.10)

Remark: The other functional Wj also can be presented in the same form where

E = j1, j2, D =
(

D−1 0
0 D−1

)

, (3.11)
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and

EKj = {E : E = (j1, j2), ∇ · j1 = 0, ∇ · j2 = 0}. (3.12)

We arrive at the variational problem with quadratic integrand. Note, that this prob-
lem is not a classical problem of calculus of variations because it contains differential
restrictions that are local for the phase variable E. The other specific feature is that the
integrand of this problem is not a convex function. To see it we note that the set of the
values of the tensor D has only two values:

D(x) = D1χ1(x) + D1χ2(x) (3.13)

We can also check that the function F (E, D) = E · D · E is not convex as a function
of several variables E and D. Let try to solve this problem in order to understand the
difficulties that arise here. First, let us interchange the order of the infimums and take
into account the restrictions on the functions χi by Lagrange multipliers γi.

W = inf
χi: <χi(x)>=mi

inf
E :< E >= E0,

E ∈ EK

< E · D(χi) · E >=

inf
E :< E >= E0,

E ∈ EK

max
γi

{ < inf
χi

[E · D(χi) · E + γi(χi(x) − mi)] >= (3.14)

inf
E :< E >= E0,

E ∈ EK

max
γi

{< min
i

[E · Di · E + γi] > −γimi}

The internal maximum over the Lagrange multiplies γi is not essential, because γi are
just the parameters, one can handle this problem by using the standard arguments. The
most difficult part is the solution of the minimization problem

inf
E :< E >= E0,

E ∈ EK

< W ′ >, W ′ = min
i

[E · Di · E + γi] (3.15)

Figure 6 illustrates the integrand of this variational problem for the two-phase composite
by a schematic picture. Each of the functions Wi = E · Di · E + γi is represented by a
parabola that crosses the vertical axis at the point γi.
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The result of the minimum over i is the nonconvex function W ′ that is highlighted in
the Figure 6.

Figure 6: Energy minimization problem for two-phase composite material (a) and the
schematic picture of the solution to this problem (b).

Let study the variational problem (3.15). First, drop off the differential restriction
EK and find the function

CW (E0) = inf
E:<E>=E0

< W ′(E) > (3.16)

We have already solved the similar problem while were proving the the Reuss-Voigt-
Wiener bounds. The solution of the problem oscillates from the parabola representing
the energy of the first material to the other parabola that corresponds to the second one
in order to preserve the average value of the phase variable E and minimize the functional
CW (E0). The cell of periodicity is divided into two parts S1 and S2 in the proportions
m1 and m2 (see Figure 6b), and E = E1 when x ∈ S1, E = E2 when x ∈ S2. The
average values of the fields and the energy are given by

E0 = m1E1 + m2E2, CW (E0) = m1W1(E1) + m2W2(E2), (3.17)

The value CW (E0) is clearly less than the value W ′(E0). It is clear from the picture
that the value CW (E0) is given by the convex envelope of the function W ′, straight line
in the Figure 6 is tangential to the both parabolas W1 and W2. The volume fractions are
defined by the values E1 and E2. For the one dimensional example where E is a scalar
we have

m1 =
E0 − E1

E2 − E1
, m2 =

E2 − E0

E2 − E1
, (3.18)

The Lagrange multipliers γi are chosen to modify the function W ′ in order to satisfy the
restrictions < χi >= m1.

The situation changes when we take into account the differential restrictions on the
field E ∈ EK. In this case the field E is no more arbitrary, there exist jump conditions
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on the boundary of the sets S1 and S2. For example, if the field E is a gradient of some
potential then (E1 −E2) · t = 0, where t is the tangential vector to the boundary of the
regions S1 and S2. If E is a current field, then (E1 −E2) ·n = 0, where n is the normal
vector to the boundary of S1 and S2, etc. In such a situation the values E1 and E2 are
no more arbitrary. They satisfy the jump conditions and therefore depend on the form
of the boundary, i.e. on functions χi. Therefore, the function QW (E0)

QW (E0) = inf
E :<E>=E0, E∈EK

< W ′ > (3.19)

lies above the function CW (E0), but below the function W ′. This function is called a
quasiconvex envelope of the function W ′(E0); it is a largest quasiconvex function that is
less or equal to W ′(E0). We need to find the bounds on the function QW (E0) in order
to find the bound on the effective properties. The main problem is that there exists
no general procedure like convexification to find such kind of function, i.e. to solve the
variational problems like (3.19). We construct the bounds on the functional (3.19) by
taking into account not the differential restrictions e ∈ EK themselves, but their integral
corollaries.

