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My recollections from thirty-five years ago

As a young student of De Giorgi I saw him as an oracle
dispensing his wisdom (sometimes in misterious statements)
for hours in his office at Scuola Normale or in the classroom of
the Timpano building.

Many of his statements are still food for thought
• positive statements (conjectures)
• working methods (lemmas, definitions)
and (more rarely)
• negative statements

I would like to talk about one of these negative statements. . .

(but before I have to recall some of the interests of De Giorgi in his
last years)



Minimizing movements
(after Almgren, Taylor and Wang (SIAM JO1993), and many other earlier contributions)

De Giorgi was interested in a notion of gradient flow w/ minimal
hypotheses on energies and spaces:
• introduce τ > 0 (time-scale), x0 (initial data)
• define the discrete orbit xτk by xτ0 = x0 and

xτk+1 minimizes x 7→ F (x) +
1
2τ
D(x, xτk)

(F = energy, D= distance squared or dissipation)
• extend xτk to a continuous-time orbit xτ (t) = xτbx/τc
• let τ → 0 and obtain (up to subseq.) xτ (t)→ x(t)
x is a minimizing movement for F with initial datum x0

Almgren-Taylor-Wang: x = set, F = perimeter, D = L2-distance of
boundaries. Minimizing movement = motion by mean curvature

Note: (up to technicalities) minimizing movements are curves of
maximal slope; in the smooth (Hilbert) case x′ = −∇F (x).

(for developments in the last 20 years cf. Ambrosio, Gigli, Savaré)



De Giorgi’s negative statement

In June 1995 at the conference “Calculus of Variations and
Nonlinear Elasticity” in Cortona we were discussing about
minimizing movements.
At that time I had in mind the homogenization of nonlinear
functionals and I asked De Giorgi

Would it be possible to use minimizing movements for the
homogenization of nonlinear functionals?

After a few seconds his answer was

. . . è un osso duro. . . (it is a hard nut to crack)

I was taken aback by his answer, and unfortunately never had
the occasion to ask for more explanations.
. . . but why are oscillating energies hard to “homogenize”?



A simple zero-dimensional example
(Ansini-B-Zimmer, 2016)

We now show that even in the simplest example,
homogenization is not trivial.
Energy: F (x) = −x+ ε sin

(
x
ε

)
, Dissipation: D(x, y) = (x− y)2,

x0 = 0, xk+1 minimizing x 7→ −x+ ε sin
(x
ε

)
+

1
2τ

(x− xk)2

• For τ << ε we have the convergence to closest local minimum
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Approximate limit equation x′ = 0



• For τ >> ε, xk approximately sit on local minima of the energy and
xk = xk−1 + τ

Approximate limit equation x′ = 1



• For τ ∼ ε, xk may converge to a local minimum or have almost-
periodic oscillations around an averaged uniform motion
xk+1 = xk + εC( τε ) (independently of x0)
(If τε → γ) approximate limit equation x′ = 1

γC(γ)

=⇒ behaviour described by the properties of a dynamical system
(Question: what are the properties of γ 7→ γ−1C(γ)?)

=⇒ Homogenized motion depends on the interplay between
the time and length scales τ and ε
Keywords: pinning threshold, homogenized velocity



Minimizing movements along a sequence Fε at scale τ

Given Fε, Dε (often Dε = D), τ > 0 (time-scale), x0 (initial datum)
• define the discrete orbit xτ,εk by xτ,ε0 = x0 and

xτ,εk+1 minimizes x 7→ Fε(x) +
1
2τ
Dε(x, x

τ,ε
k )

• extend xτ,εk to a continuous-time orbit xτ,ε(t) = xτ,εbx/τc
• let ε, τ → 0 and obtain (up to subseq.) xτ,ε(t)→ x(t)

x is a minimizing movement along Fε at scale τ with initial
datum x0 (strictly speaking, with dissipations Dε)



Minimizing movements and Γ-convergence
Γ-convergence of Fε → F

m
For all Gε continuously converging to G and Fε +Gε
equicoercive we have

inf(Fε +Gε)→ min(F +G)
minimizing sequences xε → x minimizers

As a consequence, if Dε(·, yk) continuously converge to D(·, y) when
yk → y and Fε Γ-converges to F then by induction

minimizers of Fε(x) + 1
2τDε(x, x

τ,ε
k )

converge to minimizers of F (x) + 1
2τD(x, xk)

