
Chapter 5

Stability

The notion of local minimizer is ‘scale-independent’; i.e., it does not depend on the rate at
which energies converge, so that it does not discriminate, e.g., between energies

F
"

(x) = x2 + sin2

⇣x

"

⌘

or F
"

(x) = x2 +
p
" sin2

⇣x

"

⌘

.

We now examine a notion of stability such that, loosely speaking, a point is stable if it is not
possible to reach a lower energy state from that point without crossing an energy barrier
of a specified height. In this case the local minimizers in the first of the two sequence of
energies are stable as "! 0, while those in the second sequence are not.

5.1 Stable points

We first introduce a notion of stability that often can be related to notions of local mini-
mality.

Definition 5.1.1 (slide) Let F : X ! [0,+1] and � > 0. A continuous function � :
[0, 1] ! X is a �-slide for F at u

0

2 X if
• �(0) = u

0

and F (�(1)) < F (�(0)) = F (u
0

);
• there exits �0 < � such that F (�(t))  F (�(s)) + �0 if 0  s  t  1.

Definition 5.1.2 (stability) Let F : X ! [0,+1] and � > 0. A point u
0

2 X is �-stable
for F if no �-slide exists for F at u

0

.
A point u

0

2 X is stable for F if it is �-stable for some � > 0 (and hence for all �
small enough).

Let F
"

: X ! [0,+1]. A sequence of points (u
"

) in X is uniformly stable for (F
"

) if
there exists � > 0 such that all u

"

are �-stable for " small.
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Example 5.1.3 (1) F (x) =

(

0 x = 0
sin

⇣1
x

⌘

otherwise. The point 0 is not a local minimizer

but it is �-stable for � < 1;

(2) Similarly for F (x) =

(

0 x = 0
�x2 + sin2

⇣1
x

⌘

otherwise;

(3) Let X = C and F (z) = F (⇢ei✓) =
⇢

✓⇢ |z|  1
�1 otherwise,

where we have chosen the representation z = ⇢ei✓ with 0 < ✓  2⇡. Then 0 is an isolated
local minimum, but it is not stable; e.g., taking �(t) = 2tei�/2. Note in fact that �(0) = 0,
F (�(1)) = �1 < 0, and supF (�(t)) = F (�(1/2)) = �/2;

(4) We can generalize example (3) to an infinite-dimensional example. Take X =
L2(�⇡,⇡) and

F (u) =

8

<

:

X

k

1
k2

|c
k

|2 if u =
P

k

c
k

eikx and kuk
L

2 < 1

�1 otherwise.
The constant 0 is an isolated minimum point. F is lower semicontinuous, and continuous
in {kuk

L

2 < 1}. Note that F (eikx) = 1

k

2 so that �
k

(t) = 2teikx is a �-slide for k2 > 1/�;

(5) F
"

(x) = x2 + sin2

⇣x

"

⌘

. Each bounded sequence of local minimizers is uniformly
stable;

(6) F
"

(x) = x2 + "↵ sin2

⇣x

"

⌘

with 0 < ↵ < 1. No bounded sequence of local minimizers
is uniformly stable (except the constant sequence of global minimizers x

"

= 0).

Remark 5.1.4 (local minimality and stability) (i) If F : X ! R is continuous and u
stable; then u is a local minimizer;

(ii) Let F be lower semicontinuous and coercive. Then every isolated local minimizer
of F is stable.

(iii) if u is just a local minimizer then u may not be stable.

To check (i) suppose that u is not a local minimum for F . Then let ⇢ be such that
|F (u) � F (w)| < �/2 if w 2 B

⇢

(u), and let u
⇢

2 B
⇢

(u) be such that F (u
⇢

) < F (u). Then
it su�ces to take �(t) = u + t(u

⇢

� u).
To check (ii), let ⌘ > 0 be such that u

0

is an isolated minimum point in B
⌘

(u
0

). If u
0

is not stable then there exist 1/k slides �
k

with final point outside B
⌘

(u
0

). This implies
that there exist u

k

= �
k

(t
k

) for some t
k

with u
k

2 @B
⌘

(u
0

), so that F (u
k

)  F (u
0

) + 1/k.
By coerciveness, upon extraction of a subsequence u

"

! u 2 @B
⌘

(u
0

), and by lower
semicontinuity F (u)  lim inf

k

F (u
k

)  F (u
0

), which is a contradiction.
For (iii) take for example u = 0 for F (u) = (1� |u|) ^ 0 on R.
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5.2 Stable sequences of functionals

We now give a notion of stability of parameterized functionals.

