
Chapter 9

Di↵erent time scales

In this chapter we treat some variations on the minimizing-movement scheme motivated
by some time-scaling argument.

9.1 Long-time behaviour

We will consider a new parameter � > 0 and follow the iterative minimizing scheme from
an initial datum x

0

by considering x
k

defined recursively as a minimizer of

min
n 1

�
F

"

(x) +
1
2⌧
kx� x

k�1

k2
o

, (9.1)

and setting u⌧ (t) = u⌧,�(t) = xbt/⌧c. Equivalently, we may view this as applying the
minimizing-movement scheme to

min
n

F
"

(x) +
�

2⌧
kx� x

k�1

k2
o

. (9.2)

Note that we may compare this scheme with the usual one where x
i

are defined as min-
imizers of the minimizing-movement scheme with time scale ⌘ = ⌧/� giving u⌘ as a dis-
cretization with lattice step ⌘. Then we have

u⌧ (t) = xbt/⌧c = xbt/�⌘c = u⌘

⇣ t

�

⌘

.

Hence, the introduction of � corresponds to a scaling of time.
Note that this process may be meaningful also if F

"

= F is independent of ". In this
case, as ⌧ ! 0 we obtain the minimizing movement along F

�

= 1

�

F with � in place of
" in the notation used hitherto (of course, being a matter of notation, up to a change of
parameters we can always suppose that � ! 0).
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128 CHAPTER 9. DIFFERENT TIME SCALES

We now first give some simple examples which motivate the study of time-scaled prob-
lems, also when the unscaled problems already give a non trivial minimizing movement.

Example 9.1.1 Consider in R2 the energy

F
"

(x, y) =
1
2
(x2 + "y2).

The corresponding gradient flow is then
⇢

x0 = �x
y0 = �"y,

with solutions of the form

(x
"

(t), y
"

(t)) = (x
0

e�t, y
0

e�"t).

These solutions converge to (x(t), y(t)) = (x
0

e�t, y
0

), solving
⇢

x0 = �x
y0 = 0,

which is the gradient flow of the limit F (x, y) = 1

2

x2. Note that

lim
t!+1

(x
"

(t), y
"

(t)) = (0, 0) 6= (0, y
0

) = lim
t!+1

(x(t), y(t)).

The trajectories of the solutions (x
"

, y
"

) lie on the curves

y

y
0

=
⇣ x

x
0

⌘

"

and are pictured in Fig. 9.1.
The solutions can be seen as superposition of (x(t), y(t)) and "(x1(t), y1(t)), where

(x1(t), y1(t)) := (0, e�t)

is the solution of
8

<

:

x0 = 0
y0 = �y
(x(0), y(0)) = (0, y

0

).

The solution (x1, y1) can be obtained by scaling (x
"

, y
"

); namely,

(x1(t), y1(t)) = lim
"!0

(x
"

(t/"), y
"

(t/")).

In this case the scaled time-scale is � = ". Note that the limit of the scaled solutions does
not satisfy the original initial condition, but its “projection” on the set of (local) minimizers
of the limit energy F (or, in other words, the domain of the limit of the energies 1

"

F
"

).



9.1. LONG-TIME BEHAVIOUR 129

Figure 9.1: trajectories of the solutions, and their pointwise limit

Example 9.1.2 A similar example can be constructed in one dimension, taking, e.g.,

F
"

(x) =
"

2
x2 +

1
2
((|x|� 1) _ 0)2 .

If x
0

< �1 then the corresponding solutions x
"

satisfy:
• the limit x(t) = lim

"!0

x
"

(t) solves
⇢

x0 = �x + 1
x(0) = x

0

,

which corresponds to the gradient flow of the energy

F (x) =
1
2
((|x|� 1) _ 0)2 .

• the scaled limit x1(t) = lim
"!0

x
"

(t/") solves
⇢

x0 = �x
x(0) = �1,

which corresponds to the gradient flow of the energy

F1(x) = lim
"!0

1
"
F

"

(x) .

In this case the initial datum is the projection of x
0

on the domain of F1.

