
Chapter 6

Minimizing movements

6.1 An energy-driven implicit-time discretization

We now introduce a notion of energy-based motion which generalizes an implicit-time
scheme for the approximation of solutions of gradient flows to general (also non di↵eren-
tiable) energies. We will use the terminology of minimizing movements, introduced by De
Giorgi, even though we will not use the precise notation used in the literature.

Definition 6.1.1 (minimizing movements) Let X be a separable Hilbert space and let
F : X ! [0,+1] be coercive and lower semicontinuous. Given x

0

and ⌧ > 0 we define
recursively x

k

as a minimizer for the problem

min
n

F (x) +
1
2⌧
kx� x

k�1

k2

o

, (6.1)

and the piecewise-constant trajectory u⌧ : [0,+1) ! X given by

u⌧ (t) = xbt/⌧c . (6.2)

A minimizing movement for F from x
0

is any limit of a subsequence u⌧

j uniform on compact
sets of [0,+1).

In this definiton we have taken F � 0 and X Hilbert for the sale of simplicity. In
particular we can take X a metric space and the (power of the) distance in place of the
squared norm.

Remark 6.1.2 A heuristic explanation of the definition above is given when F is smooth.
In this case, with the due notation, a minimizer for (6.1) solves the equation

x
k

� x
k�1

⌧
= �rF (u

k

); (6.3)
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i.e., u⌧ solves the equation

u⌧ (t)� u⌧ (t� ⌧)
⌧

= �rF (u⌧ (t)). (6.4)

If we may pass to the limit in this equation as u⌧ ! u then

@u

@t
= �rF (u). (6.5)

This is easily shown if X = Rn and F 2 C2(Rn). In this case by taking any ' 2
C1

0

((0, T ); Rn) we have

�
Z

T

0

hrF (u⌧ ), 'idt =
Z

T

0

Du⌧ (t)� u⌧ (t� ⌧)
⌧

, '
E

dt = �
Z

T

0

D

u⌧ (t),
'(t)� '(t + ⌧)

⌧

E

dt,

from which, passing to the limit

Z

T

0

hrF (u), 'idt =
Z

T

0

hu, '0idt;

i.e., (6.5) is satisfied in the sense of distributions, and hence in the classical sense.

Remark 6.1.3 (stationary solutions) Let x
0

be a local minimizer for F , then the only
minimizing movement for F from x

0

is the constant function u(t) = x
0

.
Indeed, if x

0

is a minimizer for F when kx� x
0

k  � by the positiveness of F it is the
only minimizer of F (x) + 1

2⌧

kx� x
0

k2 for ⌧  �2/F (x
0

) if F (x
0

) > 0 (any ⌧ if F (x
0

) = 0).
So that x

k

= x
0

for all k for these ⌧ .

Proposition 6.1.4 (existence of minimizing movements) For all F and x
0

as above
there exists a minimizing movement u 2 C1/2([0,+1);X).

Proof. By the coerciveness and lower semicontinuity of F we obtain that u
k

are well defined
for all k. Moreover, since

F (x
k

) +
1
2⌧
kx

k

� x
k�1

k2  F (x
k�1

),

we have F (x
k

)  F (x
k�1

) and

kx
k

� x
k�1

k2  2⌧(F (x
k�1

)� F (x
k

)), (6.6)
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so that for t > s

ku⌧ (t)� u⌧ (s)k 
bt/⌧c
X

k=bs/⌧c+1

kx
k

� x
k�1

k


p

bt/⌧c � bs/⌧c

v

u

u

u

t

bt/⌧c
X

k=bs/⌧c+1

kx
k

� x
k�1

k2


p

bt/⌧c � bs/⌧c

v

u

u

u

t2⌧

bt/⌧c
X

k=bs/⌧c+1

(F (x
k�1

)� F (x
k

))

=
p

bt/⌧c � bs/⌧c
q

2⌧(F (xbs/⌧c)� F (xbt/⌧c))


p

2F (x
0

)
p

⌧(bt/⌧c � bs/⌧c)


p

2F (x
0

)
p

t� s + ⌧

This shows that the functions u⌧ are (almost) equicontinuous and equibounded in
C([0,+1);X). Hence, they converge uniformly. Moreover, passing to the limit we obtain

ku(t)� u(s)k 
p

2F (x
0

)
p

|t� s|

so that u 2 C1/2([0,+1);X).

