## Local minimization, variational evolution and $\Gamma$ -convergence

Andrea Braides (Roma Tor Vergata)

WIAS, Berlin, 9 October 2013

ERC Workshop on Energy/Entropy-Driven Systems and Applications

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### **General Issue:**

## the description of the limit behavior of energy-driven systems involving a small parameter

#### Model problems

Gradient theory of phase transitions (scalar Ginzburg-Landau)

$$F_{\varepsilon}(u) = \int_{\Omega} \left( \varepsilon^2 |\nabla u|^2 + (1 - u^2)^2 \right) dx, \qquad u : \Omega \to \mathbb{R}$$

(Lennard-Jones) atomistic systems

$$F_{\varepsilon}(u) = \sum_{i \neq j} J\left(\frac{|u_i - u_j|}{\varepsilon}\right) \qquad u_1, \dots, u_{N_{\varepsilon}} \in \mathbb{R}^n$$

Homogenization (of surface energies)

$$F_{\varepsilon}(A) = \int_{\partial A} a\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^1 \qquad A \subset \mathbb{R}^2$$

(日) (日) (日) (日) (日) (日) (日)

## **Global minimization:**

can be stated in terms of De Giorgi's  $\Gamma$ -convergence. Up to technicalities,

 $F_{\varepsilon} \xrightarrow{\Gamma} F_0 \quad \iff \quad \min\{F_{\varepsilon} + G\} \to \min\{F_0 + G\}$ 

(+ convergence of minimum points) for all *G* continuous perturbations

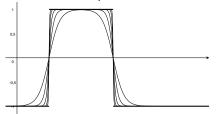
#### Model problems

Scalar Ginzburg Landau. after scaling the energies by  $\frac{1}{\varepsilon}$  we have a sharp-interface limit

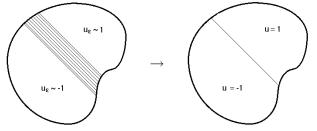
$$F_0(u) = \frac{4}{3} \mathcal{H}^{n-1}(\partial \{u=1\} \cap \Omega) \qquad u \in BV(\Omega; \{\pm 1\})$$

(Modica-Mortola 1977)

#### 1D picture: # of interfaces for piecewise-constant limit

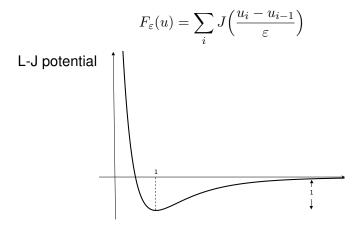


2D (and higher) picture: minimal-interface limit problems

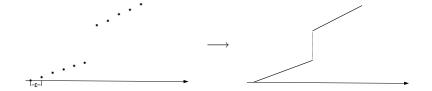


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

1D atomistic systems (nearest-neighbour interactions)



We regard  $u_i$  as values of a function defined in  $\varepsilon \mathbb{Z}$  and identify it with its piecewise-affine interpolation  $u : [0, 1] \to \mathbb{R}$ 



After scaling the variable  $v = \sqrt{\varepsilon}(u - id)$  we have

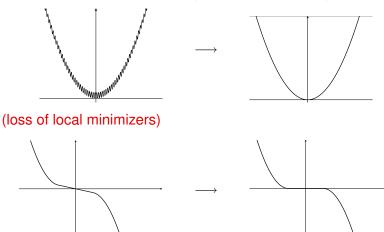
$$F_0(v) = \int_0^1 |v'|^2 \, dx + \#(S(v))$$

with the constraint  $v^+ > v^-$  (defined on piecewise-Sobolev functions)

(Griffith Fracture Energy/ Mumford-Shah Functional with unilateral constraint on the jump opening) (B-Lew-Ortiz ARMA 2006)

## Local minimization

In general  $\Gamma$ -convergence does not imply any relation between local minimizers of  $F_{\varepsilon}$  and  $F_0$  (as for functions in  $\mathbb{R}$ )



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(appearance of local minimizers)

## **Examples**

• In 1D all functions  $u \in BV(\Omega; \{\pm 1\})$  are local minimizers for the sharp-interface model, but the scalar Ginzburg-Landau energy has **no** non-trivial local minimizers.

