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66 Giuseppe Buttazzo

Lesson 1. Gamma-convergence: the general framework

We recall the definition of I'-limits in metric spaces:

[liminf Fp, (z) = inf{lim inf Fy(xp) : zp — x};

h—+oco h—+oco

I'lim sup Fp, (z) = inf{limsup Fy(zp) : zp — x};
h—+oo h—+oo

moreover the infima in formulas above are attained (more generally this holds in spaces with first countability
axiom). Analogous definitions for families (F;) with € — 0.

Coerciveness: F : X — R is said coercive if for every t € R there exists a compact subset K; of X such
that
{F <t} C K.

Equi-coerciveness: A sequence (F},) of functionals is said equi-coercive if for every ¢t € R there exists a
compact subset K; of X (independent of h) such that

{Fn <t} C K Vh € N.

The main properties of I'-convergence are (see the book of Dal Maso [Birkh&user]):

o) (Fp) equicoercive, F}, EF = minx F = lim, (inf x F});

o) FhiF, xp minimizer of Fj, xp, — x = x minimizer of F;

o) FhiF, xp, minimizer of Fy, (F}) equicoercive, F' has a unique minimum point + = x, — x (and
Fy(zn) — F(x));

o) FhiF, G continuous = Fj + GEF + G;

o) If X is separable the I'-convergence is a compact convergence, in the sense that from every sequence
(F}) we may extract a subsequence (Fp, ) which I'-converges.

Homogenization. Consider on the Sobolev space WP(Q) (with 1 < p < +00) the family of functionals

F.(u) = /Q f(z/e, Du) dx (e —0)

where f(z, z) satisfies the assumptions:
o) f(z,-) convex on R™;
e) f(-,z) measurable and Y-periodic;
o) |2" < f(x,2) <C(L+ [2]).
Then F. © F in the weak W1?(Q) convergence, where

F(u) = A fo(Du) dzx

and fy is given by the formula

: 1 »
fo(z) = 1nf{m /Y f(z,z+ Dw(z))de : we Wpler} .

When f(z, z) is a quadratic form
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then fo(z) is a quadratic form too

fo(z) = Zaijzizj
4,J
with constant coefficient «;;; which can be computed by the formula above.

Other variations on the theme can be made: for instance the Attouch & Buttazzo [Ann. SNS]| case of
”periodic reinforcement”

Fg(u):/ |Du|2dx+k€/ |Dul? do
Q QNS.

where S; is the e-rescaling of a (n — 1) dimensional manifold S C Y. The I'-limit F is then

F(u):/Qf(Du)dz

with
1 k
f(z):inf{—/ |Dw|2dm+—/|D7w|2da : w—(z,-)eWple’f}.
Y1)y Y| /s

The homogenization has been widely treated in the other courses of this school. Therefore, the program
we intend to follow in these lectures is to show some applications of I'-convergence different from periodic
homogenization. More precisely we shall treat the following topics:

e) limits of periodic Riemannian metrics;

) limits of singular perturbation problems;

) a limit problem in phese transitions theory;
o) I'-convergence and optimal control problems.

Lesson 2. Limits of sequences of Riemannian metrics

We shall study the limit (as € — 0) of the functionals
1 n u
F.(u) = /0 > aij(g)u;u; dt
ij=1

where {a;;} are the coefficients of a Riemannian metric, or more generally in the so called ”Finsler case”

1
R = [ e
0 g

where f : R™ x R™ — R is a Borel function such that

e) f(s,) is convex

o) f(-,2)is Y-periodic (Y = [0,1[")

o) 2P < f(s,2) < C(1+ |2|P) with p > 1.
Theorem. There exists a convex function ¢ with

|2 < p(z) < C(1+ |27

such that F; £<I> where
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Moreover, ¢ is given by

p(2) = lim [inf {F.(w) : weW(0,1), w(0) =0, w(l) = 2}| =

= lim [inf{%/OTf(w,w’)dt s w e WHP(0,1), w(0) =0, w(T)Tz}

T—+4o00

We prove the theorem in several steps; for some technical details we refer to the original paper by Acerbi
& Buttazzo [JAM]. It will be convenient to localize all functionals by setting for every open subset A of (0,1)
(we denote by A such a class)

Fg(u,A):/Af(g,u’)dt
@(U,A):/Ago(u’)dt.