Remark 6.1.5 (growth conditions) The positiveness of F can be substituted by the
requirement that for all x the functionals

x 7! F (x) +
1
2⌧
kx� xk2

be bounded from below; i.e., that there exists C > 0 such that

x 7! F (x) + Ckx� xk2

be bounded from below.

Example 6.1.6 (non-uniqueness of minimizing movements) If F is not C2 we may
have more than one minimizing movement.

(i) Bifurcation at times with multiple minimizers. A simple example is F (x) = � 1

↵

|x|↵
with 0 < ↵ < 2, which is not C2 at x = 0. In this case, for x

0

= 0 we have a double choice
for minimum problem (6.1); i.e.,

x
1

= ±⌧1/(2�↵).
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Once x
1

is chosen all other valued are determined, and it can be seen that either x
k

> 0
for all k or x

k

< 0 for all k (for ↵ = 1, e.g., we have x
k

= ±k⌧), and that in the limit we
have the two solutions of

⇢

u0 = |u|(↵�2)u
u(0) = 0

with u(t) 6= 0 for t > 0. Note in particular that we do not have the trivial solution u = 0.
In this example we do not have to pass to a subsequence of ⌧ .

(i) Di↵erent movements depending on subsequences of ⌧ . Discrete trajectories can be
di↵erent depending on the time step ⌧ . We give an explicit example, close in spirit to the
previous one. In this example the function F is asymmetric, so that x

1

is unique but may
take positive or negative values depending on ⌧ .

We define F as the Lipschitz function taking value 0 at x = 0, for x > 0

F 0(x) =
⇢

�1 if 2�2k�1 < x < 2�2k, k 2 N
�2 otherwise for x > 0

and F 0(x) = 3 + F 0(�x) for x < 0. It is easily seen that for x
0

= 0 we may have a unique
minimizer x

1

with x
1

> 0 or x
1

< 0 depending on ⌧ . In particular we have x
1

= �2�2k < 0
for ⌧ = 2�2k�1 and x

1

= 2�2k+1 > 0 for ⌧ = 2�2k. In the two cases we then have again the
solutions to

⇢

u0 = �F (u)
u(0) = 0

with u(t) < 0 for all t > 0 or u(t) > 0 for all t > 0, respectively.

Example 6.1.7 (heat equation) Taking X = L2(⌦) and the Dirichlet integral F (u) =
1

2

R

⌦

|ru|2 dx, with fixed u
0

2 H1(⌦) and ⌧ > 0 we can solve iteratively

min
n1

2

Z

⌦

|ru|2 dx +
1
2⌧

Z

⌦

|u� u
k�1

|2 dx
o

,

whose unique minimizer u
k

solves the Euler-Lagrange equation

u
k

� u
k�1

⌧
= �u

k

,
@u

k

@⌫
= 0 on @⌦, (6.7)

where ⌫ is the inner normal to ⌦. We then set u⌧ (x, t) = ubt/⌧c(x), which converges, up to
subsequences, to u(x, t). We can then pass to the limit in (6.8) in the sense of distributions
to obtain the heat equation

@u

@t
= �u,

@u

@⌫
= 0 on @⌦, (6.8)

combined with the initial datum u(x, 0) = u
0

(x). Due to the uniqueness of the solution to
the heat equation we also obtain that the whole sequence converges as ⌧ ! 0.
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Example 6.1.8 (One-dimensional fracture energies) In dimension one, we still con-
sider X = L2(0, 1) and the Gri�th (or Mumford-Shah) energy

F (u) =
1
2

Z

1

0

|u0|2 dx + #(S(u))

with domain piecewise-H1 functions. We fix u
0

piecewise-H1 and ⌧ > 0. In this case we
solve iteratively

min
n1

2

Z

1

0

|u0|2 dx + #(S(u)) +
1
2⌧

Z

1

0

|u� u
k�1

|2 dx
o

.

