
Chapter 8

Geometric minimizing movements

We now examine some minimizing movements describing the motion of sets. Such a motion
can be framed in the setting of the previous chapter after identification of a set A with
its characteristic function u = �

A

. The energies we are going to consider are of perimeter
type; i.e., with

F (A) = Hn�1(@A) (8.1)

as a prototype in the notation of the previous section.

8.1 Motion by Mean Curvature

The prototype of a geometric motion is motion by mean curvature; i.e., a family of sets A(t)
whose boundary moves in the normal direction with velocity proportional to its curvature
(inwards in convex regions and outwards in concave regions). In the simplest case of initial
datum a ball A(0) = A

0

= B
R0(0) in R2 the motion is given by concentric balls with radii

satisfying
8

<

:

R0 = � c

R

R(0) = R
0

;
(8.2)

i.e., R(t) =
p

R2

0

� 2ct, valid until the extinction time t = R2

0

/2c, when the radius vanishes.
A heuristic arguments suggests that the variation of the perimeter be linked to the

notion of curvature; hence, we expect to be able to obtain motion by mean curvature as a
minimizing movement. We will see that in order to obtain geometric motions as minimizing
movements we will have to modify the procedure described in the previous chapter.

Example 8.1.1 (pinning for the perimeter motion) Let n = 2. We apply the mini-
mizing-movement procedure to the perimeter functional (8.1) and the initial datum A

0

=
B

R0(0) in R2.

113



114 CHAPTER 8. GEOMETRIC MINIMIZING MOVEMENTS

With fixed ⌧ , since
Z

R2
|�

A

� �
B

|2 dx = |A4B|,
the minimization to determine A

1

is

min
n

H1(@A) +
1
2⌧

|A4A
0

|
o

. (8.3)

We note that we can restrict our attention to sets A contained in A
0

, since otherwise
taking A \ A

0

as test sets in their place would decrease both terms in the minimization.
Once this is observed, we also note that, given A ⇢ A

0

, if B
R

(x) ⇢ A
0

has the same
measure as A then it decreases the perimeter part of the energy (strictly, if A itself is
not a ball) while keeping the second term fixed. Hence, we can limit our analysis to balls
B

R

(x) ⇢ A
0

, for which the energy depends only on R. The incremental problem is then
given by

min
n

2⇡R +
⇡

2⌧
(R2

0

�R2) : 0  R  R
0

o

, (8.4)

whose minimizer is either R = 0 (with value ⇡

2⌧

R2

0

) or R = R
0

(with value 2⇡R
0

) since in
(8.4) we are minimizing a concave function of R. For ⌧ small the minimizer is then R

0

.
This means that the motion is trivial: A

k

= A
0

for all k, and hence also the resulting
minimizing movement is trivial.

8.2 A first (unsuccessful) generalization

We may generalize the scheme of the minimizing movements by taking a more general
distance term in the minimization; e.g., considering x

k

as a minimizer of

min
n

F (x) +
1
⌧
�(kx� x

k�1

k)
o

, (8.5)

where � is a continuous increasing function with �(0) = 0. As an example, we can consider

�(z) =
1
p
|z|p .

Note that in this case we obtain the estimate

kx
k

� x
k�1

kp  p ⌧(F (x
k�1

)� F (x
k

))

for the minimizer x
k

. Using Hölder’s inequality as in the case p = 2, we end up with (for
j > h)

kx
j

� x
h

k  (j � h)(p�1)/p

⇣

j

X

k=h+1

kx
k

� x
k�1

kp

⌘

1/p

 (p F (x
0

))1/p(⌧1/(p�1)(j � h))(p�1)/p.
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In order to obtain a (1� 1

p

) Hölder continuity for the interpolated function u⌧ we have to
define it as

u⌧ (t) = ubt/⌧

1/(p�1)c.

Note that we may use the previous definition u⌧ (t) = ubt/⌧c for the interpolated function
if we change the parameter ⌧ in (8.5) and consider instead the problem

min
n

F (x) +
1

⌧p�1

�(kx� x
k�1

k)
o

(8.6)

to define x
k

.