3.3 Quasiconvex functions.

Let me introduce briefly some definitions and notations of so called quasiconvexity theory
that is closely related to our problem under study.

1.Definition of quasiconvexity.
We start with the definition of convexity: The function F (v) is called convex if

F (v0) ≤< F (v0 + ξ) > for all ξ : ξ ∈ Lp, < ξ >= 0, (3.20)

Here v0 is a constant vector that in our examples represents the average value of the
phase variable v over the periodic cell and ξ = v − v0 is a fluctuatiing part of it. Let
us add to this inequality the requirement that the “trial fields” ξ satisfies the differential
restrictions EK. We come to the definition of so called A-quasiconvexity, which is due
to Morrey (1953): The function F (v) is called A-quasiconvex in the point v0, if

F (v0) ≤ < F (v0 + ξ) >, for all ξ ∈ Ξ, (3.21)

where

Ξ = {ξ : < ξ >= 0, (3.22)

A(ξ) =
∑

aijk

∂ξj

∂x
= 0, (3.23)

ξj ∈ Lp, j = 1, ..m, ξj are S periodic}, (3.24)

and S is an arbitrary unit hypercube in Rn.
We observe that the difference between convexity and quasiconvexity is in the require-

ment (3.23). One can see that any convex function is also quasiconvex, because the set
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of the trial functions ξ is larger in the case of convexity than in case of quasiconvexity.
The inverse statement is not true. Differential restrictions E ∈ EK enlarge the set of
the functions that satisfy the convexity inequality (3.20). We can use these functions
as follows. Let assume that we found some quasiconvex functions. Then we can add
the conditions (3.21) as integral restriction on the phase variables that follows from the
differential one. Now if we drop off the differential restriction (3.23) from the problem
(3.19) but add their integral corollaries (3.21) we end up with the new problem that
possesses some good properties. First, it can be solved, because it contains only integral
restrictions. Then, it takes into account some of the properties of the fields in the form
(3.21). We may hope, that the obtained function is a good low bound for the function
QW (E0).

3.4 Examples of quasiconvex but not convex function.

Consider the function
F (v) = det v, (3.25)

where v is given by

v = [e1, e2] =

(

δφ1

δx1

δφ2

δx1

δφ1

δx2

δφ2

δx2

)

. (3.26)

Obviously, F (v) is not convex. Let us prove, however, that it is quasiconvex. The
simplest and the most visible way to prove quasiconvexity of the quadratic functions is
to use the Fourier transformation. Indeed, one can check that the function F (v) can be
presented as a quadratic form of the vector E that we have introduced earlier

< F (v) >=< E · T · E >, (3.27)

where

E = (e1, e2) =













−δφ1

δx1

−δφ1

δx2

−δφ2

δx1

−δφ2

δx2













, T =











0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0











(3.28)

By using the Plancherel’s equality we rewrite (3.27) as

< F (v) >=
∑

k

Ê · T · Ê = E0 · T · E0 +
∑

k 6=0

Ê(k) · T · Ê(k), (3.29)

where k is a Fourier wave vector, E0 =< E > is the average field and Ê(k) are the
Fourier coefficients of the field E(x) that have the following representation, see (3.28)

Ê = −











k1φ̂1

k2φ̂1

k1φ̂2

k2φ̂2











. (3.30)

Here k1 and k2 are the coordinates of the wave vector k and φ̂1 and φ̂2 are the Fourier
images of the potentials. By substituting (3.30) into (3.29) we immediately arrive at
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(3.20) with the equality sign in it. Such functions F (v) that satisfy the quasiconvexity
condition with an equality sign are called quasiaffine functions.

For any set of the differential restrictions EK one can find the quasiconvex quadratic
forms using this approach of Fourier analyses. We mention that such functions can
depend on several parameters. For example, the function

F (E) = tE · T · E, (3.31)

where E and T are given by (3.28) is quasiconvex for any t. Using similar analysis in a
Fourier space one can check that the same function (3.31) is quasiconvex for any value
of the parameter t if

E = (j1, j2), ∇ · j1 = 0, ∇ · j2 = 0. (3.32)

3.5 Bound on the functional and on the effective properties by

using the quasiconvex functions.