This problem is not convex, and may have multiple minimizers. Nevertheless in this simpler
case we can prove iteratively that for ⌧ small enough we have S(u

k

) = S(u
0

) for all k, and
hence reduce to the independent iterated minimization problems of the Dirichlet integral
on each component of (0, 1)\S(u

0

), giving the heat equation in (0, 1)\S(u
0

) with Neumann
boundary conditions on 0, 1 and S(u

0

). The description holds until the first time T such
that u(x�, T ) = u(x+, T ) at some point x 2 S(u(·, T )).

We check this with some simplifying hypotheses:
(1) that

R

1

0

|u0
0

|2dx < 2. This implies that #(S(u
k

))  #S(u
0

) since by the monotonic-
ity of the energy we have #(S(u

k

))  F (u
k

)  F (u
0

) < #S(u
0

) + 1. This hypothesis can
be removed with a localization argument;

(2) that there exists ⌘ > 0 such that |u
0

(x) � u
0

(x0)| � ⌘ if (x, x0) \ S(u
0

) 6= ;. This
will imply that |u

k

(x+) � u
k

(x�)| � ⌘ at all x 2 S(u
k

) so that T = +1 in the notation
above.

Furthermore, we suppose that S(u
0

) = {x
0

} (a single point) and u
0

(x+

0

) > u
0

(x�
0

), for
simplicity of notation.

We reason by induction. We first examine the properties of u
1

; checking that it has
a jump point close to x

0

. Suppose otherwise that there exists � > 0 such that u 2
H1(x

0

� �, x
0

+ �). We take � small enough so that

u
0

(x)  u(x�
0

) +
1
4
(u(x+

0

)� u(x�
0

)) for x
0

� � < x < x
0

u
0

(x) � u(x+

0

)� 1
4
(u(x+

0

)� u(x�
0

)) for x
0

< x < x
0

+ �.

In this case

1
2

Z

x0+�

x0��

|u0
1

|2 dx +
1
2⌧

Z

x0+�

x0��

|u
1

� u
0

|2dx

� 1
2

min
n

Z

�

0

|v0|2 dx +
1
⌧

Z

�

0

|v|2dx : v(�) =
1
4
(u(x+

0

)� u(x�
0

))
o

=
(u(x+

0

)� u(x�
0

))2

8
p

⌧
tanh

⇣ �p
⌧

⌘

,
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the last equality easily obtained by computing the solution of the Euler-Lagrange equation.
This shows that for each such � > 0 fixed we have (x

0

��, x
0

+�)\S(u
1

) 6= ; for ⌧ su�ciently
small. Note that the smallness of ⌧ depends only on the size of u(x+

0

) � u(x�
0

) (which is
larger than ⌘). Since #S(u

1

)  #S(u
0

) we then have (x
0

� �, x
0

+ �) \ S(u
1

) = {x
1

}; we
may suppose that x

1

� x
0

.
We now check that x

1

= x
0

. Suppose otherwise; then note that by the Hölder continuity
of u

1

we have that for � small enough (depending only on the size of u(x+

0

) � u(x�
0

)) we
have

u
1

(x)  u
0

(x�
0

) +
1
8
(u(x+

0

)� u(x�
0

)) for x
0

< x < x
1

and
u

1

(x+

1

) � u
0

(x+

1

)� 1
8
(u(x+

0

)� u(x�
0

)).

