
Chapter 3

Local minimization as a selection
criterion

The �-limit F of a sequence F
"

is often taken as a simplified description of the energies F
"

,
where unimportant details have been averaged out still keeping the relevant information
about minimum problems. As far as global minimization problems are concerned this is
ensured by the fundamental theorem of �-convergence, but this is in general false for local
minimization problems. Nevertheless, if some information on the local minima is known,
we may use the fidelity of the description of local minimizers as a way to ‘correct’ �-limits.
In order to so that, we first introduce some notions of equivalence by �-convergence, and
then show how to construct simpler equivalent theories as perturbations of the �-limit F
in some relent examples.

3.1 Equivalence by �-convergence

Definition 3.1.1 Let (F
"

) and (G
"

) be sequences of functionals on a separable metric space
X. We say that they are equivalent by �-convergence (or �-equivalent) if there exists a
sequence (m

"

) of real numbers such that if (F
"

j

�m
"

j

) and (G
"

j

�m
"

j

) are �-converging
sequences, their �-limits coincide and are proper (i.e., not identically +1 and not taking
the value �1).

Remark 3.1.2 (i) since �-convergence is sequentially compact (i.e., every sequence has a
�-converging subsequence), the condition in the definition is never empty. On the set of
proper lower-semicontinuous functionals the definition above is indeed an equivalence rela-
tion (in particular any sequence (F

"

) is equivalent to itself, regardless to its convergence);
(ii) note that if F

"

�-converge to F and G
"

�-converge to G then equivalence amounts
to F = G and F proper, and (F

"

) is equivalent to the constant sequence F ;
(iii) the addition of the constants m

"

allows to consider and discriminate among diverg-
ing sequences (whose limit is not proper). For example the sequences of constants F

"

= 1/"
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and G
"

= 1/"2 are not equivalent, even though they diverge to +1. Note instead that
F

"

(x) = x2/" and G
"

(x) = x2/"2 are equivalent.

Definition 3.1.3 (parameterized and uniform equivalence) For all � 2 ⇤ let (F �

"

)
and (G�

"

) be sequences of functionals on a separable metric space X. We say that they
are equivalent by �-convergence if for all � they are equivalent according to the definition
above. If ⇤ is a metric space we say that they are uniformly �-equivalent if there exist
(m�

"

) such that
�- lim

j

(F �

j

"

j

�m
�

j

"

j

) = �- lim
j

(G�

j

"

j

�m
�

j

"

j

)

and are proper for all �
j

! � and "
j

! 0.

Remark 3.1.4 Suppose that F �

"

�-converges to F � and (F �

"

) and (F �) are uniformly �-
equivalent as above, and that all functionals are equi-coercive and ⇤ is compact. Then we
have

sup
�2⇤

| inf F �

"

�min F �| = o(1)

or, equivalently, that f
"

(�) = inf F �

"

converges uniformly to f(�) = minF � on ⇤. This
follows immediately from the fundamental theorem of �-convergence and the compactness
of ⇤.

Example 3.1.5 Take ⇤ = [�1, 1]

F �

"

(u) =
Z

1

0

⇣W (u)
"

+ "|u0|2
⌘

dt,

Z

1

0

u dt = �

with W as in Example 1.5.4. Then we have for fixed � the �-limit

F �(u) =
⇢

0 if u(x) = �
+1 otherwise

if � = ±1 and

F �(u) =
⇢

c
W

#(S(u)) if u 2 BV ((0, 1); {±1}) and
R

1

0

u dt = �
+1 otherwise.

Note that f
"

(�) = inf F �

"

is a continuous function, while

f(�) = minF � =
n 0 if |�| = 1

1 otherwise

is not continuous; hence, the convergence f
"

! f is not uniform, which implies that (F �

"

)
and (F �) are not uniformly �-equivalent.
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3.2 A selection criterion

We use the concept of equivalence as above to formalize a problem of the form: given F
"

find “simpler” G
"

equivalent to F
"

, which capture the “relevant” features of F
"

.
We will proceed as follows:
• compute the �-limit F of F

"

. This suggests a limit domain and a class of energies (e.g.,
energies with sharp interfaces in place of di↵use ones; convex homogeneous functionals in
place of oscillating integrals, etc.);

• if the description given by F is not “satisfactory,” then “perturb” F so as to obtain
a family (G

"

) �-equivalent to (F
"

).
The same procedure may apply to parameterized families (F �

"

).