Example 8.2.1 ((non-)geometric minimizing movements) We use the scheme above,
with a slight variation in the exponents since we will be interested in the description of
the motion in terms of the radius of a ball in R2 (which is the square root of the L2-
norm and not the norm itself). As in the previous example, we take the initial datum
A

0

= B
R0 = B

R0(0), and consider A
k

defined recursively as a minimizer of

min
n

H1(@A) +
1

p⌧p�1

|A4A
0

|p
o

, (8.7)

with p > 1. As above, at each step the minimizer is given by balls

B
R

k

(x
k

) ⇢ B
R

k�1(xk�1

). (8.8)

The value of R
k

is determined by solving

min
n

2⇡R +
⇡p

p⌧p�1

(R2

k�1

�R2)p : 0  R  R
k�1

o

, (8.9)

which gives
R

k

�R
k�1

⌧
= � 1

⇡R1/(p�1)

k

(R
k

+ R
k�1

)
. (8.10)

Note that in this case the minimum value is not taken at R
k

= R
k�1

(this can be checked,
e.g., by checking that the derivative of the function to be minimized in (8.9) is positive at
R

k�1

). By passing to the limit in (8.10) we deduce the equation

R0 = � 1
2⇡Rp/(p�1)

(8.11)

(valid until the extinction time).
Despite having obtained an equation for R we notice that this approach is not satisfac-

tory, since we have
• (non-geometric motion) in (8.8) we have infinitely many solutions; namely, all

balls centered in x
k

with
|x

k�1

� x
k

|  R
k�1

�R
k

.
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This implies that we may have moving centres x(t) provided that |x0|  R0 and x(0) = 0;
in particular we may choose x(t) = (R

0

�R(t))z for any z 2 B
1

(0) which converges to R
0

z;
i.e., the point where the sets concentrate at the vanishing time may be any point in B

R0

at the extinction time. This implies that the motion is not a geometric one: sets do not
move according to geometric quantities.

• (failure to obtain mean-curvature motion) even if we obtain an equation for R
we never obtain the mean curvature flow since p/(p� 1) > 1.

8.3 A variational approach to curvature-driven motion

In order to obtain motion by curvature Almgren, Taylor and Wang have introduced a vari-
ation of the implicit-time scheme described above, where the term |A4A

k

| is substituted
by an integral term which favours variations which are ‘uniformly distant’ to the boundary
of A

k

. The problem defining A
k

is then

min
n

H1(@A) +
1
⌧

Z

A4A

k�1

dist(x, @A
k�1

) dx
o

. (8.12)

We will not prove a general convergence result for an arbitrary initial datum A
0

, but we
will check the convergence to mean-curvature motion for A = B

R0 in R2.
In this case we note that if A

k�1

is a ball centered in 0 then we have
• A

k

is contained in A
k�1

. To check this note that, given a test set A, considering
A \A

k�1

as a test set in its place decreases the energy in (8.12), strictly if A \ A
k�1

6= ;;
• A

k

is convex and with baricenter in 0. To check this, first, note that each connected
component of A

k

is convex. Otherwise, considering the convex envelopes decreases the
energy (strictly, if one of the connected components if not convex). Then note that if 0
is not the baricenter of a connected component of A

k

then a small translation towards 0
strictly decreases the energy (this follows by computing the derivative of the volume term
along the translation). In particular, we only have one (convex) connected component;

From these properties we can conclude that A
k

is indeed a ball centered in 0. Were it
not so, there would be a line through 0 such that the boundary of A

k

does not intersect
perpendicularly this line. By a reflection argument we then obtain a non-convex set eA

k

with
total energy not greater than the one of A

k

(note that the line considered subdivides A
k

into two subsets with equal total energy). Its convexification would then strictly decrease
the energy. This shows that each A

k

is of the form

A
k

= B
R

k

= B
R

k

(0).

We can now compute the equation satisfied by R
k

, by minimizing (after passing to
polar coordinates)

min
n

2⇡R +
2⇡

⌧

Z

R

k�1

R

(R
k�1

� ⇢)⇢ d⇢
o

, (8.13)
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which gives
R

k

�R
k�1

⌧
= � 1

R
k

. (8.14)

Passing to the limit gives the desired mean curvature equation (8.2).

