

# Andrea Braides (Università di Roma `Tor Vergata', Italy)

38th Conference on Stochastic Processes and their Applications Spa2015@oxford-man.ox.ac.uk



・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

## **Variational Percolation Problems**

Andrea Braides (Roma Tor Vergata)

SPA, Oxford, July 17 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

# Model Setting: Discrete Variational Problems

(bond formulation)

 $\mathcal{L}$  = lattice in  $\mathbb{R}^d$ 

 $u_i$  = parameter describing the system, with  $i \in \mathcal{L}$ 

 $E(\{u_i\}) = \sum_{\substack{(i,j)\\ (i,j)}} \Phi_{ij}(u_i, u_j) \quad \text{energy}$ ( $\Phi_{ij}$  = bond interaction energy - pairwise for simplicity) The sum runs over a given set of bonds (e.g., nearest neighbours)



(more in general we may have three-point interactions, etc.) **Model:**  $u_i \in \mathbb{R}^d$  atomistic displacement  $\phi_{ij}(u_i, u_j) = \phi(|u_i - u_j|)$  interatomic pair potential

# **Discrete-to-Continuum Analysis**

cf. Chambolle, B-Gelli, Blanc-Le Bris-Lions, Friesecke-Theil, Caffarelli-de la Llave, etc.



• Scale the lattice:  $\varepsilon \mathcal{L}$ , with  $\varepsilon > 0$  a small parameter

• (Possibly) localize the analysis on a bounded domain  $D \cap \varepsilon \mathcal{L}$  (equivalent to considering the original energy on a large domain  $\frac{1}{\varepsilon}D$ )

#### Scale the energy

$$E_{\varepsilon}(\{u_i\}) = \sum_{(i,j)} \phi_{ij}^{\varepsilon}(u_i, u_j)$$

( $u_i$  value at  $\varepsilon i$ ; the definition of  $\phi_{ij}^{\varepsilon}$  from  $\phi_{ij}$  depends on the relevant energy scale for the analysis)

• define a discrete-to-continuum convergence  $u_{\varepsilon} \to u$  of functions defined on  $D \cap \varepsilon \mathcal{L}$  to functions defined on D (e.g., convergence of piecewise-constant interpolations on Voronoi cells, or convergence of the empirical measures  $\mu_{\varepsilon} = \sum \varepsilon^d u_i \delta_{\varepsilon i}$ )

(日) (日) (日) (日) (日) (日) (日)

• Compute a limit continuum energy.

## **Γ-limit (zero-temperature limit)**

In this context the limit continuum energy F is defined as the  $\Gamma$ -limit of  $E_{\varepsilon}$  with respect to the  $L^1$  convergence of interpolations.

The formal definition is that for all u

- $F(u) \leq \liminf_{\varepsilon} E_{\varepsilon}(u_{\varepsilon})$  whenever  $u_{\varepsilon} \to u$  (lower bound)
- there exists  $\overline{u}_{\varepsilon} \to u$  such that  $F(u) = \lim_{\varepsilon} E_{\varepsilon}(u_{\varepsilon})$  (optimality)

#### **Fundamental properties:**

• if  $E_{\varepsilon}$  is equicoercive (i.e., energy-bounded sequences are precompact) and  $E_{\varepsilon} \to F$  then minimum problems for  $E_{\varepsilon}$  converge to minimum problems for F (convergence of minimum values and minimizers) • (stability) for a class of perturbations G the  $\Gamma$ -convergence of  $E_{\varepsilon}$  to F implies the  $\Gamma$ -convergence of  $E_{\varepsilon} + G$  to F + G (this allows e.g. to treat minimum problems with given boundary conditions, integral constraints, etc.)

