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My first encounter with Irene (possibly) in the early ’90s



In the 1990s we lived parallel mathematical lives, working on
similar problems but never really interacting, then, finally,
collaboration started in 1998 at the Max-Planck Institute in
Leipzig!



Elastic Thin Films

Irene explained to me the problem of dimension-reduction.
For those who may not know, it consists in looking at objects
with one (or more) dimension smaller than others. In picture, for
example in 3D
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the “small domain” is Ωε = ω × (0, ε) (ω ⊂ R2) with thickness ε.
For (homogeneous) elastic thin films we have (scaled) energies

Fε(u) =
1
εα

∫
Ωε

W (∇u) dx u : Ωε → R3

with W an energy function with p-growth (p > 1)
In the case is α = 1 we expect a membrane theory on ω
(varying α, a hierarchy of theories; cf. Friesecke, James, Müller)



Scaling to a common domain Ω = ω × (0, 1) we get a family of
energies with a degenerate dependence on ∇3u.
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This allows to conclude that the domain of the limit is some

W 1,p(ω : R3) ∼ {u ∈W 1,p(ω : R3) : ∇3u = 0},

defines a convergence uε → u, and provides a lower bound with

W (A) = min{W (A, b) : b ∈ R3} A ∈M3×2



Le Dret and Raoult (J.Math.Pures Appl.1995) showed that this
bound is not sharp since W may not be quasiconvex, and the
recovery sequence might develop microstructure.

(W quasiconvex⇒ b constant)
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(W not quasiconvex⇒ b oscillating)



The Le Dret-Raoult relaxation formula: the Γ-limit is given by∫
ω
Q3×2W (∇u) dx1dx2

where Q3×2 denotes the 3× 2-quasiconvexification
(optimization on oscillations).

. . . but Irene (and Gilles, working with her on the subject) was
not happy with this formula since it relies on a very particular
geometry and works for homogeneous energies



Our contribution to the theory

AB, I.Fonseca, G.Francfort.
3D-2D Asymptotic Analysis for Inhomogeneous Thin Films.
Indiana Univ. Math. J. 2000

(. . . my most-cited paper!, according to MathSciNet. . . )

We developed a general method for dimension-reduction, valid
for inhomogeneous thin films with possibly varying thickness
(with boundary of graph type).

The two (simple but effective) main ideas are
• that for the definition of a limit parameter it is sufficient to have
a uniform minimal thickness
• the application of the localization method of Γ-convergence
on cylindrical sets



Sufficiency of a uniform minimal thickness
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(we first define a limit u on the “normal” thin film, and then deduce
that the limit is the correct parameter by using a Poincaré inequality in
the vertical direction)

Note. The fact of having a thin film of “graph type” is somewhat
necessary to apply this Poincaré argument (cf. Bhattacharya-B.
R.Soc.Lond.Proc. A 2002)



The localization method of Γ-convergence
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(we use cylindrical sets and the fact that the limit u depends only on
(x1, x2))

This method allows to treat energies on Ωε with oscillating
profile and Wε inhomogeneous, concluding the existence (up to
subsequences) of a Γ-limit

F (u) =
∫
ω
Ŵ (x1, x2,∇u)dx1 dx2

(and, of course, it extends to k-dimensional thin objects in Rn)



A homogenization formula
(e.g., when Wε(x, ξ) = W (x/ε, ξ) and the profile is flat)

Ŵ (A) = lim
T→+∞

1
T 2

inf
{∫

(0,T )2×(0,1)
W (y,∇w)dy :

w = A(x1, x2) on (∂(0, T )2)× (0, 1)
}

This relies on a simple scaling argument by T = 1/ε
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(Note: when Wε = W (ξ), this provides an alternative formula for
Q3×2W )



Discrete Thin Films

The study of thin objects is important in nano-environments,
where ε is at the atomic scale.
It seems interesting to study energies directly defined on
discrete thin objects; e.g., portions of λZ3 contained in a “bulky”
thin film, as atomistic interaction systems.

In this case the thickness parameter is the number N of
“layers”, and ε = (N − 1)λ.



Connection with continuum theories
Energies defined on “bulky sets”; e.g., on u : Ω ∩ λZ3 → R3 of
the form

Fλ(u) =
∑
ij

λ3W λ
ij

(ui − uj
λ

)
,

with
•W of p-growth
• decay conditions when |i− j| → +∞
• coerciveness on nearest neighbours
Then we have a compactness theorem with respect to the
convergence of the piecewise-constant interpolations uλ → u,
obtaining in the limit continuum energies∫

Ω
W (x,∇u) dx u : Ω→ R3

(Alicandro, Cicalese. SIAM J. Math Anal 2004)



Elastic Discrete Thin Films

As a consequence of the “bulky” result if we let first N (the
number of layers) diverge, keeping ε = λN fixed, and then
ε→ 0, we obtain the usual continuum thin-film theory.

