
Andrea BRAIDES

Dipartimento di Elettronica per l’Automazione
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This paper contains the abstract of five lectures conceived as an introduction to Γ-conver-
gence methods in the theory of Homogenization, and delivered on September 8–10, 1993 as
part of the “School on Homogenization” at the ICTP, Trieste. Its content is strictly linked
and complementary to the subject of the courses held at the same School by A. Defranceschi
and G. Buttazzo. Prerequisites are some basic knowledge of functional analysis and of
Sobolev spaces (as a reference we shall use the books by Adams [3] and Ziemer [29]; see
also the Appendix to the Lecture Notes by A. Defranceschi in this volume). A list of
notations can be found at the end of this paper.

Lesson One. Gamma-convergence for Integral
Functionals

1.1. Introduction

The subject of these lectures is the study of the asymptotic behaviour as ε goes to 0 of
integral functionals of the form

(1.1) Fε(u) =

∫

Ω

f(
x

ε
,Du(x)) dx,

defined on some (subset of a) Sobolev space W1,p(Ω; IRN ) (in general, of vector-valued
functions), when f = f(y, ξ) is a Borel function, (almost) periodic in the variable y,
and satisfying the so-called “natural growth” conditions with respect to the variable ξ.
Integrals of this form model various phenomena in Mathematical Physics in the presence of
microstructures (the vanishing parameter ε gives the microscopic scale of the media). The
function f represents the energy density at this lower scale. As an example we can think of
u representing a deformation, and Fε being the stored energy of a cellular elastic material
with Ω as a reference configuration. In other applications u is a difference of potential in
a condenser composed of periodically distributed material, occupying the region Ω, etc.

The main question we are going to answer is: does the (medium modeled by the) energy
Fε behave as a homogeneous medium in the limit? (and if so: can we say something about
this homogeneous limit?)

First we have to give a precise meaning to this statement. The behaviour of the media
described by the integral in (1.1) is given by the behaviour of boundary value problems of
the Calculus of Variations of the form

(1.2) min
{∫

Ω

f(
x

ε
,Du(x)) dx+

∫

Ω

gu dx : u = φ on γ0

}
,

where g is some fixed function, and γ0 is a portion of ∂Ω (here we suppose Ω sufficiently
smooth). If our media behave as a homogeneous medium when ε tends to 0, we expect
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that there exists a function fhom (representing the energy density of the latter), which is
now “homogeneous”, that is, independent on the variable x, such that the minima of the
problems in (1.2) converge as ε→ 0 to the minimum of the problem

(1.3) min
{∫

Ω

fhom(Du(x)) dx+

∫

Ω

gu dx : u = φ on γ0

}
,

and, what is important, the function fhom does not depend on Ω and on the particular
choice we make of g, φ and γ0.

The convergence of these minimum values (and, in some weak sense, also of the
minimizing functions in (1.2) to the minimizer of (1.3)) will be obtained as a consequence
of the convergence of the functionals Fε to the homogenized functional

(1.4) Fhom(u) =

∫

Ω

fhom(Du(x)) dx

in the variational sense of Γ-convergence, which was introduced by E. De Giorgi in the
70s exactly for dealing with problems of this kind. Special relevance will be given to the
illustration of the general method, which can be applied, with the due changes, to the
study of other types of functionals, different than those defined on Sobolev spaces of the
form (1.1) (for example, with essentially the same proof we can obtain a homogenization
result for functionals with volume and surface energies (see [11])). In this spirit, many
results have been simplified for expository purposes; more technical and general theorems
can be found in the papers cited as references.

1.2. Γ-convergence

The notion of Γ-convergence was introduced in a paper by E. De Giorgi and T. Franzoni
in 1975 [18], and was since then much developed especially in connection with applications
to problems in the calculus of variation. We refer to the recent book by Dal Maso [15]
for a comprehensive introduction to the subject. Here we shall be interested mainly in
applications to the asymptotic behaviour of minimum problems for integral functionals
defined on Sobolev spaces.

First we shall give an abstract definition of Γ-convergence on a metric space.

Definition 1.1. Let X = (X, d) be a metric space, and for every h ∈ IN let Fh : X →
[0,+∞] be a function defined on X . We say that the sequence (Fh) Γ(d)-converges in
x0 ∈ X to the value r ∈ [0,+∞] (and we write r = Γ(d)-lim

h
Fh(x0)) if we have:

(i) for every sequence xh such that d(xh, x0) → 0 we have

(1.5) r ≤ lim inf
h

Fh(uh);
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(ii) there exists a sequence xh such that d(xh, x0) → 0, and we have

(1.6) r = lim
h
Fh(uh)

(or, equivalently, r ≥ lim suph Fh(uh)).

If the Γ(d)-limit Γ(d)-lim
h
Fh(x) exists for all x ∈ X , and the function F : X → [0,+∞]

verifies F (x) = Γ(d)-lim
h
Fh(x) for all x ∈ X , then we say that the sequence (Fh) Γ(d)-

converges to F (on X) and we write F = Γ(d)-lim
h
Fh.

Remark 1.2. Note that if F = Γ(d)-lim
h
Fh, then F is a lower semicontinuous function

with respect to the distance d; i.e.,

(1.7) ∀x ∈ X ∀(xh) : d(xh, x) → 0 F (x) ≤ lim inf
h

F (xh).

Remark 1.3. (More remarks on Γ-limits) 1) It can easily be seen, with one-dimensional
examples, that the Γ-convergence of a sequence (Fh) is independent from its pointwise
convergence. In particular a constant sequence Fh = F Γ(d)-converges to its constant
value F if and only if the function F : X → [0,+∞] is lower semicontinuous with respect
to the distance d.

2) If Fh = F is not lower semicontinuous then we have

(1.8) Γ(d)- lim
h
Fh = F ,

where the function F is the d-lower semicontinuous envelope (or relaxation) of F ; i.e., the
greatest d-lower semicontinuous function not greater than F , whose abstract definition can
be expressed as

(1.9) F (x) = inf
{
lim inf

h
F (xh) : d(xh, x) → 0

}
.

3) If a sequence Γ-converges, then so does its every subsequence (to the same limit).

4) If F = Γ(d)- limh Fh and G is any d-continuous function then Γ(d)- limh(Fh +G) =
F +G (this remark will be extremely useful in applications).

5) The Γ-limit of a sequence of convex functions is convex (here and in the following,
we suppose that (X, d) is a topological vector space).

6) The Γ-limit of a sequence of quadratic forms (i.e., Fh(x+y)+Fh(x−y) = 2Fh(x)+
2Fh(y)) is a quadratic form.
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7) Let α > 0; then the Γ-limit of a sequence of positively α-homogeneous functions
(i.e., Fh(tx) = tαFh(x) for all t ≥ 0) is positively α-homogeneous.

We shall easily obtain the property of convergence of minima we are looking for in
the case of sequences of equicoercive Γ-converging functionals.

We recall that a subset K of X is d-compact if from every sequence (xh) in K we can
extract a subsequence (xhk

) converging to an element x ∈ K.
We say that a function F : X → [0,+∞] is d-coercive if there exists a d-compact set

K such that

(1.10) inf{F (x) : x ∈ X} = inf{F (x) : x ∈ K}.

Let us also recall here Weierstrass’ Theorem, which is the fundamental tool of the so-called
direct methods of the calculus of variations: if F is d-coercive and d-lower semicontinuous
then there exists a minimizer for F on X . (Proof : by (1.10) there exists a sequence xh in
K such that F (xh) → inf F . By the d-compactness of K we can suppose that xh → x ∈ K.
By the d-lower semicontinuity of F we have then F (x) ≤ lim

h
F (xh) = inf F ; i.e., x is a

minimizer of F ).
We say that a sequence Fh : X → [0,+∞] is d-equicoercive if there exists a d-compact

set K (independent of h) such that

(1.11) inf{Fh(x) : x ∈ X} = inf{Fh(x) : x ∈ K}.

Theorem 1.4. (The Fundamental Theorem of Γ-convergence) Let (Fh) be a d-equicoercive
sequence Γ(d)-converging on X to the function F . Then we have the convergence of minima

(1.12) min{F (x) : x ∈ X} = lim
h

inf{Fh(x) : x ∈ X}.

Moreover we have also convergence of minimizers: if xh → x and limh Fh(xh) = limh inf Fh,
then x is a minimizer for F .

Proof. Let (hk) be a sequence of indices such that limk inf Fhk
= lim infh inf Fh. Let

(xk) be a sequence in K (K as in (1.11)) verifying

(1.13) lim
k
Fhk

(xk) = lim
k

inf Fhk
= lim inf

h
inf Fh.

By the d-compactness of K we can suppose (possibly passing to a further subsequence)
that xk → x ∈ K. We have then by (1.5)

(1.14) F (x) ≤ lim inf
k

Fhk
(xk) = lim inf

h
inf Fh,
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so that

(1.15) inf F ≤ inf{F (x) : x ∈ K} ≤ lim inf
h

inf Fh.

Since F is d-lower semicontinuous there exists (by Weierstrass’ Theorem) a minimum point
x for F on K. By (1.6) there exists a sequence xh such that xh → x, and

(1.16) min{F (x) : x ∈ K} = F (x) = lim
h
Fh(xh) ≥ lim sup

h
inf Fh.

Hence

(1.17) min{F (x) : x ∈ K} = lim
h

inf Fh.

