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Preface

These are the lecture notes of a PhD course given at the University of Rome “Sapienza”
from March to May 2012, addressed to an audience of students, some of which with an
advanced background (meaning that they were already exposed to the main notions of the
Calculus of Variations and of Γ-convergence), and researchers in the field. This was an
“advanced” course in that it was meant to address some current (or future) research issues
rather than to discuss some subject systematically.

Scope of the course has been the asymptotic analysis of energies depending on a small
parameter from the standpoint of local minimization and energy-driven motion. While the
study of the limit of global minimizers is by now well understood in terms of Γ-convergence,
the description of the behaviour of local minimizers is a more intricate subject. Indeed, at
times the fact that Γ-convergence does not capture their limit is mentioned as the proof that
Γ-convergence is “wrong”. It may well be so. Our standpoint is that it might nevertheless
be a good starting point that may be “corrected”.

The families of functionals Fε : X → [−∞,+∞] that we have in mind are energies
that may derive from various types of problems (physical, geometrical, computational)
and the parameter ε may be of geometrical nature, or come from modeling argument, or
constitutive assumptions, etc. Typical examples are:

1. Elliptic homogenization: Fε(u) =
∫

Ω
a(x/ε)|∇u|2 dx with a 1-periodic. In this case

X is (a subset of) H1(Ω). The inhomogeneity a represents the fine properties of a composite
medium;

2. Oscillating metrics: Fε(u) =
∫ 1

0
a(u/ε)|u′| dt, with a as above and X a subspace

of W 1,∞([0, 1]; Rn). Here we are interested in the overall metric properties of a composite
medium;

3. Van-der-Waals theory of phase transitions: Fε(u) =
∫

Ω

(W (u)
ε

+ ε|∇u|2
)
dx with

X = H1(Ω). Here W is a double-well potential with minima in ±1;
4. Atomistic theories: for a 1D chain of atoms Fε(u) =

∑
i

J(ui − ui−1), where J is an

interatomic potential (e.g., the Lennard-Jones potential), and ui represent the position of
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the i-th atom of a chain of N atoms, ordered with ui > ui−1. Here ε = 1/N .

Such energies have been analyzed by Γ-convergence methods, which provides a descrip-
tion of the behaviour of global minimizers. Further classical questions regard

• local minimization. Study uε such that Fε(uε) = min{Fε(u) : d(u, uε) ≤ δ} for δ > 0
sufficiently small (here we assume that d is a distance on X);
• stationarity. Study uε such that ∇Fε(uε) = 0 (we assume in this case that Fε is

differentiable);
• gradient flow. Study uε = uε(t, x) such that ∂tuε = −∇F (uε).

Easy example show that Γ-convergence is not stable for these notions. However, clas-
sical results prove that it may be stable if restricted to classes of energies (e.g., it can be
proved that convex energies are stable for the gradient flow), or if stronger hypotheses are
added (e.g., isolated local minimizers of the Γ-limit provide local minimizers for Fε). In
the course of the lectures we have addressed some questions as:
• find criteria that ensure the convergence of local minimizers and critical points. In

case this does not occur then modify the Γ-limit into an equivalent Γ-expansion in order to
match this requirement. We note that in this way we “correct” some limit theories, finding
other ones present in the literature;
• modify the concept of local minimizer, so that it may be more ‘compatible’ with the

process of Γ-limit. One such concept is the δ-stability of C. Larsen;
• treat evolution problems for energies with many local minima obtained by a time-

discrete scheme (minimizing movements). In this case the minimizing movement of the
Γ-limit can be always obtained by a choice of the space and time-scale, but more interesting
behaviours can be obtained at a critical ratio between them. Furthermore the issues of long-
time behaviour and backwards motion can be addressed by suitably choosing Γ-converging
sequences.

Rome, June 1, 2012.



Chapter 1

Global minimization

The case of global minimization is by now well understood, and mainly relies on the concept
of Γ-limit. In this chapter we review this notion, which will be the starting point of our
analysis. In this section we will only be interested in the problem of global minimization.
Further properties of Γ-limits will be recalled when necessary.

1.1 Upper and lower bounds

Here and afterwards Fε will be functionals defined on a separable metric (or metrizable)
space X, if not further specified.

Definition 1.1.1 (lower bound) We say that F is a lower bound for the family (Fε) if
for all u ∈ X we have

F (u) ≤ lim inf
ε→0

Fε(uε) for all uε → u, (LB)

or, equivalently, F (u) ≤ Fε(uε) + o(1) for all uε → u.

The inequality (LB) is usually referred to as the liminf inequality.
If F is a lower bound we obtain a lower bound also for minimum problems on compact

sets.

Proposition 1.1.2 Let F be a lower bound for Fε and K be a compact subset of X. Then

inf
K
F ≤ lim inf

ε→0
inf
K
Fε. (1.1)

Proof. Let uεk ∈ K be such that uεk → u and

lim
k
Fεk(uεk) = lim inf

ε→0
inf
K
Fε.

We set
ũε =

{
uεk if ε = εk
u otherwise.
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Then by (LB) we have

inf
K
F ≤ F (u) ≤ lim inf

ε→0
Fε(ũε) ≤ lim

k
Fεk(uεk) = lim inf

ε→0
inf
K
Fε, (1.2)

as desired.

Remark 1.1.3 Note that the hypothesis that K be compact cannot altogether be re-
moved. A trivial example on the real line is:

Fε(x) =
{−1 if x = 1/ε

0 otherwise.

Then F = 0 is a lower bound according to Definition 1.1.1, but (1.1) fails taking R in place
of K.

Remark 1.1.4 The hypothesis that K be compact can be substituted by the hypothesis
that K be closed and the sequence (Fε) be equi-coercive; i.e., that

if supε Fε(uε) < +∞ then (uε) is precompact, (1.3)

the proof being the same.

Definition 1.1.5 (upper bound) We say that F is a upper bound for the family (Fε)
if for all u ∈ X we have

there exists uε → u such that F (u) ≥ lim sup
ε→0

Fε(uε). (UB)

or, equivalently, F (u) ≥ Fε(uε) + o(1).

The inequality (UB) is usually referred to as the limsup inequality.
If F is an upper bound we obtain an upper bound also for minimum problems on open

sets.

Proposition 1.1.6 Let F be an uper bound for Fε and A be an open subset of X. Then

inf
A
F ≥ lim sup

ε→0
inf
A
Fε. (1.4)

Proof. The proof is immediately derived from the definition after remarking that if u ∈ A
then we may suppose also that uε ∈ A so that

F (u) ≥ lim sup
ε→0

Fε(uε) ≥ lim sup
ε→0

inf
A
Fε

and (1.4) follows by the arbitrariness of u.
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Remark 1.1.7 Again, note that the hypothesis that A be open cannot be removed. A
trivial example on the real line is:

Fε(x) =
{ 1 if x = 0

0 otherwise

(independent of ε). Then F = 0 is an upper bound according to Definition 1.1.5 (and also
a lower bound!), but (1.4) fails taking A = {0}.

Note that the remark above shows that an upper bound at a point can be actually
lower that any element of the family Fε at that point.

1.2 Γ-convergence

In this section we introduce the concept of Γ-limit.

Definition 1.2.1 (Γ-limit) We say that F is the Γ-limit of the sequence (Fε) if it is both
a lower and an upper bound according to Definitions 1.1.1 and 1.1.5.

If (LB) and (UB) hold at a point u then we say that F is the Γ-limit at u, and we write

F (u) = Γ- lim
ε→0

Fε(u).

Note that this notation does does not imply that u is in any of the domains of Fε, even if
F (u) is finite.

Remark 1.2.2 (alternate upper bound inequalities) If F is a lower bound then re-
quiring that (UB) holds is equivalent to any of the following

there exists uε → u such that F (u) = lim
ε→0

Fε(uε); (RS)

for all η > 0 there exists uε → u such that F (u) + η ≥ lim sup
ε→0

Fε(uε). (AUB)

The latter is called the approximate limsup inequality, and is more handy in computa-
tions. A sequence satisfying (RS) is called a recovery sequence.

Example 1.2.3 We analyze some simple examples on the real line.
1. As remarked above the constant sequence

Fε(x) =
{ 1 if x = 0

0 otherwise

Γ-converges to the constant 0.
2. The sequence

Fε(x) =
{ 1 if x = ε

0 otherwise
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again Γ-converges to the constant 0. This is clearly a lower and an upper bound at all
x 6= 0. At x = 0 any sequence xε 6= ε is a recovery sequence.

3. The sequence
Fε(x) =

{−1 if x = ε
0 otherwise

Γ-converges to
F (x) =

{−1 if x = 0
0 otherwise.

Again, F is clearly a lower and an upper bound at all x 6= 0. At x = 0 the sequence xε = ε
is a recovery sequence.

4. Take the sum of the energies in Examples 2 and 3 above. This is identically 0, so is
its limit, while the sum of the Γ-limits is the function F in Example 3. The same Γ-limit
is obtained by taking the function Gε(x) = Fε(x) + Fε(−x) (Fε in Example 3).

5. Let Fε(x) = sin(x/ε). Then the Γ-limit is the constant −1. This is clearly a lower
bound. A recovery sequence for a fixed x is xε = 2πεbx/(2πε)c − επ/2 (btc is the integer
part of t).

It may be useful to define the lower and upper Γ-limits, so that the existence of a
Γ-limit can be viewed as their equality

Definition 1.2.4 (lower and upper Γ-limits) We define

Γ- lim inf
ε→0

Fε(u) = inf{lim inf
ε→0

Fε(uε) : uε → u} (1.5)

Γ- lim sup
ε→0

Fε(u) = inf{lim sup
ε→0

Fε(uε) : uε → u} (1.6)

Remark 1.2.5 1. We immediately obtain that the Γ-limit exists at a point u if and only
if

Γ- lim inf
ε→0

Fε(u) = Γ- lim sup
ε→0

Fε(u).

2. Comparing with the trivial sequence uε = u we obtain

Γ- lim inf
ε→0

Fε(u) ≤ lim inf
ε→0

Fε(u)

(and analogously for the Γ- lim sup). More in general, note that the Γ-limit depends on
the topology on X. If we change topology, converging sequences change and the value
of the Γ-limit changes. A weaker topology will have more converging sequences and the
value will decrease, a stronger topology will have less converging sequences and the value
will increase. The pointwise limit above corresponding to the Γ-limit with respect to the
discrete topology.

3. From the formulas above it is immediate to check that a constant sequence Fε = F
Γ-converges to itself if and only if F is lower semicontinuous; i.e., (LB) holds with Fε = F .
Indeed this is equivalent to say that (1.5) holds, while F is always an upper bound.
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The following fundamental property of Γ-convergence derives directly from its definition

Proposition 1.2.6 (stability under continuous perturbations) Let Fε Γ-converge to
F and Gε converge continuously to G (i.e., Gε(uε) → G(u) if uε → u); then Fε + Gε →
F +G.

Note that this proposition applies to Gε = G if G is continuous, but is in general false
for Gε = G even if G is lower semicontinuous.

Example 1.2.7 The functions sin(x/ε)+x2+1 Γ-converge to x2. In this case we may apply
the proposition above with Fε(x) = sin(x/ε) (see Example 1.2.3(5)) and Gε(x) = x2 + 1.
Note for future reference that Fε has countably many local minimizers, which tend to be
dense in the real line, while F has only one global minimizer.

1.3 Convergence of minimum problems

As we have already remarked, the Γ-convergence of Fε will not imply convergence of min-
imizers if minimizers (or ‘almost minimizers’) do not converge. It is necessary then to
assume a compactness (or ‘mild coerciveness’) property as follows:

there exists a precompact sequence (uε) with Fε(uε) = inf Fε + o(1), (1.7)

which is implied by the following stronger condition

there exists a compact set K such that inf Fε = infK Fε for all ε > 0. (1.8)

This condition is implied by the equi-coerciveness hypothesis (1.3); i.e., if for all c there
exists a compact set K such that the sublevel sets {Fε ≤ c} are all contained in K.

By arguing as for Propositions 1.1.2 and 1.1.6 we will deduce the convergence of minima.
This result is further made precise in the following theorem.

Theorem 1.3.1 (Fundamental Theorem of Γ-convergence) Let (Fε) satisfy the com-
pactness property (1.7) and Γ-converge to F . Then

(i) F admits minimum, and minF = lim
ε→0

inf Fε
(ii) if (uεk) is a minimizing sequence for some subsequence (Fεk) (i.e., is such that

Fεk(uεk) = inf Fε + o(1)) which converges to some u then its limit point is a minimizer for
F .

Proof. By condition (1.7) we can argue as in the proof of Proposition 1.1.2 with K = X
and also apply Proposition 1.1.6 with A = X to deduce that

inf F ≥ lim sup
ε→0

inf Fε ≥ lim inf
ε→0

inf Fε ≥ inf F . (1.9)
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We then have that there exists the limit

lim
ε→0

inf Fε = inf F.

Since from (1.7) there exists a minimizing sequence (uε) from which we can extract a
converging subsequence, it suffices to prove (ii). We can then follow the proof of Proposition
1.1.2 to deduce as in (1.2) that

inf F ≤ F (u) ≤ lim
k
Fεk(uεk) = lim

ε→0
inf Fε = inf F ;

i.e., F (u) = inf F as desired.

Corollary 1.3.2 In the hypotheses of Theorem 1.3.1 the minimizers of F are all the limits
of converging minimizing sequences.

Proof. If u is a limit of a converging minimizing sequence then it is a minimizer of F by (ii)
in Theorem 1.3.1. Conversely, if u is a minimizer of F , then every its recovery sequence
(uε) is a minimizing sequence.

Remark 1.3.3 Trivially, it is not true that all minimizers of F are limits of minimizers
of Fε, since this is not true even for (locally) uniformly converging sequences on the line.
Take for example:

1) Fε(x) = εx2 or Fε(x) = εex and F (x) = 0. All points minimize the limit but only
x = 0 minimizes Fε in the first case, and we have no minimizer for the second case. Note
also that the functionals in the second case still satisfy the compactness condition (1.7);

2) F (x) = (x2 − 1)2 and Fε(x) = F (x) + ε(x − 1)2. F is minimized by 1 and −1, but
the only minimum of Fε is 1. Note however that −1 is the limit of strong local minimizers
for Fε.

1.4 An example: homogenization

The theory of homogenization of integral functional is a very wide subject in itself. We
will refer to monographs on the subject for details if needed. In this context, we want only
to highlight some facts and give a hint of the behaviour in the case of elliptic energies.

We consider a : Rn → [α, β], with 0 < α < β < +∞ 1-periodic in the coordinate
directions, and the integrals

Fε(u) =
∫

Ω
a
(x
ε

)
|∇u|2 dx

defined in H1(Ω), where Ω is a bounded open subset of Rn. The computation of the Γ-
limit of Fε is referred to as their homogenization, implying that a simpler ‘homogeneous’



1.4. AN EXAMPLE: HOMOGENIZATION 11

functional can be used to capture the relevant features of Fε. The limit can be computed
both with respect to the L1- topology, but it can also be improved; e.g., in 1D it coincides
with the limit in the L∞ topology. This means that the liminf inequality holds for uε
converging in the L1 topology (actually, by the Poincaré inequality sequences converging
in L1(Ω) with bounded Dirichlet integral converge in the L2-topology), while there exist a
recovery sequence with uε tending to u in the L∞ sense.

An upper bound is given by the pointwise limit of Fε, whose computation in this case
can be obtained by the following non-trivial but well-known result.

Proposition 1.4.1 (Riemann-Lebesgue lemma) The functions aε(x) = a
(x
ε

)
con-

verge weakly∗ in L∞ to their average

a =
∫

(0,1)n
a(y) dy (1.10)

For fixed u the pointwise limit of Fε(u) is then simply a
∫

Ω |∇u|
2 dx, which then gives

an upper bound for the Γ-limit.
In a one-dimensional setting, the Γ-limit is completely described by a, and is given by

Fhom(u) = a

∫
Ω
|u′|2 dx, where a =

(∫ 1

0

1
a(y)

dy
)−1

is the harmonic mean of a. Recovery sequences oscillate around the target function. By
optimizing such oscillations we obtain the value of a.

In the higher-dimensional case the limit can still be described by an elliptic integral, of
the form

Fhom(u) =
∫

Ω
〈A∇u,∇u〉 dx,

where A is a constant symmetric matrix with aI ≤ A ≤ aI (I the identity matrix) with
strict inequalities unless a is constant.

In order to make minimum problems meaningful, we may consider the affine space
X = ϕ + H1

0 (Ω) (i.e., we consider only functions with u = ϕ on ∂Ω). It can be proved
that this boundary condition is ‘compatible’ with the Γ-limit; i.e., that the Γ-limit is the
restriction to X of the previous one. As a consequence of Thorem 1.3.1 we then conclude
that oscillating minimum problems for Fε with fixed boundary data are approximated by a
simpler minimum problem with the same boundary data. Note however that all energies,
both Fε and Fhom, are strictly convex, which implies that they have no local non global
minimizer.

Example 1.4.2 We can add some continuously converging perturbation to obtain some
more convergence result. For example, we can add perturbations of the form

Gε(u) =
∫

Ω
g
(x
ε
, u
)
dx.
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On g we make the following hypothesis:
g is a Borel function 1-periodic in the first variable and uniformly Lipschitz in the

second one; i.e.,
|g(y, z)− g(y, z′)| ≤ L|z − z′|.

We then have a perturbed homogenization result as follows.

Proposition 1.4.3 The functionals Fε + Gε Γ-converge both in the L1 topology to the
functional Fhom +G, where

G(u) =
∫

Ω
g(u) dx, and g(z) =

∫
(0,1)n

g(y, z) dy

is simply the average of g(·, z).

Proof. By Proposition 1.2.6 it suffices to show that Gε converges continuously with respect
to the L1-convergence. If uε → u in L1 then

|Gε(uε)−G(u)| ≤
∫

Ω

∣∣∣g(x
ε
, uε

)
− g
(x
ε
, u
)∣∣∣ dx+ |Gε(u)−G(u)|

≤ L

∫
Ω
|uε − u| dx+ |Gε(u)−G(u)|.