Definition 5.2.1 (relative (sub)stability) We say that a sequence (F
"

) is (sub)stable
relative to F if the following holds

• if u
0

has a �-slide for F and u
"

! u
0

, then each u
"

has a �-slide for F
"

(for " small
enough).

Remark 5.2.2 (relative (super)stability) The condition of sub-stability above can be
compared to the lower bound for �-convergence. With this parallel in mind we can intro-
duce a notion of (super)stability relative to F by requiring that

• if u
0

is an isolated local minimum for F then there exists u
"

! u such that (u
"

) is
uniformly stable for F

"

.

Remark 5.2.3 (i) Note that if F is a constant then all (F
"

) are stable relative to F ;
(ii) In general if F

"

= F for all " then (F
"

) may not be stable relative to F . Take for
example

F
"

(x) = F (x) =

(

sin
⇣1

x

⌘

if x > 0
x if x  0;

then x
0

= 0 has �-slides for all � > 0, while taking x
"

= (2⇡b1

"

c � ⇡

2

)�1 we have x
"

! x
0

and x
"

has no �-slide for � < 2.

The following proposition is in a sense the converse of Theorem 4.1.1 with �-convergence
substituted with stability.

Proposition 5.2.4 Let (F
"

) be (sub)stable relative to F and u
"

be a sequence of uniformly
stable points for F

"

with u
"

! u. Then u is stable for F .

Proof. If u
"

! u and u
"

is uniformly stable then it is stable for some � > 0. By the
(sub)stability of (F

"

) then u is �0 stable for all 0 < �0 < �; i.e., it is stable.

Remark 5.2.5 The main drawback of the notion of stability of energies is that it is not
in general compatible with the addition of (continuous) perturbations. Take for example
F

"

(x) = sin2

⇣x

"

⌘

and F = 0. Then F
"

is stable relative to F , but G
"

(x) = F
"

(x) + x is
not stable with respect to G(x) = x: each x has a �-slide for all � > 0, but if x

"

! x is a
sequence of local minimizers of G

"

then they are �-stable for � < 1.
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5.3 Stability and �-convergence

In this section we will couple stability with �-convergence, and try to derive some criteria
in order to guarantee the compatibility with respect to the addition of continuous pertur-
bations. The main issue is to construct �-slides for the approximating functionals starting
from �-slides for the �-limit.

Example 5.3.1 We consider the one-dimensional energies

F
"

(u) =
Z

1

0

a
⇣x

"

⌘

|u0|2 dx,

where a is a 1-periodic function with 0 < inf a < sup a < +1, so that F
"

�-converge to
the Dirichlet integral

F (u) = a

Z

1

0

|u0|2 dx .

We will also consider a perturbation of F
"

with

G(u) =
Z

1

0

g(x, u) dx,

where g is a Carathéodory function with |g(x, u)|  C(1 + |u|2) (this guarantees that G is
L2-continuous).

We want to check that F
"

+ G is stable relative to F + G. To this end consider a point
u

0

such that a �-slide � for F + G exists at u
0

, and points u
"

! u
0

. We wish to construct
a �-slide for F

"

+ G at u
"

.
With fixed K 2 N we consider points xK

i

= i/K for i = 0, . . . K and denote for every t
with �K(t) the piecewise a�ne interpolation of �(t) on the points xK

i

. Note that we have
• for all K we have F (�K(t))  F (�(t)) by Jensen’s inequality;
• F (�K(t)) ! F (�(t)) as K ! +1;
• for fixed K the map t 7! �K(t) is continuous with respect to the strong H1-convergence.