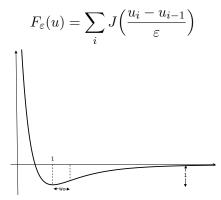
• In 1D the Griffith fracture energy with boundary conditions v(0) = 0, v(1) = L has local minimizers:

1) the uniform state u(x) = Lx (with energy  $L^2$ )

2) *all* (increasing) piecewise-constant functions (with energy k = number of jumps)

Note that the global minimizer is the uniform state if  $L^2 \leq 1$ .

#### Local minima for 1D Lennard-Jones systems

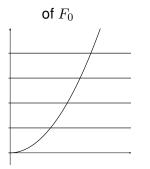


In scaled variables  $v = \sqrt{\varepsilon}(u - id)$ 

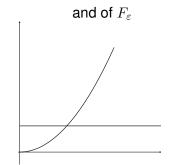
1) the uniform state : (discretization of) v = Lx (up to the inflection point  $L = w_0/\sqrt{\varepsilon}$ )

2) a uniform state except for **one** interaction exceeding the inflection point (corresponding to one limit jump)

#### **Comparison of patterns of local minima for Lennard-Jones systems**, in terms of the total displacement *L*,



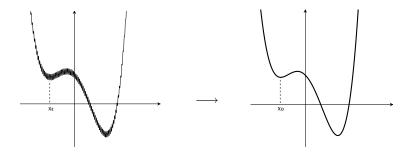
(uniform states + states with n jumps)



(uniform states up to (scaled) inflection point + minimizer with 1 jump)

## Kohn-Sternberg variational principle

If  $x_0$  is an **isolated** local minimizer for  $F_0 = \Gamma \operatorname{-lim}_{\varepsilon} F_{\varepsilon}$  then there exist  $x_{\varepsilon} \to x_0$  local minimizers of  $F_{\varepsilon}$ .

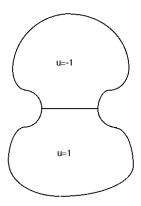


This is an immediate consequence of the 'local' character of  $\Gamma\mathchar`-convergence$ 

・ コット (雪) ( 小田) ( コット 日)

## An application (Kohn-Sternberg)

Existence of non-trivial solution of the Allen-Cahn equation (Euler-Lagrange equation for the scalar Ginzburg-Landau energy) in domains with a 'neck'. Proved by showing the existence of a local-minimizing interface

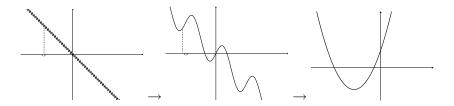


#### Generalizations

The same principle can be applied if we have an isolated local minimizer of the  $\Gamma$ -limit of the *scaled* functionals

$$G_{\varepsilon}(v) = \frac{1}{\lambda_{\varepsilon}} \Big( F_{\varepsilon}(\rho_{\varepsilon} v_{\varepsilon} + x_{\varepsilon}) - m_{\varepsilon} \Big)$$

with  $x_{\varepsilon} \to x_0$ ,  $\rho_{\varepsilon} \to 0$ ,  $\lambda_{\varepsilon} \to 0$ ,  $m_{\varepsilon} \in \mathbb{R}$ 

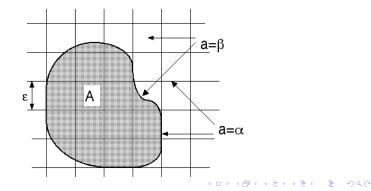


This can be used to prove the existence of multiple local minimizers

#### Example of application Density of local minimizers for the inhomogeneous perimeter functionals

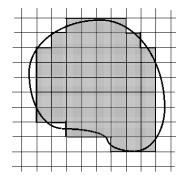
$$F_{\varepsilon}(A) = \int_{\partial A} a\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{1}$$