Remark 9.1.3 In the previous examples we faced the problem of defining a minimizing
movement for a sequence of functionals F

"

(�-)converging to a limit F when the initial data
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x"

0

converge to a point x
0

62domF . Note that in this case the approximating trajectories
u" are always defined if one can define x"

1

; i.e., a solution of

min
n

F
"

(x) +
1
2⌧
kx� x

0

k2
o

,

or equivalently of
min{2⌧F

"

(x) + kx� x
0

k2 : x 2 dom F},
after which x⌧

1

2 domF and we apply the theory already studied. Note that if domF is a
closed set in X then x⌧

1

converge to the projection x
1

of x
0

on dom F , so it may be mean-
ingful to directly study the minimizing movements from that point. Note however that,
as always, the choice of initial data x⌧

1

! x
1

may provide a choice among the minimizing
movements from x

1

.

We now give more examples with families of energies F
"

�-converging to a limit F .
Since we are mainly interested in highlighting the existence of a time scale � = �

"

at which
the scaled motion is not trivial, we will make some simplifying assumptions, one of which
is that the initial datum be a local minimizer for F , so that the (unscaled) minimizing
movement for the limit from that point is trivial.

Example 9.1.4 We take as F the 1D Mumford-Shah functional on (0, 1) defined by

F (u) =
Z

1

0

|u0|2dt + #(S(u)),

with domain the set of piecewise-H1 functions. We take

F
"

(u) =
Z

1

0

|u0|2dt +
X

S(u)

g
⇣ |u+ � u�|

"

⌘

,

where g is a positive concave function with

lim
z!+1

g(z) = 1.

We also consider the boundary conditions

u(0�) = 0, u(1+) = 1.

We suppose that
• u

0

is a local minimizer for F ; i.e., it is piecewise constant;
• #(S(u

0

)) = {x
0

, x
1

} (the simplest non-trivial local minimizer) with 0  x
0

< x
1

 1;
• competing functions are also piecewise constant.
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With these conditions, all minimizers u
k

obtained by iterative minimization satisfy:
• S(u

k

) ⇢ {x
0

, x
1

}.
We may use the constant value z

k

of u
k

on (x
0

, x
1

) as a one-dimensional parameter.
The minimum problem defining z

k

is then (supposing that z
0

> 0 so that all z
k

> 0)

min
n 1

�

⇣

g
⇣z

"

⌘

+ g
⇣1� z

"

⌘⌘

+
1
2⌧

(x
1

� x
0

)(z � z
k�1

)2
o

,

which gives

(x
1

� x
0

)
z
k

� z
k�1

⌧
= � 1

"�

⇣

g0
⇣z

k

"

⌘

� g0
⇣1� z

k

"

⌘⌘

.

As an example, we may take
g(z) =

z

1 + z
,

so that the equation for z
k

becomes

(x
1

� x
0

)
z
k

� z
k�1

⌧
= � "

�

⇣ 1
"2 + z2

k

� 1
"2 + (z

k

� 1)2
⌘⌘

.

This suggests the scale
� = ",

and with this choice gives the limit equation for z(t)

z0 = � 1� 2z

(x
1

� x
0

)z2(z � 1)2
.

In this time scale, unless we are in the equilibrium z = 1

2

the middle value moves towards
the closest value between 0 and 1.

As a side remark, note that a simple qualitative study of this equation shows that if
the initial datum is not 1/2 then z = 0 or z = 1 after a finite time, after which the motion
is trivial. Note that the limit state is a local minimum with only one jump.

Example 9.1.5 We consider the same functionals F and F
"

as in Example 9.1.4 with
an initial datum with three jumps satisfying the same Dirichlet boundary conditions
u(0�) = 0, u(1+) = 1 and the same assumptions as before.

With the notation used above, the minimum problem is

min
n 1

�

✓

g

✓

z
0

� 0
"

◆

+ g

✓

z
1

� z
0

"

◆

+ g

✓

1� z
1

"

◆◆

+
1
2⌧

⇣

(x
1

� x
0

)|z
0

� zk�1

0

|2 + (x
2

� x
1

)|z
1

� zk�1

1

|2
⌘o

. (9.3)
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Di↵erently from the previous case, now we have to compute a gradient as a function of
z
0

and z
1

, the constant values of u respectively on (x
0

, x
1

) and (x
1

, x
2

). Hence, the Euler
equations for (9.3) give the following system for zk

0

and zk

1

:

(x
1

� x
0

)
zk

0

� zk�1

0

⌧
= � 1

�"

✓

g0
✓

zk

0

"

◆

� g0
✓

zk

1

� zk

0

"

◆◆

, (9.4)

(x
2

� x
1

)
zk

1

� zk�1

1

⌧
= � 1

�"