Step 1. There exists a sequence ¢, — 0 such that for every open set A belonging to a countable base U of
open sets in (0, 1) the sequence F, (-, A) I'-converges to some I'-limit we denote by G(:, A).
It is enough to apply the compactness property of I'-convergence and a diagonal procedure.

Step 2. The sequence F, (-, A) I'-converges for all A € A to

F(u,A) =sup{G(u,B) : BeB, BCcC A}.
See Acerbi & Buttazzo [JAM].
Step 3. The set function A — F(u, A) is a measure for all u € W1P(0,1).

We prove only the key fact that F(u,-) is a subadditive set function, that is for every A, B,C € U with
C CC AU B and every u € WH?(AU B)

G(u,C) < G(u, A) + G(u, B).

the remaining facts can be found in Acerbi & Buttazzo [JAM].
Let K be a compact subset of A containing C'\ B in its interior, let 6 = dist(K,0A), let v € N be a
fixed integer number, and let for: =1,...,v

A = {t €0, 1] : dist(t, K) <zg} (Ao :/K)

i €CX(A;), 0<pi <1, @=1londAi, [gf<—.
Moreover let up, — u in LP(A), vy, — u in LP(B) be such that
G(u, A) = 1i}ILnFEh (up, A)
G(u,B) = 1i}IlnF5h (vn, B).
Setting w; p, = wiup + (1 — i)vp, we have
F., (wip, C) < Fe, (up, Ai—1) + Fr, (0, O\ Ai)+

+C/ (1+ |w, ,P)dt <

CN(ANA;_1) '

< th (uh,A) + th(vh,B) + C(%)p/ |uh — ’Uh|p dt+
c

+C (1 + |up,|P + v, |P) dt.
CN(A\A;i—1)
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For every h € N choose ¢, < v such that

1
/ (Ul 4 P)de <y [ (P ) de <
CN(As, \Aiy 1) V JcnAnB
C
< [+ By (un, A) + P, (on, B)

so that

C
., (wih,h, C) < (1 + ;)[th (uh,A) + F, (’Uh,B)] + — + C % / |uh — ’Uh|p dt.

It is easy to see that w;, , — w in LP(C'), so that as h — 400
G(u,C) < limsup Fy, (w;, p, C) <
h
C
and the proof follows by letting now v — +oo.

Step 4. For every a € R™ we have
Fu+a,A)=F(u,A).

Take ap, — a in R™ such that ay/ep € Z™ and take up, — u such that

F(u,A) = 1i}11n F., (up, A).
Then uy, + ap, — u + a and so
Flu+a,A) < liminf/ f(% + %,uﬁl) dt =
h A En Eh
o up
= hmlnf/ f(—,up) dt = F(u, A).

N A En

The opposite inequality can be proved in a similar way.

Step 5. There exists a convex function ¢ such that

F(u,A):/Agp(u’)dt.

69

This follows from the Buttazzo & Dal Maso [Nonl. An.] and [JMPA] integral representation theorem (valid

also in the multiple integrals case):

Let F: WP x A — R be a functional such that

(i) F(u,-) is a measure (proved in Step 3);

(ii) F(-,A) is alower semicontinuous LP (because it is a I'-limit);

(iit) [, [u'[Pdt < F(u,A) < C [,(1+|u'|P)dt (by the assumptions on f);
)

(iv) Fislocal, i.e. u=wv ae. on B = F(u,B)= F(v,B) (we refer to Acerbi & Buttazzo [JAM] for the

proof);
(v) F(u+a,A) = F(u,A) for every a € R™ (proved in Step 4).
Then there exists a function (¢, z) convex in z such that

F(u,A) = /Atp(t,u’) dt.
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The fact that in our case the function ¢ does not depend on ¢ follows from the translations invariance of F'
(easy to prove):
F(u,A) = F(u,, A+ 71) (ur(t) =u(t —71)).

Step 6. Setting for every z € R® and T > 0

Myp(2) = inf {%/0 flu,w')dt © uwe WHP(0,T), u(0) =0, u(T) = Tz}

there exists
lim Myp(z) = M(z).

T—+o00

We refer to Acerbi & Buttazzo [JAM] for the proof.

Step 7. M(z) = ¢(z) for every z € R™.
We refer to Acerbi & Buttazzo [JAM] for the proof.