In order to prove (1.12) it will be sufficient to show that K satisfies the coercivity prop-
erty (1.10). Suppose that (1.10) is not verified, then we must have, by (1.17), inf F <
limh inf Fh, so that there exists x ∈ X such that F (x) < limh inf Fh. This inequality
contradicts (1.6), and hence (1.12) is proven.

The convergence of minimizers is a direct consequence of (1.5) and (1.12).

Note that if Fh is an integral functional with smooth strictly convex integrand, then we
obtain from the Γ-convergence of the sequence (Fh) the G-convergence of the corresponding
Euler equations. It will be clear in the sequel that no regularity of the integrands is in
general necessary for Γ-convergence.

Remark 1.5. The Γ-limit of an arbitrary sequence of functions does not always exist. It
will be convenient then to introduce, beside the Γ-limit already studied, also the Γ-limsup
and Γ-liminf. Let us define then for x ∈ X

(1.18) Γ(d)- lim inf
h

Fh(x) = inf{lim inf
h

Fh(xh) : d(xh, x) → 0},

(1.19) Γ(d)- lim sup
h

Fh(x) = inf{lim sup
h

Fh(xh) : d(xh, x) → 0}.

We have Γ(d)- lim infh Fh(x) = Γ(d)- lim suph Fh(x) = r if and only if there exist the
Γ(d)- limh Fh(x) = r.
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1.3. A Class of Integral Functionals

We have at our disposal now a powerful tool to obtain the desired convergence of minima
in (1.2) and (1.3). The next, crucial point now is to understand what the right choice for
the space (X, d) is, and how to define the functionals Fh.

At this point, we have to specify the conditions we require on the function f . We shall
suppose p > 1, and f : IRn × Mn×N → [0,+∞[ be a Borel function verifying the so-called
“standard growth conditions of order p”: there exist constants c1 ≥ 0, C1 > 0 such that

(1.20) |ξ|p − c1 ≤ f(x, ξ) ≤ C1(1 + |ξ|p), for all x ∈ IRn, ξ ∈ Mn×N

(here and afterwards Mn×N will denote the space of n × N real matrices) so that the
functionals Fε in (1.1) are well-defined on W1,p(Ω; IRN ) for every Ω open subset of IRn.

Let us face now the choice of the space (X, d); the topology of the metric d should be
weak enough to obtain equicoercivity for minimum problems, but strong enough to allow
for Γ-convergence. For the sake of simplicity let us suppose that φ ≡ 0, γ0 = ∂Ω, and Ω
itself being sufficiently smooth and bounded (some of these hypotheses may be weakened).
Let us recall then the following fundamental theorems on Sobolev spaces.

Theorem 1.6. (Poincaré’s Inequality) Let Ω be a bounded open subset of IRn; then there
exist a constant C′ > 0 such that

(1.21)

∫

Ω

|u|p dx ≤ C′

∫

Ω

|Du|p dx

for all u ∈ W1,p
0 (Ω; IRN ).

Theorem 1.7. (Rellich’s Theorem) Let Ω be a Lipschitz bounded open subset of IRn,
and (uh) be a bounded sequence in W1,p(Ω; IRN ). Then there exists a subsequence of uh

converging with respect to the Lp(Ω; IRN ) metric.

Theorem 1.7 can be stated also: “the sets {u ∈ W1,p(Ω; IRN ) : ‖u‖W1,p(Ω;IRN ) ≤ C}

(C any constant) are Lp(Ω; IRN )-compact”.
By Theorems 1.6 and 1.7 we obtain that the whole family of functionals (Fε) is

Lp(Ω; IRN )-equicoercive on W1,p
0 (Ω; IRN ): it is sufficient to set c2 = C1|Ω| ≥

∫

Ω

f(
x

ε
, 0) dx,

and to notice that the set

E = {u ∈ W1,p
0 (Ω; IRN ) : Fε(u) ≤ c2}

is not empty (the constant 0 belongs to E), and by (1.20) is contained in the set

K = {u ∈ W1,p(Ω; IRN ) : ‖u‖W1,p(Ω;IRN ) ≤ (1 + C′)1/p(c1 + c2)
1/p},
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which is Lp(Ω; IRN )-compact (by Theorem 1.7). In fact by (1.20) and Theorems 1.6, if
u ∈ E, then

∫

Ω

(|u|p + |Du|p) dx ≤ (1 + C′)

∫

Ω

|Du|p dx ≤ (1 + C′)(Fε(u) + c1) ≤ (1 + C′)(c1 + c2).

With the same kind of computations we obtain that for each fixed g ∈ Lp′

(Ω; IRN ) the
family of functionals Fε(u) +

∫
Ω
gu dx is equicoercive on W1,p

0 (Ω; IRN ).

We are led then to consider X = W1,p
0 (Ω; IRN ), and d the restriction of the Lp(Ω; IRN )-

distance to W1,p
0 (Ω; IRN ).

In order to describe the limit of the problems in (1.2) it is sufficient to consider all
limits of problems related to sequences (εh) with εh → 0 as h→ ∞. Moreover by Remark
1.3(4), since the functionals

(1.22) u 7→

∫

Ω

ug dx

are continuous (we suppose g ∈ Lp′

(Ω; IRN )), we can neglect this integral. Hence we shall
have to study the Γ(Lp(Ω; IRN ))-convergence of the functionals

(1.23) Fh(u) = F0
εh

(u) =





∫

Ω

f(
x

ε
,Du) dx if u ∈ W1,p

0 (Ω; IRN )

+∞ if u ∈ W1,p(Ω; IRN ) \ W1,p
0 (Ω; IRN ).

We have preferred to define our functionals by (1.23) on the whole W1,p(Ω; IRN ), and
to deal with the boundary conditions setting the functional to +∞ outside W1,p

0 (Ω; IRN )
since this is a good illustration of a common procedure for dealing with constraints.

The Γ-convergence of F0
εh

will be deduced from the Γ-convergence of the functionals

(1.24) Fεh
(u) =

∫

Ω

f(
x

ε
,Du) dx if u ∈ W1,p(Ω; IRN ),

showing that the boundary condition u = 0 on ∂Ω does not affect the form of the Γ-limit
(see Lesson Two).

Exercises

Prove the statements 1)–7) of Remark 1.3 by using the definition of Γ-limit.
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Lesson Two. A General Compactness Result

2.1. The Localization Method of Γ-convergence. Compactness

The proof of the Γ-convergence of the functionals in (1.1) will follow this line:
(i) prove a compactness theorem which allows to obtain from each sequence (Fεh

) a sub-
sequence Γ-converging to an abstract limit functional;

(ii) prove an integral representation result, which allows us to write the limit functional
as an integral;

(iii) prove a representation formula for the limit integrand which does not depend on the
subsequence, showing thus that the limit is well-defined.
The third point is characteristic of homogenization and will be performed in Lesson

Three by exploiting the special form of the functionals under examination. Steps (i) and
(ii) follow from general theorems in Γ-convergence (see the books by Dal Maso [15] and
Buttazzo [13]); here we shall give briefly an idea of the methods involved in the proof
(without entering into details, some of which will be given in the course by Buttazzo at
this same School).

Let us fix a sequence of Borel functions fh : IRn × Mn×N → [0,+∞] satisfying the
growth condition

(2.1) |ξ|p − c1 ≤ fh(x, ξ) ≤ C1(1 + |ξ|p)

(in our case we will have fh(x, ξ) = f(
x

εh
, ξ), where (εh) is a fixed sequence converging to

0), and let us consider the functionals

(2.2) Fh(u) =

∫

Ω

fh(x,Du) dx

defined for u ∈ W1,p(Ω; IRN ). We shall outline the proof of a compactness and integral
representation theorem for the sequence (Fh).

Let us first notice that it is easy to obtain, by a diagonal procedure, a compactness
theorem for the functionals Fh since the topology of Lp(Ω; IRN ) has a countable base (see
Dal Maso [15] Theorem 8.5). However, the limit functional thus obtained depends a priori
heavily on the choice of Ω, and it is not possible to obtain directly an integral representation
of it. To overcome this difficulty it was introduced a localization method characteristic of
Γ-convergence. Instead of considering the functionals in (2.2) for a fixed Ω bounded open
subset of IRn, we consider

(2.3) Fh(u,A) =

∫

A

fh(x,Du) dx

as a function of the pair (u,A) where A ∈ An (the family of bounded open subsets of IRn)
and u ∈ W1,p(A; IRN ) (this is sometimes called a variational functional).
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We can now fix a countable dense family Q of An
1 (for example all poly-rectangles

with rational vertices), and, again using a diagonal procedure, find an increasing sequence
of integers (hk) such that we have the existence of the Γ-limit

(2.4) F (u,A) = Γ(Lp(A; IRN ))- lim
k
Fhk

(u,A)

for all A ∈ Q and u ∈ W1,p(A; IRN ).

Beside this limit we can consider the upper and lower Γ-limits

(2.5) F+(u,A) = Γ(Lp(A; IRN ))- lim sup
k

Fhk
(u,A)

(2.6) F−(u,A) = Γ(Lp(A; IRN ))- lim inf
k

Fhk
(u,A)

for all A ∈ An and u ∈ W1,p(A; IRN ), so that we have

(2.7) F+(·, A) = F−(·, A) = F (·, A)

for all A ∈ Q.

The next step (which is rather technical, and relies on the growth conditions (2.1)
on f ; see Section 2.2) is to notice that the increasing set functions A 7→ F+(u,A) and
A 7→ F−(u,A) are inner-regular ; that is,

(2.8) F±(u,A) = sup
{
F±(u,A′) : A′ ∈ An, A′ ⊂ A

}

for all A ∈ An and u ∈ W1,p(A, IRN ).

