Giuseppe BUTTAZZO

Dipartimento di Matematica Università di Pisa Via Buonarroti, 2 56127 PISA (ITALY)

Gamma-convergence and its Applications to Some Problems in the Calculus of Variations

School on Homogenization ICTP, Trieste, September 6–17, 1993

CONTENTS

- 1. Γ -convergence: the general framework.
- 2. Limits of sequences of Riemannian metrics.
- 3. Γ-convergence for a class of singular perturbation problems.
- 4. A limit problem in phase transitions theory.
- 5. Γ -convergence in optimal control theory.

Lesson 1. Gamma-convergence: the general framework

We recall the definition of Γ -limits in metric spaces:

$$\Gamma \liminf_{h \to +\infty} F_h(x) = \inf \{ \liminf_{h \to +\infty} F_h(x_h) : x_h \to x \};$$

$$\Gamma \limsup_{h \to +\infty} F_h(x) = \inf \{ \limsup_{h \to +\infty} F_h(x_h) : x_h \to x \};$$

moreover the infima in formulas above are attained (more generally this holds in spaces with first countability axiom). Analogous definitions for families (F_{ε}) with $\varepsilon \to 0$.

Coerciveness: $F: X \to \overline{\mathbf{R}}$ is said coercive if for every $t \in \mathbf{R}$ there exists a compact subset K_t of X such that

$$\{F \leq t\} \subset K_t$$
.

Equi-coerciveness: A sequence (F_h) of functionals is said equi-coercive if for every $t \in \mathbf{R}$ there exists a compact subset K_t of X (independent of h) such that

$$\{F_h \le t\} \subset K_t \quad \forall h \in \mathbf{N}.$$

The main properties of Γ -convergence are (see the book of Dal Maso [Birkhäuser]):

- •) (F_h) equicoercive, $F_h \xrightarrow{\Gamma} F \Rightarrow \min_X F = \lim_h (\inf_X F_h);$
- •) $F_h \stackrel{\Gamma}{\rightrightarrows} F$, x_h minimizer of F_h , $x_h \to x \Rightarrow x$ minimizer of F;
- •) $F_h \xrightarrow{\Gamma} F$, x_h minimizer of F_h , (F_h) equicoercive, F has a unique minimum point $x \Rightarrow x_h \to x$ (and $F_h(x_h) \to F(x)$;
- •) $F_h \xrightarrow{\Gamma} F$, G continuous $\Rightarrow F_h + G \xrightarrow{\Gamma} F + G$;
- •) If X is separable the Γ -convergence is a compact convergence, in the sense that from every sequence (F_h) we may extract a subsequence (F_{h_k}) which Γ -converges.

Homogenization. Consider on the Sobolev space $W^{1,p}(\Omega)$ (with 1) the family of functionals

$$F_{\varepsilon}(u) = \int_{\Omega} f(x/\varepsilon, Du) dx \qquad (\varepsilon \to 0)$$

where f(x, z) satisfies the assumptions:

- •) $f(x, \cdot)$ convex on $\mathbf{R}^{\mathbf{n}}$;
- •) $f(\cdot, z)$ measurable and Y-periodic;

•) $|z|^p \le f(x,z) \le C(1+|z|^p)$. Then $F_{\varepsilon} \xrightarrow{\Gamma} F$ in the weak $W^{1,p}(\Omega)$ convergence, where

$$F(u) = \int_{\Omega} f_0(Du) \, dx$$

and f_0 is given by the formula

$$f_0(z) = \inf \left\{ \frac{1}{|Y|} \int_Y f(x, z + Dw(x)) dx : w \in W_{per}^{1,p} \right\}.$$

When f(x,z) is a quadratic form

$$f(x,z) = \sum_{i,j=1}^{n} a_{ij}(x)z_i z_j$$

then $f_0(z)$ is a quadratic form too

$$f_0(z) = \sum_{i,j} \alpha_{ij} z_i z_j$$

with constant coefficient α_{ij} which can be computed by the formula above.

Other variations on the theme can be made: for instance the Attouch & Buttazzo [Ann. SNS] case of "periodic reinforcement"

$$F_{\varepsilon}(u) = \int_{\Omega} |Du|^2 dx + k\varepsilon \int_{\Omega \cap S_{\varepsilon}} |D_{\tau}u|^2 d\sigma$$

where S_{ε} is the ε -rescaling of a (n-1) dimensional manifold $S \subset Y$. The Γ -limit F is then

$$F(u) = \int_{\Omega} f(Du) \, dx$$

with

$$f(z) = \inf \left\{ \frac{1}{|Y|} \int_{Y} |Dw|^{2} dx + \frac{k}{|Y|} \int_{S} |D_{\tau}w|^{2} d\sigma : w - \langle z, \cdot \rangle \in W_{per}^{1,2} \right\}.$$

The homogenization has been widely treated in the other courses of this school. Therefore, the program we intend to follow in these lectures is to show some applications of Γ -convergence different from periodic homogenization. More precisely we shall treat the following topics:

- •) limits of periodic Riemannian metrics;
- •) limits of singular perturbation problems;
- •) a limit problem in phese transitions theory;
- •) Γ -convergence and optimal control problems.

Lesson 2. Limits of sequences of Riemannian metrics

We shall study the limit (as $\varepsilon \to 0$) of the functionals

$$F_{\varepsilon}(u) = \int_{0}^{1} \sum_{i,j=1}^{n} a_{ij}(\frac{u}{\varepsilon}) u'_{i} u'_{j} dt$$

where $\{a_{ij}\}$ are the coefficients of a Riemannian metric, or more generally in the so called "Finsler case"

$$F_{\varepsilon}(u) = \int_{0}^{1} f(\frac{u}{\varepsilon}, u') dt$$

where $f: \mathbf{R^n} \times \mathbf{R^n} \to \mathbf{R}$ is a Borel function such that

- •) $f(s,\cdot)$ is convex
- •) $f(\cdot, z)$ is Y-periodic $(Y = [0, 1]^n)$ •) $|z|^p \le f(s, z) \le C(1 + |z|^p)$ with p > 1.

Theorem. There exists a convex function φ with

$$|z|^p \le \varphi(z) \le C(1+|z|^p)$$

such that $F_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} \Phi$ where

$$\Phi(u) = \int_0^1 \varphi(u') \, dt.$$

Moreover, φ is given by

$$\varphi(z) = \lim_{\varepsilon \to 0} \left[\inf \left\{ F_{\varepsilon}(w) : w \in W^{1,p}(0,1), \ w(0) = 0, \ w(1) = z \right\} \right] =$$

$$= \lim_{T \to +\infty} \left[\inf \left\{ \frac{1}{T} \int_{0}^{T} f(w, w') dt : w \in W^{1,p}(0,1), \ w(0) = 0, \ w(T) = Tz \right\} \right].$$

We prove the theorem in several steps; for some technical details we refer to the original paper by Acerbi & Buttazzo [JAM]. It will be convenient to localize all functionals by setting for every open subset A of (0,1) (we denote by \mathcal{A} such a class)

$$F_{\varepsilon}(u, A) = \int_{A} f(\frac{u}{\varepsilon}, u') dt$$
$$\Phi(u, A) = \int_{A} \varphi(u') dt.$$

Step 1. There exists a sequence $\varepsilon_h \to 0$ such that for every open set A belonging to a countable base \mathcal{U} of open sets in (0,1) the sequence $F_{\varepsilon_h}(\cdot,A)$ Γ -converges to some Γ -limit we denote by $G(\cdot,A)$.

It is enough to apply the compactness property of Γ-convergence and a diagonal procedure.

Step 2. The sequence $F_{\varepsilon_h}(\cdot, A)$ Γ -converges for all $A \in \mathcal{A}$ to

$$F(u, A) = \sup \{G(u, B) : B \in \mathcal{B}, B \subset\subset A\}.$$

See Acerbi & Buttazzo [JAM].

Step 3. The set function $A \mapsto F(u, A)$ is a measure for all $u \in W^{1,p}(0, 1)$.