(...some extensions to positive temperature possible)

## **Discrete Variational Problems w/ Random Defects**

Introduce i.i.d. random variable that model the presence of random defects with probability p



Correspondingly, consider two types of energies  $\phi_{\rm s}$  = strong bond interaction,  $\phi_{\rm w}$  = weak bond interaction and define  $\phi_{ij}$  by

 $\phi_{ij} = \phi_{ij}^{\omega} = \begin{cases} \phi_{w} & \text{on defected bonds (w/ prob. } p) \\ \phi_{s} & \text{on non-defected bonds (w/ prob. } 1 - p) \\ (\omega = \text{realization of the random variable}) \end{cases}$ 

## 1st Model Case: Blake-Zisserman weak membrane

(computer vision/fracture mechanics)

Consider:  $\mathcal{L} = \mathbb{Z}^2$ , only nearest-neighbour interactions, parameter  $u_i \in \mathbb{R}$ 

 $\phi_{s}(u_{i}, u_{j}) = (u_{i} - u_{j})^{2}, \quad \phi_{w}(u_{i}, u_{j}) = \min\{(u_{i} - u_{j})^{2}, 1\}$ (truncated quadratic potential)

(this model can be derived from Lennard-Jones interactions)

Strong energy (if  $\phi_{ij} = \phi_s$  for all ij): the discretization of the Dirichlet energy  $\int_D |\nabla u|^2 dx$  with domain  $H^1(D)$ 

Weak energy ( $\phi_{ij} = \phi_s$  for all i, j): for all  $\{u_i\}$  we can consider the set of bonds such that  $|u_i - u_j| \ge 1$  and associate to it a path in the dual lattice representing a discrete fracture site



We scale  $\phi_w$  so that the energy on discrete fractures scales as a surface energy:  $\phi_{ij}^{\varepsilon} = \min\{(u_i - u_j)^2, \varepsilon\}$ 



The  $\Gamma$ -limit of  $E_{\varepsilon}$  is an anisotropic continuum fracture energy

$$F(u) = \int_{D \setminus S(u)} |\nabla u|^2 \, dx + \int_{S(u)} (|\nu_1| + |\nu_2|) d\mathcal{H}^1$$

defined on functions  $u \in SBV(D)$ ; i.e., functions with a (sufficiently smooth) **discontinuity set** S(u) and (weakly) differentiable outside that set.

**Notation:**  $\nu$  = normal to S(u),  $\mathcal{H}^k$ = *k*-dimensional surface (Hausdorff) measure

#### Random weak-membrane percolation theorem (B-Piatnitski ARMA 2008)

With fixed a realization  $\omega$  let scaled energy densities with  $\phi_{ij}^{\varepsilon} = \begin{cases} \min\{(u_i - u_j)^2, \varepsilon\} \text{ on defected bonds (w/ prob. } p) \\ (u_i - u_j)^2 \text{ on non-defected bonds (w/ prob. } 1 - p) \end{cases}$ and  $E_{\varepsilon}^{\omega}$  the corresponding discrete energies. Then the  $\Gamma$ -limit is deterministic, depends almost surely only on p and

• if 
$$p \leq \frac{1}{2}$$
 then  $F(u) = \int_D |\nabla u|^2 dx$  (negligible defects)

• if p > 1/2 then  $F(u) = \int_{D \setminus S(u)} |\nabla u|^2 dx + \int_{S(u)} \varphi_p(\nu) d\mathcal{H}^1$ , where  $\varphi_p(\nu)$  is the asymptotic chemical distance on the weak

*cluster in direction*  $\nu$  (e.g. Garet-Marchand '04-'07)

$$\varphi_p(\nu) = \lim_{T \to +\infty} \frac{1}{T}$$
 length of the minimal path of weak bonds joining 0 and  $T\nu$ 

**Q.:** Asymptotic behaviour of  $\varphi_p$  as  $p \to 1/2^+$  ? 

## Variational percolation issues

Subcritical regime: Poincaré inequality on the strong cluster. Let p < 1/2. Then the "channel property" of the strong cluster gives a.s. a uniform Poincaré inequality on the strong cluster

 $\Rightarrow$  compactness in Sobolev spaces

$$\Rightarrow H^1(S(u)) = 0$$

Supercritical regime: a Quantitative Percolation Lemma (Kesten) Let p > 1/2. For a.e. realization  $\omega$  and for T sufficiently large "paths of bonds joining 0 and  $T\nu$  with length less than  $T(\varphi_p(\nu) - \eta)$  must contain a percentage  $c_{\eta} > 0$  of strong bonds"

 $\Rightarrow$  may suppose that bonds with  $|u_i - u_j| > 1$  lie in the weak cluster

