
Chapter 2

Parameterized motion driven by
global minimization

Even though dynamic variational problems are in general associated with a local minimiza-
tion procedure, for “slow movements” the notion of a “quasi-static” motion can be defined
starting from a global-minimization criterion. The ingredients are

• a parameter-dependent energy;
• a dissipation satisfying a non-decreasing constraint;
• (time-)parameterized forcing condition.
Loosely speaking, a quasi static motion derives from some parameterized forcing con-

dition (applied forces, varying boundary conditions or other constraints); the motion is
thought to be so slow so that the solution at a fixed value of the parameter (at fixed
“time”) minimizes a total energy. This energy is obtained adding some “dissipation” to
some “internal energy”. A further condition is that the dissipation increases with time. An
entire general theory (of rate-independent motion) can be developed starting from these
ingredients.

2.1 Damage Models

In this section we deal with a simplified example, with the aim of examining its stability
with respect to perturbations.

2.1.1 Damage of a homogeneous material

We consider a one-dimensional setting. Our functions will be parameterized on a fixed
interval (0, 1). In this case we have

• the parameter space will be that of all measurable subsets A of (0, 1). The set A will
be understood as the damage set;
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26 CHAPTER 2. MOTION DRIVEN BY GLOBAL MINIMIZATION

• the energies depending on a set A will be

F
A

(u) = ↵

Z

A

|u0|2 dx + �

Z

(0,1)\A

|u0|2 dx,

where 0 < ↵ < �. In an mechanical interpretation of the variables, u represents the
deformation of a bar, whose elastic constant is � in the undamaged set and ↵ < � in the
damaged set;

• the dissipation is
D(A) = �|A|,

with � > 0. The work done to damage a portion A of the material is proportional to the
measure of A;

• the condition that forces the solution to be parameter dependent (“time-dependent”)
is a boundary condition

u(0) = 0, u(1) = g(t),

where g is a continuous function with g(0) = 0. Here the parameter is t 2 [0, T ].

Definition 2.1.1 A solution to the evolution related to the energy, dissipation and bound-
ary conditions above is a pair (ut, At) with ut 2 H1(0, 1), At ⇢ (0, 1), and such that

• (monotonicity) we have As ⇢ At for all s < t
• (minimization) the pair (ut, At) minimizes

min
n

F
A

(u) + D(A) : u(0) = 0, u(1) = g(t), At ⇢ A
o

(2.1)

• continuity the energy E(t) = F
A

t(ut) + D(At) is continuous
• homogeneous initial datum u0 is the constant 0 and A0 = ;.
The continuity assumption allows to rule out trivial solutions as those with At = (0, 1)

for all t > 0. It is usually replaced by a more physical condition of energy conservation. In
our context this assumption is not relevant.

Note that t acts only as a parameter (the motion is “rate independent”). Hence, for
example if g is monotone increasing, it su�ces to consider g(t) = t. We will construct by
hand a solution in this simplified one-dimensional context.

Remark 2.1.2 Note that the value in the minimum problem

m(t) = min
n

F
A

(u) + D(A) : u(0) = 0, u(1) = t
o

(2.2)

depends on A only through � = |A|.
In fact, given A, we can examine the minimum problem

m(A, t) = min
n

Z

A

↵|u0|2 dx + �

Z

(0,1)\A

�|u0|2 dx : u(0) = 0, u(1) = t
o

.
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For all test function u we have, by Jensen’s inequality
Z

A

↵|u0|2 dx + �

Z

(0,1)\A

�|u0|2 dx � ↵|A|z
1

|2 + �(1� |A|)|z
2

|2,

Where
z
1

=
1
|A|

Z

A

u0 dx, z
2

=
1

1� |A|
Z

(0,1)\A

u0 dx,

with a strict inequality if u0 is not constant on A and (0, 1)\A. This shows that the unique
minimizer satisfies

u0 = z
1

�
A

+ z
2

(1� �
A

), |A|z
1

+ (1� |A|)z
2

= t,

where the second condition is given by the boundary data. Hence

m(A, t) = min{↵�|z
1

|2 + �(1� �)|z
2

|2 : �z
1

+ (1� �)z
2

= t} =
↵�

�� + (1� �)↵
t2.

We conclude that the minimum value (2.2) is given by

↵�

�� + (1� �)↵
t2 + ��. (2.3)

By minimizing over � we obtain the optimal value of the measure of the damaged region

�
min

(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if |t| 
q

↵�

�(��↵)

1 if |t| �
q

��

↵(��↵)

t
q

↵�

�(��↵)

� ↵

��↵

otherwise

(2.4)

and the minimum value

m(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�t2 if |t| 
q

↵�

�(��↵)

↵t2 + � if |t| �
q

��

↵(��↵)

2t
q

↵��

��↵

� �↵

��↵

otherwise.