At this point it suffices to notice that the supremum in (2.8) can be taken for A′ ∈ Q,
and to recall (2.7), to obtain

(2.9) F+(u,A) = sup
{
F (u,A′) : A′ ∈ Q, A′ ⊂ A

}
= F−(u,A),

and then the existence of the Γ-limit in (2.4) for all A ∈ An and u ∈ W1,p(A; IRN ).

We have thus obtained a converging subsequence on all A ∈ An.

1 We say that Q is dense in An if for every A,A′ ∈ An with A′ ⊂ A there exists Q ∈ Q
such that A′ ⊂ Q ⊂ A
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Theorem 2.1. (Compactness) Let Fh be defined as in (2.3), with fh satisfying (2.1);
then there exists an increasing sequence of integers (hk) such that the limit

(2.10) F (u,A) = Γ(Lp(A; IRN ))- lim
k
Fhk

(u,A)

exists for all A ∈ An and u ∈ W1,p(A; IRN ).

It can be proven that, as a set function, the limit F behaves in a very nice way. In
fact we have:
(a) (measure property) for every Ω ∈ An and u ∈ W1,p(Ω; IRN ) the set function A 7→

F (u,A) is the restriction to An(Ω) (the family of all open subsets of Ω) of a regular
Borel measure.
The variational functional F enjoys other properties, which derive from the structure

of the Γ-limit:
(b) (semicontinuity) for every A ∈ An the functional F (·, A) is Lp(A; IRN )-lower semi-

continuous (by the lower semicontinuity properties of Γ-limits);
(c) (growth conditions) we have the inequality

∫

A

|Du|p dx− c1|A| ≤ F (u,A) ≤ C1

(
|A| +

∫

A

|Du|p dx
)

for every A ∈ An and u ∈ W1,p(A; IRN ) (by the growth condition (2.1));
(d) (locality) if u = v a.e. on A ∈ An, then F (u,A) = F (v, A);
(e) (“translation invariance”) if z ∈ IRn then F (u,A) = F (u+ z, A).
The proofs of the two last statements are trivial since the operation of Γ-limit is local and
all functionals Fh are translation invariant.

These properties assure us that it is possible to represent the functional F as an
integral.

Theorem 2.2. (Integral Representation Theorem (Buttazzo & Dal Maso; see [13]
Chapter 4.3 and [15] Chapter 20)) If F is a variational integral verifying (a)–(e), then
there exists a Carathéodory integrand ϕ : IRn × Mn×N → [0,+∞[ satisfying

(growth condition) |ξ|p − c1 ≤ ϕ(x, ξ) ≤ C1(1 + |ξ|p)

and

(quasiconvexity) |A|ϕ(x, ξ) ≤

∫

A

ϕ(x, ξ +Du(y)) dy

for all A ∈ An, x ∈ IRn, ξ ∈ Mn×N , and u ∈ W1,p
0 (A, IRN ), such that

(2.11) F (u,A) =

∫

A

ϕ(x,Du) dx

for all A ∈ An and u ∈ W1,p(A; IRN ).
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Remark 2.3. Let us recall that quasiconvexity is a well-known necessary and sufficient
condition for the Lp-lower semicontinuity of functionals of the form (2.2) with integrands
verifying (2.1) (see Acerbi & Fusco [2]). Convex functions are quasiconvex; the two notions
coincide only in the case n = 1 or N = 1. Examples of quasiconvex non convex functions
are polyconvex functions: we say that f : Mn×N → IR is polyconvex if f(ξ) is a convex
function of the vector of all minors of the matrix ξ. In the case n = N = 2 this means
that f(ξ) = g(ξ, det ξ), with g convex.

Proof of Theorem 2.2. We will just give an idea of the proof. First of all one can
obtain a representation for F (u,A) when u = ξx is linear (or affine, which is the same
because of the translation invariance): since F (ξx, ·) is a measure (absolutely continuous
with respect to the Lebesgue measure), then, by Riesz Theorem, there exists a function gξ

such that

F (ξx, A) =

∫

A

gξ(x) dx

for all A ∈ An.
Let us define then ϕ(x, ξ) = gξ(x). If u is piecewise affine then we obtain immediately

(2.11) since F (ξx, ·) is a measure. If u is general, then the inequality

F (u,A) ≤

∫

A

ϕ(x,Du) dx

follows by approximating u with piecewise affine functions in the W1,p metric, and then
using the lower semicontinuity of F (on the left hand side), and Lebesgue Theorem (on
the right hand side).

Fixed u we can define G(v, A) = F (u+ v, A). This variational functional still verifies
the hypotheses (a)–(e). Hence we can construct as above a function ψ such that G(v, A) =∫

A
ψ(x,Dv) dx for v piecewise affine, and

G(v, A) ≤

∫

A

ψ(x,Du) dx

for general v. We obtain then (if uh is a sequence of piecewise affine functions converging
strongly in W1,p(A; IRN ) to u)

∫

A

ψ(x, 0) dx = G(0, A) = F (u,A) ≤

∫

A

ϕ(x,Du) dx = lim
h

∫

A

ϕ(x,Duh) dx

= lim
h
F (uh, A) = lim

h
G(uh − u,A) ≤ lim

h

∫

A

ψ(x,Duh −Du) dx =

∫

A

ψ(x, 0) dx,

so that all inequalities are indeed equalities and we get (2.11).
The quasiconvexity of ϕ follows by the theorem of Acerbi & Fusco.
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We can apply all the machinery above to our functionals. Hence for every fixed
sequence (εh) there exist a subsequence (εhk

) and a Carathéodory quasiconvex function ϕ
such that the limit

(2.12) Γ(Lp(A; IRN ))- lim
k

∫

A

f(
x

εhk

, Du) dx =

∫

A

ϕ(x,Du) dx

exists for all A ∈ An and u ∈ W1,p(A, IRN ).

2.2. The Fundamental Estimate. Boundary Value Problems

As we have already remarked, the very crucial point in the compactness procedure for
integral functionals, described in Section 2.1 is the proof of the properties of the Γ-limit
as a set function, namely that it is (the restriction to the family of bounded open sets of)
a inner-regular measure. For example, it must be proven the subadditivity of F (u, ·); that
is, for all pairs of sets A,B ∈ An and u ∈ W1,p

loc(IR
n; IRN ) we must have

F (u,A ∪B) ≤ F (u,A) + F (u,B).

Recalling the definition of Γ-limit, this means that from the knowledge of the “minimizing
sequences” for F (u,A) and F (u,B) we must somehow obtain an estimate for F (u,A ∪
B). This is done by elaborating a method for “joining” sequences of functions, without
increasing in the limit the value of the corresponding integrals. This procedure is not
possible in general for arbitrary integral functionals, and indeed there are examples of Γ-
limits which are not measures (as set functions). Anyhow, for functionals whose integrands
verify (2.1) the possibility of inexpensive joints was shown by De Giorgi in [17]; his method
was later generalized in many papers (see [16], [15] and the references therein), and remains
one of the cornerstones of the theory. A general formulation of this property can be found
in [15] Definition 18.2.

Lemma 2.4. (Fundamental Estimate) Let Fh be the functionals in (2.1), (2.2). Then,
for every η > 0, and for every A,A′, B ∈ An with A′ ⊂ A there exists a constant M > 0
with the property: for every h ∈ IN, for every w ∈ W1,p(A; IRN ), v ∈ W1,p(B; IRN ) there
exists a cut-off function2 φ between A′ and A such that

(2.13) Fh(φw+ (1− φ)v, A′ ∪B) ≤ (1 + η)
(
Fh(w,A) + Fh(v, B)

)
+M

∫

A∩B

|w− v|p dx.

Note that φ depends on h, v, and w.

2 We say that φ is a cut-off function between A′ and A if φ ∈ C∞
0 (A) and φ = 1 on a

neighbourhood of A′.
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With this property in mind it is not difficult to prove the inner regularity of F±, and
hence that F is a measure (for useful criteria which give conditions on an increasing set
function equivalent to being a measure we refer to De Giorgi and Letta [18]). We are not
going to prove these consequences, nor Lemma 2.4 (for a proof see [15] Section 19, and
also the paper by Fusco [23] where the vector-valued case is dealt with in detail). Let us
remark instead how this property allows us also to deduce the Γ-convergence of functionals
defined taking into account (homogeneous) Dirichlet boundary conditions.

Lemma 2.5. (Γ-limits and Boundary Conditions) Let (Fhk
) be the converging subse-

quence of (Fh) given by Theorem 2.1. If we set

(2.14) F 0
h (u,A) =





∫

A

fh(x,Du) dx if u ∈ W1,p
0 (A; IRN )

+∞ elsewhere on W1,p(A; IRN ),

then we have for all A ∈ An and u ∈ W1,p(A, IRN )

(2.15) Γ(Lp(A; IRN ))- lim
k
F 0

hk
(u,A) = F 0(u,A),

where

(2.16) F 0(u,A) =





∫

A

ϕ(x,Du) dx if u ∈ W1,p
0 (A; IRN )

+∞ elsewhere on W1,p(A; IRN ),

and ϕ is given by Theorem 2.2.

