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Outline

I will examine three examples of perimeter energies with a
periodic microgeometry defined on the plane. After scaling,
such energies all Γ-converge to the same crystalline perimeter,
whose evolution is described by motion by crystalline curvature.

Nevertheless the limit motion in the three case is influenced by
pinning effects due to the presence of local minima that are not
detected (or partially detected) by the Γ-limit.

Those effects and the resulting equations are different in the
three examples.



Setting: flat flow of crystalline perimeter energies
(Simplest) crystalline perimeter energy in R2

F (A) =
∫
∂A
‖ν‖1dH1

‖ν‖1 = |ν1|+ |ν2|, ν = normal to ∂A (Wulff shape = coordinate square)

Almgren-Taylor-Wang scheme (ATW): flat flow A defined as:
• given initial datum A0, at fixed time-scale τ define Ak by
minimizing iteratively

A 7→ F (A) +
1
τ
D(A,Ak−1) (1)

D(A,A′) = “dissipation” ∼ L2-distance of ∂A friom ∂A′

• define time-continuous piecewise-constant interpolation:
Aτ (t) = Abt/τc
• compute time-continuous limit A(t) = lim

τ→0
Aτ (t)



“The flat flow A of the crystalline perimeter is motion by
crystalline curvature” (Almgren-Taylor)

Limit equation for A
v = κ

κ = crystalline curvature

Example: A side of a coordinate rectangle of length L has
curvature

κ =
2
L

Such a rectangle contracts homothetically to its center in finite
time.



Example 1: evolution of spin systems /pinning by
discreteness (original personal motivation)

Simplest geometry: square lattice Z2, nearest-neighbour
interactions, ui ∈ {−1,+1} spin variable (i ∈ Z2), energy

E(u) = −
∑
(i,j)

uiuj ∼
∑
(i,j)

(ui − uj)2

Scaling: Eε(u) =
∑
(i,j)

ε(ui − uj)2 (i ∈ εZ2)

A spin function u : εZ2 → {±1} is identified with its p.c. inter-
polation ∼ set {u = 1}



Continuous limit: we have

Eε(u) Γ−→ F (u) =
∫
∂{u=1}

‖ν‖1dH1

We will identify a function u ∈ {±1} with the set A = {u = 1}
⇒ the limit is the “crystalline perimeter of u”

Q. How is spin-type evolution related with motion by crystalline
curvature?



General remarks
(Pinning by discreteness) “Almgren-Taylor-Wang evolution” is
always pinned at fixed ε: minimize iteratively

Eε(u) +
1
τ
Dε(u, uk) (2)

(Dε = “ATW dissipation” for discrete sets).
If u 6= uk then we have 1

τDε(u, uk) ≥ ε2

τ >> Eε(u)− E(uk).
Hence, for τ small enough uk+1 = uk, so that uk = u0 for all k.

⇒ need to define a ε/τ -dependent evolution

Definition (for arbitrary perimeter energies Fε): a minimi-
zing movement (M.M.) along the energies Fε at time scale
τ = τ(ε) (from uε0) is any time-continuous u(t) constructed as
• uk = uε,τk minimizes iteratively (1) with uε,τ0 = uε0
• (piecewise-constant extension) uε(t) = uε,τbt/τc
• take the limit as ε→ 0 (up to subsequences)
Note: if Fε = F then u is the ATW motion ∼ flat flow



A general result (extreme minimizing movements)
(for abstract equi-coercive perimeter energies Eε with Eε → F )
• there exists a scale τ∗ = τ∗(ε) such that if τ << τ∗ then any
M.M. along Fε coincides with a limit of ATW motions at fixed ε
• there exists a scale τ∗ = τ∗(ε) such that if τ >> τ∗ then any
M.M. along Fε coincides with an ATW motion of the limit F

Q. (if the two extreme motions are different) determine the
critical scalings, and the set of all possible M.M.

Pinning of Spin System
• critical scaling τ∗ = τ∗ = ε
• (pinning) if τ << ε then the motion is trivial for all initial data
• (effective motion) if τ/ε→ γ then the motion is given by a
discrete motion by crystalline curvature

v =
1
γ
bγκc

(κ = crystalline curvature) (B-Gelli-Novaga ARMA 2008)