(2.5)

The interpretation of this formula is as follows. For small values of the total displacement t
the material remains undamaged, until it reaches a critical value for the boundary datum.
Then a portion of size �

min

(t) of the material damages, lowering the elastic constant of the
material and the overall value of the sum of the internal energy and the dissipation, until
all the material is damaged. Note that in this case E(t) = m(t).
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The solutions for the evolution problem are given by any increasing family of sets At

satisfying |At| = �
min

(t) and correspondingly functions ut minimizing m(At, t).
The value in (2.3) is obtained by first minimizing in u. Conversely, we may first

minimize in A. We then have

min
n

Z

1

0

min
A

{�
A

(↵|u0|2 + �),�
(0,1)\A

�|u0|2} dx : u(0) = 0, u(1) = g(t)
o

(2.6)

The lower-semicontinuous envelope of the integral energy is given by the integral with
energy function the convex envelope of

f(z) = min{↵z2 + �,�z2}, (2.7)

which is exactly given by formula (2.5); i.e.,

m(t) = f⇤⇤(t)

(see Fig. 2.1)

Figure 2.1: minimal value m(t) for the damage problem

Irreversibility. An important feature of the monotonicity condition for At is irre-
versibility of damage, which implies that for non-increasing g the values of m(g(t)) will
depend on the highest value taken by �

min

(g(t)) on [0, t]. In particular, for a “loading-
unloading” cycle with g(t) = T

2

� |t� T

2

|, the value of E(t) is given by

E(t) =

8

>

<

>

:

m(t) for 0  t  T/2

↵�

�
min

(T/2)� + (1� �
min

(T/2))↵
(T � t)2 + ��

min

(T/2) for T/2  t  T .
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This formula highlights that once the maximal value �
min

(T/2) is reached, then the dam-
aged region At remains fixed, so that the problem becomes a quadratic minimization (plus
the constant value of the dissipation). We plot m0(t) and draw a cycle in Fig. 2.2

In particular, if T

2

�
q

��

↵(��↵)

then the material is completely damaged in the “unload-
ing” regime.

Threshold formulation

Note that a solution u
t

of (2.2) satisfies the Euler-Lagrance equation

((↵�
A

+ �(1� �
A

))u0)0 = 0;

i.e.,
(↵�

A

+ �(1� �
A

))u0 = �
t

, (2.8)

where �
t

is a constant parameterized by t. Its plot as a function of g = g(t) along a
“loading-unloading” cycle is given in Fig. 2.2.

Figure 2.2: plot of �
t

along a cycle

The plateau for � is obtained at the threshold value

� =

s

↵��

� � ↵
.

We can interpret the g � � graph as a threshold phenomenon: the material does not
damage until the stress � reaches the threshold value. At this point, if the material is
loaded further it damages so as to keep the value of � below the threshold, until all the
material is damaged. If the material is unloaded then � follows a linear elastic behavior
with the overall e↵ective elastic constant corresponding to the total amount of damage
produced.
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2.1.2 Homogenization of damage

We now examine the behaviour of the previous process with respect to �-convergence in
the case of homogenization. To that end we introduce the energies

F
",A

(u) =
Z

(0,1)\A

�
⇣x

"

⌘

|u0|2 dx +
Z

A

↵
⇣x

"

⌘

|u0|2 dx, (2.9)

where ↵ and � are 1-periodic functions with

↵(y) =
⇢

↵
1

for 0  y < 1

2

↵
2

for 1

2

 y < 1 �(y) =
⇢

�
1

for 0  y < 1

2

�
2

for 1

2

 y < 1

with 0 < ↵
j

< �
j

. Note that for fixed A the functionals F
",A

�-converge to

F
hom,A

(u) = �

Z

(0,1)\A

|u0|2 dx + ↵

Z

A

|u0|2 dx, (2.10)

with
↵ =

2↵
1

↵
2

↵
1

+ ↵
2

<
2�

1

�
2

�
1

+ �
2

= �.

This can be easily checked if A is an interval (or a union of intervals), and then for a
general A by approximation. Indeed if A = (0,�) then the liminf inequality trivially holds
by separately applying the liminf inequality to the two energies

Z

�

0

↵
⇣x

"

⌘

|u0|2 dx,

Z

1

�

�
⇣x

"

⌘

|u0|2 dx. (2.11)

Conversely, given a target function u 2 H1(0, 1) we can find recovery sequences (u1

"

) and
(u2

"

) for u on (0,�) and (�, 1), respectively, for the energies (2.11) with u1

"

(�) = u2

"

(�), so
that the corresponding u

"

defined as u1

"

on (0,�) and as u2

"

on (�, 1) is a recovery sequence
for F

hom,A

(u). Note that the �-limit is still of the form examined above with constant ↵
and �.

We now examine instead the damage process at fixed ". For simplicity of computation
we suppose that 1

"

2 N. The general case can be always reduced to this assumption up to
an error of order ". The dissipation will be of the form

D
"

(A) =
Z

A

�
⇣x

"

⌘

dx,

where again � is a 1-periodic function with

�(y) =
⇢

�
1

for 0  y < 1

2

�
2

for 1

2

 y < 1
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with �
j

> 0. In the case �
1

= �
2

we obtain the same dissipation as above, independent of
".

In order to compute the minimum value

m"(t) = min
n

F
",A

(u) + D
"

(A) : u(0) = 0, u(1) = t, A ⇢ (0, 1)
o

(2.12)

we proceed as in Remark 2.1.2, noticing that the minimum value

m"(A, t) = min
n

F
",A

(u) : u(0) = 0, u(1) = t
o

(2.13)

depends on A only through the volume fraction of each damaged component

�
i

= 2
�

�

�

n

x 2 A : ↵
⇣x

"

⌘

= ↵
i

o

�

�

�

.

and its value is independent of " and is given given by

min
n1

2

⇣

�
1

↵
1

z2

11

+ (1� �
1

)�
1

z2

12

⌘

+
1
2

⇣

�
2

↵
2

z2

21

+ (1� �
2

)�
1

z2

22

⌘

:

1
2
(�

1

z
11

+ (1� �
1

)z
12

) +
1
2
(�

2

z
21

+ (1� �
2

)z
22

) = t
o

We conclude that m"(t) = m
hom

(t) is independent of " and satisfies

m
hom

(t) =
1
2

min
n

m
1

(t
1

) + m
2

(t
2

) :
t
1

+ t
2

2
= t

o

, (2.14)

where m
j

is defined as m in (2.2) with ↵
j

,�
j

and �
j

in the place of ↵,� and � (i.e., by the
damage process in the i-th material). Hence, by (2.5)

m
j

(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�
j

t2 if |t| 
q

↵

j

�

j

�

j

(�

j

�↵

j

)

↵
j

t2 + �
j

if |t| �
q

�

j

�

j

↵

j

(�

j

�↵

j

)

2t
q

↵

j

�

j

�

j

�

j

�↵

j

� �

j

↵

j

�

j

�↵

j

otherwise.