Compatibility of Γ-convergence at “slow time scales”
Let Fε + 1

2τDε be equicoercive. If ε→ 0 “fast enough with
respect to τ ”, then any minimizing movement along Fε at
scale τ is a minimizing movement for the Γ-limit F

⇒ Minimizing movement for F is a “comparison evolution”



A detour: conditions for commutability

Question: are there conditions that guarantee compatibility
of Γ-convergence and minimizing movements at all scales?

“Classical” answer: Fε convex (cf. Brezis. . . Ambrosio-Gigli,. . . )

Connection with gradient flows for Ginzburg-Landau
(Sandier-Serfaty), Mumford-Shah (Gobbino), Lennard-Jones
(B-Defranceschi-Vitali), Perona-Malik (Colombo-Gobbino).

A general condition. (B-Colombo-Gobbino-Solci, CRAS, 2016)
Let Dε = D, and let Fε Γ-converge to F and be such that
• if xε → x with supn{|Fε(xε)|+ |∂Fε|(xε)} < +∞, then
lim
ε
Fε(xε) = F (x) and lim inf

n
|∂Fε|(xε) ≥ |∂F |(x)

• curves of maximal slopes for F are minimiz. movements for F
Then for all τε → 0 any minimizing movement along Fε at scale
τε is a minimizing movement for F .



Some DeGiorgian keywords of the proof

Given x minimizing movement along Fε at scale τ = τε

• (use De Giorgi interpolants) x̃τ,ε(t)→ x(t) for which

Fε(x̃τ,ε(s))−Fε(x̃τ,ε(t)) ≥
1
2

∫ t

s

|(x̃τ,ε)′|2 dr+1
2

∫ t

s

|∂Fε|2(x̃τ,ε(r)) dr+o(1)

if 0 ≤ s ≤ t

• check that sup{|Fε(x̃τ,ε(r))|+ |∂Fε|(x̃τ,ε(r))} < +∞ at almost all r

• use the liminf inequality for |∂Fε| and that Fε(x̃τ,ε(s))→ Fε(x(s))

F (x(s))− F (x(t)) ≥ 1
2

∫ t

s

|x′|2 dr +
1
2

∫ t

s

|∂F |2(x(r)) dr

• the limit is a curve of maximal slope. Hence, by hypothesis it is a
minimizing movement for F

Note: in our example ∂F = 1 but every point is approximated by local
minima of Fε (for which ∂Fε = 0); hence the first hypothesis is violated



The passage discrete-to-continuum

A late interest of De Giorgi, fostered by results by Chambolle
(approximation of the Mumford-Shah functional by finite-difference
energies with highly non-convex (truncated quadratic) potentials)
=⇒ one of De Giorgi’s last conjectures (Gobbino CPAM 1998)
=⇒ treatment of non-local energies (B-Dal Maso CalcVar 1997)
=⇒ local minimization of Lennard-Jones discrete systems
(B-Dal Maso-Garroni ARMA 1999)
=⇒ discrete-to-continuum analysis by Γ-convergence
(B-Gelli MMS 2002, Alicandro-Cicalese SIMA 2004, . . . )

A very timely subject: cf. also Le Bris and Lions, Weinan E,
Friesecke and Theil, Ortiz, and collaborators, for progress in the
last 20 years. We have missed De Giorgi much in this study

Review papers: Le Bris-Lions. From atoms to crystals. Bull. AMS ’05
B.- Variational methods for lattice systems. Proc. 2014 ICM, Seoul (for
the lazy. . . the ICM video:www.youtube.com/watch?v=rHGNjjEC5ww)



Lattice spin systems
(Caffarelli-de la Llave JSP 2005, Alicandro-B-Cicalese NHM 2006,
B-Piatnitsky JFA 2013)
Simplest lattice energy: the ferromagnetic nearest-neighbour
system in 2D