Proof. Let us apply the definition of Γ-convergence. Let us consider a converging
sequence uk → u in Lp(A; IRN ). If u 6∈ W1,p

0 (A; IRN ) then we must have Fhk
(uk, A) →

+∞; otherwise (by the growth conditions (2.1)) (uk) would be a bounded sequence in
W1,p

0 (A; IRN ), so that (a subsequence of it) converges weakly in W1,p
0 (A; IRN ) to u, obtain-

ing thus a contradiction. Hence F 0(u,A) = +∞. If u ∈ W1,p
0 (A; IRN ) we have trivially

F (u,A) ≤ lim inf
k

Fhk
(uk, A) ≤ lim inf

k
F 0

hk
(uk, A)

for all uk → u; that is,

(2.17) Γ(Lp(A; IRN ))- lim inf
k

F 0
hk

(u,A) ≥ F 0(u,A).

Vice versa, let uk → u be such that F (u,A) = limk Fhk
(uk, A). Let us fix a compact

subset K of A, A′ ⊂ A, η > 0, choose in Lemma 2.4 B = A \ K, w = uk, v = u, and
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define vk = φuk +(1−φ)u ∈ W1,p
0 (A; IRN ), where φ is given by Lemma 2.4. We have then

vk → u, and

F 0
hk

(vk, A) = Fhk
(vk, A) ≤ (1 + η)

(
Fhk

(uk, A) + Fhk
(u,A \K)

)
+M

∫

A\K

|uk − u|p dx.

Letting k → +∞, and recalling (2.1), we obtain

lim sup
k

F 0
hk

(vk, A) ≤ (1 + η)F (u,A) + (1 + η)

∫

A\K

C1(1 + |Du|p) dx,

hence by the arbitrariness of K, and letting η → 0,

(2.18) Γ(Lp(A; IRN ))- lim sup
k

F 0
hk

(u,A) ≤ F 0(u,A).

This inequality completes the proof.

Exercises

1. State and prove the analog of Lemma 2.5 for the boundary condition u = φ on γ0,
under appropriate assumptions on the data.

2. Prove (2.8) using (2.13).
3. Prove that the Dirichlet integral

∫
A
|Du|2 dx verifies the fundamental estimate.
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Lesson Three. Homogenization Formulas

3.1. The Asymptotic Homogenization Formula

We have reduced the problem of Γ-convergence of the functionals Fε to the description of
the function ϕ in (2.12). In order to deduce the convergence of the whole sequence it is
sufficient now to prove that ϕ is independent of the sequence (εhk

). This will be done by
proving an asymptotic formula for ϕ.

We shall make a weaker assumption on f than periodicity, namely a sort of uniform
almost periodicity (see the book by Besicovitch [5] for a study of different types of almost
periodic functions). The motivation for the introduction of this kind of hypothesis lies in
its greater flexibility compared to mere periodicity:
(a) sum and product of almost periodic functions are almost periodic (this happens for

periodic functions only if they have a common period; think of sinx+ sin(πx));
(b) restriction of an almost periodic function to an affine subspace is still almost periodic

(this is not true for periodic functions; think as above of the function sinx + sin y
restricted to the line y = πx);

(c) almost periodic functions are “stable under small perturbations” (this concept will be
explained and studied later).
Moreover, the techniques are essentially of the same type as in the periodic case, so

that we get a stronger result for free.

Let us recall that a continuous function a : IRn → IR is uniformly almost periodic
if the following property holds: for every η > 0 there exists an inclusion length Lη > 0
and a set Tη ⊂ IRn (which will be called the set of η-almost periods for a) such that
Tη + [0, Lη]

n = IRn, and if τ ∈ Tη we have

(3.1) |a(x+ τ) − a(x)| ≤ η for all x ∈ IRn.

Of course if a is periodic then we can take for all η the lattice of all periods of a as T = Tη,
and L = Lη equal to the mesh size of the lattice. Particular uniformly almost periodic
functions are quasiperiodic functions; that is, functions of the form a(x) = b(x, . . . , x),
where b is a continuous periodic function of a higher number of variables. The set of
uniformly almost periodic functions can be seen also as the closure of all trigonometric
polynomials in the uniform norm.

We can model our hypotheses to fit functionals of the form

(3.2)

∫

Ω

a(
x

ε
)|Du|p dx,

with the coefficient a uniformly almost periodic. We say then that a Borel function f :
IRn ×Mn×N → [0,+∞] is p-almost periodic (see [7]) if for every η > 0 there exists Lη > 0
and a set Tη ⊂ IRn such that Tη + [0, Lη]

n = IRn, and if τ ∈ Tη we have

(3.3) |f(x+ τ, ξ)− f(x, ξ)| ≤ η(1 + |ξ|p) for all x ∈ IRn.
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Notice that we do not require any continuity of f since it will not be necessary in the
proofs; hence all Borel functions f = f(x, ξ) periodic in x (with period independent of ξ)
satisfy the hypothesis of p-almost periodicity.

The first result we will obtain by exploiting the almost periodicity of f will be the
“homogeneity” of the function ϕ.

Proposition 3.1. Let us suppose f be p-almost periodic and satisfy the growth condition
(2.1). Then the function ϕ = ϕ(x, ξ) in (2.12) can be chosen independent of x.

Proof. (Let us remark that we follow the line of the proof of the corresponding
statement in the periodic case by Marcellini [26]; see also [7] Proposition 5.1) Let us fix
x0, y0 ∈ IRn, r > 0, K ∈ IN, and η > 0. Let B = B(x0, r), BK = B(x0, r(1 − 1/K)), and
(τk) be a sequence of points of Tη such that limk εhk

τk = y0 − x0. Let (uk) be a sequence

in W1,p(B; IRN ) with uk → 0 and

(3.4)

∫

B

ϕ(x, ξ) dx = lim
k

∫

B

f(
x

εhk

, Duk + ξ) dx.

Let us set yk = x0 + εhk
τk; if k is large enough we have y0 +BK ⊂ yk +B. We have then

(using (3.3) and the definition of Γ-limit)

∫

B

ϕ(x, ξ) ≥ lim inf
k

∫

B

f(
x

εhk

+ τk, Duk + ξ) dx− η lim sup
k

∫

B

(1 + |Duk + ξ|p) dx

= lim inf
k

∫

yk+B

f(
y

εhk

, Duk(y − yk) + ξ) dy − ηc

≥ lim inf
k

∫

y0+BK

f(
y

εhk

, Duk(y − yk) + ξ) dy − ηc ≥

∫

y0+BK

ϕ(x, ξ) dx− ηc

(c a constant depending on (uk)) . By the arbitrariness of η and K we have

(3.5)

∫

B

ϕ(x, ξ) dx ≥

∫

y0+B

ϕ(y, ξ) dy =

∫

B

ϕ(x+ y0, ξ) dx,

and then by symmetry the equality

(3.6)

∫

B

ϕ(x, ξ) =

∫

B

ϕ(x+ y0, ξ) dx.

It is easy to see that from this equality we can conclude the proof.
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The independence from the space variable is essential for expressing the value ϕ(ξ) as
the solution of a minimum problem. In fact by the quasiconvexity of ϕ we have

|Ω|ϕ(ξ) = min
{∫

Ω

ϕ(ξ +Du(y)) dy : u ∈ W1,p
0 (Ω; IRN )

}

for every Ω ∈ An; in particular we can choose Ω =]0, 1[n so that

(3.7)

ϕ(ξ) = min
{∫

]0,1[n
ϕ(ξ +Du(y)) dy : u ∈ W1,p

0 (]0, 1[n; IRN )
}

= min
{
F 0(u+ ξx, ]0, 1[n) : u ∈ W1,p(]0, 1[n; IRN )

}
.

We can use now the Γ-convergence of F 0
hk

to F 0 (Lemma 2.5), the equicoercivity of these
functionals (Section 1.3), and the Fundamental Theorem of Γ-convergence (Theorem 1.4),
to obtain

(3.8) ϕ(ξ) = lim
k

inf
{∫

]0,1[n
f(

y

εhk

, Du(y) + ξ) dy : u ∈ W1,p
0 (]0, 1[n; IRN )

}
.

At this point is is clear that our next step must be the proof of the independence of this
limit of the sequence (εhk

).

Proposition 3.2. (Asymptotic Homogenization Formula) Let f be as above. Then the
limit

(3.9) fhom(ξ) = lim
t→+∞

1

tn
inf

{∫

]0,t[n
f(x,Du(x) + ξ) dx : u ∈ W1,p

0 (]0, t[n; IRN )
}

exists for every ξ ∈ Mn×N .

Proof. (Let us remark that we follow the line of the proof of the corresponding
statement in the periodic case in [6]; see also [7]) Let us fix ξ ∈ Mn×N and define for t > 0

(3.10) gt =
1

tn
inf

{∫

]0,t[n
f(x,Du(x) + ξ) dx : u ∈ W1,p

0 (]0, t[n; IRN )
}

;

moreover let ut ∈ W1,p
0 (]0, t[n; IRN ) verify

(3.11)
1

tn

∫

]0,t[n
f(x,Dut(x) + ξ) dx ≤ gt +

1

t
.

Let η > 0. If s ≥ t + Lη (the inclusion length related to η and f) we can construct

us ∈ W1,p
0 (]0, s[n; IRN ) as follows: for every i = (i1, . . . , in) ∈ Zn with 0 ≤ (t+ Lη)ij ≤ s

for all j = 1, . . . , n, we choose τi ∈ Tη with τi ∈ (t+ Lη)i + [0, Lη]
n, and we define

(3.12) us(x) =
{
ut(x− τi) if x ∈ τi + [0, t]n

0 otherwise.
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Let us also define Qs =]0, s[n\
⋃

i

(τi +[0, t]n); we have |Qs| ≤ sn− (s− t−Lη)n
( t

t+ Lη

)n

.

