Integrali su superfici

Andrea Braides

1. Calcolare l'area della superficie sferica della sfera di raggio unitario contenuta nel cilindro $\{(x,y,x):x^2+z^2\leq R^2\}$ al variare di $R\geq 0$.

2. Calcolare l'area della superficie del toro.

3. Sia S la superficie data da $\begin{cases} x=2uv\\ y=u^2-v^2\\ z=u^2+v^2 \end{cases}$ Calcolare $\iint\limits_S (x^2+y^2)\,dS.$ $u^2+v^2\leq 1.$

4. Calcolare l'area della parte di superficie cilindrica $x^2 + y^2 = 2y$ interna alla sfera $x^2 + y^2 + z^2 \le 4$ interpretandola come l'immagine di una funzione $\Phi(y, z) = (\varphi(y, z), y, z)$ definita sulla proiezione di tale parte di superficie cilindrica sul piano yz.

5. Sia S la superficie data da $\{(x,y,z)\in\mathbb{R}^3:z^2(x^2+y^2)=1,\ 1\leq z\leq 2\}.$ Calcolare $\iint_S \frac{1}{z^4}\,dS.$

6. Sia S la superficie data da $\{(x,y,z)\in\mathbb{R}^3:z=xy,\ 0\leq y\leq\sqrt{3}\,x,\ x^2+y^2<1\}$. Calcolare $\iint_S xy\,dS$.

7. Sia S la superficie data da $\{(x,y,z)\in\mathbb{R}^3:z^2=x^2+y^2,\ |z|\leq 2\}.$ Calcolare $\iint_S z^2\,dS.$

8. Sia S la superficie data da $\left\{(x,y,z)=(\sin(uv),\cos(uv),u):\frac{1}{2}< u< v<1\right\}$. Calcolare $\iint_S \frac{x^2+y^2}{z^3}\,dS$.