We can conclude now the proof of the main I'-convergence theorem because for every €;, — 0 we may
extract (ep, ) such that F., T'-converges to some J 4 p(u") dt with ¢ possibly depending on the subsequence
choosen. By Step 7 the function varphi is identified in a way which is independent of the subsequence
choosen; therefore the entire (F.) I'-converges to [, p(u’) dt.

Example. Let n = 2 and consider the chessboard structure with f(s,2) = a(s)|z|? (a is considered ex-
tended periodically). Therefore f.(s,2) = a(s/€)|z|* corresponds to the Riemannian metric with coefficients

a(s/e)éij.

The rescaled coefficient a(s)

We know that as € — 0 the limit functional is of the form

/0 o) de

with ¢ convex. In the theorem above it is easy to prove that f(s,z) is positively p-homogeneous in z so is
©(z); then in our case ¢(z) is positively 2-homogeneous with

afz]? < o(2) < Bz



Gamma-convergence and its Applications 71

The following fact hold.

o) If v # [ then ¢(z) is not a quadratic form (see Acerbi & Buttazzo [JAM]); therefore the variational
limit of a sequence of Riemannian metrics may be not Riemannian but only a Finsler metric; the class
of Finsler metrics on the contrary is closed under I'-convergence.

o) If 3/« is large enough then the function ¢ depends only on a and has the form

0(2) = a((V2 = 1)|z1| A |22] + 21| V [22]) ™.

Lesson 3. Gamma-convergence for a class of singular
perturbation problems

We want to study the asymtotic behaviour (in terms of I'-convergence) of problems of the form
F.(u) = /Qf(ac, u,eDu,e?D?u, . ..,e™D™u) dx.
For instance the optimal control problem (u is the state, v is the control)
min/Q (klol + Ju — uo(@)|?) do

with state equation

{EQA’U, +g(u) =v
u € HHQ)

reduces to the functional

/ kle?Au+ g(u)|* 4 |u — ug(2)|P da.
Q

The first difficulty to overcome is the lack of equi-coerciveness in the Sobolev spaces; therefore we study the
I'-limit in the weak LP topology.

We make the following assumptions on f(x, s, z) where s represents u and z represents (Du, D?u, ..., D™u):
(i) there exist a € L', ¢>1, p>1, 1 <7 < psuch that

—a(@) +|s|” < f(x,5,2) < a(z) + C[|s]” + |2]];
(ii) there exist continuity moduli w and o such that
[f(@,s,2) = [y, t,w)] S w(z |y —]) +o(ly — @[ + |t = s[ + [w = =z[)(al2) + f(z,5,2));

(iii) f(x,s,z)+|s|P +a(x) > (s, z) where « is such that

/ Z |D%u|" dz < A(A, A/)/ ~v(u, Du, ..., D™u) dx VAcc A
A Al

la|<m

where A\(A4, A’) is such that
lim A(tA,tA") < +o0.

t——4o0
For instance, if

Fo(u) = /Qk|52Au + g(w)|? + [u — uo(2)|? da
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the assumptions above are fulfilled with (m =r = 2)

F(,5,2) = K|S 220 + g(5)[2 + |5 — uo(@))?

i=1

2
v(s,2) = C4 + |s|2

n
§ Zii
i=1

A, A") = Oy max{1,dist™*(A4,04")}

provided g is such that

l9(s)] < C(L+|s/?)
l9(s) = 9(8)] < w(t = s))(L+[s”?).

Theorem. There exists a function 1 (x, s) convex in s such that

Fg(u,A)i/Ai/)(:c,u) dx (weakly in LP(A))

for every A € A. Moreover
fii(@,s,0) < (w,s) < [ (w,5,0)

where [, and f;* represent the convexification of f in (s,z) and in z respectively. A representation formula
for ¢ is (Y =]0,1[™)

W(z,s) = lim [inf{FE(x,u) : /Yudy:sH -

:inf{Fg(:E,u) 1 e>0, /udy:s}
Y

F.(z,u) = /Y f(z,u(y),eDu(y),...,emD"u(y)) dy.

where

We prove only the key fact that the I' — limsup is subadditive, by referring for all other details to
Buttazzo and Dal Maso [CRAS], [Ann. SNS].
Setting
FT(u, A) = inf{limsup F;, (up, A) : up — u wLP}
h

we have to prove for every u € LP(AUB) and C CC AUB
Ft(u,C) < F*(u,A) + F*(u, B).
Fix K = C\ B and Ay, By with K C Ay CC By CC A. Fix an integer v and let (Ai)lgigu_be such that
AO CcC Al cC ... CC AV CcC Bo. Denote by S=0Cn (BO \ Ao) and by Sz =Cn (Az \ Aifl) and let
;i € C°(A;) be such that 0 < ;1 and ¢; =1 on A4,_;. We have
F*(u, A) = limsup F., (up, A)
h