✓

g0
✓

zk

1

� zk

0

"

◆

� g0
✓

1� zk

1

"

◆◆

. (9.5)

For the sake of illustration, we may take the same g as in the previous example, so that
equations (9.4) and (9.5) become

(x
1

� x
0

)
zk

0

� zk�1

0

⌧
= � "

�

✓

1
(" + zk

0

)2
� 1

(" + zk

1

� zk

0

)2

◆

, (9.6)

(x
2

� x
1

)
zk

1

� zk�1

1

⌧
= � "

�

✓

1
(" + zk

1

� zk

0

)2
� 1

(" + 1� zk

1

)2

◆

. (9.7)

This suggests the scale
� = ", (9.8)

and with this choice the limit equations for z
0

(t) and z
1

(t) are

z0
0

= � z
1

(z
1

� 2z
0

)
(x

1

� x
0

)z2

0

(z
1

� z
0

)2
, (9.9)

z0
1

= � 1� z2

0

� 2z
1

(1� z
0

)
(x

2

� x
1

)(z
1

� z
0

)2(1� z
1

)2
. (9.10)

In this time scale, it is easy to see that the gradient is zero when (z
0

, z
1

) = ( z1
2

, 1+z0
2

),
so we can have the following di↵erent behaviors:

• Equilibrium point. For the initial datum (z
0

, z
1

) = (1

3

, 2

3

) the motion is trivial;

• If z
0

is larger than the equilibrium point, then z0
0

> 0 and the constant value z
0

will
increase towards z

1

, otherwise it will decrease towards zero. The same holds for z
1

between z
0

and 1.

It must be noted that if the initial datum is not an equilibrium point then after a finite
time one of the jump sizes vanishes, after which we are back to the previous example. In
Figures 9.2–9.5 we picture four stages of the evolution computed numerically.

A further simplified example is obtained by taking symmetric initial data x
2

� x
1

=
x

1

� x
0

=: L and z
0

(0) = 1

2

� w
0

and z
1

(0) = 1

2

+ w
0

with 0 < w
0

< 1/2, for which the
motion is described by a single parameter w(t) satisfying

w0 =
3(1

2

+ w)(w � 1

6

)
4L(1

2

� w)w2

,
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Figure 9.2: Initial conditions Figure 9.3: Iteration n. 30

Figure 9.4: Iteration n. 60 Figure 9.5: Iteration n. 100

in which case the equilibrium point corresponds to w
0

= 1/6, and otherwise after a finite
either we have w = 0 (which gives z

0

= z
1

= 1/2; i.e., the equilibrium point with two
jumps) or w = 1

2

(which gives z
0

= 0 and z
1

= 1; i.e., a final state with only one jump
point

Example 9.1.6 In the framework of the energies considered in the previous example, we
not consider the case when we do not impose boundary conditions. To make it easier we
consider the case in which there are only two jumps in x

0

and x
1

, with 0 < x
0

< x
1

< 1,
and a piecewise-constant initial value:

u
0

(x) =

8

<

:

z
0

if 0  x < x
0

z
1

if x
0

< x < x
1

z
2

if x
1

< x  1
(9.11)

where we consider 0 < z
0

< z
1

< z
2

< 1 for simplicity. In this case, di↵erently from the
previous one, since the value of u at the boundary points is not prescribed, then all these
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values can change in time. In order to study the minimizing movement, we now need to
consider the derivatives with respect to z

0

, z
1

, z
2

. What we get is:

� 1
"�

· 1
(1 + z1�z0

"

)2
+

1
⌧
x

0

(zk

0

� zk�1

0

) = 0 (9.12)

1
"�

 

1
(1 + z1�z0

"

)2
� 1

(1 + z2�z1
"

)2

!

+
1
⌧
(x

1

� x
0

)(zk

1

� zk�1

1

) = 0 (9.13)

1
"�

· 1
(1 + z2�z1

"

)2
+

1
⌧
(1� x

1

)(zk

2

� zk�1

2

) = 0 (9.14)

This suggests again the scale � = ". With this choice, we find:

z0
0

=
1
x

0

1
(z

1

� z
0

)2
(9.15)

z0
1

= � 1
(x

1

� x
0

)
· (z

2

+ z
0

� 2z
1

)(z
2

� z
0

)
(z

1

� z
0

)2(z
2

� z
1

)2

= � z
2

� z
0

(x
1

� x
0

)(z
1

� z
0

)(z
2

� z
1

)

✓

1
z
1

� z
0

� 1
z
2

� z
1

◆

(9.16)

z0
2

= � 1
(1� x

1

)
1

(z
2

� z
1

)2
(9.17)

We observe that z0
0

is always positive, while z0
2

is always negative, which means that the
first constant will increase in time and the second one will decrease, trying to reduce again
the number of the jumps. z0

1

is zero at z0+z2
2

; above this value it becomes positive, and
under this value it becomes negative.