 $\Rightarrow$  length of discontinities are estimated by chemical distance

## 2nd Model Case: Dilute Spin Systems

(statistical mechanics/ continuum mechanics for perforated domains)

Consider:  $\mathcal{L} = \mathbb{Z}^d$  (d = 2, 3), nearest-neighbour interaction,  $u_i \in \{-1, +1\}$  (spin variable)

 $\phi_{s}(u_{i}, u_{j}) = -u_{i}u_{j}$  (ferromagnetic interaction)  $\phi_{w}(u_{i}, u_{j}) = 0$  (noninteracting spins)

**Ferromagnetic**  $\Gamma$ -limit: If  $\phi_{ij} = \phi_s$  for all ij and  $\phi_{ij}^{\varepsilon} = \varepsilon^{d-1}\phi_{ij}$  (up to additive constants) we have coerciveness with respect to the strong convergence  $u_{\varepsilon} \rightarrow u \in \{\pm 1\}$ , and u can be identified with the set of finite perimeter  $A = \{u = 1\}$ . Then the  $\Gamma$ -limit is simply

$$F(A) = \int_{\partial A} (|\nu_1| + |\nu_2|) d\mathcal{H}^1$$

 $(F(A) = \int_{\partial A} (|\nu_1| + |\nu_2| + |\nu_3|) d\mathcal{H}^2$  if d = 3) that is, a crystalline perimeter energy with the Wulff shape a square (resp., a cube)

#### Dilute-spin variational percolation theorem (B-Piatnitski J. Stat. Phys. 2012)

As above, introduce iid random variable such that

 $\phi_{ij} = \phi_{ij}^{\omega} = \begin{cases} 0 & \text{on defected bonds w/ prob. } p \\ -u_i u_j & \text{on non-defected bonds w/ prob. } 1 - p \\ (\omega \text{ realization of the random variable}) \text{ and consider the energies} \end{cases}$ 

$$E_{\varepsilon}(u) = \sum_{(i,j)} \varepsilon^{d-1} \phi_{ij}^{\omega}(u_i, u_j).$$

**2D Result** The  $\Gamma$ -limit is deterministic, depends almost surely only on p and

• If p < 1/2 then  $F(A) = \int_{\partial A} \psi_p(\nu) d\mathcal{H}^1$  and we have compactness in  $L^1$  on the strong cluster  $(\psi_p = \text{first-passage percolation formula; cf. eg Grimmet-Kesten})$ 

• if 
$$p \ge 1/2$$
 then  $F(A) = 0$ .

#### **3D Result**

The  $\Gamma$ -limit is deterministic and depends a.s. only on p. Let  $p_*$  (resp.,  $p^*$ ) be the percolation threshold below which (resp., above which) the weak (resp., strong) cluster is not connected.

- If  $p < p_*$  then  $F(A) = \int_{\partial A} \psi_p(\nu) d\mathcal{H}^2$  and we have coerciveness in  $L^1$  on the strong cluster; (*surface tension*  $\psi_p$  as in Wouts '09, Cerf-Theret '11) • if  $p \ge p^*$  then F(A) = 0
- (partially) open problem if  $p_* \leq p < p^*$  then  $F(A) = \int_{\partial A} \psi_p(\nu) d\mathcal{H}^2$  and  $\psi_p$  is positive, but coerciveness is

not known (even though  $\psi_p > 0$ )

#### Percolation coerciveness lemma.

(3d case) Let  $p < p_*$ . Then a.s. "if we have a connected set composed of N bonds and containg 0 then it contains a fixed percentage of strong bonds for N large "

 $\Rightarrow$  BV estimates of sets  $\{u = 1\}$  on the strong cluster

## Conclusions

Variational percolation problems involve interaction between variational techniques and probabilistic issues. We have examined two model cases.

Many more interesting variational model involve random quantities:

- random lattices (e.g., Poisson clouds)
- long-range interactions
- anti-ferromagnetic inclusions
- etc.

On one hand Percolation Theory provides relevant objects and techniques for the a.s. description of limit variational problems On the other hand variational questions introduce new types of issues in the percolation context. Thank you for your attention!