We may then consider the function eu coinciding with u
1

on (0, x
0

), with eu0 � U 0
1

and
S(eu) = {x

0

}. Then F (eu) = F (u
1

) and
Z

1

0

|eu� u
0

|2 dx <

Z

1

0

|u
1

� u
0

|2 dx,

contradicting the minimality of u
1

. Hence, we have S(u
1

) = S(u
0

).
Note that u

1

is obtained by separately minimizing the problems with the Dirichlet
integral on (0, x

0

) and (x
0

, 1), and in particular that on each such interval supu
1

 supu
0

and inf u
1

� inf u
0

, so that the condition that |u
1

(x) � u
1

(x0)| � ⌘ if (x, x0) \ S(u
1

) 6= ;
still hold. This shows that we can iterate the scheme obtaining u

k

which satisfy inf u
0


u

k

 supu
0

on each component of (0, 1) \ S(u
0

) and u0
k

= 0 on 0, 1 and S(u
0

). In
particular |u+

k

� u�
k

| � ⌘ on S(u
0

), which shows that the limit satisfies the heat equation
with Neumann conditions on S(u

0

) for all times.

6.2 Time-dependent minimizing movements

We can generalize the definition of minimizing movement to include forcing terms or varying
boundary conditions, by considering time-parameterized energies F (x, t) and, given ⌧ and
an initial datum x

0

, define x
k

recursively by choosing x
k

as a minimizer of

min
n

F (x, k⌧) +
1
2⌧
kx� x

k�1

k2

o

, (6.9)

and eventually define u⌧ (t) = xbt/⌧c. We may define, up to subseqences, a limit u of u⌧ as
⌧ ! 0 if some technical hypothesis is added to F . One such is that in the scheme above

F (u
k

, k⌧) +
1
2⌧
kx

k

� x
k�1

k2  (1 + C⌧)F (u
k�1

, (k � 1)⌧) + C⌧, (6.10)
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for some C (at least if k⌧ remains bounded). With such a condition we can repeat the
convergence argument as for the time-independent case and obtain a limit minimizing
movement u.

Indeed, with such a condition we have

kx
k

� x
k�1

k2  2⌧
⇣

(1 + C⌧)F (u
k�1

, (k � 1)⌧)� F (u
k

, k⌧) + C⌧
⌘

, (6.11)

and the inequality (for ⌧ small enough)

F (u
k

, k⌧)  (1 + C⌧)F (u
k�1

, (k � 1)⌧) + C⌧  (1 + C⌧)(F (u
k�1

, (k � 1)⌧) + 1) (6.12)

that implies that F (u
k

, k⌧) is equibounded for k⌧ bounded. We fix T > 0; from (6.11) we
obtain (for 0  s  t  T )

ku⌧ (t)� u⌧ (s)k 
bt/⌧c
X

k=bs/⌧c+1

kx
k

� x
k�1

k


p

bt/⌧c � bs/⌧c

v

u

u

u

t

bt/⌧c
X

k=bs/⌧c+1

kx
k

� x
k�1

k2


p

bt/⌧c � bs/⌧c

v

u

u

u

t2⌧

bt/⌧c
X

k=bs/⌧c+1

⇣

F (x
k�1

, (k � 1)⌧)� F (x
k

, k⌧) + C
T

⌧)
⌘

=
p

bt/⌧c � bs/⌧c
p

2⌧F (x
0

, 0) + C
T

⌧(bt/⌧c � bs/⌧c))


p

2F (x
0

, 0)(t� s + ⌧) + C
T

(t� s + ⌧)2,

which gives an equicontinuity condition su�cient to pass to the limit as ⌧ ! 0.
Note that from (6.12) for s < t we obtain the estimate

F (u⌧ (t), bt/⌧c⌧)  eC(t�s+⌧)(F (u⌧ (s), bs/⌧c⌧) + C⌧). (6.13)

Example 6.2.1 (heat equation with varying boundary conditions) We can take

F (u, t) =
1
2

Z

1

0

|u0|2 dx,

with domain all H1-functions with u(0) = 0 and u(1) = t.
Then if we can test the problem defining u

k

with the function ũ = u
k�1

+ ⌧x. We then
have

F (u
k

, k⌧) +
1
2⌧
ku

k

� u
k�1

k2  F (ũ, k⌧) +
1
2⌧
kũ� u

k�1

k2
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=
1
2

Z

1

0

|u0
k�1

+ ⌧ |2 dx +
1
6
⌧2

 (1 + ⌧)
1
2

Z

1

0

|u0
k�1

|2 dx + ⌧ +
1
6
⌧2

 (1 + ⌧)
1
2
F (u

k�1

, (k � 1)⌧) +
⇣

1 +
1
6
⌧
⌘

⌧.

which gives (6.10).
We then have the convergence of u⌧ to the solution u of the equation

8

>

>

>

>

>

<

>

>

>

>

>

:

@u

@t
=

@2u

@x2

u(0, t) = 0, u(1, t) = t

u(x, 0) = u
0

(x).