(2.15)

We can therefore easily compute m(t). In the hypothesis, e.g, that

p
2

:=

s

↵
2

�
2

�
2

�
2

� ↵
2

<

s

↵
1

�
1

�
1

�
1

� ↵
1

=: p
1

, (2.16)
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we can write m0(t) as

m0
hom

(t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

2�t if |t|  p2
�

2p
2

if p2
�

< |t| < p2(�1+↵2)

2�1↵2

4�1↵2
�1+↵2

t if p2(�1+↵2)

2�1↵2
 |t|  p1(�1+↵2)

2�1↵2

2p
1

if p1(�1+↵2)

2�1↵2
< |t| < p1

↵

2↵t if |t| � p1
↵

.

The outcome is pictured in Fig. 2.3. It highlights that the behaviour is di↵erent from the

Figure 2.3: homogenized damage in a periodic microstructure

one computed above: for small values of the total displacement t the overall response is
the same as the one of the homogenized behaviour of the two ‘strong’ materials. At a
first critical value one of the two materials (and only one except for the exceptional case
p
1

= p
2

) starts to damage (this corresponds to the first constant value 2p
1

of m0) until it
is completely damaged. With the condition (2.16) the first material to damage is material
2, and the corresponding damage volume fraction is

�
2,min

(t) =

8

>

>

<

>

>

:

0 if 0  t  p2
�

2p2
�2

⇣

t� p2
�

⌘

if p2
�

< t < p2(�1+↵2)

2�1↵2

1 if t > p2(�1+↵2)

2�1↵2

(2.17)

Then the material behaves as a mixture of a strong material 1 and a damaged material 2.
Subsequently, also material 1 starts to damage; the corresponding damage volume fraction
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is

�
1,min

(t) =

8

>

>

<

>

>

:

0 if t  p1(�1+↵2)

2�1↵2

2p1
�1

⇣

t� p1(�1+↵2)

2�1↵2

⌘

if p1(�1+↵2)

2�1↵2
< t < p1

↵

1 if t � p1
↵

(2.18)

After also material 1 has completely damaged, the behaviour is that of the homogenized
energy for two weak materials.

Note that at fixed " we can define At

"

and ut

"

by choosing increasing families of sets At

j,"

describing the damage in the j-th material with |At

j,"

| = 1

2

�
j,min

(t), setting At

"

= At

1,"

[At

2,"

and ut

"

the corresponding solution of m"(At, t). However the sets At

"

do not converge to sets
as "! 0 except for the trivial cases. In particular this applies for p2(�1+↵2)

2�1↵2
 t  p1(�1+↵2)

2�1↵2
,

in which case �
2,min

(t) = 1 and �
1,min

(t) = 0 so that At

"

= "(Z + [1
2

, 1]).

A double-damage-set formulation

The observation above highlights that a weaker notion of convergence of sets must be given
in order to describe the behavior of (some solutions of) the sequence of damage problem.
One way is to choose particular sequences of damaged sets At

j,"

, for examples intersections
of intervals with the j-th material. For simplicity we consider intervals [0,�

j,"

(t)] with one
endpoint in 0, so that

At

1,"

= [0,�
1,"

(t)] \ "
⇣

Z +
h

0,
1
2

i⌘

, At

2,"

= [0,�
2,"

(t)] \ "
⇣

Z +
h1
2
, 1

i⌘

.

Note that under hypothesis (2.16) we have �
2,"

(t) � �
1,"

(t) for all t. We haven therefore
to examine problems (2.13) rewritten in the form

m"(�
1,"

,�
2,"

, t) = min
n

Z

�1,"

0

↵
⇣x

"

⌘

|u0|2 dx +
Z

�2,"

�1,"

a
⇣x

"

⌘

|u0|2 dx +
Z

1

�2,"

�
⇣x

"

⌘

|u0|2 dx :

u(0) = 0, u(1) = t
o

, (2.19)

where a is the 1-periodic function with

a(y) =
⇢

�
1

for 0  y < 1

2

↵
2

for 1

2

 y < 1 .

If �
j,"

! �
j

then these problems converge to

m
hom

(�
1

,�
2

, t) = min
n

↵

Z

�1

0

|u0|2 dx + a

Z

�2

�1

|u0|2 dx + �

Z

1

�2

|u0|2 dx : u(0) = 0, u(1) = t
o

.
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Taking into account that in this case
R

A

�(x/") dx ! 1

2

�
2

�
2

+ 1

2

�
1

�
1

, the limit of m"(t) can
be written as

m
hom

(t) = min
n

Z

1

0

⇣

�
[0,�1]

⇣

↵|u0|2 +
�

1

+ �
2

2

⌘

+ �
[�1,�2]

⇣

a|u0|2 +
�

2

2

⌘

+ �
[�2,1]

�|u0|2
⌘

dx

: u(0) = 0, u(1) = t, 0  �
1

 �
2

 1
o

. (2.20)

Minimizing first in �
1

and �
2

we obtain

m
hom

(t) = min
n

Z

1

0

min
n

↵|u0|2 +
�

1

+ �
2

2
, a|u0|2 +

�
2

2
,�|u0|2

o

dx : u(0) = 0, u(1) = t
o

.