Having in mind the existence of quasiconvex quadratic functions for any set of differential
restrictions EK we continue studying the minimization problem (3.7). We can drop off
the differential restrictions, take into account the existence of the quasiconvex functions
such that

< E · T · E >≥ E0 · T · E0 (3.33)

by Lagrange multipliers and solve the problem similar to how we did it before for the
case without differential restrictions. I’d like to show the other way to do it. Namely,
let me add and subtract the quasiaffine combination from the original functional and use
the condition (3.33). We get

E0 · D0 · E0 =

inf
E :< E >= E0,

E ∈ EK

< E · (D − tT ) · E + tE · T · E >

≥ inf
E :< E >= E0,

E ∈ EK

< E(D − tT ) · E > +tE0 · T · E0 (3.34)

Now let bound the first term from below by Reuss bound

E0 · D0 · E0 ≥ inf
E:<E>=E0

< E · (D − tT ) · E > +tE0 · T · E0 =

E0· < (D − tT )−1 >−1 ·E0 + tE0 · T · E0. (3.35)

(Remember that in order to obtain Reuss bound we need to drop of the differential
restriction and solve remaining variational problem). Note, that we need to insure (by
choosing an appropriate value of the parameter t) that (D − tT ) ≥ 0 , i.e. that this
matrix is positive semidefinite throughout the composite. This bound is valid for any
average field E0. Therefore we arrive at the inequality for the matrices

D0 ≥ < (D − tT )−1 >−1 +tT (3.36)
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that bounds the effective properties tensor D0. This bound contains one free parameter
t that should be chosen in order to make this bound the most restrictive, but keeping in
mind that (D − tT ) is positive in any of the phases:

D0 ≥ < (D − tT )−1 >−1 +t T for any t : D1 − tT ≥ 0, D1 − tT ≥ 0, (3.37)

In fact, we found the required bound. The only problem remains that matrices Di and
T can be of a large dimension. But we need to manipulate with them in order to find the
answer in an appropriate form. The matrix T may depend on several free parameters
and we need to find their suitable values that optimize the bounds (3.37). Note, that the
bound (3.37) is valid for a composite of an arbitrary number of phases. For the two-phase
materials there exists a fraction linear transformation (so called Y-transformation) that
greatly simplifies the expressions. Namely, let denote

Y(D0) = m2D1 +m1D2−m1m2(D1−D2) ·(D0−m1D1−m2D2)
−1 ·(D1−D2). (3.38)

In terms of the tensor Y the effective properties tensor D0 is expressed as

D0 = m1D1 + m2D2 − m1m2(D1 − D2) · (m2D1 + m1D2 + Y )−1 · (D1 − D2). (3.39)

If the matrix (D1 − D2) does not degenerate, then the bounds (3.37) can be repre-
sented in a surprisingly simple form

Y(D0) + T ≥ 0, (3.40)

as follows from (3.37) and the definition of the tensor Y . Here we omit the parameter t,
it can be inserted in the definition of the matrix T . The scalar inequality

det [Y(D0) + T] ≥ 0. (3.41)

that follows from (3.40) gives us a simple form of the bound of the GmU set. It is valid
for any matrix T of the quasiconvex quadratic form such that

D1 − T ≥ 0, D2 − T ≥ 0, (3.42)

One should choose the matrix T in order to make the bounds (3.41) as restrictive as
possible. One can argue that it is optimal to choose matrix T in order to minimize the
sum of the ranks of the matrices

rank[D1 − T ] + rank[D2 − T ] (3.43)

(a lot of examples and arguments suggest this rule although the rigorous proof for the
general case is not found yet). Note some useful property of the bound in the form
(3.41): it does not depend on the volume fractions of the materials in the composite. All
information about the volume fraction is “hidden” in the definition of the Y-tensor. Let
also mention some helpful properties of the Y-transformation, namely

Y (Di) = −D1, Y (D−1
0 ) = Y −1(D0) (3.44)
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3.6 The example of the translation bounds: conductivity prob-

lem.

To give you a flavor of the method let me illustrate it by the simplest example of the Gm-
closure bounds for the composite of two isotropic conducting materials in two dimensions.
For this example we need to study the functionals (3.4) and (3.5). For the first one we
have

D0 =
(

Σ0 0
0 Σ0

)

=











λ1 0 0 0
0 λ2 0 0
0 0 λ1 0
0 0 0 λ2











, (3.45)

Y (D0) =
(

Y (Σ0) 0
0 Y (Σ0)

)

=











y(λ1) 0 0 0
0 y(λ2) 0 0
0 0 y(λ1) 0
0 0 0 y(λ2)











. (3.46)

Here

y(λi) = m2σ1 + m1σ2 −
m1m2(σ1 − σ2)

2

λi − m1σ1 − m2σ2
(3.47)

is a scalar form of Y-transformation (3.38);