It suffices then to show thatGε converges pointwise toG. If u is piecewise constant then this
follows immediately from the Riemann-Lebesgue Lemma. Noting that also |g(z)− g(z′)| ≤
L|z−z′| we easily obtain the convergence for u ∈ L1(Ω) by the density of piecewise-constant
functions.

Note that with a slightly more technical proof we can improve the Lipschitz continuity
condition to a local Lipschitz continuity of the form

|g(y, z)− g(y, z′)| ≤ L(1 + |z|+ |z′|)|z − z′|.

In particular in 1D we can apply the result for g(y, z) = a(y)|z|2 and we have that∫
Ω
a
( t
ε

)
(|u′|2 + |u|2) dt

Γ-converges to ∫
Ω

(a|u′|2 + a|u|2) dt.

As a consequence of Theorem 1.3.1, under the condition of coerciveness

lim
z→±∞

inf g(·, z) = +∞,

we obtain a convergence result as follows.
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Proposition 1.4.4 The solutions to the minimum problems

min
{
Fε(u) +Gε(u) : u ∈ H1(Ω)

}
converge (up to subsequences) to a constant function u, whose constant value minimizes g.

Proof. The proof of the proposition follows immediately from Theorem 1.3.1, once we
observe that by the coerciveness and continuity of g a minimizer for that function exists,
and the constant function u defined above minimizes both Fhom and G.

If g is differentiable then by computing the Euler-Lagrange equations of Fε + Gε we
conclude that we obtain solutions of

−
∑
ij

∂

∂xi

(
a
(x
ε

)∂uε
∂xi

)
+

∂

∂u
g
(x
ε
, uε

)
= 0 (1.11)

with Neumann boundary conditions, converging to the constant u.

1.5 Higher-order Γ-limits and a choice criterion

If the hypotheses of Theorem 1.3.1 are satisfied then we have noticed that every minimum
point of the limit F corresponds to a minimizing sequence for Fε. However, not all points
may be limits of minimizers for Fε, and it may be interesting to discriminate between limits
of minimizing sequences with different speeds of convergence. To this end, we may look at
scaled Γ-limits. If we suppose that, say, u is a limit of a sequence (uε) with

Fε(uε) = minF +O(εα) (1.12)

for some α > 0 (but, of course, the rate of convergence may also no be polynomial) then
we may look at the Γ-limit of the scaled functionals

Fαε (u) =
Fε(uε)−minF

εα
. (1.13)

Suppose that Fαε Γ-converges to some Fα not taking the value −∞. Then:
(i) the domain of Fα is contained in the set of minimizers of F (but may as well be

empty);
(ii) Fα(u) 6= +∞ if and only if there exists a recovery sequence for u satisfying (1.12).
Moreover, we can apply Theorem 1.3.1 to Fαε and obtain the following result, which

gives a choice criterion among minimizers of F .

Theorem 1.5.1 Let the hypotheses of Theorem 1.3.1 be satisfied and the functionals in
(1.13) Γ-converge to some Fα not taking the value −∞ and not identically +∞. Then

(i) inf Fε = minF + εα minFα + o(εα);
(ii) if Fε(uε) = minFε + o(εα) and uε → u then u minimizes both F and Fα.
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Proof. We can apply Theorem 1.3.1 to a (subsequence of a) converging minimizing sequence
for Fαε ; i.e., a sequence satisfying hypothesis (ii). Its limit point u satisfies

Fα(u) = minFα = lim
ε→0

minFαε = lim
ε→0

minFε −minF
εα

,

which proves (i). Since, as already remarked u is also a minimizer of F , we also have (ii).

Example 1.5.2 Simple examples in the real line:
(1) if Fε(x) = εx2 then F (x) = 0. We have Fα(x) = 0 if 0 < α < 1, F 1(x) = x2 (if

α = 1), and

Fα(x) =
{

0 x = 0
+∞ x 6= 0

if α > 1;
(2) if Fε(x) = (x2 − 1)2 + ε(x− 1)2 then F (x) = (x2 − 1)2. We have

Fα(x) =
{

0 |x| = 1
+∞ |x| 6= 1

if 0 < α < 1,

F 1(x) =


0 x = 1
4 x = −1
+∞ |x| 6= 1

if α = 1,

Fα(x) =
{

0 x = 1
+∞ x 6= 1

if α > 1.

Remark 1.5.3 It must be observed that the functionals Fαε in Theorem 1.5.1 are often
equicoercive with respect to a stronger topology than the original Fε, so that we can
improve the convergence in (ii).

Example 1.5.4 (Gradient theory of phase transitions) Let

Fε(u) =
∫

Ω
(W (u) + ε2|∇u|2) dx (1.14)

be defined in L1(Ω) with domain in H1(Ω). Here W (u) = (u2 − 1)2 (or a more general
double-well potential). Then (Fε) is equicoercive with respect to the weak L1-convergence.
Since this convergence is metrizable on bounded sets, we can consider L1(Ω) equipped with
this convergence. The Γ-limit is then simply

F 0(u) =
∫

Ω
W ∗∗(u) dx,
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where W ∗∗ is the convex envelope of W ; i.e. W ∗∗(u) = ((u2 − 1) ∨ 0)2. All functions with
‖u‖∞ ≤ 1 are minimizers of F 0.

We take α = 1 and consider

F 1
ε (u) =

∫
Ω

(W (u)
ε

+ ε|∇u|2
)
dx. (1.15)

Then (F 1
ε ) is equicoercive with respect to the strong L1-convergence, and its Γ-limit is

F 1(u) = cWHn−1(∂{u = 1} ∩ Ω) for u ∈ BV (Ω; {±1}), (1.16)

and +∞ otherwise, where cW = 8/3 (in general cW = 2
∫ 1
−1

√
W (s) ds). This results states

that recovery sequences (uε) tend to sit in the bottom of the wells (i.e., u ∈ ±1) in order to
make W (uε)

ε finite, and to minimize the interface between the phases {u = 1} and {u = −1}.
By balancing the effects of the two terms in the integral one obtains the optimal ‘surface
tension’ cW .

Note that
(i) we have an improved convergence of recovery sequences from weak to strong L1-

convergence;
(ii) the domain of F 1 is almost disjoint from that of the F 1

ε , the only two functions in
common being the constants ±1;

(iii) in order to make the Γ-limit properly defined we have to use the space of functions
of bounded variation or, equivalently, the family of sets of finite perimeter if we take as
parameter the set A = {u = 1}. In this context the set ∂{u = 1} is properly defined in a
measure-theoretical way, as well as its (n− 1)-dimensional Hausdorff measure.
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Chapter 2

Local minimization

We will now consider some local minimization issues. By a local minimizer of F we mean
a point u such that there exists δ > 0 such that

F (u0) ≤ F (u) if d(u, u0) ≤ δ. (2.1)

2.1 Convergence to isolated local minimizers

The following theorem shows that we may extend (part of) the fundamental theorem of
Γ-convergence to isolated local minimizers of the Γ-limit F ; i.e., to points u0 such that
there exists δ > 0 such that

F (u0) < F (u) if 0 < d(u, u0) ≤ δ. (2.2)

The proof of this theorem essentially consists in remarking that we may at the same time
apply Proposition 1.1.2 (more precisely, Remark 1.1.4) to the closed ball of center u0 and
radius δ, and Proposition 1.1.6 to the open ball of center u0 and radius δ.

Theorem 2.1.1 Suppose that each Fε is coercive and lower semicontinuous and the se-
quence (Fε) Γ-converge to F and is equicoercive. If u0 is an isolated local minimizer of
F then there exist a sequence (uε) converging to u0 with uε a local minimizer of Fε for ε
small enough.

Proof. Let δ > 0 satisfy (2.2). Note that by the coerciveness and lower semicontinuity of Fε
there exists a minimizer uε of Fε on Bδ(u0), the closure of Bδ(u0) = {u : d(u, u0) ≤ δ}. By
the equicoerciveness of (Fε), upon extracting a subsequence, we can suppose that uε → u.
Since u ∈ Bδ(u0) we then have

F (u0) ≤ F (u) ≤ lim inf
ε→0

Fε(uε) = lim inf
ε→0

min
Bδ(u0)

Fε (2.3)

≤ lim sup
ε→0

inf
Bδ(u0)

Fε ≤ inf
Bδ(u0)

F = F (u0),

17
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where we have used Proposition 1.1.6 in the last inequality. By (2.2) we have that u = u0

and uε ∈ Bδ(u0) for ε small enough, which proves the thesis.

Remark 2.1.2 Clearly, the existence of an isolated (local) minimizer in the limit does not
imply that the converging (local) minimizers are isolated. It suffices to consider Fε(x) =
((x− ε) ∨ 0)2 converging to F (x) = x2.

2.2 Two examples

We use Theorem 2.1.1 to prove the existence of sequences of converging local minima.

Example 2.2.1 (local minimizers for elliptic homogenization) Consider the func-
tionals in Example 1.4.2. Suppose furthermore that g has an isolated local minimum at z0.
We will show that the constant function u0(x) = z0 is a L1-local minimizer of Fhom + G.
Thanks to Theorem 2.1.1 we then deduce that there exists a sequence of local minimiz-
ers of Fε + Gε (in particular, if g is differentiable with respect to u, of solutions of the
Euler-Lagrange equation (1.11)) converging to u0.

We only prove the statement in the one-dimensional case, for which Ω = (0, L). We
now consider δ > 0 and u such that

‖u− u0‖L1(0,L) ≤ δ.

Since z0 is an isolated local minimum of g there exists h > 0 such that g(z0) < g(z) if
0 < |z− z0| ≤ h. If ‖u− u0‖∞ ≤ h then G(u) ≥ G(u0) with equality only if u = u0 a.e., so
that the thesis is verified. Suppose otherwise that there exists a set of positive measure A
such that |u− u0| > h on A. We then have

h|A| ≤
∫
A
|u− u0| dt ≤ δ,

so that |A| ≤ δ/h. We can then estimate

G(u) ≥ min g|A|+ (L− |A|)g(z0) ≥ G(u0)− g(z0)−min g
h

δ .

On the other hand, there exists a set of positive measure B such that

|u(x)− u0| ≤
δ

L

(otherwise the L1 estimate doe not hold). Let x1 ∈ B and x2 ∈ A, we can estimate (we
can assume x1 < x2)

Fhom(u) ≥ α
∫

[x1,x2]
|u′|2 dt ≥ α(u(x2)− u(x1))2

x2 − x1
≥ α

(
h− δ

L

)2

L
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(using Jensen’s inequality). Summing up we have

Fhom(u) +G(u) ≥ Fhom(u0) +G(u0) + α

(
h− δ

L

)2

L
− g(z0)−min g

h
δ

= Fhom(u0) +G(u0) + α
h2

L
+O(δ)

> Fhom(u0) +G(u0)

for δ small as desired.

Example 2.2.2 (Kohn-Sternberg) In order to prove the existence of L1 local minimiz-
ers for the energies Fε in (1.14) by Theorem 1.4.2 it suffices to prove the existence of
isolated local minimizers for the minimal interface problem related to the energy (1.16). In
order for this to hold we need some hypothesis on the set Ω (for example, it can be proved
that no non-trivial local minimizer exists when Ω is convex).

We treat the two-dimensional case only. We suppose that Ω is bounded, regular, and
has an “isolated neck”; i.e., it contains a straight segment whose endpoints meet ∂Ω per-
pendicularly, and ∂Ω is strictly concave at those endpoints (see Fig. 2.1). We will show

Figure 2.1: a neck in the open set Ω

that the set with boundary that segment is an isolated local minimizer for the perimeter
functional.

We can think that the segment is (0, L)×{0}. By the strict concavity of ∂Ω there exist
h > 0 such that in a rectangular neighbourhood of the form (a, b) × (−2h, 2h) the lines
x = 0 and x = L meet ∂Ω only at (0, 0) and (0, L) respectively. The candidate strict local
minimizer is A0 = {(x, y) ∈ Ω;x > 0}, which we identify with the function u0 = −1+2χA0 ,
taking the value +1 in A0 and −1 in Ω \A0.

Take another test set A. The L1 closeness condition for functions translates into

|A4A0| ≤ δ.

We may suppose that A is sufficiently regular (some minor extra care must be taken when
A is a set of finite perimeter, but the proof may be repeated essentially unchanged).
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Consider first the case that A contains a horizontal segment y = M with M ∈ [h, 2h]
and its complement contains a horizontal segment y = m with m ∈ [−2h, h]. Then a
portion of the boundary ∂A is contained in the part of Ω in the strip |y| ≤ 2h, and its
length is strictly greater than L, unless it is exactly the minimal segment (see Fig. 2.2).

h

2h
M

m

Figure 2.2: comparison with a uniformly close test set

If the condition above is not satisfied then A must not contain, e.g., any horizontal
segment y = t with t ∈ [h, 2h] (see Fig. 2.3). In particular, the length of the portion of ∂A

h

2h

Figure 2.3: comparison with a L1-close test set

contained with h ≤ y ≤ 2h is not less than h. Consider now the one-dimensional set

B = {t ∈ (0, L) : ∂A ∩ ({t} × (−h, h)) = ∅}.

We have
δ ≥ |A4A0| ≥ h|B|,

so that |B| ≤ δ/h, and the portion of ∂A with h ≤ y ≤ 2h is not less than L − δ/h.
Summing up we have

H1(∂A) ≥ h+ L− δ

h
= H1(∂A0) + h− δ

h
,

and the desired strict inequality for δ small enough.
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2.3 Generalizations

We can give some generalizations of Theorem 2.1.1 in terms of scaled energies.

Proposition 2.3.1 Let Fε satisfy the coerciveness and lower-semicontinuity assumptions
of Theorem 2.1.1. Suppose furthermore that a bounded positive function f : (0,+∞) →
(0,+∞) exists and constants mε such that the scaled functionals

F̃ε(u) =
Fε(u)−mε

f(ε)
(2.4)

are equicoercive and Γ-converge on Bδ(u0) to F̃0 given by

F̃0(u) =
{

0 if u = u0

+∞ otherwise
(2.5)

in Bδ(u0). Then there exists a sequence (uε) converging to u0 of local minimizers of Fε.

Remark 2.3.2 (i) First note that the functionals Fε in Theorem 2.1.1 satisfy the hypothe-
ses of the above proposition, taking, e.g., f(ε) = ε and mε equal to the minimum of Fε in
Bδ(u0);

(ii) Note that the hypothesis above is satisfied if there exist constants mε such that
(a) Γ-lim sup

ε→0
(Fε(u0)−mε) = 0;

(b) Γ-lim inf
ε→0

(Fε(u0)−mε) > 0.

Indeed condition (a) implies that we may change the constants mε so that the Γ-limit
exists, is 0 at u0, and we have a recovery sequence with Fε(uε) = mε, while (b) is kept
unchanged. At this point is suffices to chose, e.g., f(ε) = ε.

Proof. The proof follows that of Theorem 2.1.1. Again, let uε be a a minimizer of Fε on
Bδ(u0); we can suppose that uε → u ∈ Bδ(u0) we then have

0 = F̃0(u0) ≤ F̃0(u) ≤ lim inf
ε→0

F̃ε(uε) = lim inf
ε→0

min
Bδ(u0)

F̃ε (2.6)

≤ lim sup
ε→0

inf
Bδ(u0)

F̃ε ≤ inf
Bδ(u0)

F̃0 = 0, .

so that u = u0 and uε ∈ Bδ(u0) for ε small enough, which proves the thesis after remarking
that (local) minimization of Fε and F̃ε are equivalent up to additive and multiplicative
constants.

Proposition 2.3.3 Let Fε satisfy the coerciveness and lower-semicontinuity assumptions
of Theorem 2.1.1. Suppose furthermore that there exist a bounded positive function f :
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(0,+∞)→ (0,+∞), constants mε and ρε with ρε > 0 and ρε → 0, and ũε → u0 such that
the scaled functionals

F̃ε(v) =
Fε(ũε + ρεv)−mε

f(ε)
(2.7)

are equicoercive and Γ-converge on Bδ(v0) to F̃0 with v0 an isolated local minimum. Then
there exists a sequence (uε) converging to u0 of local minimizers of Fε.

Proof. We can apply Theorem 2.1.1 to the functionals F̃ε(v) concluding that there exist
local minimizers vε of F̃ε converging to v0. The corresponding uε = ũε + ρεvε are local
minimizers for Fε converging to u0.

Example 2.3.4 We illustrate the proposition with the simple example

Fε(x) = sin
(x
ε

)
+ x,

whose Γ-limit F (x) = x− 1 has no local (or global) minimizers. Take any x0 ∈ R, xε → x0

any sequence with sin(xε/ε) = −1, mε = xε − 1, ρε = εβ with β ≥ 1, and f(ε) = εα with
α ≥ 0, so that

F̃ε(t) =
sin
(
xε+εβt

ε

)
+ 1

εα
+ εβ−αt

=
sin
(
εβ−1t− π

2

)
+ 1

εα
+ εβ−αt =

1− cos(εβ−1t)
εα

+ εβ−αt.

In this case the Γ-limit F̃ coincides with the pointwise limit of F̃ε. If β = 1 and 0 ≤ α ≤ 1
then we have (local) minimizers of F̃ at all points of 2πZ; indeed if α = 0 then the sequence
converges to F̃ (x) = 1− cosx, if 0 < α < 1 we have

F̃ (x) =
{

0 if x ∈ 2πZ
+∞ otherwise,

and if α = 1

F̃ (x) =
{
x if x ∈ 2πZ
+∞ otherwise.

In the case 2 > β > 1 we have two possibilities: if α = 2β − 2 then F̃ (x) = 1
2 t

2; if
β ≥ α > 2β − 2 then

F̃ (x) =
{

0 if x = 0
+∞ otherwise.