What about N fixed?
In Alicandro-B-Cicalese (Calc.Var. 2008) we considered thin
films with W λ

ij exactly as above defined in (ω × [0, λN ]) ∩ Z3,
and proved
• the compactness method of BFF can be adapted with the
additional difficulty that discrete energies are non-local by
nature. Controlled decay conditions allow to prove the locality of
the limit, and the representation∫

ω
W (x,∇u) dx1 dx2



If W λ
ij are translation-invariant (i.e., homogeneous;

corresponding to the Le Dret-Raoult case) then
• the limit energy density depends on N (contrary to the
continuum case). This is due to a boundary-layer effect giving a
surface energy of the same order as the bulk energy
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with a non-zero component in the N -th variable. We first show that functions on which

the limit energy is finite, that are thus defined on M copies of ⇤, are actually equal

on each of these copies, so that the limit energy can be defined on the only set ⇤. To

prove a general compactness and representation theorem for the limit we adapt both the

localization techniques on cylindrical domains used by Braides, Fonseca and Francfort

[9] to prove a compactness result for energies on continuous thin films, and those used by

Alicandro and Cicalese [1] for thick discrete systems, where the main di⇤culty is taking

care of long-range interactions. More precise homogenization formulas are given in the

case when the energy densities are periodic; i.e. f⇤
�,⇥ = f�/⇤,⇥/⇤ and there exists an

integer k such that fi,j = fi�,j� if i � i⇥ = j � j⇥ ⇥ kZN�1. As in [9] these formulas

are defined through minimum problems on rectangles with boundary conditions on the

lateral boundaries only. In the discrete case it must be noted that these formulas are

necessary also in the ‘trivial’ case when fi,j = fj�i; i.e. the energy densities depend only

on the distance of � and ⇥ in the unscaled reference lattice ZN , as already observed for

‘thick’ domains, except when only nearest-neighbour interactions are taken into account

(see [4]). In the case of thin domains an additional scale e�ect must be taken into account,

since long-range interactions (next-to nearest interactions and further) produce di�erent

e�ects close to the upper and lower free boundaries than in the interior (see Figure 2).

These e�ects can be viewed as generating a surface energy through a boundary layer (see

[6,?]) that for thin films is of the same order as the bulk energy. Note that this e�ect is

present also for simple quadratic interactions, as observed by Charlotte and Truskinovsky

for one-dimensional systems [19].
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Fig. 2 A simple model for thin films with nearest and next to nearest interactions: bulk geometry
(BG) and boundary layer e�ect (BL) for a multi-layer thin film subject to a vertical deformation
gradient z.

The paper is organized as follows: after introducing the necessary notation in order

to make the energies F⇤ more tractable, the compactness and representation theorem

is proved in Section 2 together with the convergence of minimum problems. Section

3 is devoted to homogenization; in particular the simple case when only ‘horizontal’

and ‘vertical’ interactions are present is treated, when a formula can be given showing

explicitly the non-trivial dependence of the homogenization formula on the number M

(BL = boundary layer, BG = bulk geometry)

• commutability (under some symmetry conditions); i.e., by
letting N → +∞ we obtain the continuum thin-film limit

(Open question: does this hold without symmetry conditions?)



Note: in terms used by Friesecke and Theil, we might have
more Cauchy-Born states as N increases
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Brittle Thin Films

Back to the continuum setting . . .
. . . Irene and I considered thin films with possibility of fracture
(Appl. Math. Optim. 2001) in an SBV setting. The passage to the
limit is also interesting for interfacial energies only
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showing the possibility of oscillations of cracks.



Discrete Interfacial Energies: Spin Systems
Simplest model of discrete interfaces: cubic lattice λZn,
ui ∈ {−1,+1} spin variable (i ∈ Zn),
Model energies: (ferromagnetic interactions)

Eλ(u) =
∑
(i,j)

λn−1(ui − uj)2

with the sum running over (i, j) nearest neighbours in λZn

(note the scaling by λn−1(surface scaling))
A spin function u : λZn → {±1} is identified with its
piecewise-constant interpolation ∼ set {u = 1}



Continuous limit: we have

Eλ(u) Γ−→ F (u) =
∫
∂{u=1}

‖ν‖1dHn−1

We will identify a function u ∈ {±1} with the set A = {u = 1}
⇒ the limit is a crystalline perimeter

We can consider more general energies

Eλ(u) =
∑
(i,j)

λn−1cij(ui − uj)2

(i ∈ λZn) with cij ≥ 0



Quasicrystalline geometries
For such simple systems we can concentrate on more complex
geometries in Rn+m; for example, thin objects of the form

Ωε = εZn+m ∩ (ω × εS0),
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(from now on we may consider the case λ = ε, since we do not
consider the number of layers N ) where ω ⊂ π, π = Πn is an
n-dimensional linear subspace of Rn+m and S0 is a subset of the
orthogonal complement to π (connected and containing 0 for
simplicity)



Note: if m = 1 then necessarily S0 is a segment. Even in that case,
the geometry of Zn+m ∩ (π × S0) has interesting features if the
normal to π is not an “integer” direction and its projection on π is often
referred to as a quasicrystal. If π is a coordinate hyperplane then we
have the “usual” layered thin film.
A refinement of the “projection method” in BFF
We can directly project on a suitable n-dimensional space, up to
introducing a “negligible” third phase ui = 0
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Surface Energies on Quasicrystals

Proceeding as in BFF (+BF), we obtain the existence of a limit
(up to subsequences) that can be written as∫

ω
ϕ(x, ν)dHn−1.