 $\begin{array}{l} a \text{ 1-periodic with } a(y_1,y_2) = \alpha \text{ if } y_1y_2 = 0, \\ a(y_1,y_2) = \beta > 2\alpha > 0 \text{ otherwise in } (0,1)^2 \end{array}$ 



$$F_0(A) = \alpha \int_{\partial A} \|\nu\|_1 d\mathcal{H}^1$$

 $(\|\nu\|_1 = |\nu_1| + |\nu_2|, \nu \text{ normal to } \partial A)$  (crystalline perimeter)



 $F_0$  has no non-trivial local minimizer, but for all A there exists  $A_{\varepsilon} \rightarrow A$  and  $A_{\varepsilon}$  local minimizer of  $F_{\varepsilon}$ 

## Local minimization as a choice criterion

**Γ-equivalence:**  $G_{\varepsilon} \approx F_{\varepsilon}$  if "they have the same Γ-limits" (cf. the notion of Γ-expansion, B-Truskinovsky CMT 2010)

**Choice criterion:** among equivalent theories of a *desired form* choose the one(s) *maintaining the pattern of local minima* 

Example: cohesive fracture from Lennard-Jones potentials

$$F_{\varepsilon}(u) = \sum_{i} J\left(\frac{u_{i} - u_{i-1}}{\varepsilon}\right)$$

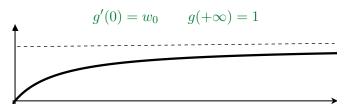
Pattern of local minima for  $F_{\varepsilon}$  in terms of boundary condition



The same pattern can be achieved with *fracture energies* 

$$G_{\varepsilon}(v) = \int_{0}^{1} |v'|^{2} dt + \sum_{S(v)} g_{\varepsilon}(v^{+} - v^{-}) \qquad v^{+} > v^{-}$$

(this is the "desired form") Possible  $g_{\varepsilon}$ :  $g_{\varepsilon}(z) = g(z/\sqrt{\varepsilon})$  with g strictly concave and



(Barenblatt cohesive-fracture energy density)

This argument provides a "validation" of a widely used Fracture Mechanics model (B-Dal Maso-Garroni ARMA 1999, revisited)

(日) (日) (日) (日) (日) (日) (日)

# Evolution by local minimization: Minimizing Movements

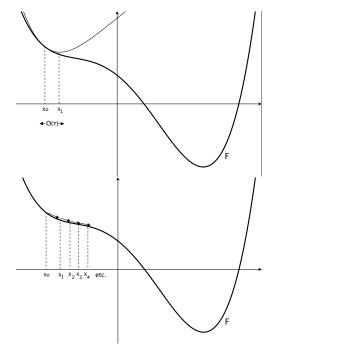
For a single energy F (*Hilbert-space setting*) (1) (time-discrete scheme) fix  $\tau > 0$  time-discretization parameter, and initial datum  $u_0$  define  $u_{k+1}^{\tau}$  recursively as a minimizer of

$$\min\left\{F(u) + \frac{1}{2\tau} \|u - u_k^{\tau}\|^2\right\}$$

(dissipation  $D(u) = \frac{1}{2\tau} ||u||^2$ )

(2) (passage to the limit) define  $u^{\tau}(t) = u^{\tau}_{\lfloor t/\tau \rfloor}$  and pass to the limit as  $\tau \to 0$  (up to subsequences).

Each limit u is called a **minimizing movement** for F from  $u_0$  (Almgren-Taylor-Wang, De Giorgi, Ambrosio, etc.)



◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

#### Remarks

1. (approximation of gradient flow) If F is differentiable from the E-L equation

$$\frac{\partial u}{\partial t} \approx \frac{u_{k+1}^{\tau} - u_{k}^{\tau}}{\tau} = -\nabla F(u_{k+1}^{\tau}) \approx -\nabla F(u(t))$$

2. *F* need not be differentiable, just lower semicontinuous and coercive

3. (trivial motions from local minima) if  $u_0$  is a local minimum for *F* then  $u(t) = u_0$  for all *t* 

4. We can add a forcing term by considering F = F(t, u) and compare with quasistatic motion (obtained by global minimization at all t, with no dissipation)).