If α = β = 2 then F̃ (x) = 1
2 t

2 + t. In all these cases we have isolated local minimizers in
the limit.
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Example 2.3.5 (density of local minima for oscillating metrics) We consider an in-
finite-dimensional example with a behaviour similar to the example above. Let

Fε(u) =
∫ 1

0
a
(u
ε

)
|u′| dt

defined on
X = {u ∈W 1,1((0, 1); R2), u(0) = v0, u(1) = v1}

equipped with the L1-convergence. Here, the coefficient a is defined as

a(v) =
{ 1 if either v1 or v2 ∈ Z

2 otherwise.

The Γ-limit is

F (u) =
∫ 1

0
‖u′‖1dt,

where
‖z‖1 = |z1|+ |z2|.

This is easily checked after remarking that recovery sequences (uε) are such that a(uε(t)/ε) =
1 a.e. (except possibly close to 0 and 1 if a(v0)/ε) 6= 1 or a(v1)/ε) 6= 1) and then that
|u′ε| = |(uε)′1|+ |(uε)′2|. For example, if both components of (uε) are monotone, then

Fε(uε) =
∫ 1

0
a
(uε
ε

)
|u′| dt =

∫ 1

0
|u′ε| dt+ o(1)

=
∫ 1

0
(|(uε)′1|+ |(uε)′2|) dt+ o(1)

=
∣∣∣(z1)1 − (z0)1

∣∣∣+
∣∣∣(z1)2 − (z0)2

∣∣∣+ o(1)

=
∫ 1

0
(|u′1|+ |u′2|) dt+ o(1) = F (u) + o(1).

Note moreover, since the integrals are independent with respect to reparameterization, we
can consider only target functions in

X1 = {u ∈ X : ‖u′‖1 constant a.e.}.

For simplicity we consider the case of u0 with both components non-decreasing and
suppose that z0, z1 ∈ εZ2. Let ũε ∈ X be non decreasing, with a(ũε/ε) = a(ũε/ε) = 1 a.e.
and ũε → u0 in L∞. We consider the energies

F̃ε(v) =
Fε(ũε + ε2v)− F (u0)

ε2
=
Fε(v)− Fε(ũε)

ε2
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(if a(z0/ε) = a(z1/ε) = 1 is not satisfied then we have to suitably define ũε close to the
endpoints, and take the rightmost term as the definition of F̃ε).

Consider uε = ũε + ε2v ∈ X with ‖vε‖L1 = Cε → C and with F̃ε(vε) ≤ C ′. We then
have ∣∣∣{a(uε

ε

)
6= 1
}∣∣∣ ≤ C ′ε2.

Note that we can suppose that both components of uε be non-decreasing. Upon slightly
modifying uε we can then suppose that a

(
uε
ε

)
= 1 a.e. If, after reparameterization of uε

with constant speed, we have uε 6= ũε then

‖uε − ũε‖L1 ≥ C ′′ε2

This shows that the Γ-limit of F̃ε(v) is +∞ if ‖v‖L1 ≤ C ′′ and v 6= 0.
We can apply Proposition 2.3.3 with ρε = f(ε) = ε2, to deduce that for every (increas-

ing) u there exist local minimizers uε of Fε converging to u.
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Stability

The notion of local minimizer is ‘scale-independent’; i.e., it does not depend on the rate at
which energies converge, so that it does not discriminate, e.g., between energies

Fε(x) = x2 + sin2
(x
ε

)
or Fε(x) = x2 +

√
ε sin2

(x
ε

)
.

We now examine a notion of stability such that, loosely speaking, a point is stable if it is not
possible to reach a lower energy state from that point without crossing an energy barrier
of a specified height. In this case the local minimizers in the first of the two sequence of
energies are stable as ε→ 0, while those in the second sequence are not.

3.1 Stable points

We first introduce a notion of stability that often can be related to notions of local mini-
mality.

Definition 3.1.1 (slide) Let F : X → [0,+∞] and δ > 0. A continuous function φ :
[0, 1]→ X is a δ-slide for F at u0 ∈ X if
• φ(0) = u0 and F (φ(1)) < F (φ(0)) = F (u0);
• there exits δ′ < δ such that E(φ(t)) ≤ E(φ(s)) + δ′ if 0 ≤ s ≤ t ≤ 1.

Definition 3.1.2 (stability) Let F : X → [0,+∞] and δ > 0. A point u0 ∈ X is δ-stable
for F if no δ-slide exists for F at u0.

A point u0 ∈ X is stable for F if it is δ-stable for some δ > 0 (and hence for all δ
small enough).

Let Fε : X → [0,+∞]. A sequence of points (uε) in X is uniformly stable for (Fε) if
there exists δ > 0 such that all uε are δ-stable for ε small.

25
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Example 3.1.3 (1) F (x) =

{
0 x = 0
sin
(1
x

)
otherwise. The point 0 is not a local minimizer

but it is δ-stable for δ < 1;

(2) Similarly for F (x) =

{
0 x = 0
−x2 + sin2

(1
x

)
otherwise;

(3) Let X = C and F (z) = F (ρeiθ) =
{
θρ |z| ≤ 1
−1 otherwise.

Then 0 is an isolated local minimum, but it is not stable; e.g., taking φ(t) = 2teiδ/2. Note
in fact that φ(0) = 0, F (φ(1)) = −1 < 0, and supF (φ(t)) = F (φ(1/2)) = δ/2;

(4) We can generalize example (3) to an infinite-dimensional example. Take X =
L2(−π, π) and

F (u) =


∑
k

1
k2
|ck|2 if u =

∑
k cke

ikx and ‖u‖L2 < 1

−1 otherwise.

The constant 0 is an isolated minimum point. F is lower semicontinuous, and continuous
in {‖u‖L2 < 1}. Note that F (ej) = 1

j2
so that φj(t) = 2tej is a δ-slide for δ > 1/j2;

(5) Fε(x) = x2 + sin2
(x
ε

)
. Each bounded sequence of local minimizers is uniformly

stable;

(6) Fε(x) = x2 + εα sin2
(x
ε

)
with 0 < α < 1. No bounded sequence of local minimizers

is uniformly stable (except those converging to 0).

Remark 3.1.4 (local minimality and stability) (i) If F : X → R is continuous and u
stable; then u is a local minimizer;

(ii) Let F be lower semicontinuous and coercive. Then every isolated local minimizer
of F is stable.

(iii) if u is just a local minimizer then u may not be stable.
To check (i) suppose that u is not a local minimum for F . Then let ρ be such that

|F (v) − F (w)| < δ if u,w ∈ Bρ(u), and let uρ ∈ Bρ(u) be such that F (uρ) < F (u). Then
it suffices to take φ(t) = u+ t(uρ − u). Claim (ii) is immediately proved noting that if ρ is
such that u is the absolute minimizer of F

To check (ii), let η > 0 be such that u0 is an isolated minimum point in Bη(u0). If u0

is not stable then there exist 1/k slides φk with final point outside Bη(u0). This implies
that there exist uk = φk(tk) for some tk with uk ∈ ∂Bη(u0), so that F (uk) ≤ F (u0) + 1/k.
By coerciveness, upon extraction of a subsequence uε → u ∈ ∂Bη(u0), and by lower
semicontinuity F (u) ≤ lim infk F (uk) ≤ F (u0), which is a contradiction.

For (iii) take for example u = 0 for F (u) = (1− |u|) ∧ 0 on R.
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3.2 Stable sequences of functionals

We now give a notion of stability of parameterized functionals.

Definition 3.2.1 (relative (sub)stability) We say that a sequence (Fε) is (sub)stable
relative to F if the following holds
• if u0 has a δ-slide for F and uε → u0, then each uε has a δ-slide for Fε (for ε small

enough).

Remark 3.2.2 (relative (super)stability) The condition of sub-stability above can be
compared to the lower bound for Γ-convergence. With this parallel in mind we can intro-
duce a notion of (super)stability relative to F by requiring that
• if u0 is an isolated local minimum for F then there exists uε → u such that (uε) is

uniformly stable for Fε.

Remark 3.2.3 (i) Note that if F is a constant then all (Fε) are stable relative to F ;
(ii) In general if Fε = F for all ε then (Fε) may not be stable relative to F . Take for

example

Fε(x) = F (x) =

{
sin
(1
x

)
if x > 0

x if x ≤ 0;

then x0 = 0 has δ-slides for all δ > 0, while taking xε = (2πb1
εc −

π
2 )−1 we have xε → x0

and xε has no δ-slide for δ < 2.

The following proposition is in a sense the converse of Theorem 2.1.1 with Γ-convergence
substituted with stability.

Proposition 3.2.4 Let (Fε) be (sub)stable relative to F and uε be a sequence of uniformly
stable points for Fε with uε → u. Then u is stable for F .

Proof. If uε → u and uε is uniformly stable then it is stable for some δ > 0. By the
(sub)stability of (Fε) then u is δ′ stable for all 0 < δ′ < δ; i.e., it is stable.

Remark 3.2.5 The main drawback of the notion of stability of energies is that it is not
in general compatible with the addition of (continuous) perturbations. Take for example
Fε(x) = sin2

(x
ε

)
and F = 0. Then Fε is stable relative to F , but Gε(x) = Fε(x) + x is

not stable with respect to G(x) = x: each x has a δ-slide for all δ > 0, but if xε → x is a
sequence of local minimizers of Gε then they are δ-stable for δ < 1.
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3.3 Stability and Γ-convergence

In this section we will couple stability with Γ-convergence, and try to derive some criteria
in order to guarantee the compatibility with respect to the addition of continuous pertur-
bations. The main issue is to construct δ-slides for the approximating functionals starting
from δ-slides for the Γ-limit.

Example 3.3.1 We consider the one-dimensional energies

Fε(u) =
∫ 1

0
a
(x
ε

)
|u′|2 dx,

where a is a 1-periodic function with 0 < inf a < sup a < +∞, so that Fε Γ-converge to
the Dirichlet integral

F (u) = a

∫ 1

0
|u′|2 dx .

We will also consider a perturbation of Fε with

G(u) =
∫ 1

0
g(x, u) dx,

where g is a Carathéodory function with |g(x, u)| ≤ C(1 + |u|2) (this guarantees that G is
L2-continuous).

We want to check that Fε +G is stable relative to F +G. To this end consider a point
u0 such that a δ-slide φ for F +G exists at u0, and points uε → u0. We wish to construct
a δ-slide for Fε +G at u0.

With fixed K ∈ N we consider points xKi = i/K for i = 0, . . .K and denote for every t
with φK(t) the piecewise affine interpolation of φ(t) on the points xKi . Note that we have
• for all K we have F (φK(t)) ≤ F (φ(t)) by Jensen’s inequality;
• F (φK(t))→ F (φ(t)) as K → +∞;
• for fixedK the map t 7→ φK(t) is continuous with respect to the strongH1-convergence.

Indeed its gradient is piecewise constant and is weakly continuous in t, hence it is strongly
continuous.

We fix δ′ < δ such that

F (φ(t)) +G(φ(t)) ≤ F (φ(s)) +G(φ(s)) + δ′ if 0 ≤ s ≤ t ≤ 1,

choose δ′′ > 0 such that δ′ + 2δ′′ < δ and

F (φ(1)) +G(φ(1)) < F (u0) +G(u0)− 2δ′′.

Let K be large enough so that (if uK0 = φK(0) denotes the interpolation of u0)

F (uK0 ) +G(uK0 ) ≥ F (u0) +G(u0)− δ′′
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and
|G(φK(t))−G(φ(t))| < δ′′

for all t. We then have

F (φK(t)) +G(φK(t)) ≤ F (φ(t)) +G(φ(t)) + δ′′ .

We then claim that, up to a reparameterization, φK is a δ-slide for F +G from uK0 .
Indeed, let M = inf{t : F (φK(t))+G(φK(t)) < F (uK0 )+G(uK0 )}. This set is not empty

since it contains the point 1. If 0 ≤ s ≤ t ≤M then we have

F (φK(t)) +G(φK(t))− F (φK(s)) +G(φK(s))
≤ sup{F (φK(r)) +G(φK(r)) : 0 ≤ r ≤M} − F (uK0 ) +G(uK0 )
≤ sup{F (φ(r)) +G(φ(r)) : 0 ≤ r ≤M}+ 2δ′′ − F (u0) +G(u0)
≤ δ′ + 2δ′′ < δ

By the continuity of t 7→ F (φK(t))+G(φK(t)) we can then find t > M such that F (φK(t))+
G(φK(t)) < F (uK0 ) + G(uK0 ) and s 7→ ΦK(st) is a δ-slide. For the following, we suppose
that t = 1, so that we do not need any reparameterization.

Next, we construct a δ-slide for Fε + G. To this end, for the sake of simplicity, we
assume that N = 1

εK ∈ N. Let v be a function in H1
0 (0, 1) such that∫ 1

0
a(y)|v′ + 1|2 dy = min

{∫ 1

0
a(y)|w′ + 1|2 dy : w ∈ H1

0 (0, 1)
}

= a.

Note that we also have∫ N

0
a(y)|v′ + 1|2 dy = min

{∫ N

0
a(y)|w′ + 1|2 dy : w ∈ H1

0 (0, 1)
}

= Na.

We then define the function φKε (t) by setting on [xKi , x
K
i+1]

φKε (t)(xKi + s) = φ(t)(xKi ) +K(φ(t)(xKi+1)− φ(t)(xKi ))
(
s+ εv(

s

ε
)
)
, 0 ≤ s ≤ 1

K
,

so that
Fε(φKε (t)) = F (φK(t)).

Note again that we may suppose ε small enough so that |G(φKε (t)) − G(φK(t))| = o(1)
uniformly in t so that φKε is a δ-slide for Fε +G at φKε (0).

It now remains to construct a L2-continuous function ψε : [0, 1] → H1(0, 1) with
ψε(0) = uε and ψε(1) = φKε (0) such that concatenating ψε with φKε we have a δ-slide.
This is achieved by taking the affine interpolation (in t) of uε and uKε defined by setting
on [xKi , x

K
i+1]

uKε (xKi + s) = uε(xKi ) +K(uε(xKi+1)− uε(xKi ))
(
s+ εv(

s

ε
)
)
, 0 ≤ s ≤ 1

K
,

on (0, 1/2) and of uKε and φKε (0) on (1/2, 1).
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Example 3.3.2 We consider the function a : Z2 → {1, 2}

a(x1, x2) =
{

1 if x1 ∈ Z or x2 ∈ Z
2 otherwise,

and the related scaled-perimeter functionals

Fε(A) =
∫
∂A
a
(x
ε

)
dH1

defined on Lipschitz sets A. The energies Fε Γ-converge, with respect to the convergence
Aε → A, understood as the L1 convergence of the corresponding characteristic functions,
to an energy of the form

F (A) =
∫
∂∗A

g(ν)dH1

defined on all sets of finite perimeter (ν denotes the normal to ∂∗A). A direct computation
(following for example the corresponding homogenization problem for curves) shows that
actually

g(ν) = ‖ν‖1 = |ν1|+ |ν2|.

Furthermore, it is easily seen that the same F is equivalently the Γ-limit of

F̃ε(A) = H1(∂A),

defined on A which are the union of cubes Qεi := ε(i+ (0, 1)2) with i ∈ Z2. We denote by
Aε the family of such A. Note that F̃ε is the restriction of Fε to Aε.

We now show that if A has a δ-slide for F and Aε → A, then each Aε has a (δ+ o(1))-
slide for Fε (and so a δ-slide for ε sufficiently small). If is easily checked that the same
argument can be used if we add to Fε a continuous perturbation

G(A) =
∫
A
f(x) dx,

where f is a (smooth) bounded function, so that the stability can be used also for Fε +G.
We first observe that an arbitrary sequence Aε of Lipschitz sets converging to a set A can

be substituted by a sequence in Aε with the same limit. To check this, consider a connected
component of ∂Aε. Note that for ε small enough every portion of ∂Aε parameterized by a
curve γ : [0, 1]→ R2 such that a(γ(0)/ε) = a(γ(1)/ε) = 1 and a(γ(t)/ε) = 2 for 0 < t < 1
can be deformed continuously to a curve lying on εa−1(1) and with the same endpoints.
If otherwise a portion of ∂Aε lies completely inside a cube Qεi it can be shrunk to a point
or expanded to the whole cube Qεi . In both cases this process can be obtained by a O(ε)-
slide, since either the lengths of the curves are bounded by 2ε, or the deformation can be
performed so that the lengths are decreasing.
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We can therefore assume that Aε ∈ Aε and that there exist a δ-slide for E at A obtained
by continuous family A(t) with 0 ≤ t ≤ 1.

We fix N ∈ N and set tNj = j/N . For all j ∈ {1, . . . , N} let AN,jε be a recovery sequence
in Aε for A(tNj ). Furthermore we set AN,0n = Aε. Note that, since AN,jε → A(tNj ) and
A(t) is continuous, we have |AN,jε 4AN,j+1

ε | = o(1) as N → +∞. We may suppose that the
set AN,j+1

ε is the union of AN,jε and a family of cubes QN,ji . We may order the indices i
and construct a continuous family of sets AN,j,i(t) such that AN,j,i(0) = AN,jε ∪

⋃
k<iQ

N,j
k ,

AN,j,i(1) = AN,jε ∪
⋃
k≤iQ

N,j
k ,(

H1(AN,jε ) ∧H1(AN,j+1
ε )

)
− Cε ≤ H1(AN,j,i(t)) ≤

(
H1(AN,jε ) ∨H1(AN,j+1

ε )
)

+ Cε.

Since also |AN,j,i(t)| differs from |AN,jε | and |AN,j+1
ε | by at most o(1) as N → +∞, by

concatenating all these families, upon reparametrization we obtain a family ANn (t) such
that ANn (0) = Aε, ANn (1) = Aε(1), and, if s < t then we have, for some j < k

Fε(ANn (s)) ≥ F (A(tNj ))− Cε− o(1),

Fε(ANn (t)) ≤ F (A(tNk )) + Cε+ o(1).

Since A(t) is a δ-slide for E we have

F (A(tNk )) ≤ F (A(tNj )) + ε,

so that
Fε(ANn (t)) ≤ Fε(ANn (s)) + δ + Cε+ o(1).