Of course, the criteria for the construction of G
"

as above may be of di↵erent types.
In the following example we consider the parameterized family of Example 3.1.5, and the
criterion of uniform equivalence.

Example 3.2.1 We consider the functionals F � in Example 3.1.5, which have been shown
to be not uniformly equivalent to the sequence F �

"

. We wish to construct energies of the
same form of F �; i.e., with domain u 2 BV ((0, 1); {±1}) with

R

1

0

u dt = �, and uniformly
�-equivalent to the sequence F �

"

. These energies must then depend on ". Suppose that
W 2 C2. If we look for energies of the form

G�

"

=
⇢

c�

"

#(S(u)) if u 2 BV ((0, 1); {±1}) and
R

1

0

u dx = �
+1 otherwise,

then it is possible to show that the choice

c�

"

= min
nW (�)

"
, c

W

o

.

gives G�

"

uniformly �-equivalent to F �

"

. This choice is not unique, even within energies of
the form prescribed; in fact we may also take the Taylor expansions of W at ±1 in place
of W

c�

"

= min
nW 00(�1)

2"
(� + 1)2,

W 00(1)
2"

(�� 1)2, c
W

o

,

or any other function with the same Taylor expansion. The form of c�

"

highlights that
minimizers for F �

"

can either be close to a sharp interface (in which case their value is c
W

),
or close to the constant � (which gives the energy value W (�)/"). When � = ±1 + O(

p
")

the second type of minimizers may have lower energy. Nevertheless they are never detected
by F �.



52 CHAPTER 3. LOCAL MINIMIZATION AS A SELECTION CRITERION

We may also take G�

"

of a slightly more complex form, defined on piecewise-constant
functions, setting

G�

"

=

8

>

<

>

:

Z

1

0

W (u)
"

dx + c
W

#(S(u)) if u piecewise constant and
R

1

0

u dx = �

+1 otherwise.

This choice gives a better description of the minimizers of F �

"

.

In the rest of the chapter a “unsatisfactory description” will mean a partial descrip-
tion of local minimizers. We will then try to perturb the �-limits so as to satisfy this
requirement.

3.3 A ‘quantitative’ example: phase transitions

We consider the same type of energies as in Examples 1.5.4 and 3.1.5

F
"

(u) =
Z

1

0

⇣W (u)
"

+ "|u0|2
⌘

dt

with W a double-well potential with wells in ±1. For the sake of simplicity, in the present
example the domain of F

"

is restricted to 1-periodic functions (i.e., u such that u(1) = u(0)).
This constraint is compatible with the �-limit, which is then given by

F (u) = c
W

#(S(u) \ [0, 1)) u 2 BV ((0, 1); {±1})
(again, u is extended to a periodic function, so that it may have a jump at 0, which then
is taken into account in the limit energy).

• Note that all functions in BV ((0, 1); {±1}) are L1-local minimizers (even though not
isolated). This is a general fact when we have a lower-semicontinuous function taking
discrete values.

•We now show that F
"

has no non-trivial L1-local minimizer. We consider the simplified
case

W (u) = (|u|� 1)2 .

In this case c
W

= 2. Suppose otherwise that u is a local minimizer. If u � 0 (equivalently,
u  0) then

F
"

(u) =
Z

1

0

⇣(u� 1)2

"
+ "|u0|2

⌘

dt.

Since this functional is convex, its only local minimizer is the global minimizer u = 1.
Otherwise, we can suppose, up to a translation, that there exists L 2 (0, 1) such that
u(±L/2) = 0 and u(x) > 0 for |x| < L/2. Again, using the convexity of

FL

"

(u) =
Z

L/2

�L/2

⇣(u� 1)2

"
+ "|u0|2

⌘

dt
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we conclude that u must be the global minimizer of F
L

with zero boundary data; i.e., the
solution of

8

>

<

>

:

u00 =
1
"2

(u� 1)

u(±L

2

) = 0.

This gives

u(x) = 1�
⇣

cosh
⇣ L

2"

⌘⌘�1

cosh
⇣x

"

⌘

and

FL

"

(u) = 2
sinh

⇣

L

"

⌘

⇣

cosh
⇣

L

2"

⌘⌘

2

.