8.4 Homogenization of flat flows

We now consider geometric functionals with many local minimizers (introduced in Example
3.5.1) which give a more refined example of homogenization. The functionals we consider
are defined on (su�ciently regular) subsets of R2 by

F
"

(A) =
Z

@A

a
⇣x

"

⌘

dH1, (8.15)

where
a(x

1

, x
2

) =
n 1 if x

1

2 Z or x
2

2 Z
2 otherwise.

The �-limit of the energies F
"

is the crystalline energy

F (A) =
Z

@A

k⌫k
1

dH1, (8.16)

with k(⌫
1

, ⌫
2

)k
1

= |⌫
1

| + |⌫
2

|. A minimizing movement for F is called a flat flow. We will
first briefly describe it, and then compare it with the minimizing movements for F

"

.

8.4.1 Motion by crystalline curvature

The incremental problems for the minimizing-movement scheme for F in (8.16) are of the
form

min
n

F (A) +
1
⌧

Z

A4A

k�1

dist1(x, @A
k�1

) dx
o

, (8.17)

where for technical reasons we consider the 1-distance

dist1(x, B) = inf{kx� yk1 : y 2 B} .

However, in the simplified situation below this will not be relevant in our computations.
We only consider the case of an initial datum A

0

a rectangle, which plays the role
played by a ball for motion by mean curvature. Note that, as in Section 8.3, we can prove
that if A

k�1

is a rectangle, then we can limit the computation in (8.17) to
• A contained in A

k�1

(otherwise A \A
k�1

strictly decreases the energy)
• A with each connected component a rectangle (otherwise taking the least rectangle

containing a given component would decrease the energy, strictly if A is not a rectangle);
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Figure 8.1: incremental crystalline minimization

• A connected and with the same center as A
0

(since translating the center towards 0
decreases the energy).

Hence, we may suppose that

A
k

=
h

�L
k,1

2
,
L

k,1

2

i

⇥
h

�L
k,2

2
,
L

k,2

2

i

for all k. In order to iteratively determine L
k

we have to minimize the energy

min
n

2(L
k,1

+ �L
1

) + 2(L
k,2

+ �L
2

) +
1
⌧

Z

A4A

k�1

dist1(x, @A
k�1

) dx
o

. (8.18)

In this computation it is easily seen that for ⌧ small the integral term can be substituted
by

L
k,1

4
(�L

2

)2 +
L

k,2

4
(�L

1

)2.

This argument amounts to noticing that the contribution of the small rectangles at the
corners highlighted in Figure 8.1 is negligible as ⌧ ! 0. The optimal increments (more
precisely, decrements) �L

j

are then determined by the conditions

8

>

>

<

>

>

:

1 +
L

k,2

4⌧
�L

1

= 0

1 +
L

k,1

4⌧
�L

2

= 0.

(8.19)

Hence, we have the di↵erence equations

�L
1

⌧
= � 4

L
k,2

,
�L

2

⌧
= � 4

L
k,1

, (8.20)
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which finally gives the system of ODEs for the limit rectangles, with edges of length L
1

(t)
and L

2

(t) respectively,
8

>

<

>

:

L0
1

= � 4
L

2

L0
2

= � 4
L

1

.
(8.21)

Geometrically, each edge of the rectangle moves inwards with velocity inversely pro-
portional to its length; more precisely, equal to twice the inverse of its length (so that the
other edge contracts with twice this velocity). Hence, the inverse of the length of an edge
plays the role of the curvature in this context (crystalline curvature).

It is worth noticing that by (8.21) all rectangles are homothetic, since d

dt

L1
L2

= 0, and
with area satisfying

d

dt
L

1

L
2

= �8,

so that L
1

(t)L
2

(t) = L
0,1

L
0,2

� 8t, which gives the extinction time t = L
0,1

L
0,2

/8. In the
case of an initial datum a square of side length L

0

, the sets are squares whose side length
at time t is given by L(t) =

p

L2

0

� 8t in analogy with the evolution of balls by mean
curvature flow.