By choosing N large enough and ε small enough we obtain the desired (δ + o(1))-slide.

The previous example suggests a criterion for ‘strong’ stability (i.e., compatible with
continuous perturbations), which is sometimes satisfied by Γ-converging sequences. We
have constructed δ-slides for the approximating functionals in two steps: one in which we
have transformed a limit δ-slide φ(t) considering recovery sequences (essentially, setting
φε(t) = utε, where (utε) is a recovery sequence for φ(t)), another where we have constructed
an “almost-decreasing” path from uε to φε(0). Note that this step, conversely, is possible
thanks to the liminf inequality.

Theorem 3.3.3 (a criterion of strong stability) Suppose that Fε and F satisfy the
following requirements:

if φ is a path from u (i.e., φ : [0, 1]→ X, φ(0) = u, and φ is continuous) and uε → u,
then there exist paths ψε from uε and φε from ψε(1) such that

(i) τ 7→ Fε(ψε(τ)) is decreasing up to o(1) as n→ +∞; i.e.,

sup
0≤τ1<τ2≤1

(
Fε(ψε(τ2))− Fε(ψε(τ1))

)
→ 0 as n→∞
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(ii) supτ∈[0,1]dist(φε(τ), φ(τ)) = o(1)
(iii) there exist 0 = τ ε1 < τ ε2 < ... < τ εε = 1 with maxi[τ εi − τ εi−1] = o(1) such that

maxi |Fε(φε(τ εi ))− F (φ(τ εi ))| = o(1) and Fε(φε(τ)) is between Fε(φε(τ εi )) and Fε(φε(τ εi+1))
for τ ∈ (τ εi , τ

ε
i+1), up to o(1); i.e., there exist infinitesimal βn > 0 such that

min
{
Fε(φε(τ εi )), Fε(φε(τ εi+1))

}
− βn ≤ Fε(φε(τ)) ≤ max

{
Fε(φε(τ εi )), Fε(φε(τ εi+1))

}
+ βn

Then (Fε +G) is stable relative to (E +G) for every continuous G such that (Fε +G)
is coercive.

Proof. Suppose that u has a δ-slide φ for F + G (and therefore a (δ − δ′)-slide for some
δ′ > 0) and uε → u. Then we choose ψε, φε as in (i)–(iii) above and set φ′ε(τ) := ψε(τ)
for τ ∈ [0, 1], and φ′ε(τ) := φε(τ − 1) for τ > 1. We then consider τ1 < τ2 ∈ [0, T ]. If
τ1, τ2 ∈ [0, 1], then

Fε(φ′ε(τ2))− Fε(φ′ε(τ1)) = Fε(ψε(τ2))− Fε(ψε(τ1)) ≤ o(1).

If τ1, τ2 > 1, then

Fε(φ′ε(τ2))− Fε(φ′ε(τ1)) = Fε(φε(τ2))− Fε(φε(τ1)) ≤ E(φ(τ εj ))− E(φ(τ εi )) + o(1)

for some τ εi ≤ τ εj . If τ1 < 1 < τ2, then

Fε(φ′ε(τ2))− Fε(φ′ε(τ1)) = Fε(φε(τ2))− Fε(ψε(τ1)) ≤ E(φ(τ εi ))− E(φ(0)) + o(1)

for some τ εi , so that in any case

(Fε(φ′ε(τ2)) + G(φ′ε(τ2)))− (Fε(φ′ε(τ1)) +G(φ′ε(τ1)))

≤ (E(φ(τj)) +G(φ(τj)))− (E(φ(τi)) +G(φ(τi))) + o(1)

< δ − δ′ + o(1)

(3.1)

for some τi ≤ τj , where we used the continuity of G together with (ii) and (iii), as well as
the fact that φ is a δ-slide for u. The same argument gives

(Fε +G)(φ′ε(1))− (Fε +G)(φ′ε(0)) ≤ (E +G)(φ(1))− (E +G)(φ(0)) + o(1),

so that φ′ε is a δ-slide for Fε +G, for ε sufficiently small.



Chapter 4

Local minimization as a selection
criterion

In this chapter we use the fidelity of the description of local minimizers as a means of
‘correcting’ Γ-limits.

4.1 Equivalence by Γ-convergence

Definition 4.1.1 Let (Fε) and (Gε) be sequences of functionals on a separable metric space
X. We say that they are equivalent by Γ-convergence (or Γ-equivalent) if there exists a
sequence (mε) of real numbers such that if (Fεj −mεj ) and (Gεj −mεj ) are Γ-converging
sequences, their Γ-limits coincide and are proper (i.e., not identically +∞ and not taking
the value −∞).

Remark 4.1.2 (i) since Γ-convergence is sequentially compact (i.e,. every sequence has
a Γ-converging subsequence), the condition in the definition is never empty. On the set
of proper lower-semicontinuous functionals the definition above is indeed an equivalence
relation (in particular a sequence (Fε) is equivalent to itself);

(ii) note that if Fε Γ-converge to F and Gε Γ-converge to G then equivalence amounts
to F = G and F proper, and (Fε) is equivalent to the constant sequence F ;

(iii) the addition of the constants mε allows to consider and discriminate among diverg-
ing sequences (whose limit is not proper). For example the sequence of constants Fε = 1/ε
and Gε = 1/ε2 are not equivalent, even though they diverge to +∞. Note instead that
Fε(x) = x2/ε and Gε(x) = x2/ε2 are equivalent.

Definition 4.1.3 (parameterized and uniform equivalence) For all λ ∈ Λ let (F λε )
and (Gλε ) be sequences of functionals on a separable metric space X. We say that they
are equivalent by Γ-convergence if for all λ they are equivalent according to the definition

33
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above. If Λ is a metric space we say that they are uniformly Γ-equivalent if there exist
(mλ

ε ) such that
Γ- lim

j
(F λjεj −m

λj
εj ) = Γ- lim

j
(Gλjεj −m

λj
εj )

and are proper for all λj → λ and εj → 0.

Remark 4.1.4 Suppose that F λε Γ-converges to F λ and (F λε ) and (F λ) are uniformly Γ-
equivalent as above, and that all functionals are equi-coercive and Λ is compact. Then we
have

sup
Λ
| inf F λε −minF λ| = o(1)

or, equivalently, that fε(λ) = inf F λε converges uniformly to f(λ) = minF λ on Λ. This
follows immediately from the fundamental theorem of Γ-convergence and the compactness
of Λ.

Example 4.1.5 Take Λ = [−1, 1]

F λε (u) =
∫ 1

0

(W (u)
ε

+ ε|u′|2
)
dt,

∫ 1

0
u dt = λ

with W as in Example 1.5.4. Then we have for fixed λ the Γ-limit

F λ(u) =
{

0 if u(x) = λ
+∞ otherwise

if λ = ±1 and

F λ(u) =
{
cW#(S(u)) if u ∈ BV ((0, 1); {±1}) and

∫ 1
0 u dt = λ

+∞ otherwise.

Note that fε(λ) = inf F λε is a continuous function, while

f(λ) = minF λ =
{

0 if |λ| = 1
1 otherwise

is not continuous; hence, the convergence fε → f is not uniform, which implies that (F λε )
and (F λ) are not uniformly Γ-equivalent.

4.2 A selection criterion

We use the concept of equivalence as above to formalize a problem of the form: given Fε
find “simpler” Gε equivalent to Fε such that local minimizers/minima of Gε are “close” to
those of Fε.

We will proceed as follows:
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• compute the Γ-limit F of Fε. This suggests a limit domain and a class of energies (e.g.,
energies with sharp interfaces in place of diffuse ones; convex homogeneous functionals in
place of oscillating integrals, etc.);
• if the description given by F is not satisfactory, then “perturb” F so as to obtain a

family (Gε) Γ-equivalent to (Fε).

4.3 A ‘quantitative’ example: phase transitions

We consider

Fε(u) =
∫ 1

0

(W (u)
ε

+ ε|u′|2
)
dt

with W a double-well potential with wells in ±1 as in Example 1.5.4, and u restricted to
1-periodic functions (i.e., u(1) = u(0)). This constraint is compatible with the Γ-limit,
which is then given by

F (u) = cW#(S(u) ∩ [0, 1)) u ∈ BV ((0, 1); {±1})

(again, u is extended to a periodic function, so that it may have a jump at 0, which then
is taken into account in the limit energy).
• Note that all functions in BV ((0, 1); {±1}) are L1-local minimizers (even though not

isolated). This is a general fact when we have a lower-semicontinuous function taking
discrete values.
•We now show that Fε has no non-trivial L1-local minimizer. We consider the simplified

case
W (u) = (|u| − 1)2 .

In this case cW = 2. Suppose otherwise that u is a local minimizer. If u ≥ 0 (equivalently,
u ≤ 0) then

Fε(u) =
∫ 1

0

((u− 1)2

ε
+ ε|u′|2

)
dt.

Since this functional is convex, its only local minimizer is the global minimizer u = 1.
Otherwise, we can suppose, up to a translation, that there exists L ∈ (0, 1) such that
u(±L/2) = 0 and u(x) > 0 for |x| < L/2. Again, using the convexity of

FLε (u) =
∫ L/2

−L/2

((u− 1)2

ε
+ ε|u′|2

)
dt

we conclude that u must be the global minimizer of FL with zero boundary data; i.e., the
solution of 

u′′ =
1
ε2

(u− 1)

u(±L
2 ) = 0.
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This gives

u(x) = 1−
(

cosh
( L

2ε

))−1
cosh

(x
ε

)
and

FLε (u) = 2
sinh

(
L
ε

)
(

cosh
(
L
2ε

))2 .

Note that

d2

dL2
FLε (u) = − 2

ε2

sinh
(
L
2ε

)
(

cosh
(
L
2ε

))3 ;

i.e., this minimum value is a concave function of L. This immediately implies that no
local minimizer may exist with changing sign; in fact, such a minimizer would be a local
minimizer of the function

f(L1, . . . , LK) = 2
K∑
k=1

sinh
(
Lk
ε

)
(

cosh
(
Lk
2ε

))2 , (4.1)

for some K > 0 under the constraint Lk > 0 and
∑

k Lk = 1, which is forbidden by the
negative definiteness of its Hessian matrix. Note moreover that

FLε (u) = 2− 4e−
L
ε +O(e−

2L
ε )

and that −4e−
L
ε is still a concave function of L.

• We can now propose a ‘correction’ to F by considering in its place

Gε(u) = cW#(S(u))−
∑

x∈S(u)∩[0,1)

4e−
1
ε
|x−max(S(u)∩(−∞,x)|

defined on periodic functions with u ∈ BV ((0, 1); {±1}). It is easily seen that Gε Γ-
converges to F , and is hence equivalent to Fε; thanks to the concavity of the second term
the same argument as above shows that we have no non-trivial local minimizers. As a
side remark note that this approximation also maintains the stationary points of Fε, which
are functions with K jumps at distance 1/K. This is easily seen after remarking that the
distances between consecutive points must be a stationary point for (4.1). Moreover, the
additional terms can also be computed as a development by Γ-convergence, which extends
this equivalence to ‘higher order’.
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4.4 A ‘qualitative’ example: Lennard-Jones atomistic sys-
tems

We consider a scaled systems of one-dimensional nearest-neighbour atomistic interactions
through a Lennard-Jones type interaction. Let J be a C2 potential as in Figure 4.1, with
domain (−1,+∞) (we set J(w) = +∞ for w ≤ −1), minimum in 0 with J ′′(0) > 0, convex
in (−1, w0), concave in (w0,+∞) and tending to J(∞) < +∞ at +∞. We consider the

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

-1

-0,5

0,5

1

1,5

2

Figure 4.1: a (translation of a) Lennard-Jones potential

energy

F λε (u) =
N∑
i=1

J
(ui − ui−1√

ε

)
with the boundary conditions u0 = 0 and uN = λ ≥ 0. Here ε = 1/N with N ∈ N. The
vector (u0, . . . , uN ) is identified with a discrete function defined on εZ ∩ [0, 1] or with its
piecewise-affine interpolation. With this last identification, F λε can be viewed as functionals
in L1(0, 1), and their Γ-limit computed with respect to that topology.

It must be noted that for all w > 0 we have

#
{
i :
ui − ui−1√

ε
> w

}
≤ 1
J(w)

F λε (u),

so that this number of indices is equi-bounded along sequences with equibounded energy.
We may therefore suppose that the corresponding points εi converge to a finite set S ⊂
[0, 1]. For fixed w, we have J(w) ≥ c|w|2 on (−∞, w] for some c > 0; this gives, if A is
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compactly contained in (0, 1) \ S, that

F λε (u) ≥ c
∑
i

(ui − ui−1√
ε

)2
= c

∑
i

ε
(ui − ui−1

ε

)2
≥ c

∫
A
|u′|2 dt

(the sum extended to i such that ui−ui−1√
ε
≤ w). By the arbitrariness of A in this estimate

we then have that if uε → u and F λε (uε) ≤ C < +∞ then u is piecewise-H1; i.e., there
exists a finite set S ⊂ (0, 1) such that u ∈ H1((0, 1)\S). Taking into account the boundary
conditions, we can extend all functions to u(x) = 0 for x ≤ 0 and u(x) = λ for x ≥ λ.
and denote by S(u) (set of discontinuity points of u) the minimal set such that u ∈
H1((−s, 1 + s) \ S(u)) for s > 0. The reasoning above also shows that

c

∫ 1

0
|u′|2 dt+ J(w)#(S(u))

is a lower bound for the Γ-limit of F λε .
The Γ-limit on piecewise-H1(0, 1) functions can be computed by optimizing the choice

of w and c, and can be shown to be

F λ(u) =
1
2
J ′′(0)

∫ 1

0
|u′|2 dt+ J(∞)#(S(u) ∩ [0, 1])

with the constraint that u+ > u− on S(u) and the boundary conditions u−(0) = 0, u+(1) =
λ (so that S(u) is understood to contain also 0 or 1 if u+(0) > 0 or u − (1) < λ). For
simplicity of notation we suppose

1
2
J ′′(0) = J(∞) = 1.

• Local minimizers of F λ. By the strict convexity of
∫ 1

0 |u
′|2 dt this part of the energy is

minimized, given the average z =
∫ 1

0 u
′ dt, by the piecewise-constant gradient u′ = z From

now on we tacitly assume that u′ is constant. We then have two cases depending on the
number of jumps:

(i) if S(u) = ∅ then z = λ, and this is a strict local minimizer since any L1 perturbation
with a jump of size w and (average) gradient z has energy z2 + 1 independent of w, which
is strictly larger than λ2 if the perturbation is small;

(ii) if #S(u) ≥ 1 then L1 local minimizers are all functions with u′ = 0 (since otherwise
we can strictly decrease the energy by taking a small perturbation v with the same set of
discontinuity points and v′ = su′ with s < 1).

The energy of the local minima in dependence of λ is pictured in Figure 4.2.
• Local minimizers of F λε . This is a finite-dimensional problem, whose stationarity

condition is
J ′
(ui − ui−1√

ε

)
= σ for all i,
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Figure 4.2: local minima for F λ

for some σ > 0. The shape of J ′ is pictured in Figure 4.3; its maximum is achieved for
w = w0. Note that for all 0 < σ < J ′(w0) we have two solutions of J ′(w) = σ, while we
have no solution for σ > J ′(w0).
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Figure 4.3: derivative of J

We have three cases:
(i) we have

ui − ui−1√
ε

≤ w0 (4.2)

for all i. In this case the boundary condition gives ui−ui−1

ε = λ for all i, so that we have
the constraint.

λ ≤ w0√
ε
. (4.3)
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This solution is a local minimum. This is easily checked when λ < w0√
ε

since small per-
turbations maintain the condition (4.2). In the limit case λ = w0√

ε
we may consider only

perturbations where (4.2) is violated at exactly one index (see (ii) below), to which there
corresponds an energy

J(w0 + t) + (N − 1)J
(
w0 −

t

N − 1

)
,

for t ≥ 0, which has a local minimum at 0.
(ii) condition (4.2) is violated by two (or more) indices j and k. Let w be such that

uj − uj−1√
ε

=
uk − uk−1√

ε
= w > w0.

We may perturb ui − ui−1 only for i = j, k, so that the energy varies by

f(s) := J(w + s) + J(w − s)− 2J(w) . (4.4)

We have f ′(0) = 0 and f ′′(0) = 2J ′′(w) < 0, which contradicts the minimality of u.
(iii) condition (4.2) is violated exactly by one index. The value of w = ui−ui−1√

ε
for the

N − 1 indices satisfying (4.2) is obtained by computing local minimizers of the energy on
such functions, which is

fλε (w) := (N − 1)J(w) + J
( λ√

ε
− (N − 1)w

)
defined for 0 ≤ w ≤ min

{
w0,

1
N−1

(
λ√
ε
− w0

)}
. We compute

(fλε )′(w) := (N − 1)
(
J ′(w)− J ′

( λ√
ε
− (N − 1)w

))
.

Note that
fλε (0) = J

( λ√
ε

)
= 1− o(1)

and (fλε )′(0) < 0. If λ > w0/
√
ε then (fλε )′(w) = 0 has a unique solution, which is a local

minimizer, while if λ ≤ w0/
√
ε we have two solutions w1 < w2, of which the first one is a

local minimizer. We then have a unique curve of local minimizers with one jump.
The energy of the local minima in dependence of λ is schematically pictured in Figure

4.4.
• A qualitative comparison of local minimization. First, the local minimizer for F λε

which never exceed the convexity threshold (corresponding to the minimizer with S(u) = ∅
for F λ) exists only for λ ≤ w0/

√
ε; second, we only have one curve of local minimizers

for F λε which exceed the convexity threshold for only one index (corresponding to the
minimizers with #S(u) = 1 for F λ).
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Figure 4.4: local minima for F λε

• Γ-equivalent energies. We choose energies defined on piecewise-H1 functions of the
form

Gλε (u) =
∫ 1

0
|u′|2 dt+

∑
t∈S(u)

g
(u+ − u−√

ε

)
,

again with the constraint that u+ > u− on S(u) and the boundary conditions u−(0) =
0, u+(1) = λ. In order that local minimizers satisfy #(S(u)) ≤ 1 we require that g :
(0,+∞) → (0,+∞) be strictly concave. In fact, with this condition the existence of two
points in S(u) is ruled out by noticing that given w1, w2 > 0 the function t 7→ g(w1 + t) +
g(w2 − t) is concave. Moreover, we also require that g satisfy

lim
w→+∞

g(w) = 1.