Example 9.1.7 We consider another approximation of the Mumford-Shah functional: the
(scaled) Perona-Malik functional. In the notation for discrete functionals (see Section 3.4),
we may define

F
"

(u) =
N

X

i=1

1
| log "| log

⇣

1 + "| log "|
�

�

�

u
i

� u
i�1

"

�

�

�

2

⌘

.

Note that also the pointwise limit on piecewise-H1 functions gives the Mumford-Shah
functional since

lim
"!0

1
"| log "| log

⇣

1 + "| log "|z2

⌘

= z2

and
lim
"!0

1
| log "| log

⇣

1 + | log "|w
2

"

⌘

= 1

for all w 6= 0.
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As in the Example 9.1.4, we consider the case when competing functions are non-
negative piecewise constants with S(u) ⇢ S(u

0

) = {x
0

, x
1

} and with the boundary con-
ditions u(0�) = 0, u(1+) = 1. The computation is then reduced to a one-dimensional
problem with unknown the constant value z

k

defined by the minimization

min
n 1

�| log "|
⇣

log
⇣

1 + | log "|z
2

"

⌘

+ log
⇣

1 + | log "|(z � 1)2

"

⌘⌘

+
1
2⌧

(x
1

� x
0

)(z � z
k�1

)2
o

,

which gives the equation

(x
1

� x
0

)
z
k

� z
k�1

⌧
= � 2

�

⇣ z

" + | log "|z2

+
z � 1

" + | log "|(z � 1)2
⌘

.

This suggests the time scale

� =
1

| log "| ,

and gives the equation for z(t)

z0 = � 2
(x

1

� x
0

)
· 1� 2z

z(1� z)
,

which provides a qualitative behaviour of z similar to the previous example.

Example 9.1.8 We now consider the sharp-interface model with

F (u) = #(S(u) \ [0, 1))

defined on all piecewise-constant 1-periodic functions with values in ±1. For F all functions
are local minimizers.

We take
F

"

(u) = #(S(u) \ [0, 1))�
X

x

i

2[0,1)\S(u)

e�
x

i+1�x

i

" ,

where {x
i

} = S(u) is a numbering of S(u) with x
i

< x
i+1

.
We take as initial datum u

0

with #(S(u
0

)) = 2; hence, S(u
0

) = {x
0

, y
0

}, and, after
identifying u

0

with A
0

= [x
0

, y
0

], apply the Almgren-Taylor-Wang variant of the iterative
minimization process, where the distance term 1

2⌧

ku� u
k�1

k2 is substituted by

1
⌧

Z

A4A

k�1

dist(x, @A
k�1

) dx.

The computation of A
1

= [x
1

, y
1

] is obtained by the minimization problem

min
n

� 1
�

⇣

e�
(y�x)

" + e�
(1+x�y)

"

⌘

+
1
2⌧

((x� x
0

)2 + (y � y
0

)2)
o

,
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which gives

x
1

� x
0

⌧
=

1
"�

⇣

e�
(y1�x1)

" � e�
(1+x1�y1)

"

⌘

y
1

� y
0

⌧
= � 1

"�

⇣

e�
(y1�x1)

" � e�
(1+x1�y1)

"

⌘

.

Let y
0

� x
0

< 1/2; we argue that the scaled time scale is

� =
1
"
e�

y0�x0
" ,

for which we have
x

1

� x
0

⌧
=

⇣

e�
(y1�y0�x1+x0)

" � e�
(1+x1�x0�y1+y0)

"

⌘

y
1

� y
0

⌧
= �

⇣

e�
(y1�y0�x1+x0)

" � e�
(1+x1�x0�y1+y0)

"

⌘

.

In terms of L
k

= y
k

� x
k

this can be written as

L
1

� L
0

⌧
= �2

⇣

e�
(L1�L0)

" � e�
(1+L0�L1)

"

⌘

.