Note that

d2

dL2

FL

"

(u) = � 2
"2

sinh
⇣

L

2"

⌘

⇣

cosh
⇣

L

2"

⌘⌘

3

;

i.e., this minimum value is a concave function of L. This immediately implies that no
local minimizer may exist with changing sign; in fact, such a minimizer would be a local
minimizer of the function

f(L
1

, . . . , L
K

) = 2
K

X

k=1

sinh
⇣

L

k

"

⌘

⇣

cosh
⇣

L

k

2"

⌘⌘

2

, (3.1)

for some K > 0 under the constraint L
k

> 0 and
P

k

L
k

= 1, which is forbidden by the
negative definiteness of its Hessian matrix. Note moreover that

FL

"

(u) = 2� 4e�
L

" + O(e�
2L

" )

and that �4e�
L

" is still a concave function of L.
• We can now propose a ‘correction’ to F by considering in its place

G
"

(u) = c
W

#(S(u))�
X

x2S(u)\[0,1)

4e�
1
"

|x�max(S(u)\(�1,x)|

defined on periodic functions with u 2 BV ((0, 1); {±1}). It is easily seen that G
"

�-
converges to F , and is hence equivalent to F

"

; thanks to the concavity of the second term
the same argument as above shows that we have no non-trivial local minimizers. As a
side remark note that this approximation also maintains the stationary points of F

"

, which
are functions with K jumps at distance 1/K. This is easily seen after remarking that the
distances between consecutive points must be a stationary point for (3.1). Moreover, the
additional terms can also be computed as a development by �-convergence, which extends
this equivalence to ‘higher order’.
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3.4 A ‘qualitative’ example: Lennard-Jones atomistic sys-
tems

As in Example 1.5.5, we consider a scaled systems of one-dimensional nearest-neighbour
atomistic interactions through a Lennard-Jones type interaction. Let J be a C2 potential
as in Figure 3.1, with domain (�1,+1) (we set J(w) = +1 for w  �1), minimum in 0
with J 00(0) > 0, convex in (�1, w

0

), concave in (w
0

,+1) and tending to J(1) < +1 at
+1. We consider the energy

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

-1

-0,5

0,5

1

1,5

2

Figure 3.1: a (translation of a) Lennard-Jones potential

F �

"

(u) =
N

X

i=1

J
⇣u

i

� u
i�1p

"

⌘

with the boundary conditions u
0

= 0 and u
N

= � � 0. Here " = 1/N with N 2 N. The
vector (u

0

, . . . , u
N

) is identified with a discrete function defined on "Z \ [0, 1] or with its
piecewise-a�ne interpolation. With this last identification, F �

"

can be viewed as functionals
in L1(0, 1), and their �-limit computed with respect to that topology.

Taking into account the boundary conditions, we can extend all functions to u(x) = 0
for x  0 and u(x) = � for x � �, and denote by S(u) (set of discontinuity points of u)
the minimal set such that u 2 H1((�s, 1 + s) \ S(u)) for s > 0. With this notation, the
same arguments as in Example 1.5.5 give that the �-limit is defined on piecewise-H1(0, 1)
functions by

F �(u) =
1
2
J 00(0)

Z

1

0

|u0|2 dt + J(1)#(S(u) \ [0, 1])
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with the constraint that u+ > u� on S(u) and the boundary conditions u�(0) = 0, u+(1) =
� (so that S(u) is understood to contain also 0 or 1 if u+(0) > 0 or u � (1) < �). For
simplicity of notation we suppose

1
2
J 00(0) = J(1) = 1.

• Local minimizers of F �. By the strict convexity of
R

1

0

|u0|2 dt this part of the energy
is minimized, given the average z =

R

1

0

u0 dt, by the piecewise-constant gradient u0 = z.
From now on we tacitly assume that u0 is constant. We then have two cases depending on
the number of jumps:

(i) if S(u) = ; then z = �, and this is a strict local minimizer since any L1 perturbation
with a jump of size w and (average) gradient z has energy z2 + 1 independent of w, which
is strictly larger than �2 if the perturbation is small;

(ii) if #S(u) � 1 then L1 local minimizers are all functions with u0 = 0 (since otherwise
we can strictly decrease the energy by taking a small perturbation v with the same set of
discontinuity points and v0 = su0 with s < 1).