This observation highlights that the function m
hom

(t) can be expressed as the convex
envelope of

min
n

�z2,
2↵

2

�
1

�
1

+ ↵
2

�
2

z2 +
1
2
�

2

,↵+
1
2
(�

1

+ �
2

)
o

, (2.21)

which are the three total energy densities corresponding to the mixtures of undamaged
material, equally damaged and undamaged material (in the optimal way determined by
condition (2.16)), and completely damaged material.

The limit damage motion in this case is given in terms of the two sets At

j

= [0,�
j

(t)],
where �

j

(t) are the minimizers of problem (2.22), and of the corresponding ut. Note that
this is possible thanks to the a particular choice of the damage sets At

j,"

, and does not give
a description of the behavior of an arbitrary family of solutions At

"

, ut

"

.

Double-threshold formulation

Also in this case we note that the damage process takes place when �
t

reaches some
particular values. In this case the thresholds are two given by p

1

and p
2

(see Fig. 2.3 as
compared with Fig. 2.2).

2.1.3 Homogenization of damage: dissipations leading to a commutabil-
ity result

We now slightly modify the dissipation in the example of the previous section. This will
produce a “commutatibility” result in the quasi static motion outlined above. The first
such modification is obtained by imposing that the domain of the dissipation be the set of
intervals; i.e.,

D
"

(A) = +1 if A is not an interval,

while D
"

remains unchanged otherwise. In this case in the process described above, at
fixed " me may remark that the minimal At

"

will converge to some interval At for which
we may pass to the limit obtaining the problem

min
n

F
hom,A

t(u) + �|At| : u(0) = 0, u(1) = t
o

,
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where
� =

�
1

+ �
2

2
,

since
lim
"!0

D
"

(At

"

) = �|At|.

Note that in the previous example this passage was not possible since the A
"

thus defined
do not converge to a limit set.

We may conclude then that At minimizes the corresponding

m
hom

(t) := min
n

F
hom,A

(u) + �|A| : u(0) = 0, u(1) = t, A subinterval of (0, 1)
o

= min
n

F
hom,A

(u) + �|A| : u(0) = 0, u(1) = t, A ⇢ (0, 1)
o

= f⇤⇤
hom

(t), (2.22)

where
f
hom

(z) = min{↵z2 + �,�z2}, (2.23)

which describes the damage process corresponding to the limit homogenized functionals.
Note that in the limit problem we may remove the constraint that A be an interval, since
we have already remarked that solutions satisfying such a constraint exist.

Brutal damage

We consider another dissipation, with

D
"

(A) =
Z

A

�
⇣x

"

⌘

dx + �#(@A \ [0, 1]),

so that it is finite only on finite unions of intervals.
We may compute the limit of m"(t) as above, noticing that for a finite union of intervals,

we may pass to the limit (taking possibly into account that the number of intervals may
decrease in the limit process), and conclude that the limit damage process corresponds to
the functionals F

hom,A

and the homogenized dissipation

D
hom

(A) = �|A| + �#(@A \ [0, 1]).

Correspondingly, we can compute the minima

m
hom

(t) = min
n

F
hom,A

(u)+D
hom

(A) : u(0) = 0, u(1) = t, A union of subintervals of (0, 1)
o

,

as
m

hom

(t) = min
n

m0

hom

(t), m1

hom

(t)
o

,
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Figure 2.4: minimal energy m
hom

where m0

hom

corresponds to no damage,

m0

hom

(t) = min
n

F
hom,;(u) : u(0) = 0, u(1) = t)

o

= �t2,

and m1

hom

corresponds to A a single interval (not being energetically convenient to have
more than one interval),

m1

hom

(t) = inf
n

F
hom,A

(u) + D
hom

(A) : u(0) = 0, u(1) = t, A subinterval of (0, 1), A 6= ;
o

= min
n

F
hom,A

(u) + �|A| : u(0) = 0, u(1) = t, A subinterval of (0, 1)
o

+ 2�

= f⇤⇤
hom

(t) + 2�, (2.24)

with f
hom

as in (2.23).
The plot of m

hom

is reproduced in Fig. 2.4. Note that we follow the undamaged curve
until we reach the graph of m1

hom

, which corresponds to a positive value of the damage
area; i.e., the damage is “brutal” (once it is convenient to damage, we damage a large
region). Correspondingly, in Fig. 2.5 we plot the value of m0

hom

and the derivative of the
homogenized energy E along a cycle

2.1.4 Conditions for commutability

Motivated by the examples above, we may derive a criterion of commutability of �-
convergence and quasi-static motion, which we state in this particular case but is immedi-
ately generalized to more abstract situations. This easily follows from the remark that in
order to pass to the limit we have to have the convergence of the minimum problems

min
n

F
",A

(u) + D
"

(A) : u(0) = 0, u(1) = g(t), B
"

⇢ A
o

(2.25)
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Figure 2.5: plot of m0
hom

(t) and derivative of the energy along a cycle

with B
"

Borel sets converging to B (in (2.1) B
"

=
S{A

s

: s < t}) to

min
n

F
hom,A

(u) + D
hom

(A) : u(0) = 0, u(1) = g(t), B ⇢ A
o

. (2.26)

Proposition 2.1.3 (commutativity criterion) Let B
"

! B and let

G
"

(u,A) =
⇢

F
",A

(u) + D
"

(A) if B
"

⇢ A
+1 otherwise

(2.27)

G
hom

(u,A) =
⇢

F
hom,A

(u) + D
hom

(A) if B ⇢ A
+1 otherwise.

