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(Scalar) spin systems: a prototypical lattice energy

Geometrical setting: a lattice L; e.g. Zd (d = 2 in this talk) or a
trianguar lattice in 2D, etc.

Parameter: u : Ω ∩ L → {−1, 1} with the notation ui = u(i)
Energy: (pair-interaction energy)

E(u) = −
X
i,j

cijuiuj Ising model/Lattice gas

or, up to additive/multiplicative constants

E(u) =
X
i,j

cij(ui − uj)2
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u=+1

u=-1

cij > 0 “attractive” (ferromagnetic) interactions
cij < 0 “repulsive” (antiferromagnetic) interactions
(cf. Caffarelli-de la Llave 2006, Alicandro-B-Cicalese 2007, B-Piatnitsky 2013)
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Some homogenization problems

The analysis of spin system allows to understand the behaviour of surface
energies obtained from atomistic interactions (e.g. Lennard-Jones, cf.
B-Lew-Ortiz, ARMA 2006).

In a general discrete-to-continuum framework, we will describe

1. Optimal design of mixtures of ferromagnetic interactions
(a “G-closure” problem)

2. Interfacial energies for frustrated systems
(with antiferromagnetic interactions)

3. An asymptotic result for dilute antiferromagnetic interactions.
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1- A G-closure problem (bounds on ferromagnetic mixtures)
B-Kreutz, in preparation

A prototypical case: mixtures of two ferromagnetic interactions
We consider an arbitrary family of (scaled) energies in dimension 2

Fε(u) =
1

8

X
NN

ε cεij(ui − uj)2 i ∈ εZ2

(NN = only nearest-neighbour interactions) where
cεij ∈ {α, β}, with 0 < α < β.

Integral representation. (Alicandro-Gelli SIMA 2016): up to
subsequences Fε Γ-converge to some F of the form

F (u) =

Z
Ω∩∂{u=1}

ϕ(x, ν)dH1 u : Ω→ {−1, 1}

Note. (in dimension 2) such energies are “dual” to energies on curves

F (u) =

Z b

a

ϕ⊥(γ, γ′)dt γ : (a, b)→ Ω

where ϕ⊥(x, z⊥) = ϕ(x, z)
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Two-phase G-closure problem: characterize all possible ϕ
(analogous problem for conduction networks: B-Francfort RS London Proc.2004)

Local percentage of α-bonds: up to subsequences, {cεij} determine a
function θ : Ω→ [0, 1], defined e.g. as the density of the weak∗ limit of

1

2

X
(i,j):cε

ij=α

ε2δ i+j
2

Problem: find all possible ϕ that can be obtained by {cεij} with a
given local percentage of α-bonds θ = θ(x).

Continuum analogue for metrics: find all possible ϕ such that the
Finsler length energy

R
ϕ(γ, γ′)dt can be obtained as limit of anisotropic

Euclidean length energies
R
aε(γ)|γ′|dt with aε(x) ∈ {α, β} given θ the

weak limit of χ{aε=α} (non-sharp bounds by Davini-Ponsiglione JAM 2007)
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A localization principle

• Given θ0 ∈ (0, 1) we define the set H(θ0) of all ψ = ψ(ν) that can be
obtained by homogenization of periodic systems {Cij} with percentage of α
given by θ0 (with arbitrary period N).
• The definition of H(θ0) makes sense if θ0 ∈ Q ∩ (0, 1). By approximation
we define H(θ0) for all θ0 ∈ [0, 1]

Lemma (“Dal Maso & Kohn”-type) The reachable ϕ are exactly those
such that ϕ(x, ·) ∈ H(θ(x)) for almost all x ∈ Ω.

Technical points:
• in order to reduce to a periodic setting the energies are extended to BV

by

Z
Ω

ϕ
“
x,

Du

|Du|

”
|Du| (and the discrete analog). These are convex, and can

be localized by blow-up and characterized by cell problems
(B-Chiadò Piat JCA 1995, Chambolle-Thouroude NHM 2009);

• in order to construct cεij one uses the identification with

Z b

a

ϕ⊥(γ, γ′)dt

and constructions for Riemannian metrics
(B-Buttazzo-Fragalà Asy. An. 2002, Davini Diff.Int.Eqns 2005)
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Description of the set H(θ). Optimal bounds.