We prove only the key fact that $F(u,\cdot)$ is a subadditive set function, that is for every $A,B,C\in\mathcal{U}$ with $C\subset\subset A\cup B$ and every $u\in W^{1,p}(A\cup B)$

$$G(u,C) \le G(u,A) + G(u,B).$$

the remaining facts can be found in Acerbi & Buttazzo [JAM].

Let K be a compact subset of A containing $\overline{C} \setminus B$ in its interior, let $\delta = \operatorname{dist}(K, \partial A)$, let $\nu \in \mathbf{N}$ be a fixed integer number, and let for $i = 1, \dots, \nu$

$$A_i = \left\{ t \in]0,1[: \operatorname{dist}(t,K) < i\frac{\delta}{\nu} \right\} \qquad (A_0 = \int K)$$

$$\varphi_i \in C_c^{\infty}(A_i), \quad 0 \le \varphi_i \le 1, \quad \varphi_i = 1 \text{ on } A_{i-1}, \quad |\varphi_i'| \le \frac{2\nu}{\delta}.$$

Moreover let $u_h \to u$ in $L^p(A)$, $v_h \to u$ in $L^p(B)$ be such that

$$G(u, A) = \lim_{h} F_{\varepsilon_h}(u_h, A)$$

$$G(u,B) = \lim_{h \to \infty} F_{\varepsilon_h}(v_h, B).$$

Setting $w_{i,h} = \varphi_i u_h + (1 - \varphi_i) v_h$ we have

$$F_{\varepsilon_h}(w_{i,h},C) \leq F_{\varepsilon_h}(u_h,A_{i-1}) + F_{\varepsilon_h}(v_h,C\setminus A_i) +$$

$$+ C \int_{C\cap(A_i\setminus A_{i-1})} (1+|w'_{i,h}|^p) dt \leq$$

$$\leq F_{\varepsilon_h}(u_h,A) + F_{\varepsilon_h}(v_h,B) + C(\frac{\nu}{\delta})^p \int_C |u_h - v_h|^p dt +$$

$$+ C \int_{C\cap(A_i\setminus A_{i-1})} (1+|u'_h|^p + |v'_h|^p) dt.$$

For every $h \in \mathbf{N}$ choose $i_h \leq \nu$ such that

$$\int_{C \cap (A_{i_h} \setminus A_{i_{h-1}})} (1 + |u_h'|^p + |v_h'|^p) dt \le \frac{1}{\nu} \int_{C \cap A \cap B} (1 + |u_h'|^p + |v_h'|^p) dt \le \frac{C}{\nu} [1 + F_{\varepsilon_h}(u_h, A) + F_{\varepsilon_h}(v_h, B)]$$

so that

$$F_{\varepsilon_h}(w_{i_h,h},C) \leq (1+\frac{C}{\nu})[F_{\varepsilon_h}(u_h,A) + F_{\varepsilon_h}(v_h,B)] + \frac{C}{\nu} + C(\frac{\nu}{\delta})^p \int_C |u_h - v_h|^p dt.$$

It is easy to see that $w_{i_h,h} \to u$ in $L^p(C)$, so that as $h \to +\infty$

$$G(u, C) \leq \limsup_{h} F_{\varepsilon_{h}}(w_{i_{h}, h}, C) \leq$$

$$\leq (1 + \frac{C}{\nu})[G(u, A) + G(u, B)] + \frac{C}{\nu}$$

and the proof follows by letting now $\nu \to +\infty$.

Step 4. For every $a \in \mathbf{R^n}$ we have

$$F(u+a, A) = F(u, A).$$

Take $a_h \to a$ in $\mathbf{R^n}$ such that $a_h/\varepsilon_h \in \mathbf{Z^n}$ and take $u_h \to u$ such that

$$F(u, A) = \lim_{h} F_{\varepsilon_h}(u_h, A).$$

Then $u_h + a_h \rightarrow u + a$ and so

$$F(u+a,A) \le \liminf_{h} \int_{A} f(\frac{u_{h}}{\varepsilon_{h}} + \frac{a_{h}}{\varepsilon_{h}}, u'_{h}) dt =$$

$$= \liminf_{h} \int_{A} f(\frac{u_{h}}{\varepsilon_{h}}, u'_{h}) dt = F(u, A).$$

The opposite inequality can be proved in a similar way.

Step 5. There exists a convex function φ such that

$$F(u, A) = \int_{A} \varphi(u') dt.$$

This follows from the Buttazzo & Dal Maso [Nonl. An.] and [JMPA] integral representation theorem (valid also in the multiple integrals case):

Let $F: W^{1,p} \times \mathcal{A} \to \mathbf{R}$ be a functional such that

- (i) $F(u, \cdot)$ is a measure (proved in Step 3);
- (ii) $F(\cdot, A)$ is allower semicontinuous L^p (because it is a Γ -limit);
- (iii) $\int_A |u'|^p dt \le F(u,A) \le C \int_A (1+|u'|^p) dt$ (by the assumptions on f); (iv) F is local, i.e. u=v a.e. on $B \Rightarrow F(u,B) = F(v,B)$ (we refer to Acerbi & Buttazzo [JAM] for the proof):
- (v) F(u+a,A) = F(u,A) for every $a \in \mathbf{R}^n$ (proved in Step 4).

Then there exists a function $\varphi(t,z)$ convex in z such that

$$F(u, A) = \int_{A} \varphi(t, u') dt.$$

The fact that in our case the function φ does not depend on t follows from the translations invariance of F (easy to prove):

$$F(u,A) = F(u_{\tau}, A + \tau) \qquad (u_{\tau}(t) = u(t - \tau)).$$

Step 6. Setting for every $z \in \mathbf{R^n}$ and T > 0

$$M_T(z) = \inf \left\{ \frac{1}{T} \int_0^T f(u, u') dt : u \in W^{1,p}(0, T), \ u(0) = 0, \ u(T) = Tz \right\}$$

there exists

$$\lim_{T \to +\infty} M_T(z) = M(z).$$

We refer to Acerbi & Buttazzo [JAM] for the proof.

Step 7. $M(z) = \varphi(z)$ for every $z \in \mathbf{R}^{\mathbf{n}}$.

We refer to Acerbi & Buttazzo [JAM] for the proof.

We can conclude now the proof of the main Γ -convergence theorem because for every $\varepsilon_h \to 0$ we may extract (ε_{h_k}) such that $F_{\varepsilon_{h_k}}$ Γ -converges to some $\int_A \varphi(u') \, dt$ with φ possibly depending on the subsequence choosen. By Step 7 the function varphi is identified in a way which is independent of the subsequence choosen; therefore the entire (F_{ε}) Γ -converges to $\int_A \varphi(u') \, dt$.

Example. Let n=2 and consider the chessboard structure with $f(s,z)=a(s)|z|^2$ (a is considered extended periodically). Therefore $f_{\varepsilon}(s,z)=a(s/\varepsilon)|z|^2$ corresponds to the Riemannian metric with coefficients $a(s/\varepsilon)\delta_{ij}$.

The rescaled coefficient a(s)

We know that as $\varepsilon \to 0$ the limit functional is of the form

$$\int_0^1 \varphi(u') \, dt$$

with φ convex. In the theorem above it is easy to prove that f(s,z) is positively p-homogeneous in z so is $\varphi(z)$; then in our case $\varphi(z)$ is positively 2-homogeneous with

$$\alpha |z|^2 \le \varphi(z) \le \beta |z|^2.$$

The following fact hold.