Fε(u) =
∑
〈i,j〉

ε(ui − uj)2, ui ∈ {0, 1}

〈i, j〉 = sum on nearest neighbours in εZ2

A spin function u : εZn → {0, 1} is identified with its
piecewise-constant interpolation ∼ set {u = 1}



Continuum limit of ferromagnetic spin systems

By this identification we define the convergence uε → A as the
convergence of (the interpolations of) uε to χA, and compute
the Γ-limit

F (A) =
∫
∂∗A
‖ν‖1dH1

defined for A set of finite perimeter, where ∂∗A = reduced
boundary, ν = normal to A and ‖ν‖1 = |ν1|+ |ν2|

This is a crystalline perimeter, whose Wulff shape is a square

Note: more in general we can consider
Fε(u) =

∑
i,j εc

ε
ij(ui − uj)2 with cεij long-range interaction

coefficients, and obtain

F (A) =
∫
∂∗A

ϕ(ν)dH1

(analogously in higher dimension).



Minimizing movements for spin systems

(Motivation: motion of interfaces in binary alloys, cf. Cahn,
Taylor, . . . )

We take D = (discrete version of the) ATW dissipation

Two general facts
• for τ << ε such systems are pinned
(A set can only decrease by an area ∼ perimeter × O(ε)
Dissipation ≥ ε

2τ× area ≥ ε2

τ × perimeter >> ε× perimeter =
decrease in energy
⇒ orbits are constant for small τ )

• for ε << τ the minimizing movement is flat flow; i.e., the
minimizing movement for the crystalline perimeter
(by “compatibility” of Γ-convergence at slow time scales)

⇒ we have a critical scaling ε ∼ τ



Flat flow

Almgren and Taylor showed that the ATW scheme applied with
energy F the crystalline perimeter in dimension two (flat flow),
gives motion by crystalline curvature.

A simple test. Motion by crystalline curvature is described by
the evolution of Wulff-like shapes (in this case, rectangles)

A side of length L moves inwards with velocity v = 2
L

(⇒ homothetical contraction to the centre)



This characterizes evolution of arbitrary sets, by the law

v = κ (crystalline curvature)

For simplicity we consider covex sets; in this case

κ =

{
2
L for coordinate sides
0 elsewhere

evolution of a circle (with extinction on finite time)

This is a simplified setting (with respect to motion by mean
curvature), since it is governed by a system of ODEs



1. Minimizing movements for ferromagnetic spin systems
(B-Gelli-Novaga, ARMA 2010)

At the critical scaling ε ∼ τ we expect some “homogenized”
crystalline curvature flow

We test the minimizing-movement scheme on rectangles (this
is again sufficient) by picturing what happens close to a corner

• discrete orbit: rectangles evolve in rectangles
• there is motion only if the decrease of the perimeter is
sufficiently large with respect to the dissipation
• the velocity is “quantized”
• the limit depends on τ

ε



The effective flow
If γ = lim

ε→0

τε
ε ∈ (0,+∞) then the (inward) velocity of the limit

motion is given by

v =
1
γ
bγκc b·c= integer part

Note: this is a system of ODEs with discontinuous right-hand
side
• partial pinning (v = 0 for small κ; i.e., large sides)
• (only) weak comparison principle
• only “generic uniqueness”
• possibility of non-trivial motion with eventual pinning

2γ

evolution of a (large) circle (with eventual pinning)



2. Minimizing movements for ferromagnetic spin systems with defects
(B-Scilla, IFB 2013)

We now remark that minimizing movements do not depend
on the Γ-limit only

We consider Fε(u) =
∑
〈i,j〉

ε cij(ui − uj)2

with cij > 1 for some “defected bonds” (cij = 1 otherwise)

The Γ-limit is still the same crystalline perimeter
(optimal sets avoid defects)



Homogenized motion
The motion depends on a local optimization argument

• rectangle evolve in rectangles avoiding the defects
• the local behaviour of a side is described (at given L) by the
orbit of an auxiliary dynamical system
The velocity law is

v =
1
γ
fhom(γκ)

fhom(z) = “Poincaré rotation number” of a discrete (in space
and time) dynamical system
Again fhom(z) = 0 for z below a pinning threshold and

lim
γ→+∞

1
γ fhom(γκ) = κ (compatibility with Γ-convergence)