With this condition is is easily seen that we have the Γ-convergence of Gλε to F λ.
In order to make a comparison with the local minimizers of F λε we first consider local

minimizers with S(u) = ∅; i.e., u(t) = λt. Such a function is a local minimizer if it is not
energetically favourable to introduce a small jump of size w; i.e., if 0 is a local minimizer
for

gλε (w) := (λ− w)2 + g
( w√

ε

)
,

where we have extended the definition of g by setting g(0) = 0. Note that if g is not
continuous in 0 then 0 is a strict local minimizer for gλε for all λ. Otherwise, we can
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compute the derivative, and obtain that

d

dw
gλε (0) = −2λ+

1√
ε
g′(0).

For ε small enough, 0 is a (isolated) local minimizer if and only if d
dwg

λ
ε (0) > 0; i.e.,

λ <
1

2
√
ε
g′(0) .

If we choose
g′(0) = 2w0

we obtain the desired constraint on this type of local minimizers. A possible simple choice
of g is

g(w) =
2w0w

1 + 2w0w
.

We finally consider local minimizers with #(S(u)) = 1. If w denotes the size of the
jump then again computing the derivative of the energy, we conclude the existence of a
single local minimizer w with

2(λ− w) =
1√
ε
g′
( w√

ε

)
,

and energy approaching 1 as ε→ 0.
• With the choice above the pictures of the local minimizers for Gλε and for F λε are of

the same type, but may vary in quantitative details. We have not addressed the problem
of the uniformity of this description, for which a refinement of the choice of g could be
necessary.
• As a conclusion, we remark that this example has some modeling implications. The

functional F λ can be seen as a one-dimensional version of the energy of a brittle elastic
medium according to Griffith’s theory of Fracture (S(u) represents the fracture site in the
reference configuration), which is then interpreted as a continuum approximation of an
atomistic model with Lennard Jones interactions. The requirement that also local minima
may be reproduced by the limit theory has made us modify our functional F λ obtaining
another sequence of energies, which maintain an internal parameter ε. Energies of the form
Gλε are present in the literature, and are related to Barenblatt’s theory of ductile Fracture.
Note that in all these considerations the parameter λ appears in the functionals only as a
boundary condition, and does not influence the form of the energy.



Chapter 5

Minimizing movements

5.1 An energy-driven implicit-time discretization

We now introduce a notion of energy-based motion which generalizes an implicit-time
scheme for the approximation of solutions of gradient flows to general (also non differen-
tiable) energies. We will use the terminology of minimizing movements, introduced by De
Giorgi, even though we will not use the precise notation used in the literature.

Definition 5.1.1 (minimizing movements) Let X be a separable Hilbert space, F :
X → [0,+∞] coercive and lower semicontinuous. Given x0 and τ > 0 we define recursively
xk as a minimizer for the problem

min
{
F (x) +

1
2τ
‖x− xk−1‖2

}
, (5.1)

and the piecewise-constant trajectory uτ : [0,+∞)→ X given by

uτ (t) = xbt/τc . (5.2)

A minimizing movement for F from x0 is any limit of a subsequence uτj uniform on compact
sets of [0,+∞).

In this definiton we have taken F ≥ 0 and X Hilbert for the sale of simplicity. In
particular we can X a metric space and the (power of the) distance in place of the squared
norm.

Remark 5.1.2 A heuristic explanation of the definition above is given when F is smooth.
In this case, with the due notation, a minimizer for (5.1) solves the equation

xk − xk−1

τ
= −∇F (uk); (5.3)

43
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i.e., uτ solves the equation

uτ (t)− uτ (t− τ)
τ

= −∇F (uτ (t)). (5.4)

If we may pass to the limit in this equation as uτ → u then

∂u

∂t
= −∇F (u). (5.5)

This is easily shown if X = Rn and F ∈ C2(Rn). In this case by taking any ϕ ∈
C∞0 ((0, T ); Rn) we have

−
∫ T

0
〈∇F (uτ ), ϕ〉dt =

∫ T

0

〈uτ (t)− uτ (t− τ)
τ

, ϕ
〉
dt = −

∫ T

0

〈
uτ (t),

ϕ(t)− ϕ(t+ τ)
τ

〉
dt,

from which, passing to the limit∫ T

0
〈∇F (u), ϕ〉dt =

∫ T

0
〈u, ϕ′〉dt;

i.e., (5.5) is satisfied in the sense of distributions, and hence in the classical sense.

Remark 5.1.3 (stationary solutions) Let x0 be a local minimizer for F , then the only
minimizing movement for F from x0 is the constant function u(t) = x0.

Indeed, if x0 is a minimizer for F when ‖x− x0‖ ≤ δ by the positiveness of F it is the
only minimizer of F (x) + 1

2τ ‖x− x0‖2 for τ ≤ δ2/F (x0) if F (x0) > 0 (any τ if F (x0) = 0).
So that xk = x0 for all k for these τ .

Proposition 5.1.4 (existence of minimizing movements) For all F and x0 as above
there exists a minimizing movement u ∈ C1/2([0,+∞);X).

Proof. By the coerciveness and lower semicontinuity of F we obtain that uk are well defined
for all k. Moreover, since

F (xk) +
1
2τ
‖xk − xk−1‖2 ≤ F (xk−1),

we have F (xk) ≤ F (xk−1) and

‖xk − xk−1‖2 ≤ 2τ(F (xk−1)− F (xk)), (5.6)

so that for t > s

‖uτ (t)− uτ (s)‖ ≤
bt/τc∑

k=bs/τc+1

‖xk − xk−1‖
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≤
√
bt/τc − bs/τc

√√√√√ bt/τc∑
k=bs/τc+1

‖xk − xk−1‖2

≤
√
bt/τc − bs/τc

√√√√√2τ
bt/τc∑

k=bs/τc+1

(F (xk−1)− F (xk))

=
√
bt/τc − bs/τc

√
2τ(F (xbs/τc)− F (xbt/τc))

≤
√

2F (x0)
√
τ(bt/τc − bs/τc)

≤
√

2F (x0)
√
t− s+ τ

This shows that the functions uτ are (almost) equicontinuous and equibounded in
C([0,+∞);X). Hence, they converge uniformly. Moreover, passing to the limit we obtain

‖u(t)− u(s)‖ ≤
√

2F (x0)
√
|t− s|

so that u ∈ C1/2([0,+∞);X).

Example 5.1.5 (non-uniqueness of minimizing movements) If F is not C2 we may
have more than one minimizing movement.

(i) Bifurcation at times with multiple minimizers. A simple example is F (x) = − 1
α |x|

α

with 0 < α < 2, which is not C2 at x = 0. In this case, for x0 = 0 we have a double choice
for minimum problem (5.1); i.e.,

x1 = ±τ1/(2−α).

Once x1 is chosen all other valued are determined, and it can be seen that either xk > 0
for all k or xk < 0 for all k (for α = 1, e.g., we have xk = ±kτ), and that in the limit we
have the two solutions of {

u′ = |u|(α−2)u
u(0) = 0

with u(t) 6= 0 for t > 0. Note in particular that we do not have the trivial solution u = 0.
In this example we do not have to pass to a subsequence of τ .

(i) Different movements depending on subsequences of τ . Discrete trajectories can be
different depending on the time step τ . We give an explicit example, close in spirit to the
previous one. In this example the function F is asymmetric, so that x1 is unique but may
take positive or negative values depending on τ .

We define F as the Lipschitz function taking value 0 at x = 0, for x > 0

F ′(x) =
{
−1 if 2−2k−1 < x < 2−2k, k ∈ N
−2 otherwise for x > 0
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and F ′(x) = 3 + F ′(−x) for x < 0. It is easily seen that for x0 = 0 we may have a unique
minimizer x1 with x1 > 0 or x1 < 0 depending on τ . In particular we have x1 = −2−2k < 0
for τ = 2−2k−1 and x1 = 2−2k+1 > 0 for τ = 2−2k. In the two cases we then have again the
solutions to {

u′ = −F (u)
u(0) = 0

with u(t) < 0 for all t > 0 or u(t) > 0 for all t > 0, respectively.

Remark 5.1.6 Gradient flows, and hence minimizing movements, trivially do not com-
mute even with uniform convergence. As a simple example, take X = R and

Fε(x) = x2 − ρ sin
(x
ε

)
,

with ρ = ρε → 0 as ε→ 0, uniformly converging to F (x) = x2. If also

ε << ρ,

then for fixed x0 the solutions uε to the equation{
u′ε = −2uε +

ρ

ε
cos
(uε
ε

)
uε(0) = x0

converge to the constant function u0(t) = x0 as ε→ 0, which does not solve{
u′ = −2u
u(0) = x0 .

This is easily seen by studying the stationary solutions of

−2x+
ρ

ε
cos
(x
ε

)
= 0 .

5.2 Minimizing movements along a sequence of functionals

With Remark 5.1.6 above in mind, in order to give a meaningful limit for the energy-driven
motion along a sequence of functionals it may be useful to vary the definition of minimizing
movement as follows.

Definition 5.2.1 (minimizing movements along a sequence) Let X be a separable
Hilbert space, Fε : X → [0,+∞] equicoercive and lower semicontinuous and xε0 → x0 with

Fε(xε0) ≤ C < +∞, (5.7)
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and τε > 0 converging to 0 as ε→ 0. Fixed ε > 0 we define recursively xεk as a minimizer
for the problem

min
{
Fε(x) +

1
2τ
‖x− xεk−1‖2

}
, (5.8)

and the piecewise-constant trajectory uε : [0,+∞)→ X given by

uε(t) = xbt/τεc . (5.9)

A minimizing movement for Fε from xε0 is any limit of a subsequence uεj uniform on
compact sets of [0,+∞).

With the same proof as Proposition 5.1.4 we can show the following result.

Proposition 5.2.2 For every Fε and xε0 as above there exist minimizing movements for
Fε from xε0 in C1/2([0,+∞);X).

5.3 An example: “overdamped dynamics” of Lennard-Jones
interactions

Let J be as in Section 4.4 and 1
ε = N ∈ N. We consider the energies

Fε(u) =
N∑
i=1

J
(ui − ui−1√

ε

)
with the periodic boundary condition uN = u0. As proved in Section 4.4, after identification
of u with a piecewise-constant function on [0, 1], these energies Γ-converge to the energy

F (u) =
∫ 1

0
|u′|2 dt+ #(S(u) ∩ [0, 1)), u+ > u−,

defined on piecewise-H1 functions, in this case extended 1-periodically on the whole real
line.

In this section we apply the minimizing movements scheme to Fε as a sequence of
functionals in L2(0, 1). In order to have initial data uε0 with equibounded energy, we may
suppose that these are the discretization of a single piecewise-H1 function u0 (with a slight
abuse of notation we will continue to denote all these discrete functions by u0).

With fixed ε and τ , the time-discretization scheme consists in defining recursively uk

as a minimizer of

u 7→
N∑
i=1

J
(ui − ui−1√

ε

)
+

1
2τ

N∑
i=1

ε|ui − uk−1
i |2. (5.10)
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By Proposition 5.2.2, upon extraction of a subsequence, the functions uτ (t) = ubt/τc con-
verge uniformly in L2 to a function u ∈ C1/2([0,+∞);L2(0, 1)). Moreover, since we have
F (u(t)) ≤ F (u0) < +∞, u(t) is a piecewise-H1 function for all t.

We now describe the motion of the limit u. For the sake of simplicity we suppose that
u0 is a piecewise-Lipschitz function and that S(u0) ∩ {εi : i ∈ {1, . . . , N} = ∅ (so that we
do not have any ambiguity in the definition of the interpolations of u0)..

We first write down the Euler-Lagrange equations for uk, which amount to a simple
N -dimensional system of equations obtained by deriving (5.10) with respect to ui

1√
ε

(
J ′
(uki − uki−1√

ε

)
− J ′

(uki+1 − uki√
ε

))
+
ε

τ
(uki − uk−1

i ) = 0. (5.11)

• With fixed i ∈ {1, . . . , N} let vk be defined by

vk =
uki − uki−1

ε
.

For simplicity of notation we set

Jε(w) =
1
ε
J(
√
εw).

By (5.11) and the corresponding equation for i− 1, which can be rewritten as

J ′ε

(uki−1 − uki−2

ε

)
− J ′ε

(uki − uki−1

ε

)
+
ε

τ
(uki−1 − uk−1

i−1 ) = 0.

we have

vk − vk−1

τ
=

1
τ

(uki − uki−1

ε
−
uk−1
i − uk−1

i−1

ε

)
=

1
ε

(uki − uk−1
i

τ
−
uki−1 − u

k−1
i−1

τ

)
=

1
ε2

((
J ′ε

(uki−1 − uki−2

ε

)
− J ′

(uki − uki−1

ε

))
−
(
J ′ε

(uki − uki−1

ε

)
− J ′ε

(uki+1 − uki
ε

))
,

so that

vk − vk−1

τ
− 2
ε2
J ′ε(vk) = − 1

ε2

((
J ′ε

(uki−1 − uki−2

ε

)
+ J ′

(uki+1 − uki
ε

))
≥ − 2

ε2
J ′ε(

w0√
ε

) (5.12)

We recall that we denote by w0 the maximum point of J ′.
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We can interpret (5.12) as an inequality for the difference system

vk − vk−1

η
− 2J ′ε(vk) ≥ −2J ′ε(

w0√
ε

),

where η = τ/ε2 is interpreted as a discretization step. Note that vk = w0/
√
ε for all k is a

stationary solution of the equation

vk − vk−1

η
− 2J ′ε(vk) = −2J ′ε(

w0√
ε

)

and that J ′ε are equi-Lipschitz functions on [0,+∞). If η << 1 this implies that if vk0 ≤
w0/
√
ε for some k0 then

vk ≤
w0√
ε

for k ≥ k0,

or, equivalently, that if τ << ε2 the set

Skε =
{
i ∈ {1, . . . , N} :

uki − uki−1

ε
≥ w0√

ε

}
is decreasing with k. By our assumption on u0, for ε small enough we then have

S0
ε =

{
i ∈ {1, . . . , N} : [ε(i− 1), εi] ∩ S(u0) 6= ∅

}
,

so that, passing to the limit

S(u(t)) ⊆ S(u0) for all t ≥ 0. (5.13)

• Taking into account that we may define

uτ (t, x) = u
bt/τc
bx/εc,

we may choose functions φ ∈ C∞0 (0, T ) and ψ ∈ C∞0 (x1, x2), with (x1, x2)∩S(u0) = ∅, and
obtain from (5.11)∫ T

0

∫ x2

x1

uτ (t, x)
(φ(t)− φ(t+ τ)

τ

)
ψ(x) dx dt

= −
∫ T

0

∫ x2

x1

( 1√
ε
J ′
(√

ε
uτ (t, x)− uτ (t, x− ε)

ε

))
φ(t)

(ψ(x)− ψ(x+ ε)
ε

)
dx dt .

Taking into account that

lim
ε→0

1√
ε
J ′(
√
εw) = 2w,
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we can pass to the limit and obtain that

−
∫ T

0

∫ x2

x1

u(t, x)φ′(t)ψ(x) dx dt =
∫ T

0

∫ x2

x1

2
∂u

∂x
φ(t)ψ′(x) dx dt ;

i.e., that
∂u

∂t
= −2

∂2u

∂x2
(5.14)

in the sense of distributions (and hence also classically) in (0, T )×(x1, x2). By the arbitrari-
ness of the interval (x1, x2) we have that equation (5.14) is satisfied for x in (0, 1) \ S(u0).
•We now derive boundary conditions on S(u(t)). Let i0 + 1 belong to S0

ε , and suppose
that u+(t, x)− u−(t, x) ≥ c > 0. Then we have

lim
τ→0

1√
ε
J ′
(ubt/τci0

− ubt/τci0−1√
ε

)
= 0 .

If i < i0, from (5.11) it follows, after summing up the indices from i to i0, that

i0∑
j=i

ε

τ
(ukj − uk−1

j ) = − 1√
ε
J ′
(uki − uki−1√

ε

)
. (5.15)

We may choose i = iε such that εiε → x and we may deduce from (5.15) that∫ x0

x

∂u

∂t
dx = −2

∂u

∂x
(x),

where x0 ∈ S(u(t)) is the limit of εi0. Letting x→ x−0 we obtain

∂u

∂x
(x−0 ) = 0.

Similarly we obtain the homogeneous Neumann condition at x+
0 .

Summarizing, the minimizing movement of the scaled Lennard-Jones energies Fε from
a piecewise-H1 function consists in a piecewise-H1 motion, following the heat equation on
(0, 1) \ S(u0), with homogeneous Neumann boundary conditions on S(u0) (as long as u(t)
has a discontinuity at the corresponding point of S(u0)).
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Geometric minimizing movements

We now examine some minimizing movements describing the motion of sets. Such a motion
can be framed in the setting of the previous chapter after identification of a set A with
its characteristic function u = χA. The energies we are going to consider are of perimeter
type; i.e., with

F (A) = Hn−1(∂A) (6.1)

as a prototype in the notation of the previous section. A heuristic arguments suggests that
the variation of the perimeter be linked to the notion of curvature; hence, we expect to
be able to obtain motion by mean curvature as a minimizing movement; i.e., for a smooth
set, its motion in the normal direction with velocity proportional to its curvature. In the
simplest case of initial datum a ball A0 = BR0(0) in R2 the motion is given by concentric
balls with radii satisfying R′ = − c

R

R(0) = R0;
(6.2)

i.e., R(t) =
√
R2

0 − 2ct, valid until the extinction time t = R2
0/2c, when the radius vanishes.