Microscopic mechanism: barriers from local minima



Notes
1) the right-hand side is a discontinuous function⇒ general
need to enlarge the possible class of geometric motions.
2) Even in the simplest case of a rectangle as an intial datum
u0 this is a system of ODE with non-uniqueness phenomena
3) The details of the motion depend on the patterns of local
minima of Fε and not only on the Γ-limit (B-Scilla IFB 2013)
4) The limit equation may depend on γ in a more complex way

v =
1
γ
fhom(γκ)

with fγ a homogenized velocity (B-Scilla IFB 2013)
5) We may not have a unique effective motion: the limit equation

v = fγhom(κ)

may really depend on γ, not only through a scaling (Scilla, Adv.
Math. Sci. Appl. 2013)



Example 2. Homogenization of crystalline
perimeter with a layered forcing term/
Pinning by homogenization of barriers
(B-Malusa-Novaga, in progress)

Setting: usual crystalline perimeter on subsets of R2;
zero-mean 1-periodic forcing term

g(x, y) = g(x) =

{
1 if 0 ≤ x < 1/2
−1 if 1/2 ≤ x < 1

-1 -1 -1 -1+1 +1 +1+1

Fε(A) =
∫
∂A
‖ν‖1dH1 +

∫
A
g
(x
ε

)
dx dy



We still have

Fε(A) Γ−→ F (A) =
∫
∂A
‖ν‖1dH1

Limit equation
We only consider the case τ/ε→ 0 (limits of M.M.) and an initial
datum a rectangle R0. The evolution is still a rectangle R(t) with
• horizontal sides moving inwards with velocity v = κ

• vertical sides moving inwards with velocity v = max
{
κ− 1

κ , 0
}

1



Microscopic mechanism: homogenzation of velocities
For κ < 1 the microscopic velocity of the vertical sides are

v = κ− 1 or v = κ+ 1

hence they have contrasting directions⇒ pinning

Technical difficulty: even for rectangles initial data the
discrete evolutions at fixed ε are not rectangles

-1 -1 -1 -1+1 +1 +1+1



Example 3. Spin systems with weak inclusions /
Motion by mushy layers
(B-Solci, 2015)

Setting: square lattice Z2, spin variable, ε-depending (scaled)
energy

Eε(u) =
∑
(i,j)

ε cεij(ui − uj)2 cεij =

{
ε

1

Upon normalizing Eε, we still have

Eε(u) Γ−→ F (u) =
∫
∂{u=1}

‖ν‖1dH1



Asymptotic motion

We consider only the case τ/ε→ +∞.
The effective motion is

v = max
{
κ,

4
3

(κ− 1)
}

Microscopic mechanism: short-time pinning
E.g., taking as initial datum a rectangle R0



Note: In this case the “general result” on the extreme M.M. for
perimeters “fails”: the limit as τ/ε→ +∞ is not the ATW motion
of the Γ-limit as ε→ 0.
This is explained by a “lack of equi-coerciveness”: as a result
the limit of Eε + 1

τDε is not F + 1
τD

=⇒ necessity to define an “ATW” motion also when we do
not have a “reference dissipation D”
(i.e., D is such that we have a compact convergence for which
Eε

Γ−→ F and Dε converges continuously to D)

(B. Local Minimization, Variational Motion and Gamma-convergence,
LNM 2013)



Conclusions

We have examined three cases of pinning for geometric motion
due to microstructure
• pinning by local minimization
• pinning by barriers
• short-time pinning

A general framework proposed to study such phenomena are
minimizing movements along a sequence of functional at given
time scale. For pinned geometric motion issues are
• computing the critical time scale for depinning
• describe effective motions
• develop homogenization techniques for the velocity law
• extend the ATW scheme to cases without a reference
dissipation
• etc.



Thank you for your attention!