Di =











σi 0 0 0
0 σ1 0 0
0 0 σi 0
0 0 0 σi











, T =











0 0 0 t
0 0 −t 0
0 −t 0 0
t 0 0 0











. (3.48)

The bound (3.41) can be written as

det [Y (Σ0) + T (t)] = y(λ1)y(λ2) − t2 ≥ 0, (3.49)

where t subjects to the restrictions

σ2
1 − t2 ≥ 0, σ2

2 − t2 ≥ 0. (3.50)

The resulting bound gives

y(λ1)y(λ2) − σ2
min ≥ 0, σmin = min[σ1, σ2]. (3.51)

This bound defines hyperbola in the (y(λ1), y(λ2)) plane that passes through the point
y(λ1) = y(λ2) = σmin. Studying the functional (3.5) of two current fields in a similar
way we get the bound

y(
1

λ1

)y(
1

λ2

) − σ−2
max ≥ 0, σmax = max[σ1, σ2]. (3.52)

By using the remarkable property of the Y-transformation

Y (D−1
0 ) = Y −1(D0) (3.53)
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we end up with the upper bound

y(λ1)y(λ2) − σ2
max ≤ 0. (3.54)

It is the other hyperbola that passes through the point y(λ1) = y(λ2) = σmax.
Now we need to map these bounds into the plane of invariants of the tensor Σ0 instead

of the plane Y (Σ0). In order to do it we mention that

λi = m1σ1 + m2σ2 −
m1m2(σ1 − σ2)

2

m2σ1 + m1σ2 + y(λi)
, i = 1, 2, (3.55)

is a fraction linear transformation, it maps hyperbola in the Y -plane into the hyperbola
in the Σ-plane. Any hyperbola can be defined by three points that it comes through.
Hyperbola (3.51) passes through the points

A = (0,∞), B = (∞, 0), C = (σ1, σ1). (3.56)

Therefore corresponding hyperbola in Σ plane passes through the points

A = (σh, σa), B = (σa, σh), C = (σ1
HS, σ1

HS), (3.57)

where
σh = [m1/σ1 + m2/σ2]

−1, σh = m1σ1 + m2σ2, (3.58)

and the expression σ1
HS is defined by the formula (1.53). Similarly, the upper boundary

hyperbola (3.54) passes (in the Σ plane) through the points

A = (σh, σa), B = (σa, σh), C = (σ2
HS, σ2

HS), (3.59)

see (1.52). Obviously, the points A and B correspond to the laminate structures and
points σ2

HS and σ2
HS correspond to the Hashin-Shtrikman constructions. At last, let me

give you the expressions that define boundary hyperbolas

1

λ1 − σ1
+

1

λ2 − σ1
=

1

m2

1

λ2 − σ1
+

m1

m2

1

2σ1
(3.60)

(lower bound) and

1

λ1 − σ2

+
1

λ1 − σ2

=
1

m1

1

λ1 − σ2

+
m2

m1

1

2σ2

(3.61)

( upper bound).
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4 Implementation of the translation method to the

plane elasticity problem

In this lecture we prove the bounds on the effective properties of an isotropic composite
made from two isotropic elastic materials with known properties. The materials are
supposed to be mixed in an arbitrary way but with fixed volume fractions. First we
adopt the translation method for the planar elasticity. Then we give an elementary proof
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of the known Hashin–Shtrikman and Walpole bounds and show how to apply the same
method to prove the coupled bounds for the shear and bulk moduli of an isotropic elastic
composite. The results are also valid for the effective moduli of a transversally isotropic
three-dimensional composite with arbitrary cylindrical inclusions.

First we describe the equations of the plane elasticity, introduce the notations, and
give the statement of the problem.

4.1 Basic equations and notations.

We deal with the plane problem of the elasticity. Let x = (x1, x2) be the Cartesian
coordinates, u = (u1, u2) be the displacement vector, ε be the strain tensor, σ be the
stress tensor. The state of an isotropic body is characterized by the following system:

ε = 1
2
(∇u + (∇u)T ),

∇ · σ = 0, σ = σT ,

σ = C(K, µ) · ·ε,

(4.1)

where ∇ is the two-dimensional Hamilton operator, C(K(x), µ(x)) is the tensor of rigid-
ity of an isotropic material - the fourth order symmetric positively defined tensor, and
(··) are the convolutions with regard to two indices.