Indeed its gradient is piecewise constant and is weakly continuous in t, hence it is strongly
continuous.

We fix �0 < � such that

F (�(t)) + G(�(t))  F (�(s)) + G(�(s)) + �0 if 0  s  t  1,

choose �00 > 0 such that �0 + 2�00 < � and

F (�(1)) + G(�(1)) < F (u
0

) + G(u
0

)� 2�00.

Let K be large enough so that (if uK

0

= �K(0) denotes the interpolation of u
0

)

F (uK

0

) + G(uK

0

) � F (u
0

) + G(u
0

)� �00
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and
|G(�K(t))�G(�(t))| < �00

for all t. We then have

F (�K(t)) + G(�K(t))  F (�(t)) + G(�(t)) + �00 .

We then claim that, up to a reparameterization, �K is a �-slide for F + G from uK

0

.
Indeed, let M = inf{t : F (�K(t))+G(�K(t)) < F (uK

0

)+G(uK

0

)}. This set is not empty
since it contains the point 1. If 0  s  t  M then we have

F (�K(t)) + G(�K(t))� F (�K(s)) + G(�K(s))
 sup{F (�K(r)) + G(�K(r)) : 0  r  M}� F (uK

0

) + G(uK

0

)
 sup{F (�(r)) + G(�(r)) : 0  r  M}+ 2�00 � F (u

0

) + G(u
0

)
 �0 + 2�00 < �

By the continuity of t 7! F (�K(t))+G(�K(t)) we can then find t > M such that F (�K(t))+
G(�K(t)) < F (uK

0

) + G(uK

0

) and s 7! �K(st) is a �-slide. For the following, we suppose
that t = 1, so that we do not need any reparameterization.

Next, we construct a �-slide for F
"

+ G. To this end, for the sake of simplicity, we
assume that N = 1

"K

2 N. Let v be a function in H1

0

(0, 1) such that
Z

1

0

a(y)|v0 + 1|2 dy = min
n

Z

1

0

a(y)|w0 + 1|2 dy : w 2 H1

0

(0, 1)
o

= a.

Note that we also have
Z

N

0

a(y)|v0 + 1|2 dy = min
n

Z

N

0

a(y)|w0 + 1|2 dy : w 2 H1

0

(0, 1)
o

= Na.

We then define the function �K

"

(t) by setting on [xK

i

, xK

i+1

]

�K

"

(t)(xK

i

+ s) = �(t)(xK

i

) + K(�(t)(xK

i+1

)� �(t)(xK

i

))
⇣

s + "v(
s

"
)
⌘

, 0  s  1
K

,

so that
F

"

(�K

"

(t)) = F (�K(t)).

Note again that we may suppose " small enough so that |G(�K

"

(t)) � G(�K(t))| = o(1)
uniformly in t so that �K

"

is a �-slide for F
"

+ G at �K

"

(0).
It now remains to construct a L2-continuous function  

"

: [0, 1] ! H1(0, 1) with
 

"

(0) = u
"

and  
"

(1) = �K

"

(0) such that concatenating  
"

with �K

"

we have a �-slide.
This is achieved by taking the a�ne interpolation (in t) of u

"

and uK

"

defined by setting
on [xK

i

, xK

i+1

]

uK

"

(xK

i

+ s) = u
"

(xK

i

) + K(u
"

(xK

i+1

)� u
"

(xK

i

))
⇣

s + "v(
s

"
)
⌘

, 0  s  1
K

,

on (0, 1/2) and of uK

"

and �K

"

(0) on (1/2, 1).
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Example 5.3.2 We consider the oscillating perimeter functionals F
"

and F of Example
3.5.1 We now show that if A has a �-slide for F and A

"

! A, then each A
"

has a (�+o(1))-
slide for F

"

(and so a �-slide for " su�ciently small). If is easily checked that the same
argument can be used if we add to F

