Metodi Matematici per l'Ingegneria

2. Esercizi su analisi complessa e calcolo di trasformate di Fourier

Integrali impropri

- 1. Calcolare i residui della funzione $f(z) = \frac{ze^{iz}}{z^2 2z + 10}$. Calcolare $\int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 2x + 10} dx$.
- **2.** Calcolare $\int_{-\infty}^{+\infty} \frac{\cos x}{x^2 + 1} dx$ (scrivere $\cos x = \text{Re } e^{ix}$)
- 3. Calcolare $\int_{-\infty}^{+\infty} \frac{\sin(2x)}{x(x^2+4)} dx.$
- **4.** Calcolare $\int_{-\infty}^{+\infty} \frac{\cos 2x}{(x^2+1)(x^2+4)} dx$.
- 5. (a) Sia $f(z) = \frac{z}{z^4 + 16}$ e sia C_R il quarto della circonferenza di centro 0 e raggio R contenuto nel primo quadrante. Applicando il teorema dei residui a C_R calcolare $\lim_{R \to +\infty} \int_{\partial C_R} f(z) \, dz$ (orientato positivamente);
 - (b) Usare il punto (a) per calcolare $\int_0^{+\infty} \frac{x}{x^4 + 16} dx$.

Trasformate di Fourier

(la teoria sulle Trasformate di Fourier verrà svolta in seguito, ma il loro calcolo è un esercizio di analisi complessa)

Sia $f: \mathbb{R} \to \mathbb{C}$ una funzione tale che $|f(x)|^2$ sia integrabile in senso improprio. Chiameremo trasformata di Fourier di f la funzione $\widehat{f}: \mathbb{R} \to \mathbb{C}$ definita da

$$\widehat{f}(\omega) = \lim_{R \to +\infty} \int_{-R}^{R} f(x)e^{-i\omega x} dx.$$

Negli esercizi qui sotto, fissato $\omega \in \mathbb{R}$, al calcolo di $\widehat{f}(\omega)$ si possono applicare i Lemmi di Jordan e il Teorema dei Residui.

- **6.** Sia $f(x) = \frac{1}{(x^2 + i)(x^2 4i)}$. Calcolare la trasformata di Fourier $\hat{f}(\omega)$ di f per $\omega < 0$.
- 7. Sia $f(x) = \frac{1}{(x^2 + 4i)(x^2 i)}$. Calcolare la trasformata di Fourier $\widehat{f}(\omega)$ di f per $\omega > 0$.
- 8. Sia $f(x) = \frac{1}{(x^2 + 2x + 2)(x^2 + i)}$. Calcolare la trasformata di Fourier \widehat{f} di f.
- 9. Sia $f(x) = \frac{1}{(x^2+4)(x^2+i)}$. Calcolare la trasformata di Fourier \hat{f} di f.
- 10. Sia $f(x) = \frac{\sin x}{i + x^3}$. Calcolare la trasformata di Fourier $\widehat{f}(\omega)$ di f per $\omega < -1$. Verificare che $|\widehat{f}|$ è limitata.

(Suggerimento: usare la forma esponenziale per $\sin t$)

11. Sia $f(x) = \frac{\cos x}{1+x^2}$. Calcolare la trasformata di Fourier $\widehat{f}(\omega)$ di f per $\omega < -1$.