It is convenient to introduce the following orthonormal basis in the space of the
symmetric second order tensors :

a1 = (ii + jj)/
√

2, a2 = (ii − jj)/
√

2,
a3 = (ij + ji)/

√
2, ai · ·aj = δij ,

(4.2)

where i and j are the unit vectors of the Cartesian axis x1 and x2, δij is the Kronecker
symbol. In this basis the isotropic tensor C(K, µ) of rigidity is represented by the diagonal
matrix

C(K, µ) =







2K 0 0
0 2µ 0
0 0 2µ





 . (4.3)

The elastic energy density can be represented either as a quadratic form of strains

Wε = ε · ·C · ·ε (4.4)

or as a quadratic form of stresses

Wσ = σ · ·S · ·σ, (4.5)

where

S = C−1 =







1
2K

0 0
0 1

2µ
0

0 0 1
2µ





 (4.6)

is the compliance tensor.
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The energy density W stored in the composite is known to be equal

Wε =< ε > · · C0 · · < ε > (4.7)

or

Wσ =< σ > · · S0 · · < σ >, (4.8)

where the effective compliance tensor S0 is determined as S0 = C−1
0 .

The problem of bounds for the elastic moduli has a long history. Hashin and Shtrik-
man suggested the variational method which allows them to take into account differential
restrictions on stress and strain fields; they found new bounds of the elastic moduli of an
isotropic mixture made from isotropic materials.

Originally, the Hashin–Shtrikman bounds were formulated for isotropic three dimen-
sional mixtures; however, later they were formulated for the transversal isotropic com-
posites with cylindrical inclusions as well. The above problem is just the case we study
here.

The original materials were supposed to be “well ordered”. This means that both
bulk and shear moduli of the first material are bigger than those of the second one

µ1 ≥ µ2, K1 ≥ K2. (4.9)

The obtained bounds have the form

K l
HS ≤ K0 ≤ Ku

HS, µl
HS ≤ µ0 ≤ µu

HS, (4.10)

where

K l
HS = K2 +

m1
1

K1−K2

+ m2

K2+µ2

, (4.11)

Ku
HS = K1 +

m2
1

K2−K1

+ m1

K1+µ1

, (4.12)

µl
HS = µ2 +

m1

1
µ1−µ2

+ m2 (K2+2µ2)
2µ2 (K2+µ2)

, (4.13)

µu
HS = µ1 +

m2

1
µ2−µ1

+ m1 (K1+2µ1)
2µ1 (K1+µ1)

. (4.14)
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These expressions bound the bulk and shear moduli of a composite independently,
see Figure 7.

Figure 7: bounds on bulk and shear moduli of an isotropic two-phase elastic compos-
ite.

By using the introduced “Y-transformation” the above values K l
HS, Ku

HS and µl
HS, µu

HS

can be defined as the unique solutions of the equations

y(K l
HS) = µ2, y(Ku

HS) = µ1,

y(µl
HS) = K2µ2

K2+2µ2

, y(µu
HS) = K1µ1

K1+2µ1

.
(4.15)

Walpole [9, 10] considered the opposite case of “badly ordered” original materials
when

µ1 ≥ µ2, K1 ≤ K2. (4.16)

He obtained the bounds for the effective moduli of an isotropic mixture by using similar
variational method. The two-dimensional Walpole’s bounds we are dealing with also
have a simple representation in terms of the “Y-transformation”:

K l
W ≤ K0 ≤ Ku

W , µl
W ≤ µ0 ≤ µu

W , (4.17)

where the parameters K l
W , Ku

W and µl
W , µu

W satisfy the equations:

y(K l
W ) = µ2, y(Ku

W ) = µ1,

y(µl
W ) = K1µ2

K1+2µ2

, y(µu
W ) = K2µ1

K2+2µ1

.
(4.18)

Remark 2.3: Note that the cases (4.9) and (4.16) cover all possible relations between
the elastic moduli of two original materials because one can order the materials so that

µ1 ≥ µ2. (4.19)
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Recently we applied the translation method to this problem, reproved all the known
bounds, and found new, more restrictive bounds on the elastic moduli of a composite. Let
us restrict our attention to the case of well-ordered component materials. The opposite
case can be treated similarly. In Figure 7 the Hashin-Shtrikman bounds are presented as
a rectangular whereas the new bounds cut the corners of this rectangular.

As we have learned in the previous lectures, the method is based on the lower bound
of the functional I

I =
N
∑

i=1

Wi. (4.20)

This functional is equal to the sum of the values of elastic energy Wi stored in the element
of periodicity of a composite which is exposed to N linearly independent external stress
or strain fields with fixed mean values. The energy functional is used because its value is
equal to the energy stored by an equivalent homogeneous medium in the uniform field.
The equivalent medium is characterized by the tensor of the effective properties, and the
uniform external field coincides with the mean value of the field in the composite.