"

a continuous perturbation

G(A) =
Z

A

f(x) dx,

where f is a (smooth) bounded function, so that the stability can be used also for F
"

+ G.
We first observe that an arbitrary sequence A

"

of Lipschitz sets converging to a set A can
be substituted by a sequence in A

"

with the same limit. To check this, consider a connected
component of @A

"

. Note that for " small enough every portion of @A
"

parameterized by a
curve � : [0, 1] ! R2 such that a(�(0)/") = a(�(1)/") = 1 and a(�(t)/") = 2 for 0 < t < 1
can be deformed continuously to a curve lying on "a�1(1) and with the same endpoints.
If otherwise a portion of @A

"

lies completely inside a cube Q"

i

it can be shrunk to a point
or expanded to the whole cube Q"

i

. In both cases this process can be obtained by a O(")-
slide, since either the lengths of the curves are bounded by 2", or the deformation can be
performed so that the lengths are decreasing.

We can therefore assume that A
"

2 A
"

and that there exist a �-slide for E at A obtained
by a continuous family A(t) with 0  t  1.

We fix N 2 N and set tN
j

= j/N . For all j 2 {1, . . . , N} let AN,j

"

be a recovery sequence
in A

"

for A(tN
j

). Furthermore we set AN,0

n

= A
"

. Note that, since AN,j

"

! A(tN
j

) and
A(t) is continuous, we have |AN,j

"

4AN,j+1

"

| = o(1) as N ! +1. We may suppose that the
set AN,j+1

"

is the union of AN,j

"

and a family of cubes QN,j

i

. We may order the indices i

and construct a continuous family of sets AN,j,i(t) such that AN,j,i(0) = AN,j

"

[S

k<i

QN,j

k

,
AN,j,i(1) = AN,j

"

[S

ki

QN,j

k

,
⇣

H1(AN,j

"

) ^H1(AN,j+1

"

)
⌘

� C"  H1(AN,j,i(t)) 
⇣

H1(AN,j

"

) _H1(AN,j+1

"

)
⌘

+ C".

Since also |AN,j,i(t)| di↵ers from |AN,j

"

| and |AN,j+1

"

| by at most o(1) as N ! +1, by
concatenating all these families, upon reparametrization we obtain a family AN

n

(t) such
that AN

n

(0) = A
"

, AN

n

(1) = A
"

(1), and, if s < t then we have, for some j < k

F
"

(AN

n

(s)) � F (A(tN
j

))� C"� o(1),

F
"

(AN

n

(t))  F (A(tN
k

)) + C"+ o(1).

Since A(t) is a �-slide for E we have

F (A(tN
k

))  F (A(tN
j

)) + ",

so that
F

"

(AN

n

(t))  F
"

(AN

n

(s)) + � + C"+ o(1).

By choosing N large enough and " small enough we obtain the desired (� + o(1))-slide.
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The previous example suggests a criterion for ‘strong’ stability (i.e., compatible with
continuous perturbations), which is sometimes satisfied by �-converging sequences. We
have constructed �-slides for the approximating functionals in two steps: one in which we
have transformed a limit �-slide �(t) considering recovery sequences (essentially, setting
�

"

(t) = ut

"

, where (ut

"

) is a recovery sequence for �(t)), another where we have constructed
an “almost-decreasing” path from u

"

to �
"

(0). Note that this step, conversely, is possible
thanks to the liminf inequality.

Theorem 5.3.3 (a criterion of strong stability) Suppose that F
"

and F satisfy the
following requirements:

if � is a path from u (i.e., � : [0, 1] ! X, �(0) = u, and � is continuous) and u
"

! u,
then there exist paths  

"

from u
"

and �
"

from  
"

(1) such that
(i) ⌧ 7! F

"

( 
"

(⌧)) is decreasing up to o(1) as n ! +1; i.e.,

sup
0⌧1<⌧21

⇣

F
"

( 
"

(⌧
2

))� F
"

( 
"

(⌧
1

))
⌘

! 0 as n !1

(ii) sup
⌧2[0,1]

dist(�
"