8.5 Homogenization of oscillating perimeters

We consider the sequence F
"

in (8.15). Note that for any (su�ciently regular) initial datum
A

0

we have that A0
"

⇢ A
0

⇢ A00
"

, where A0
"

and A00
"

are such that F
"

(A0
"

) = H1(@A0
"

) and
F

"

(A00
"

) = H1(@A00
"

) and |A00
"

\ A0
"

| = O("). Such sets are local minimizers for F
"

and hence
the minimizing movement of F

"

from either of them is trivial. As a consequence, if A
"

(t)
is a minimizing movement for F

"

from A
0

we have

A0
"

⇢ A
"

(t) ⇢ A00
"

This shows that for any set A
0

the only limit lim
"!0

A
"

(t) of minimizing movements for
F

"

from A
0

is the trivial motion A(t) = A
0

.
We now compute the minimizing movements along the sequence F

"

with initial datum
a rectangle, and compare it with the flat flow described in the previous section.

For simplicity of computation we deal with a constrained case, when
• for every " the initial datum A

0

= A"

0

is a rectangle centered in 0 such that F
"

(A) =
H1(@A) (i.e., its edge lengths L

0,j

belong to 2"Z). In analogy with x
0

in the example in
Section 7.4, if this does not hold then either it does after one iteration or we have a pinned
state A

k

= A
0

for all k;
• all competing A are rectangles with F

"

(A) = H1(@A) centered in 0. The fact that
all competing sets are rectangles follows as for the flat flow in the previous section. The
fact that F

"

(A
k

)  F
"

(A
k�1

) then implies that the minimal rectangles satisfy F
"

(A
k

) =
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H1(@A
k

). The only real assumption at this point is that they are centered in 0. This
hypothesis can be removed, upon a slightly more complex computation, which would only
make the arguments less clear.

After this simplifications, the incremental problem is exactly as in (8.17) since for
competing sets we have F

"

(A) = F (A), the only di↵erence being that now L
k,1

, L
k,2

2 2"Z.
The problem in terms of 4L

j

, using the same simplification for (8.18) as in the previous
section, is then

min
n

2(L
k,1

+ �L
1

) + 2(L
k,2

+ �L
2

) +
L

k,1

4⌧
(�L

2

)2 +
L

k,2

4⌧
(�L

1

)2 : �L
j

2 2"Z
o

. (8.22)

This is a minimization problem for a parabola as the ones in Section 7.4 that gives

�L
1

= �
j 4⌧

"L
k,2

+
1
2

k

" if
4⌧

"L
k,2

+
1
2
62 Z (8.23)

(the other cases giving two solutions), and an analogous equation for �L
2

. Passing to the
limit we have the system of ODEs, governed by the parameter

w = lim
"!0

⌧

"

(which we may suppose up to subsequences), which reads as
8

>

>

<

>

>

:

L0
1

= � 1
w

j4w

L
2

+
1
2

k

L0
2

= � 1
w

j4w

L
1

+
1
2

k

.
(8.24)

Note that the right-hand side is a discontinuous function of L
j

, so some care must be taken
at times t when 4w

L

j

(t)

+ 1

2

2 Z. However, apart some exceptional cases, this condition holds
only for a countable number of t, and is therefore negligible.

We can compare the resulting minimizing movements with the crystalline curvature
flow, related to F .

• (total pinning) if ⌧ << " (w = 0) then we have A(t) = A
0

;
• (crystalline curvature flow) if " << ⌧ then we have the minimizing movements

described in the previous section;
• (partial pinning/asymmetric curvature flow) if 0 < w < +1 then we have
(i) (total pinning) if both L

0,j

> 8w then the motion is trivial A(t) = A
0

;
(ii) (partial pinning) if L

0,1

> 8w, L
0,2

< 8w and 4w

L0,2
+ 1

2

62 Z then the horizontal edges
do not move, but they contract with constant velocity until L

1

(t) = 8w;
(iii) (asymmetric curvature flow) if L

0,1

 8w and L
0,2

< 8w then we have a unique
motion with A(t) ⇢⇢ A(s) if t > s, up to a finite extinction time. Note however that the
sets A(s) are nor homothetic, except for the trivial case when A

0

is a square.
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Some cases are not considered above, namely those when we do not have uniqueness
of minimizers in the incremental problem. This may lead to a multiplicity of minimizing
movements, as remarked in Section 7.4.