Clearly, the lower bound of the functional (4.20) provides also the bounds of the
effective tensor we are interest in. Below we get the bounds of the functional (4.20)
independent of the microstructure of a mixture and extract the geometrically independent
bounds for the effective moduli from them.

4.2 Functionals

Now we specify the functional of the type (4.20) which attains minimal values at the
boundary of the set of pairs (K0, µ0). We discuss here functionals providing bounds for
various components of the boundary.

To obtain the lower bound for the bulk modulus one can expose composite to an
external hydrostatic strain εh = ε1a1 because the energy of an isotropic composite under
the action of this field is proportional to the effective bulk modulus K0.

Iε =< ε(x) · ·C(x) · ·ε(x) >= (2K0)ε
2
1,

ε(x) ∈ (4.1), < ε(x) >= ε1 a1.
(4.21)

It is clear that the lower bound of the functional (4.21) gives the lower bound of the
effective bulk modulus K0, because the amplitude ε1 of the hydrostatic strain field is
assumed to be fixed.

To get the upper bound of this modulus, we need to expose the composite to the
hydrostatic stress σh = σ1 a1; this makes the stored energy proportional to 1/K0. The
lower bound of the corresponding functional gives us the upper bound of K0. So, this
time we minimize the functional

Iσ =< σ(x) · ·S(x) · ·σ(x) >= (2K0)
−1σ2

1,

σ(x) ∈ (4.1), < σ(x) >= σ1 a1,
(4.22)

where σ1 is a given constant.
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We will see that the exact bounds of these functionals provide the Hashin - Shtrikman
bounds for the bulk modulus.

Similarly, to obtain the lower bound for the shear modulus of a mixture one can
examine the energy stored in a composite exposed to the shear-type trial strain. This way
we obtain an bound on any of the two shear moduli of the mixture which is anisotropic
in general. However, the other shear modulus can have arbitrary value and the energy
functionals of the types (4.21), (4.22) are not sensitive to its value. To provide the
isotropy of the mixture we should also care about the reaction of the composite on the
orthogonal shear field. So, to bound the shear modulus of an isotropic composite we
should minimize the functional equal to the sum of two values of energy stored by the
medium under the action of two trial orthogonal shear fields ε = ε2 a2 and ε′ = ε3 a3.

Iεε =< ε(x) · ·C(x) · ·ε(x) + ε′(x) · ·C(x) · ·ε(x) >

= 2µ0(ε
2
2 + ε2

3),

if ε(x), ε′(x) ∈ (4.1),

< ε(x) >= ε2a2, < ε′(x) >= ε3a3,

(4.23)

where ε2 and ε3 are fixed constants. To find the upper bound of the shear modulus we
use the functional equal to the sum of two energies stored in a composite exposed to two
orthogonal shear stresses σ = σ2 a2 and σ′ = σ3 a3

Iσσ =< σ(x) · ·S(x) · ·σ(x) + σ′(x) · ·S(x) · ·σ′(x) >

= 1
2µ0

(σ2
2 + σ2

3),

if σ, σ′ ∈ (4.1), < σ >= σ2 a2, < σ′ >= σ3 a3.

(4.24)

Here σ2 and σ3 are given constants. We show below that the lower bounds of these
functionals lead to the Hashin - Shtrikman and Walpole bounds for the shear modulus.

In order to get coupled shear-bulk bounds one can expose a composite to three differ-
ent fields: a hydrostatic field and two orthogonal shear fields. We have a choice between
stress and strain trial fields (two shear fields are supposed to be of the same nature to
provide isotropy of the mixture). Therefore the following functionals should be consid-
ered:

Iεεε = Iε + Iεε, (4.25)

Iσσσ = Iσ + Iσσ, (4.26)

Iσεε = Iσ + Iεε, (4.27)

Iεσσ = Iε + Iσσ. (4.28)

The lower bounds on the last two of these functionals give us a required component of
the boundary for the well-ordered case.

Indeed, the lower bounds of the functionals Iεεε and Iσσσ provide the lower and
upper bounds of the convex combination of the effective bulk and shear moduli because
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these functionals linearly depend on these moduli (the functional Iεεε) or on their inverse
values (the functional Iσσσ ).

In the well ordered case (4.9), however, the points of maximal and minimal values of
both moduli (the Hashin - Shtrikman points A and C on Fig.7 ) are attainable by special
microstructures (see [5], for example); and it is clear that the bounds of these functionals
cannot improve the classical inequalities (4.10), (4.15).

On the other hand, minimization of the functionals Iσεε or Iεσσ demands to mini-
mize one of the moduli and maximize the other one. We show below that for well ordered
materials it leads to coupled bounds of the moduli which are more restrictive then the
Hashin - Shtrikman ones.