(⌧),�(⌧)) = o(1)
(iii) there exist 0 = ⌧ "

1

< ⌧ "

2

< ... < ⌧ "

"

= 1 with max
i

[⌧ "

i

� ⌧ "

i�1

] = o(1) such that
max

i

|F
"

(�
"

(⌧ "

i

))� F (�(⌧ "

i

))| = o(1) and F
"

(�
"

(⌧)) is between F
"

(�
"

(⌧ "

i

)) and F
"

(�
"

(⌧ "

i+1

))
for ⌧ 2 (⌧ "

i

, ⌧ "

i+1

), up to o(1); i.e., there exist infinitesimal �
n

> 0 such that

min
n

F
"

(�
"

(⌧ "

i

)), F
"

(�
"

(⌧ "

i+1

))
o

� �
n

 F
"

(�
"

(⌧))  max
n

F
"

(�
"

(⌧ "

i

)), F
"

(�
"

(⌧ "

i+1

))
o

+ �
n

Then (F
"

+ G) is stable relative to (E + G) for every continuous G such that (F
"

+ G)
is coercive.

Proof. Suppose that u has a �-slide � for F + G (and therefore a (� � �0)-slide for some
�0 > 0) and u

"

! u. Then we choose  
"

,�
"

as in (i)–(iii) above and set �0
"

(⌧) :=  
"

(⌧)
for ⌧ 2 [0, 1], and �0

"

(⌧) := �
"

(⌧ � 1) for ⌧ > 1. We then consider ⌧
1

< ⌧
2

2 [0, T ]. If
⌧
1

, ⌧
2

2 [0, 1], then

F
"

(�0
"

(⌧
2

))� F
"

(�0
"

(⌧
1

)) = F
"

( 
"

(⌧
2

))� F
"

( 
"

(⌧
1

))  o(1).

If ⌧
1

, ⌧
2

> 1, then

F
"

(�0
"

(⌧
2

))� F
"

(�0
"

(⌧
1

)) = F
"

(�
"

(⌧
2

))� F
"

(�
"

(⌧
1

))  E(�(⌧ "

j

))� E(�(⌧ "

i

)) + o(1)

for some ⌧ "

i

 ⌧ "

j

. If ⌧
1

< 1 < ⌧
2

, then

F
"

(�0
"

(⌧
2

))� F
"

(�0
"

(⌧
1

)) = F
"

(�
"

(⌧
2

))� F
"

( 
"

(⌧
1

))  E(�(⌧ "

i

))� E(�(0)) + o(1)
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for some ⌧ "

i

, so that in any case

(F
"

(�0
"

(⌧
2

)) + G(�0
"

(⌧
2

)))� (F
"

(�0
"

(⌧
1

)) + G(�0
"

(⌧
1

)))

 (E(�(⌧
j

)) + G(�(⌧
j

)))� (E(�(⌧
i

)) + G(�(⌧
i

))) + o(1)

< � � �0 + o(1)

(5.1)

for some ⌧
i

 ⌧
j

, where we used the continuity of G together with (ii) and (iii), as well as
the fact that � is a �-slide for u. The same argument gives

(F
"

+ G)(�0
"

(1))� (F
"

+ G)(�0
"

(0))  (E + G)(�(1))� (E + G)(�(0)) + o(1),

so that �0
"

is a �-slide for F
"

+ G, for " su�ciently small.

5.4 Delta-stable evolution

The notion of �-slide (or some of its modification) can be used to define evolutions in a
similar way as in the case of quasi static motion, in cases when the presence of energy
barriers may be relevant in the model under consideration. To that end, one can proceed
by discrete approximation as in Remark 2.2.6:

• with fixed F(t, U) and D(U) energy and dissipation as in Section 2.2, time step ⌧ > 0
and maximal barrier height � > 0, define U ⌧

k

recursively by setting U ⌧

0

= U
0

, and choosing
U ⌧

k

as a solution of the minimum problem

min
U

n

F(⌧k, U) +D(U � U ⌧

k�1

)
o

on the class of U such that there exists a path � from U ⌧

k�1

to U such that

F(⌧k,�(t)) +D(�(s)� U ⌧

k�1

)  F(⌧k,�(s)) +D(�(s)� U ⌧

k�1

) + � (5.2)

if 0  s < t  1.
• define the continuous trajectory U �,⌧ (t) = U ⌧

bt/⌧c;
• define the �-stable evolutions as the limits U � of (subsequences of) U �,⌧ (which exists

under suitable assumptions).