F*(u, B) = limsup F., (v, B)
h
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for suitable sequences (up,) and (vp) converging to u. Setting
wip = @iun + (1 — @i)vn
we have

th (’wi’h,C) < th (uh,Cﬂ Ai71> 4+ th (’Uh,C\Zi)ﬁL

+C / a(x)+|wi7h|P+Z|s§Dkwi,h|T] dx
S

i L k=1
< F, (up, A) + F, (vp, B)+

+C/ a(x )+|uh|p+|vh|p+25 (|D*up|" 4 | Dy, |" )]
k=1

+C, / ZE |Djuh|T+|Djvh|T)dx

Si k=1 7=0
where C,, depends on ||y;||cm for i =1,...,v. Let i, be an index such that

J.

a(x )+|uh|P+|vh|P+Zs (|ID*up|" + | DFop|" )1 dr <

k=1
1
VJs

and set wy, = w;, ». Then wy, — u and
FEh(whvc) S FE (uhaA) +F5h(’l)h,B>+

e

/Zs Z (|DIup|" + |Divy|") dz
7=0

h

a(z) + IUh|p+|vh|p+Z€ (I1D*un|" + IDkvhl’”)l da
k=1

dr+

) + |unl? + |vh|’o+zE (ID*up|" + | D*op|")
k=1

As h — +o0
F*(u,C) < limsup F;, (wp,,C) < F*(u, A) + F*(u, B)+
h

+ + —hmsup/ ZE (|D*up|" + | Doy |") da+
+C, 1imsup/ gkr Diup|" + |Divp|") da
sup [ ek Sl (D)

Set now Up(z) = un(epx) and Vi (x) = vp(epx); then, for every S’ CC AN B

/ > ek (ID un|" + | Doy |") da = s;;%/ > (ID*ULI" + |D*VA[") da <
5" =1

"/en k=1

ANB
<A o TD) [ U D) + 4 (Vi DV de =
20 (ANB)/en
ANB
= XS /en, ) / [v(un, ... en'D™up) +vy(vh, - .., ep D™ op)] dz <
ANB
A NnB
< A8 /en, - )/ [2a(x) + |unl? + [vnlP + f(x,un, ..., ef" D™ up)+
ANB

+ f(@,vn, ... e D™y da <

ANB
NS e D) [ (O Py A)+ P (0, B < C.

73
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/|Dkw|r dzga/ |D™w|" derC’l,/ |w|" dx
S S’ S’

for every 1 < k < m — 1 and every o > 0, where S CC S/, we have

C, Zs Z/|D]uh|rdas<

<C, ZE / [o| DFup|™ + Cylup|") de <

By using inequalities as

< oC, / Z EZT|Dkuh|T dx +,C,C,
S k=1
and analogously for vj. Therefore, arguing as before we obtain
C, hmsup/ ghr Diup)” + |Divy|") de < oC,
sup [ 37 S (D) + D)

so that o
FT(u,C) < Ft(u,A) + F*(u,B) + — 4+ 0C,
v
and the subadditivity follows by taking first the limit as ¢ — 0 and then the limit as v — +oc.

Once the subadditivity is proved, standard methods prove that the I-limit F'(u,-) is a measure, and by
the Buttazzo and Dal Maso [RM] integral representation theorem

F(u,A):/Az/J(x,u)d:E

for a suitable ¢(z,s) convex in s. The inequality f;%(z,s,0) < ¢(z,s) is trivial because if up — u weakly
P