It is worthwhile to highlight that we may rewrite the equations for L0
j

as a variation of
the crystalline curvature flow; e.g., for L0

1

we can write it as

L0
1

= �f
⇣L

2

w

⌘ 4
L

2

, with f(z) =
z

4

j4
z

+
1
2

k

.

This suggests that the ‘relevant’ homogenized problem is the one obtained for ⌧

"

= 1, as
all the others can be obtained from this one by a scaling argument.

We note that the scheme can be applied to the evolution of more general sets, but
the analysis of the rectangular case already highlights the new features deriving from the
microscopic geometry.

8.6 Flat flow with oscillating forcing term

We now consider another minimizing-movement scheme linked to the functional F in (8.16).
In this case the oscillations are given by a lower-order forcing term. We consider, in R2,

G
"

(A) =
Z

@A

k⌫k
1

dH1 +
Z

A

g
⇣x

1

"

⌘

dx, (8.25)

where g is 1-periodic and

g(s) =
⇢

↵ if 0 < x < 1

2

� if 1

2

< x < 1

with ↵,� 2 R and ↵ < �. Note that the additional term may be negative, so that
this functional is not positive; however, the minimizing-movement scheme can be applied
unchanged.

Since the additional term converges continuously in L1 as " ! 0, the �-limit is simply

G(A) =
Z

@A

k⌫k
1

dH1 +
↵ + �

2
|A|. (8.26)

8.6.1 Flat flow with forcing term

We now consider minimizing movements for G. As in Section 8.4.1 we only deal with a
constrained problem, when both the initial datum and the competing sets are rectangles
centered in 0. With the notation of Section 8.4.1 we are led to the minimum problem

min
n

2(L
k,1

+�L
1

+L
k,2

+�L
2

)+
L

k,1

4⌧
(�L

2

)2+
L

k,2

4⌧
(�L

1

)2+
↵ + �

2
(L

k,1

+�L
1

)(L
k,2

+�L
2

)
o

.

(8.27)
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The minimizing pair (�L
1

,�L
2

) satisfies

�L
1

⌧
= �

⇣ 4
L

k,2

+ (↵ + �)
⇣

1 +
�L

2

L
k,2

⌘⌘

(8.28)

and the analogous equation for �L2
⌧

. Passing to the limit we have

8

>

<

>

:

L0
1

= �
⇣

4

L2
+ ↵ + �

⌘

L0
2

= �
⇣

4

L1
+ ↵ + �

⌘

,
(8.29)

so that each edge moves with velocity 2

L2
+ ↵+�

2

, with the convention that it moves inwards
if this number is positive, outwards if it is negative.

Note that if ↵ + � � 0 then L
1

and L
2

are always decreasing and we have finite-time
extinction, while if ↵ + � < 0 then we have an equilibrium for L

j

= 4

|↵+�| , and we have

expanding rectangles, with an asymptotic velocity of each side of |↵+�|
2

as the side length
diverges.

8.6.2 Homogenization of forcing terms

In order to highlight new homogenization phenomena, we treat the case ⌧ << " only.
Again, we consider the constrained case when both the initial datum and the competing
sets are rectangles centered in 0 and adopt the notation of Section 8.4.1.

Taking into account that ⌧ << " the incremental minimum problem can be approxi-
mated by

min
n

2(L
k,1

+ �L
1

+ L
k,2

+ �L
2

) +
L

k,1

4⌧
(�L

2

)2 +
L

k,2

4⌧
(�L

1

)2

+
↵ + �

2
L

k,1

L
k,2

+
↵ + �

2
L

k,1

�L
2

+ g
⇣L

k,1

2"

⌘

L
k,2

�L
1

o

. (8.30)

In considering the term g
⇣

L

k,1

2"

⌘

we assume implicitly that ⌧ is so small that both L

k,1

2"

and
L

k,1+�L1

2"

belong to the same interval where g is constant. This can be assumed up to a
number of k that is negligible as ⌧ ! 0.