- •) If $\alpha \neq \beta$ then $\varphi(z)$ is not a quadratic form (see Acerbi & Buttazzo [JAM]); therefore the variational limit of a sequence of Riemannian metrics may be not Riemannian but only a Finsler metric; the class of Finsler metrics on the contrary is closed under Γ -convergence.
- •) If β/α is large enough then the function φ depends only on α and has the form

$$\varphi(z) = \alpha \left((\sqrt{2} - 1)|z_1| \wedge |z_2| + |z_1| \vee |z_2| \right)^2.$$

Lesson 3. Gamma-convergence for a class of singular perturbation problems

We want to study the asymtotic behaviour (in terms of Γ -convergence) of problems of the form

$$F_{\varepsilon}(u) = \int_{\Omega} f(x, u, \varepsilon Du, \varepsilon^2 D^2 u, \dots, \varepsilon^m D^m u) dx.$$

For instance the optimal control problem (u is the state, v is the control)

$$\min \int_{\Omega} \left(k|v|^2 + |u - u_0(x)|^p \right) dx$$

with state equation

$$\begin{cases} \varepsilon^2 \Delta u + g(u) = v \\ u \in H_0^1(\Omega) \end{cases}$$

reduces to the functional

$$\int_{\Omega} k|\varepsilon^2 \Delta u + g(u)|^2 + |u - u_0(x)|^p dx.$$

The first difficulty to overcome is the lack of equi-coerciveness in the Sobolev spaces; therefore we study the Γ -limit in the weak L^p topology.

We make the following assumptions on f(x, s, z) where s represents u and z represents (Du, D^2u, \ldots, D^mu) :

(i) there exist $a \in L^1$, $c \ge 1$, p > 1, $1 \le r \le p$ such that

$$-a(x) + |s|^p \le f(x, s, z) \le a(x) + C[|s|^p + |z|^r];$$

(ii) there exist continuity moduli w and σ such that

$$|f(x,s,z) - f(y,t,w)| \le w(x,|y-x|) + \sigma(|y-x| + |t-s| + |w-z|)(a(x) + f(x,s,z));$$

(iii) $f(x,s,z) + |s|^p + a(x) \ge \gamma(s,z)$ where γ is such that

$$\int_{A} \sum_{|\alpha| \le m} |D^{\alpha} u|^r dx \le \lambda(A, A') \int_{A'} \gamma(u, Du, \dots, D^m u) dx \qquad \forall A \subset \subset A'$$

where $\lambda(A, A')$ is such that

$$\lim_{t \to +\infty} \lambda(tA, tA') < +\infty.$$

For instance, if

$$F_{\varepsilon}(u) = \int_{\Omega} k|\varepsilon^2 \Delta u + g(u)|^2 + |u - u_0(x)|^p dx$$

the assumptions above are fulfilled with (m = r = 2)

$$f(x, s, z) = k \left| \sum_{i=1}^{n} z_{ii} + g(s) \right|^{2} + \left| s - u_{0}(x) \right|^{p}$$
$$\gamma(s, z) = C_{1} \left[\left| \sum_{i=1}^{n} z_{ii} \right|^{2} + \left| s \right|^{2} \right]$$
$$\lambda(A, A') = C_{2} \max\{1, \text{dist}^{-4}(A, \partial A')\}$$

provided g is such that

$$|g(s)| \le C(1+|s|^{p/2})$$

 $|g(s)-g(t)| \le \omega(t-s|)(1+|s|^{p/2}).$

Theorem. There exists a function $\psi(x,s)$ convex in s such that

$$F_{\varepsilon}(u,A) \stackrel{\Gamma}{\longrightarrow} \int_{A} \psi(x,u) \, dx$$
 (weakly in $L^{p}(A)$)

for every $A \in \mathcal{A}$. Moreover

$$f_{s,z}^{**}(x,s,0) \le \psi(x,s) \le f_{s}^{**}(x,s,0)$$

where $f_{s,z}^{**}$ and f_s^{**} represent the convexification of f in (s,z) and in z respectively. A representation formula for ψ is $(Y =]0,1[^n)$

$$\psi(x,s) = \lim_{\varepsilon} \left[\inf \left\{ F_{\varepsilon}(x,u) : \int_{Y} u \, dy = s \right\} \right] =$$

$$= \inf \left\{ F_{\varepsilon}(x,u) : \varepsilon > 0, \int_{Y} u \, dy = s \right\}$$

where

$$F_{\varepsilon}(x,u) = \int_{Y} f(x,u(y),\varepsilon Du(y),\dots,\varepsilon^{m} D^{m} u(y)) dy.$$

We prove only the key fact that the Γ – \limsup is subadditive, by referring for all other details to Buttazzo and Dal Maso [CRAS], [Ann. SNS]. Setting

$$F^+(u,A) = \inf \{ \limsup_{h} F_{\varepsilon_h}(u_h,A) : u_h \to u \ wL^p \}$$

we have to prove for every $u \in L^p(A \cup B)$ and $C \subset\subset A \cup B$

$$F^+(u,C) \le F^+(u,A) + F^+(u,B).$$

Fix $K = \overline{C} \setminus B$ and A_0, B_0 with $K \subset A_0 \subset \subset B_0 \subset \subset A$. Fix an integer ν and let $(A_i)_{1 \leq i \leq \nu}$ be such that $A_0 \subset \subset A_1 \subset \subset \ldots \subset \subset A_{\nu} \subset \subset B_0$. Denote by $S = C \cap (B_0 \setminus A_0)$ and by $S_i = C \cap (A_i \setminus \overline{A}_{i-1})$ and let $\varphi_i \in C_c^{\infty}(A_i)$ be such that $0 \leq \varphi_i 1$ and $\varphi_i = 1$ on A_{i-1} . We have

$$F^{+}(u, A) = \limsup_{h} F_{\varepsilon_{h}}(u_{h}, A)$$
$$F^{+}(u, B) = \limsup_{h} F_{\varepsilon_{h}}(v_{h}, B)$$

for suitable sequences (u_h) and (v_h) converging to u. Setting

$$w_{i,h} = \varphi_i u_h + (1 - \varphi_i) v_h$$

we have

$$F_{\varepsilon_{h}}(w_{i,h},C) \leq F_{\varepsilon_{h}}(u_{h},C \cap A_{i-1}) + F_{\varepsilon_{h}}(v_{h},C \setminus \overline{A}_{i}) + \\ + C \int_{S_{i}} \left[a(x) + |w_{i,h}|^{p} + \sum_{k=1}^{m} |\varepsilon_{h}^{k} D^{k} w_{i,h}|^{r} \right] dx \\ \leq F_{\varepsilon_{h}}(u_{h},A) + F_{\varepsilon_{h}}(v_{h},B) + \\ + C \int_{S_{i}} \left[a(x) + |u_{h}|^{p} + |v_{h}|^{p} + \sum_{k=1}^{m} \varepsilon_{h}^{kr} (|D^{k} u_{h}|^{r} + |D^{k} v_{h}|^{r}) \right] dx \\ + C_{\nu} \int_{S_{i}} \sum_{k=1}^{m} \varepsilon_{h}^{kr} \sum_{j=0}^{k-1} (|D^{j} u_{h}|^{r} + |D^{j} v_{h}|^{r}) dx$$

where C_{ν} depends on $\|\varphi_i\|_{C^m}$ for $i=1,\ldots,\nu$. Let i_h be an index such that

$$\int_{S_{i_h}} \left[a(x) + |u_h|^p + |v_h|^p + \sum_{k=1}^m \varepsilon_h^{kr} (|D^k u_h|^r + |D^k v_h|^r) \right] dx \le \frac{1}{\nu} \int_S \left[a(x) + |u_h|^p + |v_h|^p + \sum_{k=1}^m \varepsilon_h^{kr} (|D^k u_h|^r + |D^k v_h|^r) \right] dx$$

and set $w_h = w_{i_h,h}$. Then $w_h \to u$ and

$$F_{\varepsilon_{h}}(w_{h},C) \leq F_{\varepsilon_{h}}(u_{h},A) + F_{\varepsilon_{h}}(v_{h},B) + \frac{C}{\nu} \int_{S} \left[a(x) + |u_{h}|^{p} + |v_{h}|^{p} + \sum_{k=1}^{m} \varepsilon_{h}^{kr} (|D^{k}u_{h}|^{r} + |D^{k}v_{h}|^{r}) \right] dx + C_{\nu} \int_{S} \sum_{k=1}^{m} \varepsilon_{h}^{kr} \sum_{j=0}^{k-1} (|D^{j}u_{h}|^{r} + |D^{j}v_{h}|^{r}) dx.$$