We can estimate gs by using us:
(3.13)

gs ≤
1

sn

∫

]0,s[n
f(x,Dus(x) + ξ) dx

=
1

sn

(∑

i

∫

τi+[0,t]n
f(x,Dut(x− τi) + ξ) dx+

∫

Qs

f(x, ξ) dx
)

≤
1

sn

(∑

i

∫

[0,t]n
f(y + τi, Dut + ξ) dy + |Qs|C1(1 + |ξ|p)

)

≤
1

sn

(∑

i

∫

[0,t]n

(
f(y,Dut + ξ) + η(1 + |Dut + ξ|p)

)
dy + |Qs|C1(1 + |ξ|p)

)

≤ (1 + η)
1

(t+ Lη)n
tn

(
gt +

1

t

)
+ η +

(
1 −

(s− t− Lη

sn

)n ( t

t+ Lη

)n)
C1(1 + |ξ|p).

Taking the limit first in s and then in t we get

lim sup
s→+∞

gs ≤ (1 + η) lim inf
t→+∞

gt + η.

By the arbitrariness of η we conclude the proof.

Note that our growth hypotheses guarantee by a density argument that the infima in
(3.9) can be computed on smooth functions; hence we can write also

(3.14) fhom(ξ) = lim
t→+∞

1

tn
inf

{∫

]0,t[n
f(x,Du(x) + ξ) dx : u ∈ C∞

0 (]0, t[n; IRN )
}
.

exists for every ξ ∈ Mn×N .

We can conclude now the proof of our homogenization result by simply remarking
that the limit in (3.8) can be transformed in the form (3.9) by the change of variables
y = εhk

x (when t = 1/εhk
), so that ϕ(ξ) = fhom(ξ) is independent of (εhk

).

Remark 3.3. By an use of the Fundamental Estimate as in the proof of Lemma 2.5 it is
easy to see that an equivalent formula for fhom is the following:

(3.15) fhom(ξ) = inf
k∈IN

1

kn|Q|
inf

{∫

kQ

f(x,Du(x) + ξ) dx : u ∈ W1,p
# (kQ; IRN )

}
,
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where Q is any non-degenerate open parallelogram in IRn, and W1,p
# (kQ; IRN ) denotes the

space of functions in W1,p
loc (IR

n; IRN ) which are Q-periodic. This formula may be useful in
the case of f periodic in x with period Q.

Remark 3.4. We shall see in the next section that a simpler formula, which involves
a single minimization problem on the periodicity cell, can be obtained in the convex and
periodic case. It is important to note that in the (vector-valued) non convex case formula
(3.9) cannot be simplified , as shown by a counterexample by S.Müller [27]: in a sense
homogenization problems in the vector-valued case have an almost periodic nature even if
the integrand is periodic.

3.2. The Convex and Periodic Case

In this section we will suppose in addition to the previous hypotheses that for a.e. x ∈ IRn

the function f(x, ·) is convex on Mn×N . This is no restriction in the scalar case N = 1
since it can be seen that in this case an equivalent convex integrand to f (that is, giving
the same infima) may be constructed by “convexification” (see Ekeland & Temam [21]).
Moreover, we shall suppose that f is 1-periodic in the first variable:

(3.16) f(x+ ei, ξ) = f(x, ξ) for all x ∈ IRn, ξ ∈ Mn×N , i = 1, . . . , n,

where {e1, . . . , en} denotes the canonical base of IRn (every periodic function can be re-
duced to this case by a change of variables).

We can choose Q =]0, 1[n in (3.15) to obtain the formula

(3.17) fhom(ξ) = inf
k∈IN

1

kn
inf

{∫

]0,k[n
f(x,Du(x) + ξ) dx : u ∈ W1,p

# (]0, k[n; IRN )
}
.

If we define the function f# : Mn×N → [0,+∞[ by setting

(3.18) f#(ξ) = inf
{∫

]0,1[n
f(x,Du(x) + ξ) dx : u ∈ W1,p

# (]0, 1[n; IRN )
}

we have obviously

(3.19) fhom(ξ) ≤ f#(ξ).

Thanks to the convexity of f we can reverse this inequality and obtain the following result.
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Proposition 3.5. (Convex Homogenization Formula) Let f be convex and periodic as
above. Then we have fhom(ξ) = f#(ξ) for all ξ ∈ Mn×N .

Proof. Let uξ
k be a solution to the minimum problem

(3.20)
1

kn
inf

{∫

]0,k[n
f(x,Du(x) + ξ) dx : u ∈ W1,p

# (]0, k[n; IRN )
}

= fk
#(ξ),

which exists by the coerciveness and lower semicontinuity of the functional F1 (see Remark
2.3). Let Ih be the set of i = (i1, . . . , in) ∈ Zn with 0 ≤ ij < k, and let us define

(3.21) uξ(x) =
1

kn

∑

i∈Ih

uξ
k(x+ i)

a convex combination of the translated functions uξ
h(· + i). The function uξ is 1-periodic,

and we have

(3.22)

f#(ξ) ≤

∫

]0,1[n
f(x,Duξ(x) + ξ) dx =

1

kn

∫

]0,k[n
f(x,Duξ(x) + ξ) dx

≤
1

kn

∑

i∈Ih

1

kn

∫

]0,k[n
f(x,Duξ

k(x+ i) + ξ) dx

=
1

kn

∑

i∈Ih

1

kn

∫

]0,k[n
f(x,Duξ

k(x) + ξ) dx = fk
#(ξ).

Since obviously we have f#(ξ) = f1
#(ξ) ≥ fk

#(ξ), by (3.22) and (3.17) we have f#(ξ) =

infk f
k
#(ξ) = fhom(ξ), and we can conclude the proof.

Remark 3.6. Let us remark that in the convex and periodic case the homogenization
formula and the Γ-convergence of the functionals Fε can be proven under the weaker
growth hypothesis

(3.23) 0 ≤ f(x, ξ) ≤ C1(1 + |ξ|p)

(see [6] and [15]). Of course, no convergence of minima can be deduced in these hypotheses.
The Γ-convergence of the functionals Fε under only the growth hypothesis (3.23) in the
general vector valued case is to my knowledge still an open problem.
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3.3. Stability of Homogenization

A natural requirement in the study of oscillating media seems to be the stability of the limit
under small perturbations. For example we would like our results to remain unchanged if
we add to f a function with compact support (we expect the overall properties of a medium
to be maintained in the presence of an impurity in a very small and confined region).

Theorem 3.6. (Stability for Homogenization) Let f be a homogenizable3 quasiconvex
Borel function, and let ψ : IRn ×Mn×N → [0,+∞[ be a quasiconvex Borel function. Let us
suppose that both functions verify the growth condition (2.1), and that we have for every
r > 0

(3.24) lim sup
t→+∞

1

tn

∫

]0,t[n
sup
|ξ|≤r

|f(x, ξ)− ψ(x, ξ)| dx = 0.

Then also ψ is homogenizable and ψhom = fhom.

Proof. Let us prove that for every ξ ∈ Mn×N there exists ψhom(ξ) = fhom(ξ). Let
ε > 0, and let us consider a solution uξ

ε to the minimum problem (which exists since by
the quasiconvexity and growth conditions the integral functional is lower semicontinuous
and coercive)

(3.25) min
{∫

]0,1[n
f(
x

ε
,Du(x) + ξ) dx : u ∈ W1,p

0 (]0, 1[n; IRN )
}

= fε
hom(ξ).

Let us recall that lim
ε→0

fε
hom(ξ) = fhom(ξ).

We shall use a partial regularity result which tells us that the solutions to the minimum
problems are bounded in some Sobolev space with exponent larger than p (in some sense
they behave as if they were Lipschitz continuous).

Theorem 3.7. (Partial Regularity Theorem; Meyers & Elcrat [28] ) There exist η > 0
and a constant C > 0 such that we have

(3.26)

∫

]0,1[n
|Duξ

ε + ξ|p+η dx ≤ C

for every ε > 0.

Let us fix r > 0 and define

Eε =
{
x ∈]0, 1[n : |Duξ

ε + ξ| > r
}
.

3 We say in general that f : IRn × Mn×N → [0,+∞[ is homogenizable if the function
fhom gives the integrand of the Γ-limit in (2.12) for all converging sequences. Notice that
in this theorem we do not make any hypotheses of periodicity or almost periodicity on f .
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Clearly we have

|Eε|r
p ≤

∫

Eε

|Duξ
ε + ξ|p dx ≤

∫

]0,1[n
|Duξ

ε + ξ|p dx

and by (2.1) ∫

]0,1[n
|Duξ

ε + ξ|p dx ≤ C1(1 + |ξ|p) = Cξ,

so that

(3.27) |Eε| ≤ r−pC1(1 + |ξ|p) = r−pCξ.