(2.28)

Suppose that G
"

�-converges to G
hom

with respect to the converge L2⇥L1-convergence (the
latter is understood as the convergence of the characteristic functions of sets). Then if a
sequence of solutions (ut

"

, At

"

) to the evolutions related to the energies F
",A

, dissipation D
"

and boundary conditions given by g is such that (up to subsequences) for all t ut

"

converges
to some ut in L2 and Bt

"

=
S{As

"

: s < t} converges to some Bt in L1, then it converges (up
to subsequences) to a solution to the evolution related to the energies F

hom,A

, dissipation
D

hom

and boundary conditions given by g.

This criterion follows from the fundamental theorem of �-convergence, upon noting
that the boundary conditions are compatible with the convergence of minima regardless to
the constraint B

"

⇢ A.

Remark 2.1.4 We may apply Proposition 2.1.3 to the two examples in Section 2.1.3. In
fact, in both cases the boundedness of the dissipation implies that At

"

and hence Bt

"

are
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(increasing with t) intervals (or finite union of intervals in the second case), so that the pre
compactness of Bt

"

is guaranteed. The convergence for all t follows from an application of
Helly’s theorem.

We cannot apply Proposition 2.1.3 to the solutions in Section 2.1.2. Indeed, except for
the trivial cases when At

"

= ; or At

"

= (0, 1), these do not converge strongly in L1 but only
weakly.

2.1.5 Relaxed evolution

The criterion above suggests, in case it is not satisfied, to examine the behavior of the
functionals (2.27) with respect to the L2⇥L1-weak convergence. In this case the limit of a
sequence of characteristic functions may not be a characteristic function itself, so that the
domain of the �-limit will be the space of pairs (u, ✓), with 0  ✓  1. This formulation
will necessarily be more complex, but will capture the behavior of all sequences At

"

, ut

"

.

Proposition 2.1.5 (relaxed total energies) If hypothesis (2.16) holds, then the �-limit
of the functionals (2.27) with respect to the L2 ⇥ L1-weak convergence is given by the
functional (r stands for “relaxed”)

Gr

hom

(u, ✓) =
Z

(0,1)

f
hom

(✓, u0) dx +
Z

(0,1)

�
hom

(✓) dx, (2.29)

where

f
hom

(✓, z) =

8

>

>

>

>

<

>

>

>

>

:

2↵
2

�
1

�
2

2✓�
1

�
2

+ (1� 2✓)↵
2

�
1

+ ↵
2

�
2

z2 if 0  ✓  1

2

2↵
1

↵
2

�
1

2(1� ✓)↵
1

↵
2

+ (2✓ � 1)↵
2

�
1

+ ↵
1

�
1

z2 if 1

2

 ✓  1

(2.30)

and the dissipation energy density is

�
hom

(✓) =

8

<

:

�
2

✓ if 0  ✓  1

2

1

2

�
2

+ �
1

(✓ � 1

2

) if 1

2

 ✓  1
(2.31)

Proof. We do not dwell on this proof, since it is variation of the usual homogenization
theorem. A lower bound is obtained by minimizing on each periodicity cell. Upon scaling
we are led to computing

�(z, ✓) := min
n

Z

A

↵(y)|u0|2 dy +
Z

(0,1)\A

�(y)|u0|2 dy +
Z

A

�(y) dy

: |A| = ✓, u(0) = 0, u(1) = z
o

.
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By a direct computation we get

�(z, ✓) = f
hom

(✓, z) + �
hom

(✓) .

Since � is convex in the pair (z, ✓), its integral is lower semicontinuous in L2 ⇥ L1-weak,
and hence is a candidate for the �-liminf. The proof of the limsup inequality is obtained
by density, first dealing with u piecewise a�ne and ✓ piecewise constant.

Remark 2.1.6 The limit of problems (2.25) with B
"

converging weakly to some � will be
of the form

min
n

Gr

hom

(u, ✓) : u(0) = 0, u(1) = g(t),�  ✓
o

. (2.32)

As above, we only consider the case g(t) = t, and the problem

mr(t) = min
n

Gr

hom

(u, ✓) : u(0) = 0, u(1) = g(t)
o

. (2.33)

We have

mr(t) = min
n

Z

1

0

min
0✓1

n

f
hom

(✓, u0) + �
hom

(✓)
o

dx : u(0) = 0, u(1) = g(t)
o

. (2.34)

A direct computation shows that

min
0✓1

n

f
hom

(✓, z) + �
hom

(✓)
o

= m(z), (2.35)

with m the one in Section 2.1.2; hence, by convexity mr(z) = m(z). Moreover, again using
the convexity of m, a solution is simply given by u

t

(x) = tx and correspondingly ✓ = ✓(t)
constant equal to the minimizer of (2.35) with z = t; namely

Figure 2.6: value of the damage ✓(t)



40 CHAPTER 2. MOTION DRIVEN BY GLOBAL MINIMIZATION

✓(t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if |t|  p2
�

p

2
2

�2

⇣

t

p2
� 1

�

⌘

if p2
�

< |t| < p2(�1+↵2)

2�1↵2

1

2

if p2(�1+↵2)

2�1↵2
 |t|  p1(�1+↵2)

2�1↵2

1 + p

2
1

�1

⇣

t

p1
� 1

↵

⌘

if p1(�1+↵2)

2�1↵2
< |t| < p1

↵

1 if |t| � p1
↵

.