**Example:** 1D Griffith fracture with  $u_0 = 0$  and as forcing term the boundary condition u(0) = 0, u(1) = t*quasistatic*: fracture at a critical  $t_c$  ( $t_c = 1$  for our parameters) *minimizing movement*: no fracture, evolution following the heat equation

### Minimizing movements along a sequence $\mathbf{F}_{\varepsilon}$

For a family of energies  $F_{\varepsilon}$  (*Hilbert-space setting*) (1) (time-discrete scheme) fix  $\tau > 0$ ,  $\varepsilon > 0$ , and initial datum  $u_0$  (or  $u_0^{\varepsilon}$ ) define  $u_{k+1}^{\tau,\varepsilon}$  recursively as a minimizer of

$$\min\left\{F_{\varepsilon}(u) + \frac{1}{2\tau} \|u - u_k^{\tau,\varepsilon}\|^2\right\}$$

(2) (passage to the limit) define  $u^{\tau,\varepsilon}(t) = u_{\lfloor t/\tau \rfloor}^{\tau,\varepsilon}$  and pass to the limit as  $\tau \to 0$  and  $\varepsilon \to 0$  (up to subsequences).

Each such limit is called a **minimizing movement along**  $F_{\varepsilon}$  from  $u_0$ 

Note: the limit depends on how  $\tau \to 0$  and  $\varepsilon \to 0$  (simultaneously)

## (In)compatibility with $\Gamma$ -convergence

#### Theorem (extreme asymptotic behaviours)

(a) if  $\tau \ll \varepsilon$  fast enough then the MM along  $F_{\varepsilon}$  from  $u_0$  is a limit of the MM for  $F_{\varepsilon}$  from  $u_0$  (at  $\varepsilon$  fixed) as  $\varepsilon \to 0$  ("the MM is the limit of the Gradient Flows")

(b) if  $\varepsilon \ll \tau$  fast enough and  $F_{\varepsilon} \xrightarrow{\Gamma} F_0$  then the MM along  $F_{\varepsilon}$  from  $u_0$  is a MM for  $F_0$  from  $u_0$  ("the MM is the Gradient Flow of the limit")

*Proof*: use of the property of convergence of minimum problems.

#### Theorem (stability for convex energies)

If  $F_{\varepsilon}$  are convex and  $F_{\varepsilon} \xrightarrow{\Gamma} F_0$  then all MM are equal (to the unique MM for  $F_0$ )

Proof: use of the theory of Gradient Flows by Ambrosio-Gigli-Savaré in the case  $\tau <\!\!< \varepsilon$ 

## **General picture**

- if  $\tau<\!\!<\varepsilon$  fast enough then we may have "pinning" at local minimizers of  $F_{\varepsilon}$
- if  $\varepsilon \ll \tau$  fast enough then we have the MM of the limit
- at a **critical regime** we have an "interpolation" of the extreme cases.

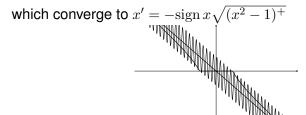
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

## A simple example

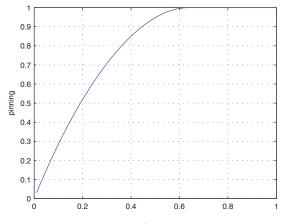
In  $\mathbb{R}$  consider  $F_{\varepsilon}(x) = -\varepsilon \sin\left(\frac{x}{\varepsilon}\right) + \frac{1}{2}x^2$ 

- critical regime:  $\varepsilon \approx \tau$
- for  $\varepsilon \ll \tau$  the limit satisfies x' = -x (corresp.,  $F_0(x) = \frac{1}{2}x^2$ )
- $\bullet$  for  $\tau <\!\!< \varepsilon$  we compute the limit of the gradient flows

$$x_{\varepsilon}' = \cos\left(\frac{x_{\varepsilon}}{\varepsilon}\right) - x_{\varepsilon}$$



• for  $\tau \approx \varepsilon$  the pinning threshold moves from 0 to 1



 $\varepsilon/\tau$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

## Example of a Geometric Evolution

(B-Gelli-Novaga ARMA 2010)  $F_{\varepsilon}$  = inhomogeneous perimeter converging to  $F_0 = \alpha$  times the crystalline perimeter.