3. Ferromagnetic Systems with Bulk Microstructure
(B-Solci, JNLS 2016)

The previous examples did not develop spatial
microstructure, which is characteristic of oscillating problems.
We now introduce inhomogeneities which favour
microstructure.
We consider Fε(u) =

∑
〈i,j〉

εcεij(ui − uj)2

with cεij = ε for some weak bonds (cεij = 2 otherwise)

The Γ-limit is still the same crystalline perimeter
(optimal sets use the maximum number of weak bonds)



The rectangle test: mushy layers

• Rectangles develop a (temporary) “mushy layer” (cf. fluid dynamics)

(a
)

(b
)

(a) = dissipation energetically convenient
(b) = dissipation not energetically convenient
• at the next step the mushy layer disappears (thanks to the
dissipation), and the process is repeated inside the new rectangle
• define A(t) the limit of the “rectangular evolution”



A more general limit motion
The limit velocity is

v =
2
γ

⌊
max

{2
3
γκ− 2

3
γ +

1
6
,
1
2
γk +

1
4

}⌋
Note: (“Compatibity” is violated!) if ετ >> 1 then

v = max
{4

3
κ− 4

3
, k
}

so that v = 4
3κ−

4
3 6= κ if κ > 4

Reason: lack of equicoerciveness⇒ the Γ-limit should take
into account also a new variable = limit of the mushy region.
In this new parameter D is not a continuous perturbation.

General Issue: Interaction between energy and dissipation
(cf B. Local Minimization, Variational Evolution and Γ-convergence.
Springer LNM 2014)



4. Antiferromagnetic systems with surface microstructure
(B-Cicalese-Yip, JSP 2016)

We consider a system of next-to-nearest antiferromagnetic
interactions in εZ2

Fε(u) = −
∑
〈〈i,j〉〉

ε cij(ui − uj)2

with cij = 1 (NN) and cij = 2 (NNN)

• ground states are striped patterns (Alicandro-B-Cicalese NHM
2016)

• we may parameterize the limit as a partition into four sets of
finite perimeter (Ambrosio-B JMPA 1990)
• in general the limit motion will be described as an evolution of
networks (cf Kinderlehrer-Liu, Mantegazza-Novaga-Tortorelli, . . . )



Evolution of a “single crystal”
In the case when in the limit we have only (parameters
corresponding to the two “variants” of) vertical stripes, we have
a crystalline energy

F (A) =
∫
∂∗A

ϕ(ν)dH1

where the Wulff shape is an irregular hexagon

(a discrete Wulff shape with “microstructure” of boundary interfaces)

We may apply the Algren-Taylor scheme to F and obtain the
crystalline flow v = κ (κ takes into account a “mobility” factor)



Minimizing movements at the discrete level

• It is sufficient to examine Wulff-like sets
•Wulff-like sets evolve into Wulff-like sets (not trivial!)
• ( τε → γ) velocity of the horizontal sides is again v = 1

γ bγκc
• motion of the “bisectric sides” are governed by surface
microstructure
We examine the behaviour close to a corner with optimal
microstructure

⇒ introduction of “defects” may iteract with the dissipation



Limit motion of the bisectric sides

We may have
• evolution on non-defected interfaces (after an initial step,
possibly)
• “toggling” between defected/non-defected interfaces
⇒ “non-local” crystalline motion of bisectric sides with velocity

v =
1
γ
f(γκ, γκ′)

(k, k′ = crystalline curvatures of neighbouring bisectric sides)



The final picture

Velocity of vertical sides: v = 1
γ bγκc

Velocity of bisectric sides v = 1
γ f(γκ, γκ′)
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Conclusions

The application of the minimizing-movement scheme to simple
lattice energies gives rise to possibly non-local crystalline
motion with pinning, non-uniqueness, homogenization of the
velocity non-commutativity effects, that depart from the
description given by the simple minimizing movement of the
Γ-limit in a unforeseen way.
After we discovered these effects my thoughts naturally went
back to De Giorgi’s remarks.

Is this what De Giorgi had in mind?
Probably not, but it was nice to go back with the memory to
those years and see once more that his teachings linger on.



Thank you for your attention !