Note that ✓(t) = �1,min(t)+�2,min(t)

2

with �
j,min

given by (2.17) and (2.18). The solution with
✓ constant corresponds to equi-distributed damage. Note that we have infinitely many
solutions, among which the ones described above in terms of At

1

and At

2

.

2.2 Mielkian theory of rate-independent evolution

The examples in the previous theory can be framed in a general theory of rate-independent
variational evolution. We introduce some of the concepts of the theory that are relevant
to our presentation, without being precise in the hypotheses on spaces and topologies

Definition 2.2.1 Let F = F(t, ·) be a time-parameterized energy functional and D be a
dissipation functional, which we assume to be positively-homogeneous of degree one; i.e.
D(sU) = sD(U) if s > 0. Then U is an energetic solution for the evolution inclusion

@D(U̇) + @
U

F(t, U) 3 0

if the following two conditions hold:
(S) global stability for all t and bU we have

F(t, U(t))  F(t, bU) + D(bU � U(t));

(E) energy inequality for all t

F(t, U(t)) +
Z

t

0

D(U̇)  F(0, U(0)) +
Z

t

0

@
s

F(s, U(s)) ds.

In this formula the integral
R

t

0

D(U̇) must be understood in the sense of measures, and
can be equivalently defined as

sup
n

n

X

i=1

D(U(t
i

)� U(t
i�1

)) : 0 = t
0

< t
1

< · · · < t
n

= t
o

. (2.36)

If U is an absolutely continuous function then the integral reduces to
R

t

0

D(U̇(s)) ds.
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Remark 2.2.2 Under mild assumptions from (S) it can be deduced that in (E) the equality
sign holds, so that we have an energy conservation identity. This identity states that the
di↵erence of the energy at a final and an initial state equals the di↵erence of the work of
the applied actions and the total dissipation along the path.

Remark 2.2.3 In the case of damage we have U = (u, v),

F(t, u, v) =

8

>

<

>

:

Z

1

0

⇣

↵v|u0|2 + �(1� v)|u0|2) dx if v 2 {0, 1} a.e., u(0) = 0, u(1) = g(t)

+1 otherwise,

and

D(U) =

8

>

<

>

:

�

Z

1

0

v dx if v 2 {0, 1} a.e.

+1 otherwise.

Condition (S) is meaningful only if bU = (u, v) and U(t) = (ut, vt) satisfy v = �
A

and
vt = �

A

t with At ⇢ A, so that (S) implies that ut and At are minimizers for (2.1).
Conversely, it can be checked that the solutions to the damage evolution satisfy the energy
inequality as an identity.

Remark 2.2.4 The requirement that D be positively homogeneous of degree one implies
that the solution is rate-independent; i.e., that if we consider a re-parameterization of
the energy eF(t, U) = F('(t), U) via an increasing di↵eomorphism ', then the energetic
solutions eU of the corresponding evolution inclusion are exactly the eU(t) = U('(t)) with
U energetic solutions of the corresponding evolution inclusion for F .

Example 2.2.5 (mechanical play/hysteresis) The prototypical example of an evolu-
tion inclusion is by taking U = x 2 R and

F(t, x) =
x2

2
� tx, D(x) = |x| .

In this case we can write explicitly @|ẋ| + x� t 3 0 as
( ẋ > 0 if x = t� 1

ẋ < 0 if x = t + 1
ẋ = 0 if t� 1  x  t + 1.

The solution with x(0) = x
0

2 [�1, 1] is

x(t) =
⇢

0 if t  1 + x
0

t� 1 if t > 1 + x
0

.
(2.37)
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If we take a non-monotone load g(t) = T � |t� T | with T > 1 + x
0

and

F(t, x) =
x2

2
� g(t)x, D(x) = |x| .

then the solution x is as above for t  T , and given solving @|ẋ| + x� (2T � t) 3 0 by

x(t) =
⇢

T � 1 if T  t  T + 2
2T � t + 1 = g(t) + 1 if t � T + 2.

This solution shows a hysteretic behavior of this system, whose trajectory in the g-x plane
is represented in Fig. 2.7

Figure 2.7: hystheretic trajectory

Remark 2.2.6 (solutions obtained by time-discretization) Some energetic solutions
can be obtained as limits of discrete schemes as follows: fix ⌧ > 0 and define U ⌧

k

recursively
by setting U ⌧

0

= U
0

, and choosing U ⌧

k

as a solution of the minimum problem

min
b
U

n

F(⌧k, bU) + D(bU � U ⌧

k�1

)
o

.

Define the continuous trajectory U ⌧ (t) = U ⌧

bt/⌧c. Under suitable assumptions the limits of
(subsequences of) U ⌧ are energetic solution of the variational inclusion for F and D.