We will see that in order to obtain geometric motions as minimizing movements we will
have to modify the procedure described in the previous chapter.

Example 6.0.1 (pinning for the perimeter motion) Let n = 2. We apply the mini-
mizing-movement procedure to the perimeter functional (6.1) and the initial datum A0 =
BR0(0) in R2.

With fixed τ , since ∫
R2

|χA − χB|2 dx = |A4B|,

the minimization to determine A1 is

min
{
H1(∂A) +

1
2τ
|A4A0|

}
. (6.3)

51
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We note that we can restrict our attention to sets A contained in A0, since otherwise
taking A ∩ A0 as test sets in their place would decrease both terms in the minimization.
Once this is observed, we also note that, given A ⊂ A0, if BR(x) ⊂ A0 has the same
measure as A then it decreases the perimeter part of the energy (strictly, if A itself is
not a ball) while keeping the second term fixed. Hence, we can limit our analysis to balls
BR(x) ⊂ A0, for which the energy depends only on R. The incremental problem is then
given by

min
{

2πR+
π

2τ
(R2

0 −R2) : 0 ≤ R ≤ R0

}
, (6.4)

whose minimizer is either R = 0 (with value π
2τR

2
0) or R = R0 (with value 2πR0) since in

(6.4) we are minimizing a concave function of R. For τ small the minimizer is then R0.
This means that the motion is trivial: Ak = A0 for all k, and hence also the resulting
minimizing movement is trivial.

6.1 A first (unsuccessful) generalization

We may generalize the scheme of the minimizing movements by taking a more general
distance term in the minimization; e.g., considering xk as a minimizer of

min
{
F (x) +

1
τ

Φ(‖x− xk−1‖)
}
, (6.5)

where Φ is a continuous increasing function with Φ(0) = 0. As an example, we can consider

Φ(z) =
1
p
|z|p .

Note that in this case we obtain the estimate

‖xk − xk−1‖p ≤ p τ(F (xk−1 − F (xk))

for the minimizer xk. Using Hölder’s inequality as in the case p = 2, we end up with (for
j > h)

‖xj − xh‖ ≤ (j − h)(p−1)/p
( j∑
k=h+1

‖xk − xk−1‖p
)1/p

≤ (pF (x0))1/p(τ1/(p−1)(j − h))(p−1)/p.

In order to obtain a (1− 1
p) Hölder continuity for the interpolated function uτ we have to

define it as
uτ (t) = ubt/τ1/(p−1)c.
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Note that we may use the previous definition uτ (t) = ubt/τc for the interpolated function
if we change the parameter τ in (6.5) and consider instead the problem

min
{
F (x) +

1
τp−1

Φ(‖x− xk−1‖)
}

(6.6)

to define xk.

Example 6.1.1 ((non-)geometric minimizing movements) We use the scheme above,
with a slight variation in the exponents since we will be interested in the description of
the motion in terms of the radius of a ball in R2 (which is the square root of the L2-
norm and not the norm itself). As in the previous example, we take the initial datum
A0 = BR0 = BR0(0), and consider Ak defined recursively as a minimizer of

min
{
H1(∂A) +

1
pτp−1

|A4A0|p
}
, (6.7)

with p > 1. As above, at each step the minimizer is given by balls

BRk(xk) ⊂ BRk−1
(xk−1). (6.8)

The value of Rk is determined by solving

min
{

2πR+
πp

pτp−1
(R2

k−1 −R2)p : 0 ≤ R ≤ Rk−1

}
, (6.9)

which gives
Rk −Rk−1

τ
= − 1

πR
1/(p−1)
k (Rk +Rk−1)

. (6.10)

Note that in this case the minimum value is not taken at Rk = Rk−1 (this can be checked,
e.g., by checking that the derivative of the function to be minimized in (6.9) is positive at
Rk−1). By passing to the limit in (6.10) we deduce the equation

R′ = − 1
2πRp/(p−1)

(6.11)

(valid until the extinction time).
Despite having obtained an equation for R we notice that this approach is not satisfac-

tory, since
• (non-geometric motion) in (6.8) we have infinitely many solutions; namely, all

balls centered in xk with
|xk−1 − xk| ≤ Rk−1 −Rk.

This implies that we may have moving centres x(t) provided that |x′| ≤ R′ and x(0) = 0;
in particular we may choose x(t) = (R0−R(t))z for any z ∈ B1(0) which converges to R0z;



54 CHAPTER 6. GEOMETRIC MINIMIZING MOVEMENTS

i.e., the point where the sets concentrate at the vanishing time may be any point in BR0

at the extinction time. This implies that the motion is not a geometric one: sets do not
move according to geometric quantities.
• (failure to obtain mean-curvature motion) even if we obtain an equation for R

we never obtain the mean curvature flow since p/(p− 1) > 1.

6.2 A variational approach to curvature-driven motion

In order to obtain motion by curvature Almgren, Taylor and Wang have introduced a vari-
ation of the implicit-time scheme described above, where the term |A4Ak| is substituted
by an integral term which favours variations which are ‘uniformly distant’ to the boundary
of Ak. The problem defining Ak is then

min
{
H1(∂A) +

1
τ

∫
A4Ak−1

dist(x, ∂Ak−1) dx
}
. (6.12)

We will not prove a general convergence result for an arbitrary initial datum A0, but we
will check the convergence to mean-curvature motion for A = BR0 in R2.

In this case we note that if Ak−1 is a ball centered in 0 then we have
• Ak is contained in Ak−1. To check this note that, given a test set A, considering

A ∩Ak−1 as a test set in its place decreases the energy in (6.12), strictly if A \Ak−1 6= ∅;
• Ak is convex and with baricenter in 0. To check this, first, note that each connected

component of Ak is convex. Otherwise, considering the convex envelopes decreases the
energy (strictly, if one of the connected components if not convex). Then note that if 0
is not the baricenter of a connected component of Ak then a small translation towards 0
strictly decreases the energy (this follows by computing the derivative of the volume term
along the translation). In particular, we only have one (convex) connected component;

From these properties we can conclude that Ak is indeed a ball centered in 0. Were it
not so, there would be a line through 0 such that the boundary of Ak intersects transversally
this line. By a reflection argument we then obtain a non-convex set Ãk with energy not
greater than the one of Ak. Its convexification would then strictly decrease the energy.
This shows that each Ak is of the form

Ak = BRk = BRk(0).

We can now compute the equation satisfied by Rk, by minimizing

min
{

2πR+
2π
τ

∫ Rk−1

R
(Rk−1 − ρ)ρ dρ

}
, (6.13)

which gives
Rk −Rk−1

τ
= − 1

Rk
. (6.14)

Passing to the limit gives the desired mean curvature equation (6.2).



Chapter 7

Homogenization of minimizing
movements

We now examine minimizing movements along oscillating sequences (with many local min-
ima). We first treat a model case, and subsequently compute minimizing movements for
geometric motions.

7.1 An example in the real line

We apply the minimizing-movement scheme to the functions

Fε(x) = −
⌊x
ε

⌋
ε

converging to F (x) = −x (see Fig. 7.1). This is a prototype of a function with many local

ε

Figure 7.1: the function Fε

55
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minimizers (actually, in this case all points are local minimizers) converging to a function
with few local minimizers (actually, none).

Note that, with fixed ε, for any initial datum x0 the minimizing movement for Fε is
trivial: u(t) = x0, since all points are local minimizers. Conversely the corresponding
minimizing movement for the limit is u(t) = x0 + t.

We now fix an initial datum x0, the space scale ε and the time scale τ , and examine
the successive-minimization scheme from x0. Note that it is not restrictive to suppose that
0 ≤ x0 < 1 up to a translation in εZ.

The first minimization, giving x1 is

min
{
Fε(x) +

1
2τ

(x− x0)2
}
. (7.1)

The function to minimize is pictured in Figure 7.2 in normalized coordinates (ε = 1); note
that it equals −x+ 1

2τ (x− x0)2 if x ∈ εZ.
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Figure 7.2: the function in the minimization problem (7.1)

We have two possibilities:
(i) the minimizer belongs to [0, ε). This occurs exactly if Fε(ε) > 0; i.e.,

τ <
(x0 − ε)2

2ε
. (7.2)

In this case the only minimizer is still x0. This implies that for all k we have xk = x0.
Note however that condition (7.2) is asymptotically empty as ε → 0 if x0 6= 0. Hence, we
may suppose that x0 = 0, so that condition (7.2) becomes

τ

ε
<

1
2

;
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(ii) if τ
ε > 1

2 then for ε small the minimum is taken on εZ. So that again we may
suppose that x0 = 0.

Note that if x0 = 0 and τ
ε = 1

2 then we have a double choice for the minimizer. These
cases will be examined separately.

If x0 = 0 then x1 is computed by solving

min
{
Fε(x) +

1
2τ
x2 : x ∈ εZ

}
, (7.3)

and is characterized by

x1 −
1
2
ε ≤ τ ≤ x1 +

1
2
ε.

We then have
x1 =

⌊τ
ε

+
1
2

⌋
ε if

τ

ε
+

1
2
6∈ Z

(note again that we have two solutions for τ
ε + 1

2 ∈ Z, and we examine this case separately).
The same computation is repeated at each k giving

xk − xk−1

τ
=
⌊τ
ε

+
1
2

⌋ ε
τ
.
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Figure 7.3: the velocity v in terms of w

We can now choose τ and ε tending to 0 simultaneously and pass to the limit. The
behaviour of the limit minimizing movements is governed by the quantity

w = lim
ε→0

τ

ε
, (7.4)

which we may suppose exists up to subsequences. If w + 1
2 6∈ Z then the minimizing

movement along Fε from x0 is uniquely defined by

u(t) = x0 + vt, with v =
⌊
w +

1
2

⌋ 1
w
,
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so that the whole sequence converges if the limit in (7.4) exists. Note that
• (pinning) we have v = 0 exactly when τ

ε <
1
2 for ε small. In particular this holds

for τ << ε (i.e., for w = 0);
• (limit motion for slow times) if ε << τ then the motion coincides with the gradient

flow of the limit, with velocity 1;
• (discontinuous dependence of the velocity) the velocity is a discontinuous func-

tion of w at points of 1
2 + Z. Note moreover that it may be actually greater than the limit

velocity 1. The graph of v is pictured in Figure 7.3
• (non-uniqueness at w ∈ 1

2 + Z) in these exceptional cases we may have either of
the two velocities 1 + 1

2w or 1 − 1
2w in the cases ε

τ + 1
2 > w or ε

τ + 1
2 < w for all ε small

respectively, but we may also have any u(t) with

1− 1
2w
≤ u′(t) ≤ 1 +

1
2w

if we have precisely ε
τ + 1

2 = w for all ε small, since in this case at every time step we
may choose any of the two minimizers giving the extremal velocities. Note therefore that
in this case the limit is not determined only by w, and in particular it mat depend on the
subsequence even if the limit (7.4) exists.

Figure 7.4: other potentials giving the same homogenization pattern

We remark that the functions Fε above can be substituted by functions with isolated
local minimizers; e.g. by taking (α > 0)

Fε(x) = −
⌊x
ε

⌋
ε+ α

(
x−

⌊x
ε

⌋
ε
)
,

with isolated local minimizers at εZ (for which the computations run exactly as above), or

Fε(x) = −x+ (1 + α)ε sin
(x
ε

)
.
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Note that the presence of an energy barrier between local minimizers does not influence the
velocity of the final minimizing movement, that can always be larger than 1 (the velocity
as ε << τ).

7.2 Homogenization of flat flows

We now consider geometric functionals with many local minimizers, which give a more
refined example of homogenization. The functionals we consider are defined on (sufficiently
regular) subsets of R2 by

Fε(A) =
∫
∂A
a
(x
ε

)
dH1, (7.5)

where
a(x1, x2) =

{ 1 if x1 ∈ Z or x2 ∈ Z
4 otherwise.

Here, for simplicity we consider the value 4, so that arguments are clearer, but this value
is not optimal and can be lowered. This is however not relevant for our purposes. The
Γ-limit of the energies Fε is the crystalline energy

F (A) =
∫
∂A
‖ν‖1dH1, (7.6)

with ‖(ν1, ν2)‖1 = |ν1|+ |ν2|. The minimizing movement for F is called a flat flow. We will
first briefly describe it, and then compare it with the minimizing movements for Fε.

7.2.1 Motion by crystalline curvature

The incremental problems for the minimizing-movement scheme for F are of the form

min
{
F (A) +

1
τ

∫
A4Ak−1

dist∞(x, ∂Ak−1) dx
}
, (7.7)

where for technical reasons we consider the ∞-distance

dist∞(x,B) = inf{‖x− y‖∞ : y ∈ B} .

However, again this will not be relevant in our computations.
We only consider the case of an initial datum A0 a rectangle, which plays the role

played by a ball for motion by mean curvature. Note that, as in Section 6.2, we can prove
that if Ak−1 is a rectangle, then we can limit the computation in (7.7) to
• A contained in Ak−1 (otherwise A ∩Ak−1 strictly decreases the energy)
• A with each connected component a rectangle (otherwise taking the least rectangle

containing a given component would decrease the energy, strictly if A is not a rectangle);
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Figure 7.5: incremental crystalline minimization

• A connected and with the same baricenter as A0 (since translating the baricenter
towards 0 decreases the energy).

Hence, we may suppose that

Ak =
[
−
Lk,1

2
,
Lk,1

2

]
×
[
−
Lk,2

2
,
Lk,2

2

]
for all k. In order to iteratively determine Lk we have to minimize the energy

min
{

2(Lk,1 + ∆L1) + 2(Lk,2 + ∆L2) +
1
τ

∫
A4Ak−1

dist∞(x, ∂Ak−1) dx
}
. (7.8)

In this computation it is easily seen that for τ small the integral term can be substituted
by

Lk,1
4

(∆L2)2 +
Lk,2

4
(∆L1)2.

This argument amounts to noticing that the contribution of the small rectangles at the
corners highlighted in Figure 7.5 is negligible as τ → 0. The optimal increments (more
precisely, decrements) ∆Lj are then determined by the conditions

1 +
Lk,2
4τ

∆L1 = 0

1 +
Lk,1
4τ

∆L2 = 0.
(7.9)

Hence, we have the difference equations

∆L1

τ
= − 4

Lk,2
,

∆L2

τ
= − 4

Lk,1
, (7.10)
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which finally gives the system of ODEs for the limit rectangles, with edges of length L1(t)
and L2(t) respectively, 

L′1 = − 4
L2

L′2 = − 4
L1
.

(7.11)

Geometrically, each edge of the rectangle moves inwards with velocity inversely pro-
portional to its length; more precisely, equal to twice the inverse of its length (so that the
other edge contracts with twice this velocity). Hence, the inverse of the length of an edge
plays the role of the curvature in this context (crystalline curvature).

It is worth noticing that by (7.11) all rectangles are homothetic, since d
dt
L1
L2

= 0, and
with area satisfying

d

dt
L1L2 = −8,

so that L1(t)L2(t) = L0,1L0,2 − 8t, which gives the extinction time t = L0,1L0,2/8. In the
case of an initial datum a square of side length L0, the sets are squares whose side length
at time t is given by L(t) =

√
L2

0 − 8t in analogy with the evolution of balls by mean
curvature flow.

7.2.2 Homogenization of oscillating perimeters

We consider the sequence Fε in (7.5). Note that for any (sufficiently regular) initial datum
A0 we have that A′ε ⊂ A0 ⊂ A′′ε , where A′ε and A′′ε are such that Fε(A′ε) = H1(∂A′ε) and
Fε(A′′ε) = H1(∂A′′ε) and |A′′ε \A′ε| = O(ε). Such sets are local minimizers for Fε and hence
the minimizing movement of Fε from either of them is trivial. As a consequence, if Aε(t)
is a minimizing movement for Fε from A0 we have

A′ε ⊂ Aε(t) ⊂ A′′ε

This shows that for any set A0 the only limit limε→0Aε(t) of minimizing movements for
Fε from A0 is the trivial motion A(t) = A0.

We now compute the minimizing movements along the sequence Fε with initial datum
a rectangle, and compare it with the flat flow described in the previous section.

For simplicity of computation we deal with a constrained case, when
• for every ε the initial datum A0 = Aε0 is a rectangle centered in 0 such that Fε(A) =

H1(∂A) (i.e., its edge lengths L0,j belong to 2εZ). In analogy with x0 in the example in
Section 7.1, if this does not hold then either it does after one iteration or we have a pinned
state Ak = A0 for all k;
• all competing A are rectangles with Fε(A) = H1(∂A) centered in 0. The fact that

all competing sets are rectangles follows as for the flat flow in the previous section. The
fact that Fε(Ak) ≤ Fε(Ak−1) then implies that the minimal rectangles satisfy Fε(Ak) =
H1(∂Ak). The only real assumption at this point is that they are centered in 0. This
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hypothesis can be removed, upon a slightly more complex computation, which would only
make the arguments less clear.

After this simplifications, the incremental problem is exactly as in (7.7) since for com-
peting sets we have Fε(A) = F (A), the only difference being that now Lk,1, Lk,2 ∈ 2εZ.
The problem in terms of 4Lj , using the same simplification for (7.8) as in the previous
section, is then

min
{

2(Lk,1 + ∆L1) + 2(Lk,2 + ∆L2) +
Lk,1
4τ

(∆L2)2 +
Lk,2
4τ

(∆L1)2 : ∆Lj ∈ 2εZ
}
. (7.12)

This is a minimization problem for a parabola as the ones in Section 7.1 that gives

∆L1 = −
⌊ 4τ
εLk,2

+
1
2

⌋
ε if

4τ
εLk,2

+
1
2
6∈ Z (7.13)

(the other cases giving two solutions), and an analogous equation for ∆L2. Passing to the
limit we have the system of ODEs, governed by the parameter

w = lim
ε→0

τ

ε

(which we may suppose up to subsequences), which reads as
L′1 = − 1

w

⌊4w
L2

+
1
2

⌋
L′2 = − 1

w

⌊4w
L1

+
1
2

⌋
.