Homogenization. For nearest-neighbour energies

Eε(u) =
∑

(i,j)∈εZn+m∩(ω×εS0)

εn−1(ui − uj)2

we expect the limit to be independent of subsequences and
homogeneous. This should give a ferromagnetic energy density
characteristic of the quasicrystal.



To prove this we may use the homogenization formula, which works if
we may find a relatively dense set of translations such that the energy
is (almost)-invariant under such translations.
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We may use quasiperiodic arguments to find such translations. such
that the corresponding geometry is repeated “almost” identical.



Note that in principle the sites that are “misplaced” by
translation may give a surface contribution.
A fine additional argument must be used to describe the
geometry of those misplaced” sites. To that end we have to
require that S0 be a polyhedral set
(B-Causin-Solci, IMA J Appl Math 2012)
(the contribution of the misplaced sites instead is negligible for
“elastic” quasicrystals, for which we have no restriction on S0).

Open question: is the hypothesis of S0 polyhedral necessary?



Aperiodic lattices

Other aperiodic lattices can be framed in a “discrete thin film”
setting. The best known is the Penrose Lattice

which can be seen as a 2-dimensional discrete thin film in Z5

with π a precise “irrational” two-dimensional plane in Z5 (up to
some technical details; cf. B-Solci. M3AS 2011).

Open question: is the Wulff shape for the ferromagnetic
energy of the Penrose lattice a pentagon?



A Model for Random Deposition
(an example of random discrete thin films - B-Cicalese-Ruf, in progress)

We may consider a spin system, with a random geometry
obtained by “successive random depositions” on a neutral
substrate (only forcing the sites to sit above a fixed lattice, say
Z2).
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We then have “thin films” with geometry depending on the
number N of iterations of the random deposition process.
We suppose
• the probability to deposit above a given site is p (according to
an i.i.d. random variable)
• only nearest neighbours (in Z3) interact with a fixed
ferromegnetic interaction.
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second layer, etc.
(p small in these pictures)



We may homogenize each of these thin films obtaining almost
surely

FN (u) =
∫
S(u)

ϕN (ν)dH1

We have again a dependence on N :

• if p ≤ pc (critical site-percolation threshold) then we have
ϕN = 0 for small N ; otherwise it is positive (by comparison with
the homogenized density of dilute spins in 2D; cf. B-Piatnitski
J.Stat.Phys. 2013)
• lim

N
ϕN (ν) = p‖ν‖1.



Antiferromagnetic Energies
If we have spin energies∑

i,j

cij(ui − uj)2

(mixing ferromagnetic and) antiferromagnetic interactions (with
some cij < 0), then we may have frustration; i.e., ground states
may not have the interactions minimized for all pairs (i, j).
(Note that if cij < 0 then the interaction is minimized for ui 6= uj)

Total frustration. The simplest example is the triangular lattice
with only antiferromagnetic nearest-neighbour interactions
where we have ‘disordered’ ground states

(frustrated interactions (in red))



Periodic frustrated ground states. We also may have a finite
number of periodic minimizers; e.g. in the triangular lattice with
nearest-neighour antiferromagnetic and next-to-nearest-neigh-
bour ferromagnetic interactions we have six “hexagonal” ground
states

(only frustrated interactions (in red) highlighted).
Note. The ground states determine the number of parameters on
which to define the Γ-limit. In this example it will be a surface energy
defined on Caccioppoli partitions labelled by six parameters
(B-Cicalese, ArXiv 2015).

Question: is the same type of frustration inherited by the
corresponding thin films?



Antiferromagnetic Thin Films
For thin films the effect of internal surface energies (frustrated
connections) adds up to that of boundary surface energies.
Example (dependence of # of parameters on the thickness)
The number of parameters of N -layer thin films may depend on N
and ‘stabilize’ to those of the ‘bulk’ limit
E.g., for triangular NN antiferrom. + NNN ferromagnetic,

2 ground states

6 ground states

4 or 6 ground states

4 ground states

(Note: the # is not always increasing with the thickness)



Example (rigidity by boundary effects)
“Total frustration” may only occur as the number of layers N → +∞
E.g., for triangular NN antiferromagnetic, (the gray zones highlight an
interface)

2 ground states

4 ground states

8 ground states

16 ground states

2N ground states… N layers

(in a sense the effect of the boundary is opposite to elastic thin films)



Conclusions

I have traced the approach of B-Fonseca-Francfort in recent
dimension-reduction results for discrete objects.
The flexibility of the method has allowed to adapt the analysis
to treat both elastic and brittle, deterministic and random thin
objects.
The use of the homogenization standpoint has given the
opportunity of highlighting new features as the dependence on
the number of layers, or almost-periodicity issues.
We have finally seen some antiferromagnetic examples where
an analysis of ground states is necessary before even starting
to apply a thin-film procedure, with new questions.

There is still work to be done. . . maybe with Irene again. . .



Thank you for your attention!

. . . and. . .

Happy Birthday, Irene!