/f x,u,0) dx<hm1nf/ f (x,up,enDup, ..., D" up) doe <

< limhinf/ f(z,up,enDup, ..., ef* D™ up) dx
A

/f**xuOdm</1p:Eu

For the inequality 9 (x, s) < f¥*(x, s,0) it is enough to show that

/Aw(x,u)dzg/Af(x,u,O)dx

for every u. This can be proved by taking up = pp * u where py(z) = ¢, p(egex); if 6 is small enough
(0 < 1/n+ 1) we have uj, — u strongly in L and ef D*uj, — 0 strongly inL?, so that

and so

—n6

/Q/J(x,u)dacgliminf/ f(x,uh,...,s?fDmuh)dx:/f(:z:,u,O)d:E
A h A A

In the case f(z,s,2) = k|> i zii + 9(s)[* + |s — up(x)|? it is possible to prove (see Buttazzo & Dal Maso
[Ann. SNS))
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o) gaffine = (x,s) = fi*(x,5,0) = klg(s)]* + [s — uo(2)[";
) g decreasing = (z,s) = f*(z,s,0) = k|g(s)|? + |s — uo(x)|?;
e) the equality ¥ (z, s) = f2*(x, s,0) is not true in general;
)

g>0convex = (z,s) = k|g(s)|> + |s — uo(x)|P.

Note that in the case
Fuw) = [ 1Du + W) do
Q

we have f(s,z) = |z|?> + W (s) so that
foi(s,2) = 7 (s,2) = |2 + W™ (s).

Hence ¢(z, s) = W**(s).
Lesson 4. A limit problem in phase transitions theory

Let W : R — R be a positive continuous function with only two zeros (say at —1 and at 1); consider
the functionals

Fs(u)/ﬂ[€|Du|2+§W(u) dx

where 2 is a bounded open Lipschitz subset of R™. We shall prove that the I-limit (as ¢ — 0) in the
topology L(€2) is

Plu) = {00 /Q \Du| if [u(z)| = 1 for ae. z € Q

+00 otherwise

defined for all u € BV (Q2), where Co = 2 [, /W (s) ds.
It is convenient to introduce the function

gb(t):/o VW (s)ds

and to write F'(u) for |u| =1 as
F(u)=2 ; |D(¢ o u)l.

Then the inequality
F(u) <T —liminf F.(u)
€

is rather easy to prove. Indeed, when |u| #Z 1 we have

- N |

liminf F; (ue)) > lim inf —/ W (ue) dx = 400

£ € g Jo
whereas if |u| =1
liminf F; (u.) > liminf/ 2| Due|/ W (ue) dax =
g g O
= liminf/ 2|D(¢powue)|de > 2/ |D(¢ o u)
€ Q Q

where the first inequality follows from the standard a? + b? > 2ab and the last one from the lower semicon-
tinuity of the total variation functional.
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The approximating sequence

We prove now the opposite inequality

F(u) > T limsup Fy(u)
€

only for functions u of the form —14 + 1o\ 4 where A is an open set with a smooth boundary ¥ transversal
to 9. We refer to the original papers of Modica & Mortola [BUMI], [BUMI] for the proof that from this
particular case we can deduce, by a density argument, the general case.

We want to construct an approximating sequence wu. as in the picture, where the thickness of the
transition layer and the transition itself have to be suitably choosen.

Set for every t € R

t g
velt) = /_1 NSO

-1 ift<0
pe(t) = S () if 0 <t <ye(1)
1 if t > ¢ (1)

and, if d(x) = dist(z, A)
ue () = pe(d(z)).

We have u. — u in L}(Q) and, if X. = {z € Q : 0 <d(x) < ¥-(1)}

Fe(uc) =/Q [alwl(d(x))ﬁ n %W(%(d(x)))} e
:/ [elcpi(d)l2 + %W(%(d»] e —

€

=51 [ [t + tweeon] @

Since
1 e+ W)

1
Twwen T e Vet
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we get
e e 4 W 1
Ft) =15l [ | e an <
0 g g
2|z (¥ dt
< /= w —d
=" /O [5 + (‘Ps)]d(pa Pe
1
:2|E|/ e+ W(s)ds.
-1
Therefore

lim sup Fr(ue) < ColX|.
€
Other cases have been considered in the Modica and Mortola paper; for instance if W is periodic and
te — +00
1
F.(u) :/ {5|Du|2 + —W(tgu)] dx
Q €

T'-converge to
Plu) = co/ Du|  (Vue BV(Q))
Q

where (T is the period of W)

COZ%/OT\/WCZS-

Lesson 5. Gamma-convergence in optimal control the-
ory

The abstract framework is the following:
-) Y space of states;
-) U space of controls;
-) J(u,y) cost functional;
-) E C U x Y admissible set given by the state equation.
The optimal control problem is then

min{J(u,y) : (u,y) € E}

or equivalently
min{F(u,y) : (v,y) €U xY} where F' = J + xp.