As $h \to +\infty$

$$F^{+}(u,C) \leq \limsup_{h} F_{\varepsilon_{h}}(w_{h},C) \leq F^{+}(u,A) + F^{+}(u,B) + \frac{C}{\nu} + \frac{C}{\nu} \limsup_{h} \int_{S} \sum_{k=1}^{m} \varepsilon_{h}^{kr} (|D^{k}u_{h}|^{r} + |D^{k}v_{h}|^{r}) dx + C_{\nu} \limsup_{h} \int_{S} \sum_{k=1}^{m} \varepsilon_{h}^{kr} \sum_{j=0}^{k-1} (|D^{j}u_{h}|^{r} + |D^{j}v_{h}|^{r}) dx.$$

Set now $U_h(x) = u_h(\varepsilon_h x)$ and $V_h(x) = v_h(\varepsilon_h x)$; then, for every $S' \subset\subset A \cap B$

$$\int_{S'} \sum_{k=1}^{m} \varepsilon_{h}^{kr} (|D^{k}u_{h}|^{r} + |D^{k}v_{h}|^{r}) dx = \varepsilon_{h}^{m} \int_{S'/\varepsilon_{h}} \sum_{k=1}^{m} (|D^{k}U_{h}|^{r} + |D^{k}V_{h}|^{r}) dx \leq$$

$$\leq \varepsilon_{h}^{n} \lambda (S'/\varepsilon_{h}, \frac{A \cap B}{\varepsilon_{h}}) \int_{(A \cap B)/\varepsilon_{h}} [\gamma(U_{h}, \dots, D^{m}U_{h}) + \gamma(V_{h}, \dots, D^{m}V_{h})] dx =$$

$$= \lambda (S'/\varepsilon_{h}, \frac{A \cap B}{\varepsilon_{h}}) \int_{A \cap B} [\gamma(u_{h}, \dots, \varepsilon_{h}^{m}D^{m}u_{h}) + \gamma(v_{h}, \dots, \varepsilon_{h}^{m}D^{m}v_{h})] dx \leq$$

$$\leq \lambda (S'/\varepsilon_{h}, \frac{A \cap B}{\varepsilon_{h}}) \int_{A \cap B} [2a(x) + |u_{h}|^{p} + |v_{h}|^{p} + f(x, u_{h}, \dots, \varepsilon_{h}^{m}D^{m}u_{h}) +$$

$$+ f(x, v_{h}, \dots, \varepsilon_{h}^{m}D^{m}v_{h})] dx \leq$$

$$\leq \lambda (S'/\varepsilon_{h}, \frac{A \cap B}{\varepsilon_{h}}) \int_{A \cap B} [C + F_{\varepsilon_{h}}(u_{h}, A) + F_{\varepsilon_{h}}(v_{h}, B)] \leq C.$$

By using inequalities as

$$\int_{S} |D^{k}w|^{r} dx \le \sigma \int_{S'} |D^{m}w|^{r} dx + C_{\nu} \int_{S'} |w|^{r} dx$$

for every $1 \le k \le m-1$ and every $\sigma > 0$, where $S \subset\subset S'$, we have

$$C_{\nu} \sum_{k=1}^{m} \varepsilon_{h}^{kr} \sum_{j=0}^{k-1} \int_{S} |D^{j} u_{h}|^{r} dx \leq$$

$$\leq C_{\nu} \sum_{k=1}^{m} \varepsilon_{h}^{kr} \int_{S'} [\sigma |D^{k} u_{h}|^{r} + C_{\sigma} |u_{h}|^{r}] dx \leq$$

$$\leq \sigma C_{\nu} \int_{S'} \sum_{k=1}^{m} \varepsilon_{h}^{kr} |D^{k} u_{h}|^{r} dx + \varepsilon_{h} C_{\nu} C_{\sigma}$$

and analogously for v_h . Therefore, arguing as before we obtain

$$C_{\nu} \limsup_{h} \int_{S} \sum_{k=1}^{m} \varepsilon^{kr} \sum_{j=0}^{k-1} (|D^{j}u_{h}|^{r} + |D^{j}v_{h}|^{r}) dx \le \sigma C_{\nu}$$

so that

$$F^{+}(u,C) \leq F^{+}(u,A) + F^{+}(u,B) + \frac{C}{\nu} + \sigma C_{\nu}$$

and the subadditivity follows by taking first the limit as $\sigma \to 0$ and then the limit as $\nu \to +\infty$.

Once the subadditivity is proved, standard methods prove that the Γ -limit $F(u, \cdot)$ is a measure, and by the Buttazzo and Dal Maso [RM] integral representation theorem

$$F(u,A) = \int_{A} \psi(x,u) \, dx$$

for a suitable $\psi(x,s)$ convex in s. The inequality $f_{s,z}^{**}(x,s,0) \leq \psi(x,s)$ is trivial because if $u_h \to u$ weakly

$$\int_{A} f_{s,z}^{**}(x,u,0) dx \leq \liminf_{h} \int_{A} f_{s,z}^{**}(x,u_{h},\varepsilon_{h}Du_{h},\dots,\varepsilon_{h}^{m}D^{m}u_{h}) dx \leq$$

$$\leq \liminf_{h} \int_{A} f(x,u_{h},\varepsilon_{h}Du_{h},\dots,\varepsilon_{h}^{m}D^{m}u_{h}) dx$$

and so

$$\int_{A} f_{s,z}^{**}(x,u,0) \, dx \le \int_{A} \psi(x,u) \, dx.$$

For the inequality $\psi(x,s) \leq f_s^{**}(x,s,0)$ it is enough to show that

$$\int_{A} \psi(x, u) \, dx \le \int_{A} f(x, u, 0) \, dx$$

for every u. This can be proved by taking $u_h = \rho_h * u$ where $\rho_h(x) = \varepsilon_h^{-n\theta} \rho(\varepsilon_h^{-\theta} x)$; if θ is small enough $(\theta < 1/n + 1)$ we have $u_h \to u$ strongly in L^p and $\varepsilon_h^k D^k u_h \to 0$ strongly in L^p , so that

$$\int_A \psi(x, u) \, dx \le \liminf_h \int_A f(x, u_h, \dots, \varepsilon_h^m D^m u_h) \, dx = \int_A f(x, u, 0) \, dx.$$

In the case $f(x, s, z) = k |\sum_{i=1}^{n} z_{ii} + g(s)|^2 + |s - u_0(x)|^p$ it is possible to prove (see Buttazzo & Dal Maso [Ann. SNS])

- •) $g \text{ affine } \Rightarrow \psi(x,s) = f_s^{**}(x,s,0) = k|g(s)|^2 + |s u_0(x)|^p;$
- •) g decreasing $\Rightarrow \psi(x,s) = f_s^*(x,s,0) = k|g(s)|^{-1} + |s-u_0(x)|^{-1}$; •) the equality $\psi(x,s) = f_s^{**}(x,s,0)$ is not true in general; •) $g \ge 0$ convex $\Rightarrow \psi(x,s) = k|g(s)|^2 + |s-u_0(x)|^p$.

Note that in the case

$$F_{\varepsilon}(u) = \int_{\Omega} [\varepsilon^{2} |Du|^{2} + W(u)] dx$$

we have $f(s,z) = |z|^2 + W(s)$ so that

$$f_{s,z}^{**}(s,z) = f_{s}^{**}(s,z) = |z|^2 + W^{**}(s).$$

Hence $\psi(x,s) = W^{**}(s)$.