The energy of the local minima in dependence of � is pictured in Figure 3.2.

-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5

-3

-2

-1

1

2

3

4

Figure 3.2: local minima for F �

• Local minimizers of F �

"

. This is a finite-dimensional problem, whose stationarity
condition is

J 0
⇣u

i

� u
i�1p

"

⌘

= � for all i,

for some � > 0. The shape of J 0 is pictured in Figure 3.3; its maximum is achieved for
w = w

0

. Note that for all 0 < � < J 0(w
0

) we have two solutions of J 0(w) = �, while we
have no solution for � > J 0(w

0

).
We have three cases:



56 CHAPTER 3. LOCAL MINIMIZATION AS A SELECTION CRITERION

-3 -2 -1 0 1 2 3 4 5 6 7 8 9
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-1,5

-1

-0,5

0,5

1

Figure 3.3: derivative of J

(i) we have
u

i

� u
i�1p

"
 w

0

(3.2)

for all i. In this case the boundary condition gives u

i

�u

i�1

"

= � for all i, so that we have
the constraint.

�  w
0p
"
. (3.3)

This solution is a local minimum. This is easily checked when � < w0p
"

since small per-
turbations maintain the condition (3.2). In the limit case � = w0p

"

we may consider only
perturbations where (3.2) is violated at exactly one index (see (ii) below), to which there
corresponds an energy

J(w
0

+ t) + (N � 1)J
⇣

w
0

� t

N � 1

⌘

,

for t � 0, which has a local minimum at 0.
(ii) condition (3.2) is violated by two (or more) indices j and k. Let w be such that

u
j

� u
j�1p

"
=

u
k

� u
k�1p

"
= w > w

0

.

We may perturb u
i

� u
i�1

only for i = j, k, so that the energy varies by

f(s) := J(w + s) + J(w � s)� 2J(w) . (3.4)

We have f 0(0) = 0 and f 00(0) = 2J 00(w) < 0, which contradicts the minimality of u.



3.4. A ‘QUALITATIVE’ EXAMPLE: LENNARD-JONES ATOMISTIC SYSTEMS 57

(iii) condition (3.2) is violated exactly by one index. The value of w = u

i

�u

i�1p
"

for the
N � 1 indices satisfying (3.2) is obtained by computing local minimizers of the energy on
such functions, which is

f�

"

(w) := (N � 1)J(w) + J
⇣ �p

"
� (N � 1)w

⌘

defined for 0  w  min
n

w
0

, 1

N�1

⇣

�p
"

� w
0

⌘o

. We compute

(f�

"

)0(w) := (N � 1)
⇣

J 0(w)� J 0
⇣ �p

"
� (N � 1)w

⌘⌘

.

Note that
f�

"

(0) = J
⇣ �p

"

⌘

= 1� o(1)

and (f�

"

)0(0) < 0. If � > w
0

/
p

" then (f�

"

)0(w) = 0 has a unique solution, which is a local
minimizer, while if �  w

0

/
p

" we have two solutions w
1

< w
2

, of which the first one is a
local minimizer. We then have a unique curve of local minimizers with one jump.

The energy of the local minima in dependence of � is schematically pictured in Fig. 3.4.

-2,4 -1,6 -0,8 0 0,8 1,6 2,4 3,2 4 4,8 5,6 6,4

-1

1

2

3

4

5

6

7

Figure 3.4: local minima for F �

"

• A qualitative comparison of local minimization. First, the local minimizer for F �

"

which never exceeds the convexity threshold (corresponding to the minimizer with S(u) = ;
for F �) exists only for �  w

0

/
p

"; second, we only have one curve of local minimizers for F �

"
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which exceed the convexity threshold for only one index (corresponding to the minimizers
with #S(u) = 1 for F �).

• �-equivalent energies. We choose to look for energies defined on piecewise-H1 func-
tions of the form

G�

"

(u) =
Z

1

0

|u0|2 dt +
X

t2S(u)

g
⇣u+ � u�p

"

⌘

,

again with the constraint that u+ > u� on S(u) and the boundary conditions u�(0) =
0, u+(1) = �. In order that local minimizers satisfy #(S(u))  1 we require that g :
(0,+1) ! (0,+1) be strictly concave. In fact, with this condition the existence of two
points in S(u) is ruled out by noticing that given w

1

, w
2

> 0 the function t 7! g(w
1

+ t) +
g(w

2

� t) is concave. Moreover, we also require that g satisfy

lim
w!+1

g(w) = 1.