When we deal with sequences of problems
min{F.(u,y) : (u,y) €U xY} where F, = J. + xE.

we have to study the I'-convergence of F. in the product space U x Y.

The typical case is:
-) U = LP(0,T;R™) topology w — LP;
-) Y = WhH0,T; R™) topology strong L°°;
) Je(wy) = fy fe(t,y ) d;
) B ={y = ac(t,y) +b=(t, y)u, y(0) =&}
We would like to study the I'-limits of J. and of x g, separatly, but the equality

I'lim F; =T'lim J. + I'lim x g,
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is false in general. To bypass this difficulty we introduce the multiple I'-limits for functions on a product
space.

NU~,Y ") liminf F.(u,y) = inf inf liminf F, (u., ye)
€

Ue—=UYe—Y €

LU, Y ") liminf F.(u,y) = inf sup liminf F,(u.,y.)
g

Ue Uy, —y €

L(UT,Y ") liminf F.(u,y) = sup inf liminf F.(ue,y.)
€

ue—uYe =Y €

C(U*, Y ") liminf F.(u,y) = sup sup liminf F_(u., y.)
€ €

Ue = UYe Y
and analogously for the I'-limits with lim sup. When two of them coincide we use notations as

(U, Y )liminf F., T(U,Y)limsupF., T(U~,Y)lim F..
€ £ €

In this way it is possible to sum with the I'-limits. More precisely we have:
IN(ZA | lign(FE +Ge)=T(U",Y) 1ign F.+T(UY") 1i§n G,
(see Buttazzo and Dal Maso [JOTA]). Since the I'-limits which we want to study is the
DU, Y ) m( + xe.)
we have to identify the limits
nNU~,Y) lign Je
LU, Y") lign XE. -

We restrict our analysis to the case (for other cases see Buttazzo and Dal Maso [JOTA])

T
Jg(u,y):/o fe(t,y,u)dt

E, = {y’ = aa(tay) + bg(t,y)u, y(O) = Ea}

Case when b, is strongly convergent.

Assumptions on f. :]0, T[xR® x R™ — R Borel functions:
(i) fe(t,s,-) is convex and l.s.c. on R™;

(i) fe(t,s,2) 2 [P (p>1);
(iii) for every R > 0 there exists a continuity modulus wgr such that

|fe(t, 51, 2) = fe(t, 52, 2)| S wr(ls1 — s2])(1 + fo(t, 5, 2))

for every t €]0,T[, z € R™, 51, s2 € R™ with |s1],|s2| < R;
(iv) there exists u. € LP such that f.(¢,0,uc(t)) is weakly compact in L!.
Then the I'(U~,Y) lim. J. can be computed in the following way (see Marcellini and Sbordone [Ric. Mat.
1977]: for every s € R™ and z* € R™

(10(') SaZ*) =w - Ll lim f;(,S,Z*)
€
f(t7 S? Z) = w*(t7 S? Z)

T
F(U*,Y)lignJg(u,y):/O ft,y,u)dt.
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For instance if f-(¢,s,2) = a-(t)|z]? + |s — yo(t)|* we have f(t,s,2) = a(t)|z|? + |s — yo(t)|> where

1 — = weakly in  L'(0,7).
e a
Concerning the differential state equations we assume:

(i) |ac(t,s1) — ac(t, s2)| < ae(t)|s1 — s2f with sup, fOT Qe dt < +00;
(ii) |be(t, s1) — be(t, s2)| < Be(t)|s1 — s2] with sup, fOT Br' dt < 4o0;
(iii) sup, fo la(t,0)|dt < +o0;

)

)
(iv) sup, fo b (t,0)[""dt < +o0;
(v) as(-,8) — a(-, s) weakly in L? Vs € R%;
(vi) be(-, ) — b(-,s) strongly in L?' Vs € R™;
(vii) & — & in R™.
Then I'(U, Y ™) lime xg. = xr where

E={y =al(t,y) +bt,y)u, y(0) = ¢}

Therefore the limit control problems is

T
min {/0 ft,y,u)dt oy =a(t,y) +b(t,y)u, y(0) = 5} )

Case when b, is only weakly convergent.

Assume for the sake of simplicity that b. = b.(¢) and that (vi) is substituted by
(vi’) be — b weakly in L.
The simplest situation is when |bc|?’ is equi-uniformly integrable (we shall remove later this assumption).
In this case it is convenient to introduce an auxiliary variable v € V = L1(0,T) and rewrite the control
problems in the form

T
min {/0 [f&(ta yau) + Xv:bg(t)u] dt : yl = g(tay) + v, y(O) = 56} .