By using Hölder’s inequality and (3.26) we get also

(3.28)

∫

Eε

|Duξ
ε + ξ|p dx ≤ |Eε|

η/(p+η)
(∫

Eε

|Duξ
ε + ξ|p+η dx

)p/(p+η)

≤ r−pη/(p+η)C
η/(p+η)
ξ Cp/(p+η) = C′

ξr
−pη/(p+η)

Using uξ
ε as a test function in the definition of

(3.29) min
{∫

]0,1[n
ψ(
x

ε
,Du(x) + ξ) dx : u ∈ W1,p

0 (]0, 1[n; IRN )
}

= ψε
hom(ξ)

we have (using (2.1), (3.25), (3.27) and (3.28))
(3.30)

ψε
hom(ξ) ≤

∫

]0,1[n
ψ(
x

ε
,Duξ

ε + ξ) dx

=

∫

{|Duξ
ε+ξ|≤r}

ψ(
x

ε
,Duξ

ε + ξ) dx+

∫

Eε

ψ(
x

ε
,Duξ

ε + ξ) dx

≤

∫

{|Duξ
ε+ξ|≤r}

(ψ(
x

ε
,Duξ

ε + ξ) − f(
x

ε
,Duξ

ε + ξ)) dx

+

∫

]0,1[n
f(
x

ε
,Duξ

ε + ξ) dx+

∫

Eε

C1(1 + |Duξ
ε + ξ|p) dx

≤

∫

]0,1[n
sup
|z|≤r

|ψ(
x

ε
, z) − f(

x

ε
, z)| dx+ fε

hom(ξ) + C1(r
−pCξ + r−pη/(p+η)C′

ξ).



66 Andrea Braides

We can pass to the limit first as ε→ 0, and then as r → +∞, recalling (3.24), obtaining

lim sup
ε→0

ψε
hom(ξ) ≤ fhom(ξ);

since f and ψ play symmetric roles, we can interchange ψε
hom(ξ) and fε

hom(ξ) in (3.30) so
that we obtain

lim inf
ε→0

ψε
hom(ξ) ≥ fhom(ξ).

This proves the existence of ψhom(ξ) = lim
ε→0

ψε
hom(ξ) = fhom(ξ). The rest of the proof

of Theorem 3.8 follows easily by using a compactness argument and showing that all
converging subsequences can be represented by means of ψhom(ξ) (the only delicate point
is the proof of the homogeneity of the limit integrand, that can be obtained by a similar
argument as above; for details see [8] Section 3).

Remark 3.8. (Stability by Compact Support Perturbation) If for every r > 0 there exists
Tr > 0 such that f(x, ξ) = ψ(x, ξ) for |x| > Tr and |ξ| ≤ r then 3.16 is verified; hence in
this sense the homogenization is stable under compact support perturbations.

Remark 3.9. The hypothesis that ψ verifies (2.1) is essential. In [8] Section 3 it can
be found an example of a functions ψ not homogenizable (the Γ-liminf different from the
Γ-limsup) which verifies (3.24) with f(x, ξ) = |ξ|2.

Remark 3.10. (A Stronger Homogenization Theorem) With the same type of arguments
as in Theorem 3.6 we can prove a Closure Theorem for the Homogenization: let fh be a
sequence of homogenizable Borel functions and let ψ be a Borel function. Let us suppose
all these functions be quasiconvex, verify (2.1), and

(3.31) lim
h

lim sup
t→+∞

1

tn

∫

]0,t[n
sup
|ξ|≤r

|fh(x, ξ)− ψ(x, ξ)| dx = 0

for all r > 0. Then also ψ is homogenizable and ψhom = limh fhom.

Using this result and a suitable approximation procedure we can prove a stronger
homogenization theorem under the only hypothesis of f verifying (2.1) and f(·, ξ) being
Besicovitch-almost periodic4 (details in [8] Sections 3 and 4). The class F of these functions
is stable under perturbations as in (3.24); that is, if f ∈ F and ψ verifies (3.24), then
ψ ∈ F .

Exercises

Rewrite the proofs of Propositions 3.1 and 3.2 in the case of f periodic in x, using its
periods instead of its almost periods.

4 We say that f is Besicovitch-almost periodic if there exists a sequence of trigonometric

polynomials (Ph) such that lim
h

lim sup
t→+∞

t−n

∫

]0,t[n
|f(x)−Ph(x)| dx = 0 (i.e., Ph → f in the

mean).
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Lesson Four. Examples: Homogenization with-
out Standard Growth Conditions

We have now a quite general homogenization theorem; but, what is more important, we are
in possession of a general and flexible procedure that can be also applied to face different
kinds of problems5. We shall here describe some situations in which the same machinery
can be applied. In this lesson we shall deal with functions f which fail to satisfy the
standard growth conditions.

4.1. Condenser with Conducting Inclusions

Let us consider a condenser with small well-separated and uniformly distributed impurities.
We can model this situation, introducing a proper periodic energy functional. Let us
consider a compact set K ⊂]0, 1[n, and let us define the 1-periodic energy density f :
IRn × IRn → [0,+∞] (this is a scalar model: N = 1) by setting

(4.1) f(x, ξ) =





|ξ|2 if x ∈ [0, 1]n \K
0 if x ∈ K and ξ = 0
+∞ if x ∈ K and ξ 6= 0.

on [0, 1]n× IRn, and extended by periodicity to IRn × IRn. The set K represents the region
occupied by the perfect conductor, where the potential must be constant, hence Du must
be 0 in K. This constraint is included in the energy density f by the position f(x, ξ) = +∞
if x ∈ K and ξ 6= 0.

The function f does not satisfy the hypotheses of our homogenization theorem. How-
ever, the region where the growth conditions (2.1) are violated is composed of “well iso-
lated” domains. This fact gives us hope that the homogenization process may be carried
over all the same.

Let us remark that the compactness argument of Lesson Two applies to completely
abstract functionals, once we prove the inner regularity of the localized Γ-liminf and Γ-
limsup. These properties, in their turn, can be derived from the Fundamental Estimate
(2.13). It is easy to see that the Dirichlet integral verifies the Fundamental Estimate.
Hence fixed A,A′, B, η, v, w as in Lemma 2.4 we can find a cut-off function φ between A
and A′ such that

(4.2)

∫

A′∪B

|D(φw+ (1− φ)v)|2 dx ≤ (1 + η)

∫

A

|Dw|2 dx+

∫

B

|Dv|2 +M

∫

A∩B

|v−w|2.

5 This is an appreciable feature, since by Murphy’s Law however complete is a theory
every time we try to apply it we find an exception.
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Fixed ε we can modify the cut-off function φ as to obtain another cut-off function φ̃ between
A and A′ such that Dφ̃ = 0 on εZn + εK, φ̃ = φ outside a neighbourhood of εZn + εK,
giving

(4.3) Fε(φ̃w+ (1− φ̃)v, A′ ∪B) ≤ (1 + η)(Fε(w,A) +Fε(v, B)) +M(ζ)

∫

A∩B

|v−w|2 dx

where ζ > 0 is small enough so that the ζ-neighbourhood of K is still compactly contained
in ]0, 1[n (the proof of this statement, which goes beyond the scope of the course, relies on
the construction of φ). Hence our functionals still verify the Fundamental Estimate, and
we can infer the existence of the limit in (2.10). In the same way we prove the “measure
property” (a). The properties (b), (d) and (e) still hold trivially, as does the growth
estimate from below:

(4.4)

∫

A

|Du|2 dx ≤ F (u,A).

Let us prove that we have also a growth inequality from above. By the lower semi-
continuity of F it suffices to prove the estimate for piecewise constant u; by the measure
property of F it suffices to prove it for u affine; by the translation invariance it is enough
to prove it for u = ξx linear. Let us consider a function uξ ∈ W1,2

0 (]0, 1[n) such that
uξ(x) = −ξx on K and

∫
]0,1[n

|Du|2 dx ≤ C|ξ|2 (C independent of ξ), and let us define

(4.5) uk(x) = ξx+ εhk
uξ(

x

εhk

),

so that

(4.6) uk → ξx, Duk = 0 on εhk
(Zn +K) Duk = ξ +Duξ(

x

εhk

).

We have then

(4.7)

F (ξx, A) ≤ lim
k

∫

A

f(
x

εhk

, Duk(x)) dx = |A|

∫

]0,1[n
f(y, ξ +Duξ(y)) dy

= |A|

∫

]0,1[n
|ξ +Duξ(y)|

2 dy ≤ 2C|A||ξ|2.

Recalling (4.4) we obtain for the functional F also the growth conditions (c), and we can
apply the integral representation Theorem 2.2, obtaining (2.11). At this point the use
of the Fundamental Estimate allows us to deal with boundary value problems, so that
the proof of the Asymptotic Homogenization Formula can be repeated without changing
a word (the formula itself must be slightly modified to take into account the constraint
Du = 0 on Z +K). Finally we use again the Fundamental Estimate to obtain the Convex
Homogenization Formula, that can be rewritten as

(4.8) f#(ξ) = min
{∫

]0,1[n
|Du(y) + ξ|2 dy : u ∈ W1,2

# (]0, 1[n), Du = −ξ on K
}
.
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Remark 4.1. We can take, instead of f(x, ξ) = |ξ|2 on [0, 1]n\K, any function f satisfying
the growth conditions (2.1). The same procedure works in the vector-valued case, except
of course the proof of the Convex Homogenization Formula if N > 1 and f is not convex.

4.2. Homogenization of Connected Media

Let us consider now the case of an elastic body occupying a region Ω with a microscopically
periodic structure (as an example we can think of a sponge). If W : Mn×N → [0,+∞] rep-
resents the elastic stored energy density of the material, we have then to study functionals
of the form

(4.9) Fε(u) =

∫

Ω∩εE

W (Du) dx,

where E is a periodic set describing the microscopical structure of the medium.
Let us suppose that the function W satisfies a standard growth condition of order p.

We can try to apply our methods to the function

(4.10) f(x, ξ) =

{
W (ξ) if x ∈ E
0 otherwise,

which globally satisfies a growth condition of the form

(4.11) 0 ≤ f(x, ξ) ≤ C1(1 + |ξ|p).