For the minimizing pair of (8.30) we have
8

>

>

<

>

>

:

2 +
L

k,2

2⌧
�L

1

+ g
⇣L

k,1

2"

⌘

L
k,2

= 0

2 +
L

k,1

2⌧
�L

2

+
↵ + �

2
L

k,1

= 0;
(8.31)
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that is,
8

>

>

>

<

>

>

>

:

�L
1

⌧
= �

 

4
L

k,2

+ 2g
⇣L

k,1

2"

⌘

!

�L
2

⌧
= �

⇣ 4
L

k,1

+ (↵ + �)
⌘

.

(8.32)

This systems shows that the horizontal edges move with velocity 2

L

k,1
+ ↵+�

2

, while the
velocity of the vertical edges depends on the location of the edge and is

2
L

k,2

+ g
⇣L

k,1

2"

⌘

.

We then deduce that the limit velocity for the horizontal edges of length L
1

is

2
L

1

+
↵ + �

2
(8.33)

As for the vertical edges, we have:
• (mesoscopic pinning) if L

2

is such that
⇣ 2

L
2

+ ↵
⌘⇣ 2

L
2

+ �
⌘

< 0

then the vertical edge is eventually pinned in the minimizing-movement scheme. This
pinning is not due to the equality L

k+1,1

= L
k,1

in the incremental problem, but to the
fact that the vertical edge move in di↵erent directions depending on the value of g;

• (homogenized velocity) if on the contrary the vertical edge length satisfies
⇣ 2

L
2

+ ↵
⌘⇣ 2

L
2

+ �
⌘

> 0

then we have a limit e↵ective velocity of the vertical edge given by the harmonic mean of
the two velocities 2

L2
+ ↵ and 2

L2
+ �; namely,

(2 + ↵L
2

)(2 + �L
2

)

L
2

⇣

2 + ↵+�

2

L
2

⌘ . (8.34)

We finally examine some cases explicitly.
(i) Let ↵ = ��. Then we have

8

>

>

<

>

>

:

L0
2

= � 4
L

1

L0
1

= �2
(2� �L

2

) _ 0
L

2

;
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i.e., the vertical edges are pinned if their length is larger than 2/�. In this case, the
horizontal edges move inwards with constant velocity 2

L0,1
. In this way the vertical edges

shrink with rate 4

L0,1
until their length is 2/�. After this, the whole rectangle shrinks in

all directions.
(ii) Let ↵ < � < 0. Then for the vertical edges we have an interval of “mesoscopic

pinning” corresponding to
2
|�|  L

2

 2
|↵| (8.35)

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5

-2,5

2,5

5

Figure 8.2: velocity with an interval of mesoscopic pinning

The velocity of the vertical edges in dependence of their length is then given by

v =

8

>

>

<

>

>

:

0 if (8.35) holds

(2 + ↵L
2

)(2 + �L
2

)
L

2

(2 + ↵+�

2

L
2

)
otherwise

and is pictured in Figure 8.2. Instead, the velocity of the horizontal edges is given by
(8.33), so that they move inwards if

L
1

<
4

|↵ + �| ,

and outwards if L
1

> 4

|↵+�| .
In this case we can consider as initial datum a square of side length L

0

.
If L

0

 2

|�| then all edges move inwards until a finite extinction time;
if 2

|�| < L
0

< 4

|↵+�| then first only the horizontal edges move inwards until the vertical
edge reaches the length 2

|�| , after which all edges move inwards;
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if 4

|↵+�| < L
0

< 2

|↵| then first only the horizontal edges move outwards until the vertical
edge reaches the length 2

|↵| , after which all edges move outwards;
if L

0

� 2

|↵| then all edges move outwards, and the motion is defined for all times. The
asymptotic velocity of the vertical edges as the length of the edges diverges is

�

�

�

2↵�

↵ + �

�

�

�

,

lower than
�

�

�

↵+�

2

�

�

�

(the asymptotic velocity for the horizontal edges).

The critical case can be shown to be " ⇠ ⌧ , so that for " << ⌧ we have the flat flow with
averaged forcing term described in Section 8.6.1. The actual description in the case " ⇠ ⌧
would involve a homogenization argument for the computation of the averaged velocity of
vertical sides.
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