2.2.1 Stability

We can give a stability result with respect to �-convergence. As remarked in the case of
damage the separate �-convergence of F

"

and D
"

may not be su�cient to describe the limit
of the corresponding variational motions.
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Theorem 2.2.7 Suppose that F
"

and D
"

are lower bounds for F and D, that U
"

are
energetic solutions converging pointwise to some U as " ! 0, that the initial data are
well-prepared; i.e., that

lim
"!0

F
"

(0, U
"

(0)) = F
"

(0, U(0)),

that we have convergence of the external actions

lim
"!0

Z

t

0

@
s

F
"

(s, U
"

(s)) ds =
Z

t

0

@
s

F(s, U(s)) ds for all t,

and that the following mutual recovery sequence existence condition holds: for all t
and all bU there exists a sequence bU

"

such that

lim sup
"!0

⇣

F
"

(t, bU
"

)� F
"

(t, U
"

(t)) + D
"

(bU
"

� U
"

(t))
⌘

 F(t, bU)� F(t, U(t)) + D(bU � U(t)). (2.38)

Then U is an energetic solution for the limit energy and dissipation.

Proof. Let 0 = t
0

< t
1

< · · · < t
n

= t; by the liminf inequality for D
"

and (2.36) we then
have

n

X

i=1

D(U(t
i

)� U(t
i�1

))  lim inf
"!0

n

X

i=1

D
"

(U
"

(t
i

)� U
"

(t
i�1

))  lim inf
"!0

Z

t

0

D
"

(U̇
"

).

Taking into account the liminf inequality for F
"

and the convergence hypotheses on initial
data and external actions we then obtain

F(t, U(t)) +
Z

t

0

D(U̇(s)) ds  lim inf
"!0

⇣

F
"

(0, U
"

(0)) +
Z

t

0

@
s

F
"

(s, U
"

(s)) ds
⌘

= F(0, U(0)) +
Z

t

0

@
s

F(s, U(s)) ds

so that (E) holds.
Take any test bU and use the mutual recovery sequence bU

"

to obtain

F(t, bU)� F(t, U(t)) + D(bU � U(t)) � 0;

i.e. the inequality in (S), from the same inequality for U
"

.

Proposition 2.2.8 (necessary and su�cient conditions) (i) Let F
"

�-converge to F
and D

"

converge continuously to D. Then the mutual recovery sequence condition is satis-
fied;

(ii) Assume that F
"

and D
"

�-converge to F and D, that U
"

(t) is a recovery sequence
for F

"

at U(t) and that the mutual recovery sequence condition holds with bU
"

! bU . Then
G

"

(V ) = F
"

(t, V ) + D
"

(V � U
"

(t)) �-converges to G(V ) = F(t, U(t)) + D(V � U(t)).
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Proof. (i) follows by taking bU
"

any recovery sequence for F
"

(t, bU).
(ii) is an immediate consequence of the fact that F+D is a lower bound for F

"

+D
"

, while
the mutual recovery sequence provides a recovery sequence for F(t, U(t)) + D(V � U(t)).

Example 2.2.9 (an example with relaxed evolution) In R2 with U = (x, y), con-
sider the initial datum u

"

(0) = (0, 0) and the energy and dissipation

F
"

(t, U) =
1
2
x2 +

1
2"2

(y � "x)2 � tx, D
"

(U) = |x| + 1
"
|y|

with �-limits
F(t, U) =

1
2
x2 � tx, D(U) = |x|

with domain {y = 0}.
The solution to the di↵erential inclusion for F and D with initial datum (0, 0) is given

by x(t) as in (2.37) with x
0

= 0, and y(t) = 0. On the other hand, the solutions to the
di↵erential inclusions U

"

can be computed explicitly, and they tend to U = (x, y) defined
by y(t) = 0 and

x(t) =

8

>

>

>

>

<

>

>

>

>

:

0 if t  1

t� 1
2

if 1  t  3

t� 2 if t � 3.
In this case we do not have convergence of the solutions. However, we can compute the

�-limit of the sum F
"

+ D
"

, whose domain is {y = 0}. Recovery sequences for (x, 0) can
be looked for of the form (x, "z). By minimizing in z we easily get that this �-limit is

G(x) =
1
2
x2 � tx + |x| +  (x),

where

 (x) = min
n1

2
(z � x)2 + |z|

o

= min
nx2

2
,
1
2

+ ||x|� 1|
o

,

whose derivative is
 0(x) = (x ^ 1) _ (�1).

It is easily seen that the function x(t) above is the solution of

@|ẋ| + F 0
0

(x) = @|ẋ| + x� t +  0(x) 3 0,

where F
0

(x) = G(x)� |x| = 1

2

x2 � tx +  (x). This energy F
0

can then be regarded as the
relaxed e↵ective energy describing the limit behavior of the system.
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2.3 Francfort and Marigo’s Variational Theory of Fracture

A very interesting application of the theory outline above is to variational models of Frac-
ture following the formulation given by Gri�th in the 1920’s. In this case it is maybe
clearer the definition via time-discrete motions (see Remark 2.2.6) given as follows.

We consider the antiplane case where the variable u representing the displacement is
scalar. ⌦ a bounded open subset of Rn will be the reference configuration of a linearly
elastic material subject to brittle fracture as a consequence of a varying boundary condition
u = g(t) on @⌦. K will be a closed set representing the crack location in the reference
configuration. We consider the case g(0) = 0, and set K

0

= ;.
With fixed ⌧ > 0 we define u⌧

0

= 0, K⌧

0

= K
0

and u⌧

k

, K⌧

k

recursively as minimizers of
the problem

min
n

Z

⌦\K

|ru|2dx + Hn�1(K \ K⌧

k�1

) : K⌧

k�1

⇢ K = K ⇢ ⌦,

u 2 H1(⌦ \ K), u = g(t) on @⌦ \ K
o

. (2.39)

where Hn�1 denotes the (n � 1)-dimensional Hausdor↵ measure. In this way K⌧

k

is an
increasing sequence of closed sets. Note that part of the crack may also lie on the boundary
of ⌦, in which case the boundary condition is satisfied only on @⌦ \ K.