In the badly ordered case (4.16) we face the opposite situation: the bounds of the
functionals Iεεε and Iσσσ improve the Walpole bounds, and the bounds of the func-
tionals Iσεε and Iεσσ leads to known ones.

The situation is illustrated by the Figure 7 where arrows show the directions in the
plane (K, µ) that correspond to minimization of the discussed functionals.

4.3 CONSTRUCTION OF QUASIAFFINE FUNCTIONS

To use the translation method for the problem under study we need to find the
set of bilinear quasiaffine functions of stresses and strains. In this section we determine
some of such functions depending on strain fields, stress fields, and the bilinear function
depending on two stress fields.

As before, we use the Fourier transformation to prove the quasiconvexity of the
quadratic function. The differential restriction on stress and strain field

∇ · σ = 0, ε =
1

2
(∇u + (∇u)T ) (4.29)

can be rewritten in the Fourier space as

k · σ̂(k) = 0, ε̂(k) =
1

2
(kû(k) + û(k)k). (4.30)

Let us choose the Cartesian basis where the first basis vector coincides with the Fourier
wave vector k. In this basis the Fourier coefficients of the fields σ and ε are presented as

σ̂(k) =
(

0 0
0 σ22(k)

)

, ε̂(k) =
(

k1û1(k) (k2û1(k) + k1û2(k))/2
(k2û1(k) + k1û2(k))/2 0

)

.

(4.31)
Here k1, k2, û1(k), û2(k), and σ22(k) are the coordinates of the corresponding vectors
and tensor in the chosen basis. Now it is easy to see that

< detσ > −det < σ >=< detσ > −detσ0 =
∑

k 6=0

detσ̂(k) = 0, (4.32)

< detε > −det < ε >=
∑

k 6=0

detε̂(k) = det
(

k1u1 (k2u1 + k1u2)/2
(k2u1 + k1u2)/2 0

)

≤ 0,

(4.33)
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< σ · R · σ′ · RT > − < σ > ·R· < σ′ > ·RT

=
∑

k 6=0

(

0 0
0 σ22

)(

0 1
−1 0

)(

0 0
0 σ′

22

)(

0 11
1 0

)

= 0. (4.34)

It completes the prove of the quasiconvexity of the following functions (where we use the
tensor basis a1, a2, a3 to present translation matrices):

t det σ = σ · T σ · σ, T σ(t) =







t 0 0
0 −t 0
0 0 −t





 , for all t, (4.35)

t det ε = ε · T ε · ε, T ε(t) =







t 0 0
0 −t 0
0 0 −t





 , for all t ≤ 0, (4.36)

σ · R · σ′ · RT = σ · T σ · σ, T σσ =







0 0 0
0 0 t
0 −t 0





 , for all t. (4.37)

Using these functions we show the proof of the Hashin-Shtrikman bounds on the bulk
modulus of a composite and Hashin-Shtrikman and Walpole upper bounds on the shear
modulus. Quasiconvexity of the other functions that are necessary to use in the prove of
the other bounds can be constructed in a similar way.

4.4 Prove of the Hashin-Shtrikman and Walpole bounds

In this section we get some of the Hashin - Shtrikman and Walpole bounds by using
a regular procedure of the translation method. We prove it here for the demonstration
of a regular procedure on simple examples.

4.5 Bounds for the bulk modulus

4.5.1 The lower bound.

To bound the functional Iε we need the symmetric translation strain-strain matrix
Tε (see (4.36)).

To get the result we use the bounds of the third lecture

Y (D0) + T ≥ 0, (4.38)

where we should substitute the following matrices

Di = C i, i = 1, 2,

T = Tε(t).
(4.39)
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The conditions of the positivity of the matrices C1 − Tε(t) and C2 − Tε(t) have the
form







2Ki − t 0 0
0 2µi + t 0
0 0 2µi + t





 ≥ 0, i = 1, 2 (4.40)

and lead to the scalar inequalities

t ≤ 0, t ≥ −min{µ1, µ2} = −µmin. (4.41)

The bound for the isotropic matrix Dε
0 = C ′

0 associated with the functional Iε has the
form







y(2K0) + t 0 0
0 y(2µ0) − t 0
0 0 y(2µ0) − t





 ≥ 0 (4.42)

and leads to the inequality for the bulk modulus K0

y(2K0) ≥ −t, t ∈ (4.41). (4.43)

The most restrictive bound corresponds to the critical value

t = t∗ = −µmin (4.44)

of the parameter t. This bound coincides with the Hashin - Shtrikman and Walpole lower
bound for the bulk modulus (see (4.10)–(4.15), (4.17)– (4.18)).