In order to ensure the existence of the minimizer U ⌧

k

some additional properties of the
functionals

F
k

(U) = F(⌧k, U) +D(U � U ⌧

k�1

)

must be assumed; namely, that if U
j

is a sequence converging to U and F
k

(U
j

) < F
k

(U ⌧

k�1

)�
C for some positive constant C such that there exists paths �

j

from U ⌧

k�1

to U
j

satisfying
(5.2) then there exists a path � satisfying (5.2) from U ⌧

k�1

to U .
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Remark 5.4.1 It must be noted that stable evolution gives a di↵erent notion from the
global minimization approach even when D = 0, in which case the quasistatic approach
just gives a parameterized choice of minimizers of F (t, ·).

As a simple example take the one-dimensional energy

F (t, x) = min{x2, (x� 1)2}� 2tx,

and x
0

= 0. Then the trajectory of parameterized minimizers of F (t, x) from x
0

is

u(t) =
⇢

0 if t = 0
1 + t if t > 0.

On the contrary, the limit u as � ! 0 of the corresponding �-stable evolutions u
�

(t) is

u(t) =

8

<

:

t if t < 1

2

1 + t if t � 1

2

.

Example 5.4.2 (the long-bar paradox in Fracture Mechanics) As shown in Remark
2.3.2, for one-dimensional fracture problems with applied boundary displacement; i.e., for
the energies and dissipations

F(t, u) =
Z

1

0

|u0|2 dt, D(S(u)) = #(S(u))

defined on piecewise-H1 functions u with u(0�) = 0 and u(1+) = t (and S(u) denotes the
set of discontinuity points of u), fracture is brutal and appears at a critical value of the
displacement t. If instead of a bar of unit length we take a bar of length L and we consider
the normalized boundary conditions u(0�) = 0 and u(L+) = tL, then the critical value for
fracture is t = 1p

L

for which the energy of the (unfractured) linear solution u(t) = tx equals
the energy of a piecewise-constant solution with one discontinuity. In other words a long
bar fractures at lower values of the strain (the gradient of the linear solution). In order
to overcome this drawback of the theory one may consider �-stable evolutions, or, rather,
a small variation from it necessary due to the fact that the domains of the functionals
F(t, ·) are disjoint for di↵erent t. In the iterated minimization scheme above we consider
minimization among functions u such that there exists a L2-continuous path � from the
elastic solution u

k⌧

(x) = k⌧x (we again consider only the case L = 1) to u such that
�(t)(0) = 0, �(t)(1) = k⌧ for all t and

F(⌧k,�(t)) + #(S(�(t))  F(⌧k,�(s)) + #(S(�(s)) + � (5.3)
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if 0  s < t  1. This set of u is contained in H1. Indeed, otherwise there would be a
t 2 (0, 1] such that #(S(�(t

j

)) � 1 for a non-increasing sequence of t
j

converging to t, and
�(t) 2 H1 for t  t. By the lower semicontinuity of F and the minimality of u

k⌧

we have

F(k⌧, u
k⌧

)  F(k⌧,�(t))  F(k⌧,�(t
j

)) + o(1),

which gives
F(k⌧,�(0)) + 1  F(k⌧,�(t

j

)) + #(S(�(t
j

)) + o(1)

contradicting (5.3) for s = 0 and t = t
j

if � < 1.
We conclude that for all k the minimizer is exactly u

k⌧

, and we may pass to the limit
obtaining the elastic solution u(t, x) = tx. As a conclusion we have that no fracture
appears, and this conclusion is clearly independent of the length of the bar.
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