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| know exactly when Lev and | met (... it was almost twenty years ago
today. . .): on the morning of June 23 1997 in Oberwolfach:
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH
Tagungsbericht24/1997
Mathematical Continuum Mechanics

22.06. — 28.06.1997

| was giving my first talk on a discrete-to-continuum limit, and Lev was
the chairman.




| was talking about a continuum limit of a chain of Lennard-Jones
interactions
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Lev had studied exactly the same problem, but had obtained a
different limit . ..

This could have been the beginning of a fight, but instead was the
beginning of a friendship and of a collaboration between Minneapolis
(that was my first trip to the States), Trieste, Rome and Paris (we both
moved), that carried on while our lives changed ...

Finally, our magnum opus appeared ten years after:

A. Braides and L. Truskinovsky. Asymptotic expansions by
Gamma-convergence. Cont. Mech. Therm. 20 (2008), 21-62






Why the Devil?

The Devil’s Staircase (or Cantor’s Step Function)

diabolic points = where the function is continuous but not locally
constant (a set of measure zero, but where all the derivative
concentrates)

This mathematical beast seems to reappear in complex Physics
behaviours (a rapid search on the web: ground states of long range
1D lattice gas, chaotic behaviour, fractional quantum Hall effect, ...)



Some thoughts (with A.Causin, M.Solci and Lev) around two papers:

I. Novak and L. Truskinovsky. Segmentation in cohesive systems
constrained by elastic environments. Phil. Trans. R. Soc. A 375 (2017)

1. Novak and L. Truskinovsky. Nonaffine response of skeletal muscles
on the descending limb. Math. Mechanics of Solids 20 (2015)

Environment: double chain of interactions between NN sites
I = u
i = v %
Energy: Zz (f(’l)i —vi—1) + g(ui — ui,l) + h(ul — ’Ui))

Scaling argument c = 1/N:
(M) vl ()

Note: a formal continuum analog
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Particular case - | /(z) = 2°
1
/ f@WY +g(u (u — U)2>d1‘
or

/<¥f<>+eg<>+wu—UFMx

0
(singular-perturbation problem)

0 if ¢ =0

rigid case: u =
+o0o  otherwise, (rig u=")

Particular case - Il 1(¢) = {

f(2) = az?, g(z) = min{bz? ~}.Seta =a, B=a+b

/ WNM+/ (ol + 7)da
{blu’|2>~} {blu']2<~}

(damage model with two phases)



A homogenization approach
Energy:

Ewn) = R e(r (B ro(H ) (R )

K3

Hypotheses (simplified):

f(z) ~ 22 = continuum parameter v € H*
h(§) ~ £* = continuum parameter « = v

0 < g(2) < cz? = limit finite for u = v € H!

Convergence: (u.,v.) — v i.e. v. — v and u. — v in L?(0,1)
1

— T-limit: / F(W)deforve HY0,1)  (d = discrete)
0

Asymptotic homogenization formula

1 M
fon(2) = limrmind 2 (F(0n i) + g — i) + A — )

ug = vg = 0, uM:vM:zM}



Analysis of the effect of brittle interactions (NT 2017)

\/ ALz A/

elastic brittle elastic
f(2) = 3a2° 9(2) = 3 min{z*,n} h(g) = 3¢°
Interpretation of £ :a minimization on the location of broken

springs

broken spring broken spring

m springs



Averaged elastic energy of a single island: 3¢, 22 + 1

_ (a+1) _ wnh—1 (1, /blatl)
Cm = ma-l—tarrrth(ZmG)(::oth(G)’ f = sinh <§ aa )

3=

1 ok
; . pd (1t 2,
Effect of microstructure: f{,,,(z) = (2 15Lf {cmz + - })

(may set: ¢, = a + 1 (all unbroken springs) so that inf = min)
(mixture of infinitely many damage phases corresponding to
different m)

Properties: (z > 0)

1
eforz <z fl (z2)= ot

2

eforz> 2" f (2)= %z2 + g (complete fracture)

2% (no fracture)

an * _ , /n(2a+b(a+1))

Zx = (a+1) coth @ = ab



A diabolic behaviour at a point

e between z, and z* we have alternating:

parabolic pieces corresponding to regularly alternating island of
length m (with the density of broken springs 1/m)

affine pieces = mixtures of islands of length m and m + 1 (with the
density of broken springs interpolating between 1/(m + 1) and 1/m)

z

-

diabolic behaviour = concentration of infinitely many phases at z.