Lesson 4. A limit problem in phase transitions theory

Let $W: \mathbf{R} \to \mathbf{R}$ be a positive continuous function with only two zeros (say at -1 and at 1); consider the functionals

$$F_{\varepsilon}(u) = \int_{\Omega} \left[\varepsilon |Du|^2 + \frac{1}{\varepsilon} W(u) \right] dx$$

where Ω is a bounded open Lipschitz subset of $\mathbf{R}^{\mathbf{n}}$. We shall prove that the Γ -limit (as $\varepsilon \to 0$) in the topology $L^1(\Omega)$ is

$$F(u) = \begin{cases} C_0 \int_{\Omega} |Du| & \text{if } |u(x)| = 1 \text{ for a.e. } x \in \Omega \\ +\infty & \text{otherwise} \end{cases}$$

defined for all $u \in BV(\Omega)$, where $C_0 = 2 \int_{-1}^{1} \sqrt{W(s)} ds$.

It is convenient to introduce the function

$$\phi(t) = \int_0^t \sqrt{W(s)} \, ds$$

and to write F(u) for $|u| \equiv 1$ as

$$F(u) = 2 \int_{\Omega} |D(\phi \circ u)|.$$

Then the inequality

$$F(u) \leq \Gamma - \liminf_{\varepsilon} F_{\varepsilon}(u)$$

is rather easy to prove. Indeed, when $|u| \not\equiv 1$ we have

$$\liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon})) \ge \liminf_{\varepsilon} \frac{1}{\varepsilon} \int_{\Omega} W(u_{\varepsilon}) \, dx = +\infty$$

whereas if $|u| \equiv 1$

$$\liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon}) \ge \liminf_{\varepsilon} \int_{\Omega} 2|Du_{\varepsilon}|\sqrt{W(u_{\varepsilon})} dx = \\
= \liminf_{\varepsilon} \int_{\Omega} 2|D(\phi \circ u_{\varepsilon})| dx \ge 2 \int_{\Omega} |D(\phi \circ u)|$$

where the first inequality follows from the standard $a^2 + b^2 \ge 2ab$ and the last one from the lower semicontinuity of the total variation functional.

The approximating sequence

We prove now the opposite inequality

$$F(u) \ge \Gamma \limsup_{\varepsilon} F_{\varepsilon}(u)$$

only for functions u of the form $-1_A + 1_{\Omega \setminus A}$ where A is an open set with a smooth boundary Σ transversal to $\partial \Omega$. We refer to the original papers of Modica & Mortola [BUMI], [BUMI] for the proof that from this particular case we can deduce, by a density argument, the general case.

We want to construct an approximating sequence u_{ε} as in the picture, where the thickness of the transition layer and the transition itself have to be suitably choosen.

Set for every $t \in \mathbf{R}$

$$\psi_{\varepsilon}(t) = \int_{-1}^{t} \frac{\varepsilon}{\sqrt{\varepsilon + W(s)}} ds$$

$$\varphi_{\varepsilon}(t) = \begin{cases} -1 & \text{if } t \leq 0\\ \psi_{\varepsilon}^{-1}(t) & \text{if } 0 \leq t \leq \psi_{\varepsilon}(1)\\ 1 & \text{if } t \geq \psi_{\varepsilon}(1) \end{cases}$$

and, if d(x) = dist(x, A)

$$u_{\varepsilon}(x) = \varphi_{\varepsilon}(d(x)).$$

We have $u_{\varepsilon} \to u$ in $L^1(\Omega)$ and, if $\Sigma_{\varepsilon} = \{x \in \Omega : 0 < d(x) < \psi_{\varepsilon}(1)\}$

$$F_{\varepsilon}(u_{\varepsilon}) = \int_{\Omega} \left[\varepsilon |\varphi_{\varepsilon}^{1}(d(x))|^{2} + \frac{1}{\varepsilon} W(\varphi_{\varepsilon}(d(x))) \right] dx =$$

$$= \int_{\Sigma_{\varepsilon}} \left[\varepsilon |\varphi_{\varepsilon}^{1}(d)|^{2} + \frac{1}{\varepsilon} W(\varphi_{\varepsilon}(d)) \right] dx =$$

$$= |\Sigma| \int_{0}^{\psi_{\varepsilon}(1)} \left[\varepsilon |\varphi_{\varepsilon}^{1}(t)|^{2} + \frac{1}{\varepsilon} W(\varphi_{\varepsilon}(t)) \right] dt.$$

Since

$$\varphi_{\varepsilon}' = \frac{1}{\psi'(\psi_{\varepsilon}^{-1})} = \frac{\sqrt{\varepsilon + W(\psi_{\varepsilon}^{-1})}}{\varepsilon} = \frac{1}{\varepsilon} \sqrt{\varepsilon + W(\varphi_{\varepsilon})}$$

we get

$$F_{\varepsilon}(u_{\varepsilon}) = |\Sigma| \int_{0}^{\psi_{\varepsilon}(1)} \left[\frac{\varepsilon + W(\varphi_{\varepsilon})}{\varepsilon} + \frac{1}{\varepsilon} W(\varphi_{\varepsilon}) \right] dt \le$$

$$\le \frac{2|\Sigma|}{\varepsilon} \int_{0}^{\psi_{\varepsilon}(1)} [\varepsilon + W(\varphi_{\varepsilon})] \frac{dt}{d\varphi_{\varepsilon}} d\varphi_{\varepsilon}$$

$$= 2|\Sigma| \int_{-1}^{1} \sqrt{\varepsilon + W(s)} ds.$$

Therefore

$$\limsup F_{\varepsilon}(u_{\varepsilon}) \leq C_0|\Sigma|.$$

Other cases have been considered in the Modica and Mortola paper; for instance if W is periodic and $t_{\varepsilon} \to +\infty$

$$F_{\varepsilon}(u) = \int_{\Omega} \left[\varepsilon |Du|^2 + \frac{1}{\varepsilon} W(t_{\varepsilon}u) \right] dx$$

 Γ -converge to

$$F(u) = C_0 \int_{\Omega} |Du| \qquad (\forall u \in BV(\Omega))$$

where (T is the period of W)

$$C_0 = \frac{2}{T} \int_0^T \sqrt{W(s)} \, ds.$$

Lesson 5. Gamma-convergence in optimal control the-

The abstract framework is the following:

- -) Y space of states;
- -) U space of controls;
- -) J(u, y) cost functional;
- -) $E \subset U \times Y$ admissible set given by the state equation. The optimal control problem is then

$$\min\{J(u,y) : (u,y) \in E\}$$

or equivalently

$$\min\{F(u,y): (u,y) \in U \times Y\}$$
 where $F = J + \chi_E$.

When we deal with sequences of problems

$$\min\{F_{\varepsilon}(u,y): (u,y)\in U\times Y\}$$
 where $F_{\varepsilon}=J_{\varepsilon}+\chi_{E_{\varepsilon}}$

we have to study the Γ -convergence of F_{ε} in the product space $U \times Y$.

The typical case is:

- -) $U = L^p(0, T; \mathbf{R}^m)$ topology $w L^p$;
- -) $Y = W^{1,1}(0, T; \mathbf{R}^{\mathbf{m}})$ topology strong L^{∞} ;

-) $J_{\varepsilon}(u,y) = \int_{0}^{T} f_{\varepsilon}(t,y,u) dt;$ -) $E_{\varepsilon} = \{y' = a_{\varepsilon}(t,y) + b_{\varepsilon}(t,y)u, \ y(0) = \xi_{\varepsilon}\}.$ We would like to study the Γ-limits of J_{ε} and of $\chi_{E_{\varepsilon}}$ separatly, but the equality

$$\Gamma \lim F_{\varepsilon} = \Gamma \lim J_{\varepsilon} + \Gamma \lim \chi_{E_{\varepsilon}}$$

is false in general. To bypass this difficulty we introduce the multiple Γ -limits for functions on a product space.