(6.14)

Clearly in this example we may take any Lipschitz function g(t) in place of t as boundary
condition.

Example 6.2.2 (minimizing movements vs quasi static evolution for fracture) We
can take

F (u, t) =
1
2

Z

1

0

|u0|2 dx + #S(u),

with domain all piecewise-H1-loc functions with u(x) = 0 if x  0 and u(x) = t for x � 1,
so that S(u) ⇢ [0, 1], and the fracture may also appear at the boundary points 0 and
1. As in the previous example we can test the problem defining u

k

with the function
ũ = u

k�1

+ ⌧x since #S(ũ) = #S(u
k�1

), to obtain (6.10).
We consider the initial datum u

0

= 0. Note that the minimum problems for F (·, t)
correspond to the definition of quasi static evolution in Remark 2.3.2. We now show that
for problems (6.9) the solution does not develop fracture.

Indeed, consider
k

⌧

= min{k : u
k

62 H1

loc

(R)},
and suppose that ⌧k

⌧

! t 2 [0,+1). Then we have that u⌧ converges on [0, t] to u
described by (6.14) in the previous example. Moreover we may suppose that

lim
⌧!0

Z

1

0

|u0
k

⌧

�1

|2 dx =
Z

1

0

|u0(x, t)|2 dx,

and since also u
k

⌧

! u(·, t) as ⌧ ! 0, we have
Z

1

0

|u0(x, t)|2 dx  lim inf
⌧!0

Z

1

0

|u0
k

⌧

|2 dx.
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We deduce that
F (u

k

⌧

, k
⌧

⌧) � F (u
k

⌧

�1

, (k
⌧

� 1)⌧) + 1 + o(1)

as ⌧ ! 0, which contradicts (6.12).

From the analysis above we can compare various ways to define the evolutive response
of a brittle elastic material to applied increasing boundary displacements (at least in a
one-dimensional setting):

• (quasistatic motion) the response is purely elastic until a threshold (depending on
the size of the specimen) is reached, after which we have brutal fracture;

• (stable evolution) the response is purely elastic, and corresponds to minimizing the
elastic energy at fixed boundary displacement;

• (minimizing movement) in this case the solution does not develop fracture, but
follows the heat equation with given boundary conditions.

6.3 References to Chapter 6

The terminology “(generalized) minimizing movement” has been introduced by De Giorgi
in a series of papers devoted to mathematical conjectures. We also refer to the original
treatment by L. Ambrosio.
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19 (1995), 191–246.
A theory of gradient flows in metric spaces using minimizing movements is described in
the book

L. Ambrosio, N. Gigli and G. Savarè, Gradient flows in metric spaces and in the space
of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2005.

Minimizing movements for the Mumford-Shah functional in more that one space di-
mension (and hence also for the Gri�th fracture energy) with the condition of increasing
fracture have been defined in

L. Ambrosio and A. Braides. Energies in SBV and variational models in fracture
mechanics. In Homogenization and Applications to Material Sciences, (D. Cioranescu, A.
Damlamian, P. Donato eds.), GAKUTO, Gakkōtosho, Tokio, Japan, 1997, p. 1–22,

and partly analyzed in a two-dimensional setting in
A. Chambolle and F. Doveri. Minimizing movements of the Mumford and Shah energy.

Discr. Cont. Dynamical Syst. 3 (1997), 153–174.
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In this case the heat equation with Neumann boundary conditions still holds outside
S(u), but the characterization of the (possible) motion of the crack is still an open prob-
lem. As compared with the corresponding Francfort-Marigo theory, here an analog of the
Francfort-Larsen transfer lemma is missing.