Under the assumption ⌧ << " we have in the limit

L0 = �2
⇣

eo(1) � e�
1
"

+o(1)

⌘

= �2 ,

which shows that the two closer interfaces move towards each other shortening linearly
their distance.

9.2 Reversed time

In a finite-dimensional setting a condition to be able to define a minimizing movement for
F is that

u 7! F (u) +
1
2⌧

|u� u|2 (9.18)

be lower semicontinuous and coercive for all u and for ⌧ su�ciently small. This is not in
contrast with requiring that also

u 7! �F (u) +
1
2⌧

|u� u|2 (9.19)

satisfy the same conditions; for example if F is continuous and of quadratic growth. Note
that this can be seen as a further extension of the time-scaling argument in the previous
sections with � = �1. If the iterative scheme gives a solution for the gradient flow, a
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minimizing movement u for the second scheme produces a solution v(t) = u(�t) to the
backward problem

⇢

v0(t) = �F (v(t)) for t  0
v(0) = u

0

In an infinite-dimensional setting the two requirements of being able to define both the
minimizing movement (9.18) and (9.19) greatly limits the choice of F , and rules out all
interesting cases. A possible approach to the definition of a backward minimizing movement
is then to introduce a (finite-dimensional) approximation F

"

to F , for which we can define
a minimizing motion along �F

"

.
We now give an example in the context of crystalline motion, where we consider a

negative scaling of time.

Example 9.2.1 We consider in R2

F (A) =
Z

@A

k⌫k
1

dH1,

and F
"

the restriction of F to the sets of the form
[

n

"i +
⇣

�"

2
,
"

2

⌘

2

: i 2 B
o

,

where B is a subset of Z2. Hence, we may identify these union of "-cubes with the corre-
sponding B. Even though this is not a finite-dimensional space, we will be able to apply
the Almgren-Taylor-Wang scheme.

We choose (with the identifications with subsets of Z2) as initial datum

A"

0

= {(0, 0)} =
⇣

�"

2
,
"

2

⌘

2

,

and solve iteratively

min
n

� 1
�

F
"

(A) +
1
⌧

Z

A\A"

k�1

dist1(x, @A"

k�1

) dx
o

.

with � = �
"

> 0 to be determined. In the interpretation as a reversed-time scheme, this
means that we are solving a problem imposing the extinction at time 0.

Note that taking F in place of F
"

would immediately give the value �1 in the minimum
problem above; e.g., by considering sets of the form (in polar coordinates)

A
j

= {(⇢, ✓) : ⇢  3" + " sin(j✓)},
which contain A"

0

, are contained in B
4"

(0) and have a perimeter larger than 4j".
Under the assumption that " << ⌧ all minimizing sets are the checkerboard structure

corresponding to indices i 2 Z2 with i
1

+ i
2

even contained in a square Q
k

centered in 0
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Figure 9.6: enucleating sets

(see Fig. 9.6). We may take the sides L
k

of those squares as unknown. The incremental
problems can be rewritten as

min
n

� 2
"�

((L
k�1

+ �L)2 � L2

k�1

) +
1
⌧
(L

k�1

(�L)2 + r
k

(�L)2)
o

,

with r
k

negligible as ⌧ ! 0. For the interfacial part, we have taken into account that for
" small the number of squares contained in a rectangle is equal to its area divided by 2"2

and each of the squares gives an energy contribution of 4"; for the distance part, we note
that the integral can be equivalently taken on half of Q

k

\Q
k�1

. Minimization in �L gives

�L

⌧
=

2
"�

⇣

1 +
�L

L
k�1

⌘

.

Choosing � = 1

"

, we obtain a linear growth

L(s) = 2s .

What we have obtained is the description of the structure of "-squares (the checkerboard
one) along which the increase of the perimeter is maximal (and, in a sense, the decrease of
the perimeter is maximal for the reverse-time problem).

9.3 Reference to Chapter 9

The literature on long-time behaviour and backward equations, even though not by the
approach by minimizing movements, is huge. The long-time motion of interfaces in one
space dimension by energy methods has been studied in

L. Bronsard and R.V. Kohn. On the slowness of phase boundary motion in one space
dimension. Comm. Pure Appl. Math. 43 (1990), 983–997.

Examples 9.1.5 and 9.1.6 have been part of the course exam of C. Sorgentone and S. Tozza
at Sapienza University in Rome.
I acknowledge the suggestion of J.W. Cahn to use finite-dimensional approximations to
define backward motion of sets.