4.5.2 The upper bound.

The upper bound for the bulk modulus can be obtained analogously using the functional
Iσ instead of Iε and the quasiaffine function associated with the translation matrix
Tσ(t). For this functional, the matrices Di, i = 0, 1, 2 are equal

Di = Si , i = 0, 1, 2. (4.45)

Now the restrictions on matrix T have the form






1
2Ki

− t1 0 0

0 1
2µi

+ t1 0

0 0 1
2µi

+ t1





 ≥ 0 (4.46)

or scalar form

− 1

2µ1
= −min{ 1

2µ1
,

1

2µ2
} ≤ t ≤ min{ 1

2K1
,

1

2K2
}. (4.47)

The bound for an isotropic effective tensor S0 becomes







y( 1
2K0

) + t1 0 0

0 y( 1
2µ0

) − t1 0

0 0 y( 1
2µ0

) − t1





 ≥ 0. (4.48)
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The corresponding scalar inequality for a bulk modulus K0

y(
1

2K0
) + t1 ≥ 0 (4.49)

becomes the most restrictive when the parameter t1 is chosen as t1 = t∗1 = − 1
2µ1

. By
using the properties of the Y-transformation it can be represented in the form

y(K0) ≤ µmax. (4.50)

This bound coincides with the Hashin-Shtrikman and Walpole upper bounds for the bulk
modulus (see (4.10)–(4.15), (4.17)– (4.18)).

4.6 Upper bounds for the shear modulus

To obtain the upper bound for the shear modulus of the mixture we use the same
procedure for estimating the functional Iσσ. In this case

E = {σ1, σ2, σ3, σ′
1, σ′

2, σ′
3} (4.51)

is a six-dimensional vector consisting of the components of two stress tensors σ and σ′;
the (6 × 6) matrices

Di =
(

Si 0
0 Si

)

, i = 0, 1, 2 (4.52)

are block-diagonal. We construct the matrix Tσσ of a quasiafine quadratic function of
the vector E using the bilinear quasiaffine forms (4.35) - (4.37)

Tσσ(t1, t2) =





















−t1 0 0 0 0 0
0 t1 0 0 0 t2
0 0 t1 0 −t2 0
0 0 0 −t1 0 0
0 0 −t2 0 t1 0
0 t2 0 0 0 t1





















. (4.53)

The restrictions on T now have the matrix form

Dσσ
i − Tσσ(t1, t2) =





























1
2Ki

+ t1 0 0 0 0 0

0 1
2µi

− t1 0 0 0 −t2

0 0 1
2µi

− t1 0 t2 0

0 0 0 1
2Ki

+ t1 0 0

0 0 t2 0 1
2µi

− t1 0

0 −t2 0 0 0 1
2µi

− t1





























≥ 0,

i = 1, 2,

(4.54)
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or the scalar form

t1 ≥ − 1

2Kmax

, (4.55)

(
1

2µmax

− t1)
2 − t22 ≥ 0, (4.56)

where
Kmax = max{K1, K2},

µmax = max{µ1, µ2} = µmax.
(4.57)

The critical values t∗1, t∗2 of the parameters t1, t2 are equal

t∗1 = − 1

2Kmax

, t∗2 =
1

2µmax

+
1

2Kmax

. (4.58)

The bound becomes

Y (Dσσ
0 ) + Tσσ(t∗1, t∗2) =





























y( 1
2K0

) − t∗1 0 0 0 0 0

0 y( 1
2µ0

) + t∗1 0 0 0 t∗2

0 0 y( 1
2µ0

) + t∗1 0 −t∗2 0

0 0 0 y( 1
2K0

) − t∗1 0 0

0 0 −t∗2 0 y( 1
2µ0

) + t∗1 0

0 t∗2 0 0 0 y( 1
2µ0

) + t∗1





























≥ 0.
(4.59)

It leads to the scalar inequality

y(
1

2µ0
) + t∗1 − t∗2 = y(

1

2µ0
) − 2

Kmax

− 1

µmax

≥ 0 (4.60)

or

y(µ0) ≤
Kmaxµmax

Kmax + 2µmax

. (4.61)

It coincides with the Hashin – Shtrikman bound (see (4.10)–(4.15)) in the well ordered
case (4.9) and with the Walpole bound (see (4.17)–(4.18)) in the badly ordered case
(4.16).

The other bounds can be obtained in a similar way, they are presented by the Figure
7.
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