The problem is then to describe H(θ) showing “optimal bounds” for the
Wulff shape.

Trivial bounds: α‖ν‖1 ≤ ψ(ν) ≤ β‖ν‖1.

Sharpness of the trival lower bound: by layering “in series” in both
directions we have a path with minimal length using only α-bonds

This can be done using a percentage of α-bonds of order 1/N

This bound can be interpreted as a geometrical constraint on the Wulff
shape of ψ (geometry of maximal sets at given interfacial energy), which
will be contained in the square Wulff shape of α‖ν‖1.
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Bounds-II

An “upper bound” by averaging: if ψ is the homogenized energy
density of Cij we have

ψ(ν) ≤ Ch|ν1|+ Cv|ν2|.

where Ch = average of horizontal Cij , C
v = average of vertical Cij

(i.e., Ch = θhα+ (1− θh)β with θh percentage of horizontal α-bonds, . . . )

Sharpness of the upper bound given Ch and Cv (which determine
the percentage of vertical and horizontal α-bonds): obtained by layering “in
parallel”

Note that 1
2
(Ch + Cv) = θα+ (1− θ)β

A. Braides Homogenization of spin systems



Bounds-III

The optimal upper bound is :

ψ(ν) ≤ (Ch|ν1|+ Cv|ν2|) ∨ β‖ν‖1

for some α ≤ Ch, Cv ≤ β with Ch + Cv = 2(θα+ (1− θ)β).

This can be interpreted as a geometrical constraint on the Wulff shape of ψ:
it should contain one of the Wulff shapes of Ch|ν1|+ Cv|ν2| (rectangles in
figure)
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Representation of the bounds on the Wulff shape

Possible Wulff shape should be symmetric with respect to the origin and
cross the four curves in bold, of equation

1

|x1|
+

1

|x2|
= 16(θα+ (1− θ)β)

Left: case θ > 1/2
Right: case θ ≤ 1/2 (here we must also take into account that Ch, Cv ≤ β)
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Longer-range interactions

For longer-range interactions the bounds are obtained by a superposition
argument: e.g., a system of NNN interactions

can be considered as three superposed lattices, where to estimate interfacial
energies separately.
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A multi-scale argument for the construction of the optimal geometries is
needed in this case.
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2- Homogenization of frustrated systems

When also antiferromagnetic interactions are considered then minimizers
can be frustrated: i.e. not all interactions are separately minimized.

Simplest case: nearest-neighbour energies E(u) =
P
NN uiuj , or, up to

additive/multiplicative constants

E(u) = −
X
NN

(ui − uj)2

Ground states: alternating states. C
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Note: in Zd we can reduce to ferromagnetic interactions introducing the
variable vi = (−1)iui (only for NN systems).
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An example with non-trivial macroscopic parameter
Alicandro-B.-Cicalese NHM 2006

In general ±1 are not meaningful order parameters.

An example: anti-ferromagnetic spin systems in 2D

E(u) = c1
X
NN

uiuj + c2
X
NNN

ukul ui ∈ {±1}

For suitable positive c1 and c2 the ground states are 2-periodic

(representation in the unit cell)

The correct order parameter is the orientation v ∈ {±e1,±e2} of the
ground state.

A. Braides Homogenization of spin systems



Γ-limit of scaled Eε:

F (v) =

Z
S(v)

ψ(v+ − v−, ν) dH1

S(v) = discontinuity lines; ν = normal to S(v)
ψ given by an optimal-profile problem

Macroscopic picture of a limit state with finite energy
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Energies with periodic ground states

X ⊂ R finite space of configurations
For u : εZd → X let

Eε(u) =
X
i

εd−1Ψi/ε({ui+j/ε}j∈εZd)

(Ψi is obtained by regrouping and normalizing interactions: in the example
above Ψi takes into account interactions in a single square labeled by i)
be such that i 7→ Ψi is periodic and