With this condition is is easily seen that we have the �-convergence of G�

"

to F �.
In order to make a comparison with the local minimizers of F �

"

we first consider local
minimizers with S(u) = ;; i.e., u(t) = �t. Such a function is a local minimizer if it is not
energetically favourable to introduce a small jump of size w; i.e., if 0 is a local minimizer
for

g�

"

(w) := (�� w)2 + g
⇣ wp

"

⌘

,

where we have extended the definition of g by setting g(0) = 0. Note that if g is not
continuous in 0 then 0 is a strict local minimizer for g�

"

for all �. Otherwise, we can
compute the derivative, and obtain that

d

dw
g�

"

(0) = �2� +
1p
"
g0(0).

For " small enough, 0 is a (isolated) local minimizer if and only if d

dw

g�

"

(0) > 0; i.e.,

� <
1

2
p

"
g0(0) .

If we choose
g0(0) = 2w

0

we obtain the desired constraint on this type of local minimizers. A possible simple choice
of g is

g(w) =
2w

0

w

1 + 2w
0

w
.
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We finally consider local minimizers with #(S(u)) = 1. If w denotes the size of the
jump then again computing the derivative of the energy, we conclude the existence of a
single local minimizer w with

2(�� w) =
1p
"
g0

⇣ wp
"

⌘

,

and energy approaching 1 as " ! 0.
• With the choice above the pictures of the local minimizers for G�

"

and for F �

"

are of
the same type, but may vary in quantitative details. We have not addressed the problem
of the uniformity of this description, for which a refinement of the choice of g could be
necessary.

• As a conclusion, we remark that this example has some modeling implications. The
functional F � can be seen as a one-dimensional version of the energy of a brittle elastic
medium according to Gri�th’s theory of Fracture (S(u) represents the fracture site in the
reference configuration), which is then interpreted as a continuum approximation of an
atomistic model with Lennard Jones interactions. The requirement that also local minima
may be reproduced by the limit theory has made us modify our functional F � obtaining
another sequence of energies, which maintain an internal parameter ". Energies of the form
G�

"

are present in the literature, and are related to Barenblatt’s theory of ductile Fracture.
Note that in all these considerations the parameter � appears in the functionals only as a
boundary condition, and does not influence the form of the energy.

3.5 A negative example: oscillating perimeters

The procedure described above cannot be always performed in a simple fashion. This may
happen if the structure of the �-limit F cannot be easily modified to follow the pattern of
the local minimizers of F

"

. We include an example where local minimizers if F
"

tend to be
a dense set, while functionals with the structure of F have no local minimizers.

Example 3.5.1 We consider the function a : Z2 ! {1, 2}

a(x
1

, x
2

) =
⇢

1 if x
1

2 Z or x
2

2 Z
2 otherwise,

and the related scaled-perimeter functionals

F
"

(A) =
Z

@A

a
⇣x

"

⌘

dH1

defined on Lipschitz sets A. The energies F
"

�-converge, with respect to the convergence
A

"

! A, understood as the L1 convergence of the corresponding characteristic functions,
to an energy of the form

F (A) =
Z

@

⇤
A

g(⌫)dH1 (3.5)
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defined on all sets of finite perimeter (⌫ denotes the normal to @⇤A). A direct computation
shows that actually

g(⌫) = k⌫k
1

= |⌫
1

|+ |⌫
2

|.
Furthermore, it is easily seen that the same F is equivalently the �-limit of

eF
"

(A) = H1(@A),

defined on A which are the union of cubes Q"

i

:= "(i + (0, 1)2) with i 2 Z2. We denote by
A

"

the family of such A. Note that eF
"

is the restriction of F
"

to A
"

.
If A 2 A

"

then A is trivially a L1-local minimizer for eF
"

with � < "2, since any two
distinct elements of A

"

are at least at L1-distance "2 (the area of a single "-square). It
can be proved also that all A 2 A

"

are L1-local minimizer for F
"

with � = C"2 for C > 0
su�ciently small.
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