More diabolic points

In NT 2015 the case of
is considered: f(z) = min{z?, } \ /
[ is obtained by bistable

of springs with w in the two phases

>
>
S

m springs n springs

AAAA

(minimization on instead of m; i.e., on instead of 1/m)

B

Complete devil'’s
staircase

... still have to grasp the details (and the Devil is in the details!...)
. non-commensurability effect = nontrivial I-development?



An equivalent (?) continuum model

From Braides-Truskinovsky we have that 37, 3 min{ (“=%=2)% 5} is
uniformly equivalent (if a finite number of jumps are considered) to

1
% / [u/|* + 5%#(5(11)) Griffith fracture
0
(u piecewise-H'!, S(u) = set of discontinuity/fracture points of u)

A continuum energy with discontinuous u

-1 1 1
1 b
F.(u,v) = g/ [v|?dx + 3 / |u'|2dx + 57 (u — v)2da + L #(S(w))
0 Jo € Jo 2

-1
The I'-limit is again local: / Jrom (V' )dz (c = continuum)
J0

(+ corresponding homogenization formula)



Comparison with the discrete case

o fron(z)= % infs~o (CSZQ + %) with C, = M, w = 2sinh @

s 1 B
wi+z tanhw2

obtained by minimizing with boundary conditions v(s) — v(0) = s

/ \ Coo = (a+1)

N

o fi.m i strictly convex (no convexification = no mixtures involved)

e (no fracture) fg, .. (2) = “EL22if = < z¢, where 2 = z.V/cosh 0 > 2,

Consequence: in order for the discrete and continuous energies to
be equivalent up to z, we need to ‘correct’ the continuum facture
energy to

1
3 | WP+ eg e (S(w)

2 cosh 0
(effective fracture toughness)



o f& m(2) is asymptotic to £22 + ¢z2/3 for |z| — oo,

where ¢ = c(a,b,n) = §/ —3(a-ﬁ)nw

The optimal distribution of fracture at given strain is for
s=s5(2) ~ 2723

(cf. Maller, Alberti-Muller, etc.)

o % replaces the percentage of broken springs

1

2|

1/3
1/4

%)

discrete continuum



e The result can be exported to dimension d with

F.(u,v) = 2/|Vv\ dx + - /\Vu] dx

b /(u —v)2dz + Ean L(S(u))

o2 2e2

with T-limit / [Som (| Vo) dx
Q
(1d geometry, with fracture sites perpendicular to Vu)

The T'-convergence result with asymptotic formulas holds for
general f, g, h and (possibly cohesive) fracture energy

/ ot — u |)dHE!
S(u)

(u™ traces of u on S(u))



Recovery of a diabolic behaviour

Boundary-displacement-parameterized evolution with increasing
fracture site

At given ¢ increase ~ and minimize with conditions «(0) = v(0) = 0,
u(l) =v(1) = z (i.e., u(x) — zx and v(x) — zz 1-periodic) (Hard device)
subjected to S(u(z)) C S(u°(2")) if z < 2/
(l)lZV:O u=v=z
I e’
CnZ

0 1

1 \V | L el




If we plot the energy in function of z the minimum value is

1 .
m(z) = 5 (00022 A min{C%z2 +e2/n:j > O})




If we let ¢ — 0, up to subsequences, the limit “evolution” is described
by an envelope of infinitely many parabolas “accumulating in z¢.”
This is an example when I'-limit and “quasistatic evolution” do not
commute.

Example: take £ = 2% then (we set mj, = m? " for short)
1 )
mg(z) = 5 (Cooz2 Amin{Cor—; 22 +2FIn . j > 0})

tend to

1
m(z) (Cooz2 Amin{Cy-nz*+2"n:n € Z})

T2

s(2)

c
z

(it's the Devil in disguise!. . .)



Conclusions



Conclusions

Happy birthday, Lev!!