(7.14)

Note that the right-hand side is a discontinuous function of Lj , so some care must be taken
at times t when 4w

Lj(t)
+ 1

2 ∈ Z. However, apart some exceptional cases, this condition holds
only for a countable number of t, and is therefore negligible.

We can compare the resulting minimizing movements with the crystalline curvature
flow, related to F .
• (total pinning) if τ << ε (w = 0) then we have A(t) = A0;
• (crystalline curvature flow) if ε << τ then we have the minimizing movements

described in the previous section;
• (partial pinning/asymmetric curvature flow) if 0 < w < +∞ then we have
(i) (total pinning) if both L0,j > 8w then the motion is trivial A(t) = A0;
(ii) (partial pinning) if L0,1 > 8w, L0,2 < 8w and 4w

L0,2
+ 1

2 6∈ Z then the horizontal edges
do not move, but they contract with constant velocity until L1(t) = 8w;

(iii) (asymmetric curvature flow) if L0,1 ≤ 8w and L0,2 < 8w then we have a unique
motion with A(t) ⊂⊂ A(s) if t > s, up to a finite extinction time. Note however that the
sets A(s) are nor homothetic, except for the trivial case when A0 is a square.
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Some cases are not considered above, namely those when we do not have uniqueness
of minimizers in the incremental problem. This may lead to a multiplicity of minimizing
movements, as remarked in Section 7.1.

It is worthwhile to highlight that we may rewrite the equations for L′j as a variation of
the crystalline curvature flow; e.g., for L′1 we can write it as

L′1 = −f
(L2

w

) 4
L2
, with f(z) =

z

4

⌊4
z

+
1
2

⌋
.

This suggests that the ‘relevant’ homogenized problem is the one obtained for τ
ε = 1, as

all the others can be obtained from this one by a scaling argument.
We note that the scheme can be applied to the evolution of more general sets, but

the analysis of the rectangular case already highlights the new features deriving from the
microscopic geometry.

7.3 Flat flow with oscillating forcing term

We now consider another minimizing-movement scheme linked to the functional F in (7.6).
In this case the oscillations are given by a lower-order forcing term. We consider, in R2,

Gε(A) =
∫
∂A
‖ν‖1dH1 +

∫
A
g
(x1

ε

)
dx, (7.15)

where g is 1-periodic and

g(s) =
{
α if 0 < x < 1

2
β if 1

2 < x < 1

with α, β ∈ R and α < β. Note that the additional term may be negative, so that
this functional is not positive; however, the minimizing-movement scheme can be applied
unchanged.

Since the additional term converges continuously in L1 as ε→ 0, the Γ-limit is simply

G(A) =
∫
∂A
‖ν‖1dH1 +

α+ β

2
|A|. (7.16)

7.3.1 Flat flow with forcing term

We now consider minimizing movements for G. As in Section 7.2.1 we only deal with a
constrained problem, when both the initial datum and the competing sets are rectangles
centered in 0. With the notation of Section 7.2.1 we are led to the minimum problem

min
{

2(Lk,1+∆L1+Lk,2+∆L2)+
Lk,1
4τ

(∆L2)2+
Lk,2
4τ

(∆L1)2+
α+ β

2
(Lk,1+∆L1)(Lk,2+∆L2)

}
.

(7.17)
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The minimizing pair (∆L1,∆L2) satisfies

∆L1

τ
= −

( 4
Lk,2

+ (α+ β)
(

1 +
∆L2

Lk,2

))
(7.18)

and the analogous equation for ∆L2
τ . Passing to the limit we haveL′1 = −

(
4
L2

+ α+ β
)

L′2 = −
(

4
L1

+ α+ β
)
,

(7.19)

so that each edge moves with velocity 2
L2

+ α+β
2 , with the convention that it moves inwards

if this number is positive, outwards if it is negative.
Note that if α + β ≥ 0 then L1 and L2 are always decreasing and we have finite-time

extinction, while if α + β < 0 then we have an equilibrium for Lj = 4
|α+β| , and we have

expanding rectangles, with an asymptotic velocity of each side of |α+β|
2 as the side length

diverges.

7.3.2 Homogenization of forcing terms

In order to highlight new homogenization phenomena, we treat the case τ << ε only.
Again, we consider the constrained case when both the initial datum and the competing
sets are rectangles centered in 0 and adopt the notation of Section 7.2.1.

Taking into account that τ << ε the incremental minimum problem can be approxi-
mated by

min
{

2(Lk,1 + ∆L1 + Lk,2 + ∆L2) +
Lk,1
4τ

(∆L2)2 +
Lk,2
4τ

(∆L1)2

+
α+ β

2
Lk,1Lk,2 +

α+ β

2
Lk,1∆L2 + g

(Lk,1
2ε

)
Lk,2∆L1

}
. (7.20)

In considering the term g
(
Lk,1
2ε

)
we assume implicitly that τ is so small that both Lk,1

2ε and
Lk,1+∆L1

2ε belong to the same interval where g is constant. This can be assumed up to a
number of k that is negligible as τ → 0.

For the minimizing pair of (7.20) we have
2 +

Lk,2
2τ

∆L1 + g
(Lk,1

2ε

)
Lk,2 = 0

2 +
Lk,1
2τ

∆L2 +
α+ β

2
Lk,1 = 0;

(7.21)

that is, 
∆L1

τ
= −

( 4
Lk,2

+ 2g
(Lk,1

2ε

)
∆L2

τ
= −

( 4
Lk,1

+ (α+ β)
)
.

(7.22)
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This systems shows that the horizontal edges move with velocity 2
Lk,1

+ α+β
2 , while the

velocity of the vertical edges depends on the location of the edge and is

2
Lk,2

+ g
(Lk,1

2ε

)
.

We then deduce that the limit velocity for the horizontal edges of length L1 is

2
L1

+
α+ β

2
(7.23)

As for the vertical edges, we have:
• (mesoscopic pinning) if L2 is such that( 2

L2
+ α

)( 2
L2

+ β
)
< 0

then the vertical edge is eventually pinned in the minimizing-movement scheme. This
pinning is not due to the equality Lk+1,1 = Lk,1 in the incremental problem, but to the
fact that the vertical edge move in different directions depending on the value of g;
• (homogenized velocity) if on the contrary the vertical edge length satisfies( 2

L2
+ α

)( 2
L2

+ β
)
> 0

then we have a limit effective velocity of the vertical edge given by the harmonic mean of
the two velocities 2

L2
+ α and 2

L2
+ β; namely,

(2 + αL2)(2 + βL2)

L2

(
2 + α+β

2 L2

) . (7.24)

We finally examine some cases explicitly.

(i) Let α = −β. Then we have
L′2 = − 4

L1

L′1 = −2
(2− βL2) ∨ 0

L2
;

i.e., the vertical edges are pinned if their length is larger than 2/β. In this case, the
horizontal edges move inwards with constant velocity 2

L0,1
. In this way the vertical edges

shrink with rate 4
L0,1

until their length is 2/β. After this, the whole rectangle shrinks in
all directions.
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Figure 7.6: velocity with an interval of mesoscopic pinning

(ii) Let α < β < 0. Then for the vertical edges we have an interval of “mesoscopic
pinning” corresponding to

2
|β|
≤ L2 ≤

2
|α|

(7.25)

The velocity of the vertical edges in dependence of their length is then given by

v =

{
0 if (7.25) holds
(2+αL2)(2+βL2)

L2(2+α+β
2
L2)

otherwise

and is pictured in Figure 7.6. Instead, the velocity of the horizontal edges is given by
(7.23), so that they move inwards if

L1 <
4

|α+ β|
,

and outwards if L1 >
4

|α+β| .
In this case we can consider as initial datum a square of side length L0.
If L0 ≤ 2

|β| then all edges move inwards until a finite extinction time;
if 2
|β| < L0 <

4
|α+β| then first only the horizontal edges move inwards until the vertical

edge reaches the length 2
|β| , after which all edges move inwards;

if 4
|α+β| < L0 <

2
|α| then first only the horizontal edges move outwards until the vertical

edge reaches the length 2
|α| , after which all edges move outwards;

if L0 ≥ 2
|α| then all edges move outwards, and the motion is defined for all times. The

asymptotic velocity of the vertical edges as the length of the edges diverges is∣∣∣ 2αβ
α+ β

∣∣∣ ,
lower than

∣∣∣α+β
2

∣∣∣ (the asymptotic velocity for the horizontal edges).



Chapter 8

Different time scales

In this chapter we treat some variations on the minimizing-movement scheme motivated
by some time-scaling argument.

8.1 Long-time behaviour

We will introduce a new parameter λ and follow the iterative minimizing scheme from an
initial datum x0 by considering xk defined recursively as a minimizer of

min
{
Fε(x) +

λ

2τ
‖x− xk−1‖2

}
, (8.1)

and setting uτ (t) = uτ,λ(t) = xbt/τc. Equivalently, we may view this as applying the
minimizing-movement scheme to

min
{ 1
λ
Fε(x) +

1
2τ
‖x− xk−1‖2

}
. (8.2)

Note that we may compare this scheme with the usual one where xi are defined as min-
imizers of the minimizing-movement scheme with time scale η = τ/λ giving uη as a dis-
cretization with lattice step η. Then we have

uτ (t) = xbt/τc = xbt/ληc = uη
( t
λ

)
.

Hence, the introduction of λ corresponds to a scaling of time.

We now first give some simple examples which motivate the study of time-scaled prob-
lems.

Example 8.1.1 Consider in R2 the energy

Fε(x, y) =
1
2

(x2 + εy2).

67
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The corresponding gradient flow is then{
x′ = −x
y′ = −εy,

with solutions of the form

(xε(t), yε(t)) = (x0e
−t, y0e

−εt).

These solutions converge to (x(t), y(t)) = (x0e
−t, y0), solving{

x′ = −x
y′ = 0,

which is the gradient flow of the limit F (x, y) = 1
2x

2. Note that

lim
t→+∞

(xε(t), yε(t)) = (0, 0) 6= (0, y0) = lim
t→+∞

(x(t), y(t)).

The trajectories of the solutions (xε, yε) lie on the curves

y

y0
=
( x
x0

)ε
and are pictured in Fig. 8.1.

Figure 8.1: trajectories of the solutions, and their pointwise limit

The solutions can be seen as superposition of (x(t), y(t)) and ε(x∞(t), y∞(t)), where

(x∞(t), y∞(t)) := (0, e−t)

is the solution of 
x′ = 0
y′ = −y
(x(0), y(0)) = (0, y0).
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The solution (x∞, y∞) can be obtained by scaling (xε, yε); namely,

(x∞(t), y∞(t)) = lim
ε→0

(xε(t/ε), yε(t/ε)).

In this case the scaled time-scale is λ = ε. Note that the limit of the scaled solutions does
not satisfy the original initial condition, but its “projection” on the set of (local) minimizers
of the limit energy F (or, in other words, the domain of the limit of the energies 1

εFε).

Example 8.1.2 A similar example can be constructed in one dimension, taking, e.g.,

Fε(x) =
ε

2
x2 +

1
2

((|x| − 1) ∨ 0)2 .

If x0 < −1 then the corresponding solutions xε satisfy:
• the limit x(t) = limε→0 xε(t) solves{

x′ = −x− 1
x(0) = x0,

which corresponds to the gradient flow of the energy

F (x) =
1
2

((|x| − 1) ∨ 0)2 .

• the scaled limit x∞(t) = limε→0 xε(t/ε) solves{
x′ = −x
x(0) = −1,

which corresponds to the gradient flow of the energy

F∞(x) = lim
ε→0

1
ε
Fε(x) .

In this case the initial datum is the projection of x0 on the domain of F∞.

We now give more examples with families of energies Fε Γ-converging to a limit F .
Since we are mainly interested in highlighting the existence of a time scale at which the
scaled motion is not trivial, we will make some simplifying assumptions, one of which is
that the initial datum be a local minimizer for F , so that the minimizing movement for
the limit from that point is trivial.

Example 8.1.3 We take as F the 1D Mumford-Shah functional on (0, 1) defined by

F (u) =
∫ 1

0
|u′|2dt+ #(S(u)),
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with domain the set of piecewise-H1 functions. We take

Fε(u) =
∫ 1

0
|u′|2dt+

∑
(S(u))

g
( |u+ − u−|

ε

)
,

where g is a positive concave function with

lim
z→+∞

g(z) = 1.

We also consider the boundary conditions

u(0−) = 0, u(1+) = 1.

We suppose that
• u0 is a local minimizer for F ; i.e., it is piecewise constant;
• #(S(u0)) = {x0, x1} (the simplest non-trivial local minimizer) with 0 ≤ x0 < x1 ≤ 1;
• competing functions are also piecewise constant.

With these conditions, it is immediately seen that all minimizers uk obtained by itera-
tive minimization satisfy:
• S(uk) ⊂ {x0, x1}.
We may use as a one-dimensional parameter the constant value zk of uk on (x0, x1).

The minimum problem defining zk is then (supposing that z0 > 0 so that all zk > 0)

min
{ 1
λ

(
g
(z
ε

)
+ g
(1− z

ε

))
+

1
2τ

(x1 − x0)(z − zk−1)2
}
,

which gives

(x1 − x0)
zk − zk−1

τ
= − 1

ελ

(
g′
(zk
ε

)
− g′

(1− zk
ε

))
.

As an example, we may take
g(z) =

z

1 + z
,

so that the equation for zk becomes

(x1 − x0)
zk − zk−1

τ
= − ε

λ

( 1
ε2 + z2

k

− 1
ε2 + (zk − 1)2

))
.

This suggests the scale
λ = ε,

and with this choice gives the limit equation for z(t)

z′ = − 1− 2z
(x1 − x0)z2(z − 1)2

.

In this time scale, unless we are in the equilibrium z = 1
2 the middle value moves towards

the closest value between 0 and 1.
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Example 8.1.4 We consider another approximation of the Mumford-Shah functional: the
(scaled) Perona-Malik functional. In the notation for discrete functionals (see Section 4.4),
we may define

Fε(u) =
N∑
i=1

1
| log ε|

log
(

1 + ε| log ε|
∣∣∣ui − ui−1

ε

∣∣∣2) .
Note that also the pointwise limit on piecewise-H1 functions gives the Mumford-Shah
functional since

lim
ε→0

1
ε| log ε|

log
(

1 + ε| log ε|z2
)

= z2

and

lim
ε→0

1
| log ε|

log
(

1 + | log ε|w
2

ε

)
= 1

for all w 6= 0.
As in the previous example, we consider the case when competing functions are non-

negative piecewise constants with S(u) ⊂ S(u0) = {x0, x1} and with the boundary con-
ditions u(0−) = 0, u(1+) = 1. The computation is then reduced to a one-dimensional
problem with unknown the constant value zk defined by the minimization

min
{ 1
λ| log ε|

(
log
(

1 + | log ε|z
2

ε

)
+ log

(
1 + | log ε|(z − 1)2

ε

))
+

1
2τ

(x1 − x0)(z − zk−1)2
}
,

which gives the equation

(x1 − x0)
zk − zk−1

τ
= − 2

λ

( z

ε+ | log ε|z2
+

z − 1
ε+ | log ε|(z − 1)2

)
.

This suggests the time scale

λ =
1

| log ε|
,

and gives the equation for z(t)

z′ = − 2
(x1 − x0)

· 1− 2z
z(1− z)

,

which provides a qualitative behaviour of z similar to the previous example.

Example 8.1.5 We now consider the sharp-interface model with

F (u) = #(S(u) ∩ [0, 1))

defined on all piecewise-constant 1-periodic functions with values in ±1. For F all functions
are local minimizers.
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We take

Fε(u) = #(S(u) ∩ [0, 1))−
∑

xi∈[0,1)∩S(u)

e−
xi+1−xi

ε ,

where {xi} = S(u) is a numbering of S(u) with xi < xi+1.
We take as initial datum u0 with #(S(u0)) = 2; hence, S(u0) = {x0, y0}, and apply

the Almgren-Taylor-Wang variant of the iterative minimization process, after identifying
u0 with A0 = [x0, y0]. The computation of A1 = [x1, y1] is obtained by the minimization
problem

min
{
− 1
λ

(
e−

(y−x)
ε + e−

(1+x−y)
ε

)
+

1
2τ

((x− x0)2 + (y − y0)2)
}
,

which gives

x1 − x0

τ
=

1
ελ

(
e−

(y1−x1)
ε − e−

(1+x1−y1)
ε

)
y1 − y0

τ
= − 1

ελ

(
e−

(y1−x1)
ε − e−

(1+x1−y1)
ε

)
.

Let y0 − x0 < 1/2; we argue that the scaled time scale is

λ =
1
ε
e−

y0−x0
ε ,

for which we have

x1 − x0

τ
=

(
e−

(y1−y0−x1+x0)
ε − e−

(1+x1−x0−y1+y0)
ε

)
y1 − y0

τ
= −

(
e−

(y1−y0−x1+x0)
ε − e−

(1+x1−x0−y1+y0)
ε

)
.

In terms of Lk = yk − xk this can be written as

L1 − L0

τ
= −2

(
e−

(L1−L0)
ε − e−

(1+L0−L1)
ε

)
.

Under the assumption τ << ε we have in the limit

L′ = −2
(
eo(1) − e−

1
ε

+o(1)
)

= −2 ,

which shows that the two closer interfaces move towards each other shortening linearly
their distance.
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8.2 Reversed time

In a finite-dimensional setting a condition to be able to define a minimizing movement for
F is that

u 7→ F (u) +
1
τ
|u− u|2 (8.3)

be lower semicontinuous and coercive for all u and for τ sufficiently small. This is not in
contrast with requiring that also

u 7→ −F (u) +
1
τ
|u− u|2 (8.4)

satisfy the same conditions; for example if F is continuous and of quadratic growth. If the
iterative scheme gives a solution for the gradient flow, a minimizing movement u for the
second scheme produces a solution v(t) = u(−t) to the backward problem{

v′(t) = −F (v(t)) for t ≤ 0
v(0) = u0

In an infinite-dimensional setting the two requirements of being able to define both
the minimizing movement (8.3) and (8.4) greatly limits the choice of F , and rules out all
interesting cases. A possible approach to the definition of a backward minimizing movement
is then to introduce a (finite-dimensional) approximation Fε to F , for which we can define
a minimizing motion along −Fε. We now give an example in the context of crystalline
motion.