Even though we do not have a homogenization theorem for functions satisfying only
(4.11), in this case it is possible to prove, for the functionals Fε, the fundamental estimate
(2.13) thanks to the special form of f (that is identically 0 where it does not satisfy a
growth condition of order p), and then to carry over the proof of Theorems 2.1 and 2.2
(notice that in Theorem 2.2 we do not need the growth condition from below). The proof
of Proposition 3.2 needs no change, so that we obtain a homogenized integrand by the
asymptotic homogenization formula

(4.12) fhom(ξ) = lim
t→+∞

1

tn
inf

{∫

]0,t[n∩E

W (Du(x) + ξ) dx : u ∈ W1,p
0 (]0, t[n; IRN )

}
,

with fhom verifying

(4.13) 0 ≤ fhom(ξ) ≤ C1(1 + |ξ|p).

It is interesting to understand under what conditions the limit function verifies also
a growth condition from below, that is when it maintains the elastic properties of the
material described by W . If E is not connected it is easy to see in general that we may
have fhom ≡ 0. If E is connected and has Lipschitz boundary (more in general if E contains
a connected subset with Lipschitz boundary) then fhom does satisfy a growth condition
from below. This fact can be deduced from the following extension lemma, which assures
that the functionals (Fε) are equicoercive even though the function f does not satisfy (2.1)
pointwise.
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Theorem 4.2. (Extension Lemma (Acerbi, Chiadò Piat, Dal Maso & Percivale [1])) If
Ω ∈ An and ε > 0, then there exists a linear and continuous operator Tε : W1,p(Ω∩εE) →
W1,p

loc(Ω), and three constants k0, k1, k2 > O, independent of Ω and ε, such that Tεu = u
in Ω ∩ εE, and
(4.14)∫

Ω(εk0)

|Tεu|
p dx ≤ k1

∫

Ω∩εE

|u|p dx,

∫

Ω(εk0)

|D(Tεu)|
p dx ≤ k2

∫

Ω∩εE

|Du|p dx,

where Ω(εk0) = {x ∈ Ω : dist (x, ∂Ω) > εk0}.

With the help of Theorem 4.2 it is possible to prove that

1

k2
|ξ| − c1 ≤ fhom(ξ),

where k2 is the constant in (4.14) (for further details see [1] and [12]).

4.3. Homogenization with Non-Standard Growth Conditions

Our model problem will be the study of the fine mixture of two materials whose energy
densities have different (but not too different) growths at infinity. For the sake of simplicity
let us assume that the energy density of the first material is exactly |ξ|p, while the energy
density of the second material is |ξ|q, with q > p. We have to study then the functional

(4.15) Fε(u) =

∫

Ω∩εE1

|Du|p dx+

∫

Ω∩εE2

|Du|q dx,

where E1, E2 are two disjoint measurable 1-periodic sets with E1 ∪ E2 = IRn. This func-
tional can be rewritten in the form (1.1) by considering the function f defined by

(4.16) f(x, ξ) =

{
|Du|p if x ∈ E1

|Du|q if x ∈ E2.

This function globally satisfies a growth condition of the form

(4.17) |ξ|p − c1 ≤ f(x, ξ) ≤ C1(1 + |ξ|q).

In this case it can be seen that the functionals Fε satisfy a weaker fundamental estimate,
obtaining in (2.13)

(4.18) Fε(φw+ (1− φ)v, A′ ∪B) ≤ (1 + η)
(
Fε(w,A) +Fε(v, B)

)
+M

∫

A∩B

|w− v|q dx.

By the Rellich-Kondrachov compactness theorem (see [29] Section 2.5) this estimate is
sufficient to carry over the proof of the compactness Theorem 2.1 in the case q < np

n−p
(any

q if p ≥ n).
In this case however, the limit functional can be finite on a different space than

W1,p(Ω; IRN ), as shown by the following examples.
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Example 4.3. (see [12]) In general, if we make no assumptions on the connectedness of the
set E2, the function fhom may have different growth with respect to different directions. For
instance, let f : IR2 × IR2 → [0,+∞[ be of the form f(x, ξ) = |ξ|P (x1), where x = (x1, x2),
and P is the periodic function given by

P (t) =

{
p if 0 ≤ t ≤ 1

2
q if 1

2 < t < 1.

In this case, since f(x, ·) is convex, fhom = f#. Now, as f is independent of x2, for every
ξ = (ξ1, 0) the formula for f# reduces to a one dimensional minimum problem, namely

f#(ξ) = inf
v

{∫ 1

0

|v′(t)|P (t)dt : v(0) = 0, v(1) = ξ1
}
.

Taking v(t) = 2tξ1 if 0 ≤ t ≤ 1
2 , and v(t) = ξ1 if 1

2 < t ≤ 1, we obtain f#(ξ) ≤ 2q−1|ξ|q

when ξ = (ξ1, 0). Conversely, if ξ = (0, ξ2), we have

f#(ξ) = inf
v

{∫ 1

0

∫ 1

0

|v′(t)+ξ2|
P (s) dt ds : v(0) = v(1) = 0

}
=

∫ 1

0

|ξ2|
P (s)ds =

1

2
|ξ|p +

1

2
|ξ|q,

hence f0 has a growth of order p at infinity along the direction e2 = (0, 1). In conclusion
the domain of the homogenized functional is a “non-isotropic Sobolev space”.

When E2 is Lipschitz, connected and periodic then by the arguments of Section 4.2
we obtain that f# still satisfies a growth condition of order p.

Example 4.4. In [24] an example is given of a function f : IRn × IRn → IR of the form
f(x, ξ) = |ξ|P (x) such that we have

c2|ξ|
p log(e+ |ξ|) ≤ f#(ξ) ≤ C2(1 + |ξ|p log(e+ |ξ|));

hence the domain of the homogenized functional may be in general a Orlicz-Sobolev space.

Exercises

1. find a function P : [0, 1] → {q, p} such that, if we define f(x, ξ) = |ξ|P (x), then f#
satisfies a growth condition of order p.

2. find a function P : [0, 1] → {q, p} such that, if we define f(x, ξ) = |ξ|P (x), then f#
satisfies a growth condition of order q.
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Lesson Five. Examples: Other Homogeniza-
tion Formulas

In this lesson we shall deal with homogenization problems which give rise to different
asymptotic formulas.

5.1. Singular Perturbation and Homogenization

In some theories of non linear elasticity higher order gradients have been introduced to
explain the formation of the so-called shear bands under severe loadings. Francfort and
Müller have analyzed in [22] the effect of such perturbations at a microscopical scale by
introducing functionals of the form

(5.1) Fγ
ε (u) =

∫

Ω

f(
x

ε
,Du) dx+ εγ

∫

Ω

|4u|2 dx, u ∈ W2,2(Ω; IRN ) ∩ W1,p(Ω; IRN )

where γ > 0 is a parameter relating the microscopical scale ε and the strength of the
perturbation. We shall suppose that the function f : IRn × Mn×N → [0,+∞[ satisfies
the conditions of Lessons Two and Three, so that it is homogenizable with homogenized
function fhom.

Let us consider the case γ = 2. In this case let us define the function f2
hom : Mn×N →

[0,+∞[ by setting

(5.2)

f2
hom(ξ) = lim

t→+∞

1

tn
inf

{∫

]0,t[n
f(x,Du(x) + ξ) dx+

∫

]0,t[n
|4u|2 dx

: u ∈ W2,2(]0, t[n; IRN ) ∩ W1,p
0 (]0, t[n; IRN )

}

= lim
ε→0

inf
{∫

]0,1[n
f(
x

ε
,Du(x) + ξ) dx+ ε2

∫

]0,1[n
|4u|2 dx

: u ∈ W2,2(]0, 1[n; IRN ) ∩ W1,p
0 (]0, 1[n; IRN )

}

(the existence of this limit can be proven by following the proof of Proposition 3.2). It is
not difficult to follow the proof of the compactness and integral representation results of
Section 2, and to realize that the proof fits also these functionals, as well as Proposition
3.1 does. By (5.2) we have then that the whole family F2

ε Γ-converges to the functional

(5.3) F2(u) =

∫

Ω

f2
hom(Du) dx u ∈ W1,p(Ω; IRN ),

and the singular perturbation contributes to the definition of f2
hom.
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In the other cases it is still possible to obtain by Theorems 2.1 and 2.2 and by Propo-
sition 3.1 the integral representation

(5.4) Fγ(u) =

∫

Ω

ϕγ(Du) dx u ∈ W1,p(Ω; IRN ),

for Γ-converging subsequences of (Fγ
ε ). Francfort and Müller have proven that we have

the following two cases (different from γ = 2):

γ > 2: the singular perturbation turns out to be irrelevant in the limit, and we have
ϕγ = fhom for all γ;

γ < 2: (i.e., the length scale ε is small compared with the singular perturbation) the
singular perturbation has the dominant role, and forbids large oscillations in minimizing
sequences. In this case we have ϕγ = f for all γ, where f is the largest quasiconvex
function not greater than

(5.5) f̃(ξ) = lim
t→+∞

1

tn

∫

]0,t[n
f(x, ξ) dx

(for a proof in the periodic case see [22]).