H1 (presence of periodic minimizers) let QN = {1, . . . , N}d
there exist N,K ∈ N and {v1, . . . , vK} QN -periodic functions such that
u 6= vj in QN ⇒ Eε(u,QN ) ≥ C > 0
u = vj in QN ⇒ Eε(u,QN ) = 0

H2 (incompatibility of minimizers) let Q′N be a N -cube with QN ∩Q′N 6= ∅
and l 6= m. Then

u =

(
vl in QN

vm in Q′N
=⇒ Eε(u,QN ∪Q′N ) > 0,

H3 (decay conditions) there exist CR with
P
R CRR

d−1 <∞ such that
u = u′ in QRN ⇒ |Eε(u′, QN )− Eε(u,QN )| ≤ CR

A. Braides Homogenization of spin systems



Energies with periodic ground states

X ⊂ R finite space of configurations
For u : εZd → X let

Eε(u) =
X
i

εd−1Ψi/ε({ui+j/ε}j∈εZd)

(Ψi is obtained by regrouping and normalizing interactions: in the example
above Ψi takes into account interactions in a single square labeled by i)
be such that i 7→ Ψi is periodic and

H1 (presence of periodic minimizers) let QN = {1, . . . , N}d
there exist N,K ∈ N and {v1, . . . , vK} QN -periodic functions such that
u 6= vj in QN ⇒ Eε(u,QN ) ≥ C > 0
u = vj in QN ⇒ Eε(u,QN ) = 0

H2 (incompatibility of minimizers) let Q′N be a N -cube with QN ∩Q′N 6= ∅
and l 6= m. Then

u =

(
vl in QN

vm in Q′N
=⇒ Eε(u,QN ∪Q′N ) > 0,

H3 (decay conditions) there exist CR with
P
R CRR

d−1 <∞ such that
u = u′ in QRN ⇒ |Eε(u′, QN )− Eε(u,QN )| ≤ CR

A. Braides Homogenization of spin systems



Energies with periodic ground states

X ⊂ R finite space of configurations
For u : εZd → X let

Eε(u) =
X
i

εd−1Ψi/ε({ui+j/ε}j∈εZd)

(Ψi is obtained by regrouping and normalizing interactions: in the example
above Ψi takes into account interactions in a single square labeled by i)
be such that i 7→ Ψi is periodic and

H1 (presence of periodic minimizers) let QN = {1, . . . , N}d
there exist N,K ∈ N and {v1, . . . , vK} QN -periodic functions such that
u 6= vj in QN ⇒ Eε(u,QN ) ≥ C > 0
u = vj in QN ⇒ Eε(u,QN ) = 0

H2 (incompatibility of minimizers) let Q′N be a N -cube with QN ∩Q′N 6= ∅
and l 6= m. Then

u =

(
vl in QN

vm in Q′N
=⇒ Eε(u,QN ∪Q′N ) > 0,

H3 (decay conditions) there exist CR with
P
R CRR

d−1 <∞ such that
u = u′ in QRN ⇒ |Eε(u′, QN )− Eε(u,QN )| ≤ CR

A. Braides Homogenization of spin systems



A compactness result with ground states (patterns) as parameters
B-Cicalese ARMA, to appear

The following results states that, under assumptions H1–H3, a spin system
can be interpreted as a multi-component surface energy

Compactness:
Let uε be such that Eε(uε) ≤ C < +∞. Then, under H1, H2 and H3, there
exist sets A1,ε, . . . , AK,ε ⊆ ZN (identified with the union of the ε-cubes
centered on their points) such that uε = vj on Aj,ε, Aj,ε → Aj in L1

loc(Rd)
and A1, . . . , AN is a partition of Rd.

Γ-convergence:

Γ- lim
ε
Eε(u) =

X
i,j

Z
∂Aj∩∂Aj

ψ(i, j, ν) dHn−1
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Mixtures of ferro+antiferro spin energies

The previous theorem may be appied to periodic mixtures where Ψi

regroupes (and normalizes) interactions

Cij ∈ {+1,−1}.

Question: what conditions to require on {Cij} in order that Ψi

satisfy H1–H3?
Question: can we bescribe the limit energies in some classes of
coefficients?
This is not trivial even when we only have nearest-neighbour interactions.
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How to state a G-closure problem?