$$\begin{split} &\Gamma(U^-,Y^-) \liminf_{\varepsilon} F_{\varepsilon}(u,y) = \inf_{u_{\varepsilon} \to u} \inf_{y_{\varepsilon} \to y} \liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon},y_{\varepsilon}) \\ &\Gamma(U^-,Y^+) \liminf_{\varepsilon} F_{\varepsilon}(u,y) = \inf_{u_{\varepsilon} \to u} \sup_{y_{\varepsilon} \to y} \liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon},y_{\varepsilon}) \\ &\Gamma(U^+,Y^-) \liminf_{\varepsilon} F_{\varepsilon}(u,y) = \sup_{u_{\varepsilon} \to u} \inf_{y_{\varepsilon} \to y} \liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon},y_{\varepsilon}) \\ &\Gamma(U^+,Y^+) \liminf_{\varepsilon} F_{\varepsilon}(u,y) = \sup_{u_{\varepsilon} \to u} \sup_{y_{\varepsilon} \to y} \liminf_{\varepsilon} F_{\varepsilon}(u_{\varepsilon},y_{\varepsilon}) \end{split}$$

and analogously for the Γ -limits with \limsup . When two of them coincide we use notations as

$$\Gamma(U,Y^-) \liminf_{\varepsilon} F_{\varepsilon}, \quad \Gamma(U,Y) \limsup_{\varepsilon} F_{\varepsilon}, \quad \Gamma(U^-,Y) \lim_{\varepsilon} F_{\varepsilon}.$$

In this way it is possible to sum with the Γ -limits. More precisely we have:

$$\Gamma(U^-,Y^-)\lim_\varepsilon (F_\varepsilon+G_\varepsilon) = \Gamma(U^-,Y)\lim_\varepsilon F_\varepsilon + \Gamma(U,Y^-)\lim_\varepsilon G_\varepsilon$$

(see Buttazzo and Dal Maso [JOTA]). Since the Γ -limits which we want to study is the

$$\Gamma(U^-, Y^-) \lim_{\varepsilon} (J_{\varepsilon} + \chi_{E_{\varepsilon}})$$

we have to identify the limits

$$\Gamma(U^{-}, Y) \lim_{\varepsilon} J_{\varepsilon}$$

$$\Gamma(U, Y^{-}) \lim_{\varepsilon} \chi_{E_{\varepsilon}}.$$

We restrict our analysis to the case (for other cases see Buttazzo and Dal Maso [JOTA])

$$J_{\varepsilon}(u,y) = \int_{0}^{T} f_{\varepsilon}(t,y,u) dt$$

$$E_{\varepsilon} = \{ y' = a_{\varepsilon}(t,y) + b_{\varepsilon}(t,y)u, \ y(0) = \xi_{\varepsilon} \}.$$

Case when b_{ε} is strongly convergent.

Assumptions on $f_{\varepsilon}:]0, T[\times \mathbf{R^n} \times \mathbf{R^m} \to \overline{\mathbf{R}}$ Borel functions:

- (i) $f_{\varepsilon}(t, s, \cdot)$ is convex and l.s.c. on $\mathbf{R}^{\mathbf{m}}$;
- (ii) $f_{\varepsilon}(t,s,z) \ge |z|^p$ (p>1);
- (iii) for every R > 0 there exists a continuity modulus ω_R such that

$$|f_{\varepsilon}(t,s_1,z) - f_{\varepsilon}(t,s_2,z)| < \omega_R(|s_1 - s_2|)(1 + f_{\varepsilon}(t,s,z))$$

for every $t \in]0, T[$, $z \in \mathbf{R^m}$, $s_1, s_2 \in \mathbf{R^n}$ with $|s_1|, |s_2| \leq R$;

(iv) there exists $u_{\varepsilon} \in L^p$ such that $f_{\varepsilon}(t,0,u_{\varepsilon}(t))$ is weakly compact in L^1 .

Then the $\Gamma(U^-, Y) \lim_{\varepsilon} J_{\varepsilon}$ can be computed in the following way (see Marcellini and Sbordone [Ric. Mat. 1977]: for every $s \in \mathbf{R}^{\mathbf{n}}$ and $z^* \in \mathbf{R}^{\mathbf{m}}$

$$\varphi(\cdot, s, z^*) = w - L^1 \lim_{\varepsilon} f_{\varepsilon}^*(\cdot, s, z^*)$$
$$f(t, s, z) = \varphi^*(t, s, z)$$
$$\Gamma(U^-, Y) \lim_{\varepsilon} J_{\varepsilon}(u, y) = \int_0^T f(t, y, u) dt.$$

For instance if $f_{\varepsilon}(t,s,z) = a_{\varepsilon}(t)|z|^2 + |s-y_0(t)|^2$ we have $f(t,s,z) = a(t)|z|^2 + |s-y_0(t)|^2$ where

$$\frac{1}{a_{\varepsilon}} \to \frac{1}{a}$$
 weakly in $L^1(0,T)$.

Concerning the differential state equations we assume:

- (i) $|a_{\varepsilon}(t,s_1) a_{\varepsilon}(t,s_2)| \leq \alpha_{\varepsilon}(t)|s_1 s_2|$ with $\sup_{\varepsilon} \int_0^T \alpha_{\varepsilon} dt < +\infty$; (ii) $|b_{\varepsilon}(t,s_1) b_{\varepsilon}(t,s_2)| \leq \beta_{\varepsilon}(t)|s_1 s_2|$ with $\sup_{\varepsilon} \int_0^T \beta_{\varepsilon}^{p'} dt < +\infty$;

- (iii) $\sup_{\varepsilon} \int_{0}^{T} |a_{\varepsilon}(t,0)| dt < +\infty;$ (iv) $\sup_{\varepsilon} \int_{0}^{T} |b_{\varepsilon}(t,0)|^{p'} dt < +\infty;$ (v) $a_{\varepsilon}(\cdot,s) \to a(\cdot,s)$ weakly in L^{1} $\forall s \in \mathbf{R^{n}};$ (vi) $b_{\varepsilon}(\cdot,s) \to b(\cdot,s)$ strongly in $L^{p'}$ $\forall s \in \mathbf{R^{n}};$
- (vii) $\xi_{\varepsilon} \to \xi$ in $\mathbf{R}^{\mathbf{n}}$.

Then $\Gamma(U, Y^-) \lim_{\varepsilon} \chi_{E_{\varepsilon}} = \chi_R$ where

$$E = \{ y' = a(t, y) + b(t, y)u, \ y(0) = \xi \}.$$

Therefore the limit control problems is

$$\min \left\{ \int_0^T f(t, y, u) dt : y' = a(t, y) + b(t, y)u, \ y(0) = \xi \right\}.$$

Case when b_{ε} is only weakly convergent.

Assume for the sake of simplicity that $b_{\varepsilon} = b_{\varepsilon}(t)$ and that (vi) is substituted by (vi') $b_{\varepsilon} \to b$ weakly in $L^{p'}$.

The simplest situation is when $|b_{\varepsilon}|^{p'}$ is equi-uniformly integrable (we shall remove later this assumption). In this case it is convenient to introduce an auxiliary variable $v \in V = L^1(0,T)$ and rewrite the control problems in the form

$$\min \left\{ \int_0^T \left[f_{\varepsilon}(t, y, u) + \chi_{v = b_{\varepsilon}(t)u} \right] dt : y' = \frac{a}{\varepsilon}(t, y) + v, \ y(0) = \xi_{\varepsilon} \right\}.$$

We can now apply the previous analysis with

$$\begin{split} \widetilde{Y} &= Y \\ \widetilde{U} &= U \times V \\ \widetilde{f}_{\varepsilon}(t,s,z,w) &= f_{\varepsilon}(t,s,z) + \chi_{w=b_{\varepsilon}(t)z} \\ \widetilde{a}_{\varepsilon}(t,s) &= a_{\varepsilon}(t,s) \\ \widetilde{b}_{\varepsilon}(t,s) \cdot (z,w) &= w \end{split}$$

obtaining as a limit problem

$$\min \left\{ \int_0^T \widetilde{f}(t, y, u, v) dt : y' = a(t, y) + v, \ y(0) = \xi \right\}$$

being

$$\widetilde{f}(t, s, z, w) = (w - L^1 \lim_{\varepsilon} (f_{\varepsilon}(t, s, z) + \chi_{w = b_{\varepsilon}(t)z})^*)^*$$

where the * operator is now made with respect to the variables (z, w). Finally we eliminate the variable v by solving v = y' - a(t, y) and plugging into the cost functional

$$\min \left\{ \int_0^T \widetilde{f}(t, y, u, y' - a(t, y)) dt : y(0) = \xi \right\}.$$