5.2. Reiterated Homogenization

Let us consider a medium with two different scales of microstructures. The overall behavior
in such a case can be modeled by the asymptotic behaviour of functionals of the form

(5.5) Fε(u) =

∫

Ω

f(
x

ε
,
x

ε2
, Du) dx

where ε2 represents the finer microstructure. Again, if f verifies a growth condition of
order p we can repeat word by word the proofs of Theorems 2.1 and 2.2 and Proposition
3.1, to obtain the integral representation

(5.6) F(u) =

∫

Ω

ϕ(Du) dx

for Γ-converging subsequences of (Fε).
In the case of f = f(x, y, ξ) 1-periodic in x and in y, convex in ξ, and piecewise

uniformly continuous in x, it is possible to prove a representation formula that permits to
conclude the homogenization procedure. As in Remark 3.3 we have to describe the limit

(5.7) lim
k

1

kn
inf

{∫

]0,k[n
f(x, kx,Du(x) + ξ) dx : u ∈ W1,p

# (]0, k[n; IRN )
}
,
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In this case, proceeding as in Proposition 3.5 we see that

(5.8)

inf
{∫

]0,k[n
f(x, kx,Du(x) + ξ) dx : u ∈ W1,p

# (]0, k[n; IRN )
}

= inf
{∫

]0,1[n
f(x, kx,Du(x) + ξ) dx : u ∈ W1,p

# (]0, 1[n; IRN )
}
.

In the second formula of (5.8) the first x acts as a parameter (see [6]), so that we have the
asymptotic formula

(5.9)

lim
k

inf
{∫

]0,1[n
f(x, kx,Du(x) + ξ) dx : u ∈ W1,p

# (]0, 1[n; IRN )
}

= inf
{∫

]0,1[n
fhom(x,Du(x) + ξ) dx : u ∈ W1,p

# (]0, 1[n; IRN )
}
,

where

(5.10) fhom(x, ξ) = inf
{∫

]0,1[n
f(x, y,Du(y) + ξ) dy : u ∈ W1,p

# (]0, 1[n; IRN )
}

In conclusion, in order to obtain the homogenized integrand we have to “iterate” the convex
homogenization formula. For further details we refer to [4], [6] and [9].

Exercises

1. Recalling that if n = 1 and f(x, ξ) = a(x)ξ2, with

a(x) =

{
α if 0 ≤ x < 1/2
β if 1/2 ≤ x < 1

(α, β > 0), then fhom(ξ) =
2αβ

α+ β
ξ2, compute the homogenized functionals of

1) Fε(u) =

∫

]0,1[

a(
x

ε
) a(

x

ε2
)(u′(x))2 dx

2) Fε(u) =

∫

]0,1[

(
a(
x

ε
) + a(

x

ε2
)
)
(u′(x))2 dx

3) Fε(u) =

∫

Ω

a(
x

ε
) a(

y

ε2
)
((∂u
∂x

)2
+

(∂u
∂y

)2
)
dx dy

4) Fε(u) =

∫

Ω

(
a(
x

ε
) + a(

y

ε2
)
)((∂u

∂x

)2
+

(∂u
∂y

)2
)
dx dy

2. State the homogenization theorem for a medium with n different scales of microstruc-
tures.
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5.3. Homogenization of Hamilton-Jacobi Equations

Let us consider a Hamiltonian H = H(t, x, ξ) : IR×IRn×IRn → [0,+∞[ verifying a growth
condition of order p′, 1-periodic in the first two variables and convex in the last variable.

We shall study the limiting behaviour of the (viscosity) solutions of the Cauchy prob-
lem

(5.11)





∂uε

∂t
+H(

t

ε
,
x

ε
,Duε) = 0 in IRn × [0,+∞[

uε(x, 0) = ϕ(x) in IRn,

where ϕ is a given bounded and uniformly continuous function in IRn (see [20], [10]).
Let us define the Legendre transform of H:

L(t, u, ξ) = sup
ξ′∈IRn

{(ξ, ξ′) −H(t, u, ξ′)},

for every (t, u, ξ). Let us remark that L verifies a growth condition of order p.
Following P.L.Lions [25] Theorem 11.1 we can define for x, y ∈ IRn and 0 ≤ s < t

Sε(x, t; y, s) = inf

{∫ t

s

L(
τ

ε
,
u(τ)

ε
, u′(τ))dτ : u(s) = y, u(t) = x, u ∈ W1,∞((s, t); IRn)

}

= inf
{∫ t

s

L(
τ

ε
,
u(τ)

ε
, u′(τ))dτ : u(τ) −

(y − x

s− t
(τ − s) + y

)
∈ W1,p

0 ((s, t); IRn)
}
.

Then the unique viscosity solution to problem (5.11) is given by the Lax formula:

uε(x, t) = inf{ϕ(y) + Sε(x, t; y, s) : y ∈ IRn, 0 ≤ s < t}.

In order to study the asymptotic behaviour as ε → 0 of the functions uε we have to
compute the limits of Sε(x, t; y, s), and hence to study the Γ-convergence of the functionals

(5.12) Fε(u) =

∫ t

s

L(
x

ε
,
u

ε
,Du) dx.

As in the previous Sections, since L verifies a growth condition of order p we can repeat
almost word by word the proofs of Theorems 2.1 and 2.2 and Proposition 3.1, to obtain
the integral representation

(5.13) F(u) =

∫

Ω

ϕ(Du) dx

for Γ-converging subsequences of (Fγ
ε ). The function ϕ is identified by the following propo-

sition.
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Proposition 5.1. The limit

(5.14) L(ξ) = lim
T→∞

1

T
inf

{∫ T

0

L(τ, u(τ) + ξτ, u′(τ) + ξ)dτ : u ∈ W1,p
0 ((0, T ); IRn)

}

exists for every ξ ∈ IRn.

Proof. The proposition is analogous to the Asymptotic Homogenization Formula, and
the proof follows the same line. Note however that while in Proposition 3.2 we consider
perturbations of the function f(x, ξ), here we have to deal with the function L(x, ξx, ξ),
which in general is not periodic; hence we have to consider the function L as uniformly
almost periodic, and use the fact that restrictions of uniformly almost periodic functions
to linear subspaces are still uniformly almost periodic (see [5]). For more details see [10].

At this point we can infer as in Section 3 that ϕ = L. By the fundamental theorem
of the Γ-convergence we have then that for every x, y ∈ IRn and 0 ≤ s < t

Sε(x, t; y, s) →min

{∫ t

s

L(u′(τ))dτ : u(τ) −
(y − x

s− t
(τ − s) + y

)
∈ W1,q

0 ((s, t); IRn)

}

=(t− s)L
(y − x

s− t

)
,

the last equality following by the convexity of L and Jensen’s inequality. By the growth
hypothesis on L we obtain that the functions Sε(x, t; ·, ·) are equicontinuous in {y ∈ IRn, 0 ≤
s ≤ t− η}, and then

uε(x, t) → u(x, t)

pointwise, where

u(x, t) = inf{ϕ(y) + (t− s)L
(y − x

s− t

)
: y ∈ IRn, 0 ≤ s < t}.

Since the functions uε are equicontinuous on compact sets, the convergence is uniform on
bounded sets. Again by the Lax formula in [25] Theorem 11.1, u is the unique viscosity
solution of

(5.15)





∂u

∂t
+H(Du) = 0 in IRn × [0,+∞[

u(x, 0) = ϕ(x) in IRn,

where the effective Hamiltonian H is defined by

(5.16) H(ξ) = sup
ξ′∈IRn

{(ξ, ξ′) − L(ξ′)}.

We have then the following convergence result.
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Theorem 5.2. Let ϕ be a given bounded and uniformly continuous function in IRn, and
let uε be the unique viscosity solution of (5.11); then uε converges uniformly on compact
sets as ε→ 0 to the unique viscosity solution of the Cauchy problem (5.15), with H given
by (5.14), (5.16).

Example 5.3. Let n = 1 and H(x, ξ) = |ξ|2 − V (x), with V uniformly almost periodic
and inf V = 0; then we can give an alternative definition of H: for every ξ ∈ IRn, H is the
unique constant such that the stationary problem

(5.16) H(x, ξ +Du(x)) = |ξ +Du(x)|2 − V (x) = H(ξ)

has a uniformly almost periodic solution u with u′ continuous. When H(ξ) > 0, from
equation (5.16) we have

|u′(x) + ξ|2 = V (x) +H(ξ) > 0 ,

hence, by the requirement that u′ be continuous,

u′(x) = −ξ +

√
V (x) +H(ξ) or u′(x) = −ξ −

√
V (x) +H(ξ) .

The function u is then uniformly almost periodic if and only if the mean value of u′ is zero;
i.e.,

|ξ| = lim
t→+∞

1

2t

∫

[−t,t]

√
V (x) +H(ξ)dx := −

∫ √
V (x) +H(ξ)dx.

Since H is positive and convex, we obtain the formula

H(ξ) =





0 if |ξ| ≤ −

∫ √
V (x) dx

α if |ξ| = −
∫ √

V (x) + α dx.

The flat piece in the graph of H corresponds to the lack of differentiability of L in 0, as
already observed by Buttazzo & Dal Maso [14] Section 4a.
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Notation

B(x, r) open ball of center x and radius r;

{e1, . . . , en} canonical base of IRn: e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . .;

|E| Lebesgue measure of the set E;

An family of all bounded open subsets of IRn;

An(Ω) family of all bounded open subsets of Ω ⊂ IRn;

Wk,p(Ω; IRN ) Sobolev space of IRN -vaued functions on Ω with p-summable weak derivatives
up to the order k (if N = 1 we write Wk,p(Ω)); Lp(Ω; IRN ) = W0,p(Ω; IRN );

W1,p
0 (Ω; IRN ) = H1,p

0 (Ω; IRN ) closure in W1,p(Ω; IRN ) of compactly supported smooth func-
tions;

p′ conjugate exponent of p, i.e.,
1

p
+

1

p′
= 1;

4u Laplacian of u.
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