ANALISI MATEMATICA II - A.A. 2018-19 Secondo appello del 12/2/2019, ore 10:00

- 1. Calcolare, dove converge, la somma della serie $\sum_{n=1}^{\infty} \frac{n(n+2)}{n+1} x^{n+1}.$
- 2. Dire per quali $\alpha \in \mathbb{R}$ converge semplicemente e per quali assolutamente la serie $\sum_{n=2}^{\infty} (-1)^n \frac{1}{(\log n)^{\alpha} + \frac{1}{(n \log n)^{\alpha}}}.$
- 3. Calcolare l'insieme di convergenza puntuale D e il limite della successione di funzioni $f_n(x) = \arctan\left(\frac{\log(1+x^{2n})}{\log 2}\right)$. Dire se la convergenza è uniforme su D.
- **4.** Trovare tutti i punti di massimo e minimo di $f(x,y) = \sqrt{y^2 x^2}$ sull'insieme $\{(x,y): x^2 + (y-1)^2 \le 1\}.$
- 5. Dire se l'insieme $\{(x,y):y^2((y-2)^2+x^4-1)=0\}$ definisce implicitamente una curva nell'intorno di ogni suo punto.
- **6.** Calcolare (se esiste) la retta tangente all'insieme di $\left\{(x,y): \left(\frac{yx^2+2}{x}\right)^{x+y}=1\right\}$ in (2,0).
- 7. Sia $\omega = \cos(x+y)dx \cos(x+y)dy + dz$. Dire se ω è esatta e calcolare $\int_{\gamma} \omega$, dove γ parametrizza il segmento orientato di estremi $(0, \pi, \pi)$ e $(\pi, 0, 0)$.
- 8. Sia γ una parametrizzazione della curva nel semispazio z>0 ottenuta intersecando la sfera di centro (1,0,0) e raggio 2 e il cono $x^2+y^2=z^2$. Calcolare $\int_{\gamma}x\,ds$.
- 9. Sia $D = \{(x,y): x^2 + y^2 \le 1, \ 2x < y + |y|\}$ Disegnare D e calcolare $\iint_D xy \, dx \, dy$.
- **10.** Sia $D = \{(x, y, z) : (x z)^2 + y^2 \le z z^2\}$. Calcolare il volume di D.

ANALISI MATEMATICA II - A.A. 2018-19 Secondo recupero della terza prova intermedia. 12/2/2019, ore 10:00

- 1. Sia $\omega = \cos(x+y)dx \cos(x+y)dy + dz$. Dire se ω è esatta e calcolare $\int_{\gamma} \omega$, dove γ parametrizza il segmento orientato di estremi $(0, \pi, \pi)$ e $(\pi, 0, 0)$.
- 2. Sia γ una parametrizzazione della curva nel semispazio z>0 ottenuta intersecando la sfera di centro (1,0,0) e raggio 2 e il cono $x^2+y^2=z^2$. Calcolare $\int_{\gamma}x\,ds$.
- 3. Sia $D = \{(x,y): x^2 + y^2 \le 1, \ 2x < y + |y|\}$ Disegnare D e calcolare $\iint_D xy \, dx \, dy$.
- 4. Sia $D = \{(x, y, z) : (x z)^2 + y^2 \le z z^2\}$. Calcolare il volume di D.