Note that

$$\left(f_{\varepsilon}(t,s,z) + \chi_{w=b_{\varepsilon}(t)z}\right)^{*}(t,s,z^{*},w^{*}) = f_{\varepsilon}^{*}(t,s,z^{*} + b_{\varepsilon}(t)w^{*})$$

and in some cases the function \tilde{f} is finite everywhere, that is the state equation may disappear in the limit problem. Consider for instance the case

$$f_{\varepsilon}(t, s, z) = |z|^2 + |s - y_0(t)|^2$$
 (for every ε)

and

$$\begin{cases} y' = a_{\varepsilon}(t, y) + b_{\varepsilon}(t)u \\ y(0) = \xi_{\varepsilon} \end{cases}$$

with $a_{\varepsilon}(\cdot,s)$ weakly L^1 convergent to $a(\cdot,s)$ and $b_{\varepsilon}\to b$ weakly L^2 with $b_{\varepsilon}^2\to\beta^2$ weakly L^1 . Then some easy computations give

$$\widetilde{f}(t, s, z, w) = |z|^2 + \frac{(w - b(t)z)^2}{\beta^2(t) - b^2(t)}$$

so that the limit problem is

$$\min \left\{ \int_0^T \left[|u|^2 + |y - y_0(t)|^2 + \frac{|y' - a(t, y) - b(t)u|^2}{\beta^2(t) - b^2(t)} \right] dt : y(0) = \xi \right\}$$

and the relaxed form of the limit state equation is now in a penalization term.

For instance $b_{\varepsilon}(t) = \sin(t/\varepsilon)$ gives $b \equiv 0$, $\beta^2 \equiv 1/2$ so that the limit problem becomes

$$\min \left\{ \int_0^T [|u|^2 + |y - y_0|^2 + 2|y' - a(t, y)|^2] dt : y(0) = \xi \right\}.$$

We want now to drop the assumption that $|b_{\varepsilon}|^{p'}$ is equi-uniformly integrable. In this case we may only obtain (up to extracting subsequences) that $|b_{\varepsilon}|^{p'}$ converges to a suitable measure μ in the weak* convergence of measures. Assume for simplicity that the cost integrands are of the form

$$f_{\varepsilon}(t,s,z) = \varphi_{\varepsilon}(t,z) + \psi(t,s).$$

In this case the limit problem is expressed by means of the measure μ in the following way (see Buttazzo and Freddi [AMSA]). As before consider the auxiliary variable $v = b_{\varepsilon}(t)u$ and the polar integrand (with respect to (z, w))

$$\left(\varphi_{\varepsilon}(t,z) + \chi_{w=b_{\varepsilon}(t)z}\right)^{*} (t,z^{*},w^{*}).$$

It is possible to show that (up to subsequences) this integrand converges weakly* in $\mathcal{M}(\overline{\Omega})$ to a measure of the form

$$g(t, z^*, w^*) \cdot \nu$$
 (with $\nu = dt + \mu_s$)

where $g(t,\cdot,\cdot)$ is convex. Then the limit problem is with cost

$$\int_{\Omega} g^*(t, u, \frac{dv}{d\nu}) d\nu + \int_{\Omega} \psi(t, y) dt + \chi_{\{v < < \nu\}}$$

and state equation

$$\begin{cases} y' = a(t, y) + v & \text{(in the sense of } \mathcal{M}(\overline{\Omega})) \\ y(0) = \xi. \end{cases}$$

Eliminating the variable v (which varies in the space of measures) we obtain again that the limit differential state equation may disappear becoming a penalization:

$$\int_{\Omega} g^*(t, u, y'_r - a(t, y)) dt + \int_{\Omega} g^*(t, 0, \frac{dy'_s}{d\mu_s}) d\mu_s + g^*(0, 0, \frac{y(0^+) - \xi}{\mu(\{0\})}) \mu(\{0\}) + \int_{\Omega} \psi(t, y) dt + \chi_{\{y'_s < < \mu_s\}}$$

where $y' = y'_r \cdot dt + y'_s$ is the decomposition of the measure y' into absolutely continuous and singular parts with respect to the Lebesgue measure dt, and the last term is the constraint that y'_s must be absolutely continuous with respect to μ_s .

In the previous example

$$f_{\varepsilon}(t,s,z) = |z|^2 + |s - y_0(t)|^2$$

$$\begin{cases} y' = a_{\varepsilon}(t,y) + b_{\varepsilon}(t)u \\ y(0) = \xi_{\varepsilon} \end{cases}$$

with $a_{\varepsilon}(\cdot,s) \to a(\cdot,s)$ weakly L^1 , $b_{\varepsilon} \to b$ weakly L^2 but now $b_{\varepsilon}^2 \to \mu$ weakly* in the sense of measures, we get at the limit

$$\begin{split} \int_0^T \left[|u|^2 + |y - y_0(t)|^2 + \frac{|y_r' - a(t,y) - b(t)u|^2}{\mu_r(t) - b^2(t)} \right] \, dt + \\ + \int_{]0,T[} \left| \frac{dy_s'}{d\mu_s} \right|^2 + \frac{|y(0^+) - \xi|^2}{\mu(\{0\})} + \chi_{\{y_s' < < \mu_s\}}. \end{split}$$

For instance, if $b_{\varepsilon}(t) = \sin(t/\varepsilon) + \frac{1}{\sqrt{\varepsilon}} \mathbf{1}_{]0,\varepsilon[}(t)$ we have $b \equiv 0$ and $\mu = \frac{1}{2}dt + \delta_0$ so that the limit problem is

$$\min_{u \in L^2, \ y \in W^{1,1}} \left\{ \int_0^T [|u|^2 + |y - y_0(t)|^2 + 2|y' - a(t,y)|^2] \, dt + |y(0^+) - \xi|^2 \right\}.$$

Bibliography

- E. ACERBI & G. BUTTAZZO: On the limits of periodic Riemannian metrics. J. Analyse Math., 43 (1984), 183–201.
- E. ACERBI & G. BUTTAZZO: Limit problems for plates surrounded by soft material. Arch. Rational Mech. Anal., 92 (1986), 355–370.
- E. ACERBI & G. BUTTAZZO: Reinforcement problems in the calculus of variations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 273–284.
- E. ACERBI, G. BUTTAZZO & D. PERCIVALE: Thin inclusions in linear elasticity: a variational approach. J. Reine Angew. Math., **386** (1988), 99–115.
- E. ACERBI, G. BUTTAZZO & D. PERCIVALE: A variational definition of the strain energy for an elastic string. J. Elasticity, 25 (1991), 137–148.
- G. ALBERTI, L. AMBROSIO & G. BUTTAZZO: Singular perturbation problems with a compact support semilinear term. Asymptotic Anal., (to appear).