#### critical regime: $\tau \approx \varepsilon$

- if  $\tau \ll \varepsilon$  all initial data are pinned (by density of loc. min.)
- if  $\varepsilon \ll \tau$  the MM of the limit  $F_0$  is motion by crystalline curvature (Almgren Taylor) with law for the velocity  $v = 2\alpha k$ , where  $\kappa$  is the suitably defined crystalline curvature.
- (effective homogenized motion) if  $\frac{\tau}{\varepsilon} \rightarrow \gamma$  then the law is

$$v = \frac{1}{\gamma} \lfloor 2\alpha \gamma \kappa \rfloor$$

**Note:** the case  $\gamma = 1$  gives every MM

**Note:** the "interpolation" between the cases  $\tau \ll \varepsilon$  and  $\varepsilon \ll \tau$  depends on the details of  $F_{\varepsilon}$ : in this example we may construct a modified

$$\widetilde{F}_{\varepsilon}(A) = \int_{\partial A} \widetilde{a}\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^1$$

with the same  $\Gamma$ -limit and with the same total pinning for  $\tau \ll \varepsilon$ but with a different law for the velocity: we may have a **homogenized** effective motion

$$v = \frac{1}{\gamma} f_{\rm hom}(\gamma \kappa)$$

with  $f_{\text{hom}}$  highlighting a "microscopic" homogenization of the velocity. In particular we have an effective pinning threshold depending on the "geometry" of  $\tilde{a}$  (B-Scilla 2012, Scilla 2013)

(ロ) (同) (三) (三) (三) (三) (○) (○)

## Time scaling

We may introduce a (time-)scale  $\lambda$  and consider the iterations  $u_{\lambda,k+1}^{\tau,\varepsilon}$  by minimization of

$$\min\left\{\frac{1}{\lambda}F_{\varepsilon}(u)+\frac{1}{2\tau}\|u-u_{\lambda,k}^{\tau,\varepsilon}\|^{2}\right\}.$$

• this corresponds to considering time-scaled trajectories

$$u_{\lambda}^{\tau,\varepsilon}(t) = u^{\tau,\varepsilon}(\lambda t)$$

for the MM along  $F_{\varepsilon}$ .

If  $\lambda \to 0$  then we look for long-time behavior of  $u^{\tau,\varepsilon}$ 

• this procedure is meaningful also if  $F_{\varepsilon} = F$ .

**Example.** For the 1D scalar Ginzburg-Landau equation we obtain motion with  $\lambda_{\varepsilon}$  exponential (Kohn-Bronsard). Note that all u are locally minimizing for  $F_0$  (usual time scale gives pinning)

#### Example (long-time behaviour for Lennard-Jones systems).

• in this case we have *stability*, even though  $F_{\varepsilon}$  are not convex, and we always converge to the MM of the Griffith/Mumford-Shah functional (B-Defranceschi-Vitali)

• piecewise-constant initial data  $u_0$  are local minima for  $F_0$ ; hence, for such  $u_0$  we have pinning for the limit;

• if  $\lambda_{\varepsilon} = \varepsilon^6$  the MM along  $F_{\varepsilon}/\lambda_{\varepsilon}$  from  $u_0$  piecewise-constant is non trivial.

• (long-time "validation" of the Cohesive Fracture model) if we take the Barenblatt cohesive-fracture energies with

$$g(w) \approx 1 - \frac{1}{w^6} + o\left(\frac{1}{w^6}\right)$$

then we have the same long-time behavior.

#### **Other issues:**

• use of MM for suitable  $F_{\varepsilon}$  to define a motion for ill-posed problems (e.g., backward motions, gradient flow for non-convex energies, etc.)

• asymptotics of stable points (few results by Sandier-Serfaty, Jerrard-Sternberg, B-Larsen)

• connection with *quasistatic motion* (formally obtained by time-scaling  $\lambda = 0$ )

• etc.

Lecture notes: B. Local minimization, variational evolution and  $\Gamma$ -convergence. LNM 2094, Springer, 2013 (preprint downloadable from my web page) Thank you for your attention!

(ロ) (型) (E) (E) (E) (O)(()