We can now apply the previous analysis with
Y=Y
U=UxV

.],E;‘(t S,Z,U]) = fE(taSaZ) + Xw:ba(t)z
a.(t, s) = ac(t, s)

be(t,5) - (z,0) = w
obtaining as a limit problem
T ~
mm{/ ﬂu%wwdtiy=a@m+w,mm=£}
0

being
f(ta 8,2, ’U_)) = (’LU - Ll hgn(fE(tv 5 Z) + X’w:bs(t)z)*)*
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where the * operator is now made with respect to the variables (z,w). Finally we eliminate the variable v
by solving v = ¢’ — a(t,y) and plugging into the cost functional

min{/o f(t,y,u,y' —a(t,y))dt : y(0) = E} )

Note that
(fs(ta S, Z) + Xw:bg(t)z) (ta S, Z*, ’LU*) = fs*(ta S, 2+ b&(t)w*)

and in some cases the function fvis finite everywhere, that is the state equation may disappear in the limit
problem. Consider for instance the case

fe(t,s,2) = 2P + s —yo(t)]*  (for every ¢)

and
{ y/ = Q¢ (tv y) + be (t)u

with ac (-, s) weakly L convergent to a(-, s) and b. — b weakly L? with b2 — 3% weakly L. Then some easy

computations give
(w — b(t)z)?

s zw) =2+ a0

so that the limit problem is

. T 2 _ 2 |y’—a(t,y)—b(t)u|2 . _
mm{/o 1+ 1y = (o) + L | y<0>s}

and the relaxed form of the limit state equation is now in a penalization term.
For instance b.(t) = sin(t/e) gives b = 0, 3% = 1/2 so that the limit problem becomes

T
min{/o [lul® + 1y — yol* +2ly" — a(t, )] dt - y(o)é}-

We want now to drop the assumption that b€|p/ is equi-uniformly integrable. In this case we may only
obtain (up to extracting subsequences) that |b:|P converges to a suitable measure p in the weak* convergence
of measures. Assume for simplicity that the cost integrands are of the form

fa(ta $,2) = (Pa(taz) + Q/J(ta s).

In this case the limit problem is expressed by means of the measure p in the following way (see Buttazzo and
Freddi [AMSA]). As before consider the auxiliary variable v = b.(t)u and the polar integrand (with respect
to (z,w))

(508 (tv Z) + Xw:bs(t)z) (tv Z*v U}*)
It is possible to show that (up to subsequences) this integrand converges weakly* in M(Q) to a measure of

the form
g(t, 25 w*) v (with v = dt + ps)

where ¢(¢, -, ) is convex. Then the limit problem is with cost

. dv
/_g (t,u,d—)du—i-/w(t,y) dt+X{v<<u}
Q v Q
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and state equation _
{ y =al(t,y) +v (in the sense of M(Q))
y(0) =&

Eliminating the variable v (which varies in the space of measures) we obtain again that the limit differential
state equation may disappear becoming a penalization:

/

d
/g*(t,u,yi—a(t,y))dtJr/g*(t,O,i)duer
Q o

Q s
. y(07) —¢
+4%(0,0, W)M({O}) + /Q Yt y) dt + Xy, <<p.}

where y' = y/. - dt + /., is the decomposition of the measure y’ into absolutely continuous and singular parts
with respect to the Lebesgue measure dt, and the last term is the constraint that y. must be absolutely
continuous with respect to ps.

In the previous example

Foltos,2) = 2%+ |s — yo(O)? { 5(0:) ieéi,y) +be(t)u

with a.(:,s) — a(-,s) weakly L', b. — b weakly L? but now b2 — p weakly” in the sense of measures, we
get at the limit

T . B "
/0 {IUI2+|y—yo(t)|2+|yr (t,y) — b(t)u ] s

pr(t) — b2(t)
dy’ | 0t) — &2
o |df e
10,T[ dpis

+ X{vy’ s}
p(fop) s

For instance, if b.(t) = sin(t/e) + \/igl]oja[(t) we have b= 0 and p = 2dt + &y so that the limit problem is

T
wer R {/O (lul? + ly = yo(0)1> + 2|y — alt,y)[*] dt + [y(07) — §|2} :
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