Even in the simple case of only NN interactions, and a periodic distribution
of given proportions of ferro- and antiferromagnetic interactions the
parameter can depend on the geometry.

Example: for half ferro and half antiferro (1-periodic arrangement) we
may have a phase/antiphase description with two parameters (but no
majority phase)
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. . . the parameters may be more complex

distribution of NN bonds (dotted line=antiferromagnetic bonds)

antiphase boundary
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. . . or we may have a majority phase

distribution of NN bonds (dotted line=antiferromagnetic bonds)

phase boundary
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. . . or infinitely many ground states(4-periodic arrangement)

and a limit description not given by a perimeter energy
(must be relaxed on BV: no interfacial energy for vertical interfaces)
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or total frustration: we may have a zero surface tension due to
frustration.

The figures picture:
– the distribution of NN bonds (dotted line=antiferromagnetic bonds)
– three minimizing patterns on a square (red lines = frustrated bonds)
– a “disordered” minimal distribution (light-blue zone = antiferromagnetic
bonds)

Question: are these the only possible cases with nearest-neighbours?
can we characterize the maximum number of periodic ground states from
the range of the interaction?
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3-Dilute antiferromagnetic inclusions

Example (B-Piatnitski, JSP 2012) If we have small inclusions of the
antiferromagnetic bonds we may still have a continuum interfacial energy
and an order parameter u : Rd → {−1, 1} (representing the majority phase).

(grey area = anti-ferromagnetic interactions)
We want to show that this is the “generic” case for small
percentage of antiferromagnetic interactions (dilute regime)
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Ground states with a majority phase
(B-Causin-Piatnitski-Solci 2016)

The result. There exists a percentage p0 > 0 such that for a generic
periodic system of nearest-neighbour coefficients Cij ∈ {±1} such that the
percentage of Cij = −1 does not exceed p0, any minimizer ofX

(i,j)∈Ω

cεij(ui − uj)2, where cεij = Ci/ε j/ε

in a bounded open set Ω satisfies: ui = 1 (or ui = −1) for all i in a
connected set whose complement is composed of disjoint sets (i.e., of
distance larger than 2ε) of size O(ε).

Genericity: the genericity of {Cij} can be expressed as follows:
let P(N, p) be the set of all N -periodic coefficients {Cij} with a percentage
of antiferromagnetic interactions not greater that p
let B(N, p) be the subset of {Cij} which fail to satisfy the thesis of the
theorem

Then there exists p0 > 0 such that lim
N→+∞

#B(N, p0)

#P(N, p0)
= 0.
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Outline of the proof

(combinatoric and graph-theory arguments)

• estimate the number of N -periodic arrangements {Cij} such that a path
of length larger than N/2 exists in a periodicity square with at least half
Cij = −1. Note that the proportion of such {Cij} decreases esponentially
with N .

• suppose that there exist minimizers uε which do not satisfy the thesis.
Then for ε small there exists a “macroscopic” interface between uε = 1 and
uε = −1. Such an interface must have more than half cεij = −1. We cover
this interface with O(N) squares.

• we use the previous observation to estimate the ratio between #B(N, p0)
and #P(N, p0) with an exponentially decaying quantity.

Note: the same result holds by replacing the “proportion p0” by a
“probability p0” and “generic” by “almost sure” (work in progress)
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Conclusion

We have seen three issues in the homogenization theory for spin systems

• Bounds for mixtures of ferromagnetic interactions.
In this case we can exhibit exact bounds, and give a description in terms of
Wulff shapes, contrary to the continuum case, still open.

• Limits parameterized by ground states.
We have given a general integral representation results on Caccioppoli
partitions. It applies to some classes of interactions mixing ferromagnetic
and antiferromagnetic interactions, but (optimal) conditions on
microgeometries which ensure the applicability of the theorem are unknown.

• Systems with ground states characterized by a majority phase.
We have proved that “generically” systems with a low percentage of
antiferromagnetic interactions have “ferromagnetic” ground states.
The extension to a Gamma-convergence result seems technically more
difficult, and what happens beyond the dilute regime a matter of conjecture.
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Thank you for your attention!
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