In this formulation we have an elastic energy defined by

F(t, u,K) =

8

>

<

>

:

Z

⌦\K

|ru|2dx if u 2 H1(⌦ \ K) and u = g(t) on @⌦ \ K

+1 otherwise,

and a dissipation

D(K) =
⇢

Hn�1(K) if K = K ⇢ ⌦
+1 otherwise.

The existence of minimizing pairs for (u, K) is not at all trivial. One way is by using
the theory of SBV functions; i.e., functions of bounded variation u whose distributional
derivative is a measure that can be written as a sum of a measure absolutely continuous
with respect to the Lebesue measure and a measure absolutely continuous with respect
to the restriction of the (n � 1)-dimensional Hausdor↵ measure to the complement of the
Lebesgue points of u, the latter denoted by S(u). For such functions the approximate
gradient ru exists at almost all points. We can therefore define for all closed K the energy

E
K

(u) =
Z

⌦\K

|ru|2 dx + Hn�1(S(u) \ (⌦ \ K)). (2.40)

Such energies are L1-lower semicontinuous and coercive, so that existence of weak solutions
in SBV (⌦) are ensured from the direct methods of the Calculus of Variations. Regularity
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results give that Hd�1(S(u) \ S(u)) = 0 for minimizing u, so that to a minimizing u 2
SBV (⌦ \ K⌧

k�1

) of

min
n

E
K

⌧

k�1
(u) : u 2 SBV (⌦ \ K⌧

k�1

), u = g(t) on @⌦ \ (S(u) [K⌧

k�1

)
o

(2.41)

corresponds a minimizing pair K⌧

k

= K⌧

k�1

[S(u) and u⌧

k

= u|⌦\K

⌧

k

2 H1(⌦\K⌧

k

) for (2.39).
The passage from a discrete trajectory u⌧ to a continuous one u for all t letting ⌧ ! 0

is possible thanks to some monotonicity arguments. The delicate step is the proof that
such u still satisfies the global stability property, which is ensured by a transfer lemma,
which allows to approximate test bu in the limit stability estimate with a sequence bu

⌧

that
can be used in the stability estimate holding for u⌧ (t).

Remark 2.3.1 (existence of fractured solutions) Note that for large enough values
of the boundary condition g(t) we will always have a solution with Kt 6= ;. Indeed consider
the case g(t) = tg

0

with g
0

6= 0 on @⌦. If Kt = ; then the corresponding ut is a minimizer
of

min
n

Z

⌦

|ru|2 dx : u = tg
0

on @⌦
o

= t2 min
n

Z

⌦

|ru|2 dx : u = g
0

on @⌦
o

=: t2C
0

.

On the other hand we can use as test function u = 0 and as test set K = @⌦ in (2.39), for
which the total energy is C

1

= Hd�1(@⌦). This shows that for t2C
0

> C
1

we cannot have
K = ;.

Remark 2.3.2 (the one-dimensional case) In the one-dimensional case the functional
E reduces to the energy F obtained as a limit in Section 1.5.5 with the normalization
2J 00(0) = J(1) = 1, since H0(K) = #(K). Note that in this case the domain of E reduces
to piecewise-H1 functions. If ⌦ = (0, 1) then the time-continuous solutions are of the form

(ut(x), Kt) =

8

<

:

(g(t)x, ;) for t  t
c

⇣

g(t)�
(x0,1)

(x), {x
0

}
⌘

for t > t
c

,

or

(ut(x), Kt) =

8

<

:

(g(t)x, ;) for < t
c

⇣

g(t)�
(x0,1)

(x), {x
0

}
⌘

for t � t
c

,

where x
0

2 [0, 1] and t
c

is any value with g(t
c

) = 1 and g(s)  1 for s < t
c

. This non-
uniqueness is due to the fact that for g(t) = 1 we have two possible types of solutions
u(x) = x and u(x) = �

(x0,1)

(x).
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2.3.1 Homogenization of fracture

The interpretation of fracture energies as functionals defined in SBV allows to consider the
L1-convergence in SBV along sequences with equibounded energy (2.40). With respect to
such a convergence we can consider stability issues for energies and dissipations related to
the oscillating total energy

E
"

(u) =
Z

⌦\K

a
b

⇣x

"

⌘

|ru|2 dx +
Z

S(u)\(⌦\K)

a
f

⇣x

"

⌘

dHn�1

(here the coe�cients a
b

and a
f

, b for bulk, f for fracture, are periodic functions). In this
case the limit of the total energies E

"

is the sum of the energies obtained separately as
limits of the energy and the dissipation parts (with respect to the same convergence), and
has the form

E
hom

(u) =
Z

⌦\K

hA
hom

ru,rui dx +
Z

S(u)\(⌦\K)

'
hom

(⌫)dHn�1 ,

where ⌫ denotes the measure-theoretical normal to S(u). Note that the homogenized A
hom

is the same given by the homogenization process in H1, while '
hom

is an e↵ective fracture
energies obtained by optimization on oscillating fractures, related to the homogenization
of perimeter functionals. Thanks to this remark it is possible to show that the energetic
solutions for E

"

converge to energetic solutions of E
hom

. In terms of construction of mutual
recovery sequences this is possible since internal energy and dissipation can be optimized
separately, contrary to what happens for the damage case, where both terms involve bulk
integrals.
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