- L. AMBROSIO: Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., (to appear).
- L. AMBROSIO & A. BRAIDES: Functionals defined on partitions of sets of finite perimeter, I: integral representation and Γ -convergence. J. Math. Pures Appl., **69** (1990), 285–305.
- L. AMBROSIO & A. BRAIDES: Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl., **69** (1990), 307–333.
- L. AMBROSIO & G. BUTTAZZO: An optimal design problem with perimeter penalization. Calc. Var., 1 (1993), 55–69.
- H. ATTOUCH: Variational Convergence for Functions and Operators. Pitman, Boston, 1984.
- H. ATTOUCH & G. BUTTAZZO: Homogenization of reinforced periodic one-codimensional structures. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 465–484.
- D. AZE & G. BUTTAZZO: Some remarks on the optimal design of periodically reinforced structures. RAIRO Modél. Math. Anal. Numér., **23** (1989), 53–61.
- S. BALDO: Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (2) (1990), 67–90.
- M. BELLONI, G. BUTTAZZO & L. FREDDI: Completion by Gamma-convergence for optimal control problems. Preprint Dipartimento di Matematica Università di Pisa, Pisa (1992).
- G. BOUCHITTE: Singular perturbation of variational problems arising from a two-phase transition model. Appl. Math. Optim., **21** (1990), 289–314.
- A. BRAIDES & A. COSCIA: A singular perturbation approach to problems in fracture mechanics. Math. Mod. Meth. Appl. Sci., (to appear).
- G. BUTTAZZO: Su una definizione generale dei Γ -limiti. Boll. Un. Mat. Ital., 14-B (1977), 722–744.
- G. BUTTAZZO: Thin insulating layers: the optimization point of view. Proceedings of "Material Instabilities in Continuum Mechanics and Related Mathematical Problems", Edinburgh 1985–1986, edited by J. M. Ball, Oxford University Press, Oxford (1988), 11–19.
- G. BUTTAZZO: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes Math. Ser. 207, Longman, Harlow (1989).
- G. BUTTAZZO: Thin structures in elasticity: the variational method. Rend. Sem. Mat. Fis. Milano, **59** (1989), 149–159.
- G. BUTTAZZO & E. CAVAZZUTI: Limit problems in optimal control theory. Proceedings of "Colloque Franco-Québecois", Perpignan 22–26 Juin 1987, in "Analyse Non Linéaire Contribution en l'Honneur de J. J. Moreau", Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 Suppl. (1989), 151–160.
- G. BUTTAZZO & G. DAL MASO: Γ -limit of a sequence of non-convex and non-equi-Lipschitz integral functionals. Ricerche Mat., **27** (1978), 235–251.
- G. BUTTAZZO & G. DAL MASO: Integral representation on $W^{1,\alpha}(\Omega)$ and $BV(\Omega)$ of limits of variational integrals. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., **66** (1979), 338–343.
- G. BUTTAZZO & G. DAL MASO: Γ-limits of integral functionals. J. Analyse Math., 37 (1980), 145–185.
- G. BUTTAZZO & G. DAL MASO: Γ -convergence and optimal control problems. J. Optim. Theory Appl., **38** (1982), 385–407.
- G. BUTTAZZO & G. DAL MASO: Γ-convergence et problèmes de perturbation singulière. C. R. Acad. Sci. Paris, Ser. I **296** (1983), 649–651.
- G. BUTTAZZO & G. DAL MASO: On Nemyckii operators and integral representation of local functionals. Rend. Mat., $\bf 3$ (1983), 491–509.

- G. BUTTAZZO & G. DAL MASO: Singular perturbation problems in the calculus of variations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 395–430.
- G. BUTTAZZO & G. DAL MASO: A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl., **64** (1985), 337–361.
- G. BUTTAZZO & G. DAL MASO: Integral representation and relaxation of local functionals. Nonlinear Anal., 9 (1985), 512–532.
- G. BUTTAZZO & G. DAL MASO: Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions. Bull. Amer. Math. Soc., 23 (1990), 531–535.
- G. BUTTAZZO & G. DAL MASO: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim., 23 (1991), 17–49.
- G. BUTTAZZO & G. DAL MASO: An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal., 122 (1993), 183–195.
- G. BUTTAZZO, G. DAL MASO & U. MOSCO: Asymptotic behaviour for Dirichlet problems in domains bounded by thin layers. In "Essays in Honor of Ennio De Giorgi", Birkhäuser, Boston (1989), 193–249.
- G. BUTTAZZO & L. FREDDI: Functionals defined on measures and applications to non equi-uniformly elliptic problems. Ann. Mat. Pura Appl., **159** (1991), 133–149.
- G. BUTTAZZO & L. FREDDI: Sequences of optimal control problems with measures as controls. Adv. Math. Sci. Appl., 2 (1993), 215–230.
- G. BUTTAZZO & R. V. KOHN: Reinforcement by a thin layer with oscillating thickness. Appl. Math. Optim., 16 (1987), 247–261.
- G. BUTTAZZO & M. TOSQUES: Γ-convergenza per alcune classi di funzionali. Ann. Univ. Ferrara, 23 (1977), 257–267.
- E. CABIB: A relaxed control problem for two-phase conductors. Ann. Univ. Ferrara Sez. VII Sc. Mat., 33 (1987), 207-218.
- E. CABIB & G. DAL MASO: On a class of optimum problems in structural design. J. Optimization Theory Appl., **56** (1988), 39–65.
- D. CAILLERIE: The effect of a thin inclusion of high rigidity in an elastic body. Math. Meth. Appl. Sci., 2 (1980), 251–270.
- P. G. CIARLET & P. DESTUYNDER: A justification of the two dimensional linear plate model. J. Mécanique, ${\bf 18}$ (1979), 315–344.
- P. G. CIARLET & P. DESTUYNDER: A justification of a nonlinear model in plate theory. Comp. Methods Appl. Mech. Eng., 17/18 (1979), 227–258.
- G. DAL MASO: Integral representation on BV of Γ -limits of variational integrals. Manuscripta Math., **30** (1980), 387–416.
- G. DAL MASO: An Introduction to Γ -convergence. Birkhäuser, Boston (1993).
- G. DAL MASO & U. MOSCO: Wiener's criterion and Γ -convergence. Appl. Math. Optim., 15 (1987), 15–63.
- E. DE GIORGI: Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat., 8 (1975), 277–294.
- E. DE GIORGI: Convergence problems for functionals and operators. Proceedings of "Recent Methods in Nonlinear Analysis", Rome 1978, Pitagora, Bologna (1979), 131–188.
- E. DE GIORGI & G. BUTTAZZO: Limiti generalizzati e loro applicazione alle equazioni differenziali. Matematiche, $\bf 36$ (1981), $\bf 53-64$.

- E. DE GIORGI & T. FRANZONI: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1975), 842–850.
- E. DE GIORGI & G. LETTA: Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), 61–99.
- I. FONSECA & L. TARTAR: The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh, **A-111** (1989), 89–102.
- M. E. GURTIN: On a theory of phase transitions with interfacial energy. Arch. Rational Mech. Anal., 87 (1984), 187–212.
- R. V. KOHN & P. STERNBERG: Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh, A-111 (1989), 69–84.
- S. LUCKHAUS & L. MODICA: The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal., 107 (1989), 71–83.
- K. A. LURIE & A. V. CHERKAEV: G-closure of a set of anisotropically conductivity media in the two-dimensional case. J. Optimization Theory Appl., 42 (1984), 283–304.
- K. A. LURIE & A. V. CHERKAEV: G-closure of some particular sets of admissible material characteristics for the problem of bending of thin elastic plates. J. Optimization Theory Appl., 42 (1984), 305–316.
- L. MODICA: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal., **98** (1987), 123–142.
- L. MODICA: Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire, **5** (1987), 453–486.
- L. MODICA & S. MORTOLA: Un esempio di Γ -convergenza. Boll. Un. Mat. Ital., (5) **14-B** (1977), 285–299.
- L. MODICA & S. MORTOLA: Il limite nella Γ -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital., (3) **14-A** (1977), 526–529.
- F. MURAT & L. TARTAR: Optimality conditions and homogenization. Proceedings of "Nonlinear variational problems", Isola d'Elba 1983, Res. Notes in Math. 127, Pitman, London (1985), 1–8.
- N. C. OWEN: Nonconvex variational problems with general singular perturbations. Trans. Amer. Math. Soc., **310** (1988), 393–404.
- N. C. OWEN & P. STERNBERG: Nonconvex problems with anisotropic perturbations. Nonlinear Anal., **16** (1991), 705–718.
- D. PERCIVALE: Perfectly plastic plates: a variational definition. Preprint SISSA, Trieste (1988).
- P. STERNBERG: The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal., 101 (1988), 209–260.
- L. TARTAR: Estimations fines des coefficients homogénéises. Ennio De Giorgi Colloqium, Edited by P. Krée, Res. Notes in Math. 125, Pitman, London (1985) 168-187.