Example 8.2.1 We consider in R2

F (A) =
∫
∂A
‖ν‖1dH1,

and Fε the restriction of F to the sets of the form⋃{
εi+

(
−ε

2
,
ε

2

)2
: i ∈ B

}
,

where B is a subset of Z2. Hence, we may identify these union of ε-cubes with the corre-
sponding B. Even though this is not a finite-dimensional space, we will be able to apply
the Almgren-Taylor-Wang scheme.

We choose (with the identifications with subsets of Z2) as initial datum

Aε0 = {(0, 0)} =
(
−ε

2
,
ε

2

)2
,

and solve iteratively

min
{
−Fε(A) +

1
τ

∫
A\Aεk−1

dist∞(x, ∂Aεk−1) dx
}
.
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In the interpretattion as a reversed-time scheme, this means that we are solving a problem
imposing the extinction at time 0.

Note that taking F in place of Fε would immediately give the value −∞ in the minimum
problem above; e.g., by considering sets of the form (in polar coordinates)

Aj = {(ρ, θ) : ρ ≤ 3ε+ ε sin(jθ)},

which contain Aε0, are contained in B4ε(0) and have a perimeter larger than 4jε (see Fig.
8.2).

Figure 8.2: small sets with large perimeter

Under the assumption that ε << τ we easily see that all minimizing sets are the
checkerboard structure corresponding to indices i ∈ Z2 with i1 + i2 even contained in a
square Qk centered in 0 (see Fig. 8.3). We may take the sides Lk of those squares as

Figure 8.3: enucleating sets

unknown. The incremental problems can be rewritten as

min
{
−2
ε

((Lk−1 + ∆L)2 − L2
k−1) +

1
τ

(Lk−1(∆L)2 + rk(∆L)2)
}
,
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with rk negligible as τ → 0. For the interfacial part, we have taken into account that for
ε small the number of squares contained in a rectangle is equal to its area divided by 2ε2

and each of the squares gives an energy contribution of 4ε; for the distance part, we note
that the integral can be equivalently taken on half of Qk \Qk−1. Minimization in ∆L gives

∆L
τ

=
2
ε

(
1 +

∆L
Lk−1

)
.

Letting τ → 0 this motion blows up. However, we may scale the time, formally consid-
ering s = ετ . In this slow time scale the growth is linear:

L(s) = 2s .

What we have obtained is the description of the structure of ε-squares (the checkerboard
one) along which the increase of the perimeter is maximal (and, in a sense, the decrease of
the perimeter is maximal for the reverse-time problem).
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Chapter 9

Stability theorems

We now face the problem of determining conditions under which the minimizing-movement
scheme commutes with Γ-convergence. Let Fε Γ-converge to F with initial data xε con-
verging to x0. The first question is whether by choosing suitably ε = ε(τ) the minimizing
movement along the sequence Fε from xε converges to a minimizing movement for the limit
F from x0. The second issue is whether, by assuming some further properties on Fε we
may deduce that the same thing happens for any choice of ε. In order to give an answer we
will use results from the theory of gradient flows recently elaborated by Ambrosio, Gigli
and Savarè, and by Sandier and Serfaty.

9.1 Commutability along ‘fast-converging’ sequences

We consider an equi-coercive sequence Fε of (non-negative) lower-semicontinuous func-
tionals on a Hilbert space X Γ-converging to F . Note that if yε → y0 then the solutions
of

min
{
Fε(x) +

1
2τ
‖x− yε‖2

}
(9.1)

converge to solutions of

min
{
F (x) +

1
2τ
‖x− y0‖2

}
(9.2)

since we have a continuously converging perturbation of a Γ-converging sequence. We want
this convergence to hold along the sequences of minimum problems defining minimizing
movements.

Let now xε → x0. Let τ be fixed. We consider the sequence {xτ,εk } defined by iterated
minimization of Fε with initial point xε. Since xε → x0, up to subsequences we have
xτ,ε1 → xτ,01 , which minimizes

min
{
F (x) +

1
2τ
‖x− x0‖2

}
. (9.3)

77
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The point xτ,ε2 converge to xτ,02 . Since they minimize

min
{
Fε(x) +

1
2τ
‖x− xτ,ε1 ‖

2
}

(9.4)

and xτ,ε1 → xτ,01 their limit is a minimizer of

min
{
F (x) +

1
2τ
‖x− xτ,01 ‖

2
}
. (9.5)

This operation can be repeated iteratively, obtaining (upon subsequences) xτ,εk → xτ,0k , and
{xτ,0k } iteratively minimizes F with initial point x0.

With fixed T > 0, let K = bT/τc+ 1. Then, we deduce that there exists ε = ε(τ) such
that we have

‖xτ,εk − x
τ,0
k ‖ ≤ τ for all k = 1, . . . ,K.

Upon subsequences of τ these two schemes converge respectively to a minimizing move-
ment along Fε and a minimizing movement for F . We have then proved the following result.

Theorem 9.1.1 Let Fε be a equi-coercive sequence of (non-negative) lower-semicontinuous
functionals on a Hilbert space X Γ-converging to F , let xε → x0. Then there exists a choice
of ε = ε(τ) such that every minimizing movement along Fε with initial data xε converge to
a minimizing movement for F from x0 on [0, T ] for all T .

Remark 9.1.2 Note that, given xε and Fε, if F has more than one minimizing movement
from x0 then the approximation gives a choice criterion. As an example take F (x) = −|x|,
Fε(x) = −|x+ ε| and x0 = xε = 0.

9.2 Stability for convex energies

We now use the theory of gradient flows to deduce stability results if the functionals satisfy
some convexity assumptions. For the sake of simplicity we will assume that X is a Hilbert
space and all Fε are convex.

9.2.1 Convergence estimates

We first recall some results on minimizing movements for a single convex functional F .

Proposition 9.2.1 Let F be convex, z ∈ X and let w be a minimizer of

min
{
Fε(x) +

1
2η
‖x− z‖2

}
. (9.6)

Then
‖x− w‖2 − ‖x− z‖2 ≤ 2η(F (x)− F (w)) (9.7)

for all x ∈ X.
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Proof. We recall that the inequality

‖sx+ (1− s)w − z‖2 ≤ s‖x− z‖2 + (1− s)‖w − z‖2 − s(1− s)‖x− w‖2 (9.8)

holds for all x,w, z ∈ X and s ∈ [0, 1]. Using this property and the convexity of F , thanks
to the minimality of w we have

F (w) +
1
2η
‖w − z‖2 ≤ F (sx+ (1− s)w) +

1
2η
‖sx+ (1− s)w − z‖2

≤ sF (x) + (1− s)F (w)

+
1
2η

(s‖x− z‖2 + (1− s)‖w − z‖2 − s(1− s)‖x− w‖2).

After regrouping and dividing by s, from this we have

1
2η

(‖w − z‖2 + (1− s)‖x− w‖2 − ‖x− z‖2) ≤ F (x)− F (w)

and then the desired (9.7) after letting s→ 0 and dropping the positive term ‖w − z‖2.

Remark 9.2.2 Let {zk} = {zηk} be a minimizing scheme for F from z0 with time-step η.
Then (9.7) gives

‖x− zk+1‖2 − ‖x− zk‖2 ≤ 2η(F (x)− F (zk+1)) (9.9)

for all x ∈ X.

We now fix τ > 0 and two initial data x0 and y0 and want to compare the resulting
{xk} = {xτk} obtained by iterated minimization with time-step τ and initial datum x0

and {yk} = {yτ/2k } with time-step τ/2 and initial datum y0. Note that the corresponding
continuous-time interpolations are

uτ (t) := xbt/τc, vτ/2(t) = yb2t/τc, (9.10)

so that the comparison must be performed between xk and y2k.

Proposition 9.2.3 For all j ∈ N we have

‖xj − y2j‖2 − ‖x0 − y0‖2 ≤ 2τF (x0) .

Proof. We first give an estimate between x1 and y2. We first apply (9.9) with η = τ ,
zk = x0, zk+1 = y1 and x = y2 which gives

‖y2 − x1‖2 − ‖y2 − x0‖2 ≤ 2τ(F (y2)− F (x1)) . (9.11)
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If instead we apply (9.9) with η = τ/2, zk = y0, zk+1 = y1 and x = x0, or zk = y1,
zk+1 = y2 and x = x0 we get, respectively,

‖x0 − y1‖2 − ‖x0 − y0‖2 ≤ τ(F (x0)− F (y1))
‖x0 − y2‖2 − ‖x0 − y1‖2 ≤ τ(F (x0)− F (y2)),

so that, summing up,

‖x0 − y2‖2 − ‖x0 − y0‖2 ≤ 2τF (x0)− τF (y1)− F (y2) ≤ 2τ(F (x0)− F (y2)), (9.12)

where we have used that F (y2) ≤ F (y1) in the last inequality. Summing up (9.11) and
(9.12) we obtain

‖x1 − y2‖2 − ‖x0 − y0‖2 ≤ 2τ(F (x0)− F (x1)). (9.13)

We now compare the later indices. We can repeat the same argument with x0 and y0

substituted by x1 and y2, so that by (9.13) we get

‖x2 − y4‖2 − ‖x1 − y2‖2 ≤ 2τ(F (x1)− F (x2)), (9.14)

and, summing (9.13),

‖x2 − y4‖2 − ‖x0 − y0‖2 ≤ 2τ(F (x0)− F (x2)). (9.15)

Iterating this process we get

‖xj − y2j‖2 − ‖x0 − y0‖2 ≤ 2τ(F (x0)− F (xj)) ≤ 2τF (x0) (9.16)

as desired.

Theorem 9.2.4 Let F be convex and let F (x0) < +∞. Then there exists a unique mini-
mizing movement u for F from x0 such that, if uτ is defined by (9.10), then

‖uτ (t)− u(t)‖ ≤ 6
√
F (x0)

√
τ

for all t ≥ 0.

Proof. With fixed τ we first prove the convergence of u2−jτ as j → +∞. By Proposition
9.2.3 applied with y0 = x0 and 2−jτ in place of τ we have

‖u2−jτ (t)− u2−j−1τ (t)‖ ≤ 2−j/2
√

2τ
√
F (x0) (9.17)

for all t. This shows the convergence to a limit uτ (t), which in particular satisfies

‖uτ (t)− uτ (t)‖ ≤
√

2
∞∑
j=0

2−j/2
√
τ
√
F (x0) ≤ 6

√
F (x0)

√
τ . (9.18)
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The limit uτ can be characterized as follows: with fixed x, inequality (9.9) applied to
zk = u2−jτ ((k − 1)2−jτ) (k ≥ 1) can be seen as describing in the sense of distribution the
derivative

d

dt

1
2
‖x− u2−jτ (t)‖2 ≤

∞∑
k=1

(
F (x)− F

(
u2−jτ ((k − 1)2−jτ)

))
2−jτ δk2−jτ . (9.19)

Note in fact that x 7→ 1
2‖x − u

2−jτ‖2 is a piecewise-constant function with discontinuities
in 2−jτZ, whose size is controlled by (9.9). Since the measures

µj =
∞∑
k=1

2−jτ δk2−jτ

converge to the Lebesgue measure, and u2−jτ (t) → uτ (t) for all t, so that by the lower
semicontinuity of F

F (uτ (t)) ≤ lim inf
j→+∞

F
(
u2−jτ (t)

)
,

we deduce that
d

dt

1
2
‖x− uτ (t)‖2 ≤ F (x)− F (uτ (t)) (9.20)

for all x. Equation (9.20) is sufficient to characterize uτ . We only sketch the argument:
suppose otherwise that (9.20) is satisfied by some other v(t). Then we have

〈x− uτ ,∇uτ 〉 ≤ F (x)− F (uτ ) and 〈x− v,∇v〉 ≤ F (x)− F (v)

for all x. Inserting x = v(t) and x = uτ (t) respectively, and summing the two inequalities
we have

d

dt

1
2
‖v(t)− uτ (t)‖2 = 〈v − uτ ,∇v −∇uτ 〉 ≤ 0 .

Since v(0) = uτ (0) we then have v = uτ .
This argument shows that u = uτ does not depend on τ . We then have the convergence

of the whole sequence, and (9.18) gives the desired estimate of ‖uτ − u‖.

9.2.2 Stability along sequences of convex energies

From the estimates in the previous section, and the convergence argument in Section 9.1
we can deduce the following stability results.

Theorem 9.2.5 Let Fε be a sequence of lower-semicontinuous coercive positive convex
energies Γ-converging to F , and let xε0 → x0 with supε Fε(xε0) < +∞. Then

(i) for every choice of τ and ε converging to 0 the family uε introduced in Definition
5.2.1 converges to the unique u given by Theorem 9.2.4;

(ii) the sequence of minimizing movements uε for Fε from xε0 (given by Theorem 9.2.4
with Fε in place of F ) also converge to the same minimizing movement u.
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Proof. We first show (ii). Indeed, by the estimate in Theorem 9.2.4 we have that, after
defining uτε following the notation of that theorem,

‖uτ − u‖∞ ≤M
√
τ , ‖uτε − uε‖∞ ≤M

√
τ ,

where
M = 6 sup

ε
Fε(xε0).

In order to show that uε → u it suffices to show that uτε → uτ for fixed τ . That has already
been noticed to hold in Section 9.1.

In order to prove (i) it suffices to use the triangular inequality

‖uτε − u‖ ≤ ‖uτε − uε‖+ ‖uε − u‖ ≤M
√
τ + o(1)

by Theorem 9.2.4 and (ii).

Example 9.2.6 (parabolic homogenization) We can consider X = L2(0, T ),

Fε(u) =
∫ T

0
a
(x
ε

)
|u′|2 dx, F (u) = a

∫ T

0
|u′|2 dx

with the notation of Section 1.4. We take as initial datum u0 independent of ε. Since
all functionals are convex, lower semicontinuous and coercive, from Theorem 9.2.5 we
deduce the converge of the corresponding minimizing movements. From this we deduce
the convergence of the solutions of the parabolic problem with oscillating coefficients

∂uε
∂t

=
∂

∂x

(
a
(x
ε

)∂uε
∂x

)
uε(x, 0) = u0(x)

to the solution of the heat equation
∂u

∂t
= a

∂2u

∂x2

uε(x, 0) = u0(x) .

9.3 Sandier-Serfaty theory

We conclude this section by giving a brief (and simplified) account of another very fruitful
approach to gradient flows that allows to prove the stability of certain solutions with respect
to Γ-convergence.

We consider a family of Hilbert spaces Xε and functionals Fε : Xε → (−∞,+∞], which
are C1 on their domain. We denote by ∇XεFε the gradient of Fε in Xε.
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Definition 9.3.1 Let T > 0; we say that uε ∈ H1([0, T );Xε) is a solution for the gradient
flow of Fε if

∂uε
∂t

= −∇XεFε(uε)

almost everywhere on (0, T ). Such solution for the a gradient flow is conservative if

Fε(uε(0))− Fε(uε(s)) =
∫ s

0

∥∥∥∂uε
∂t

∥∥∥2

Xε
dt

for all τ ∈ (0, T ).

We suppose that there exists a Hilbert space X and a notion of metrizable convergence
xε → x of families of elements of Xε to an element of X. With respect to that convergence,
we suppose that Fε Γ-converge to a functional F , which is also C1 on its domain.

Theorem 9.3.2 (Sandier-Serfaty Theorem) Let Fε and F be as above with Fε Γ-
converging to F , let uε be a family of conservative solutions for the gradient flow of Fε
with initial data uε(0) = uε converging to u0. Suppose furthermore that
• (well-preparedness of initial data) uε is a recovery sequence for F (u0);
• (lower bound) upon subsequences uε converges to some u ∈ H1((0, T );X) and

lim inf
ε→0

∫ s

0

∥∥∥∂uε
∂t

∥∥∥2

Xε
dt ≥

∫ s

0

∥∥∥∂u
∂t

∥∥∥2

X
dt (9.21)

lim inf
ε→0

‖∇XεFε(uε(s))‖
2
Xε
≥ ‖∇XF (u(s))‖2X (9.22)

for all s ∈ (0, T ).
Then u is a solution for the gradient flow of F with initial datum u0, uε(t) is a recovery

sequence for F (u(t) for all t and the inequalities in (9.21) and (9.22) are equalities.

Proof. Using the fact that uε is conservative and that for all t

−
〈
∇XεFε(uε(t)),

∂uε
∂t

〉
=

1
2

(
‖∇XεFε(uε(t))‖

2
Xε

+
∥∥∥∂uε
∂t

∥∥∥2

Xε

)
since ∥∥∥∇XεFε(uε) +

∂uε
∂t

∥∥∥2

Xε
= 0,

we get

Fε(uε(0))− Fε(uε(t)) =
∫ t

0

∥∥∥∂uε
∂t

∥∥∥2

Xε
ds

= −
∫ t

0

〈∇XεFε(uε), ∂uε
∂t

〉
Xε
ds
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=
1
2

∫ t

0

(
‖∇XεFε(uε)‖

2
Xε

+
∥∥∥∂uε
∂t

∥∥∥2

Xε

)
ds

By the lower-bound assumption then we have

lim inf
ε→0

(Fε(uε(0))− Fε(uε(t))) ≥
1
2

∫ t

0

(
‖∇XF (u)‖2X +

∥∥∥∂u
∂t

∥∥∥2

X

)
ds

≥ −
∫ t

0

〈
∇XF (u),

∂u

∂t

〉
Xε
ds. (9.23)

The last term equals

−
∫ t

0

d

dt
F (u) ds = F (u(0))− F (u(t)),

so that we have

lim inf
ε→0

(Fε(uε(0))− Fε(uε(t))) ≥ F (u(0))− F (u(t)).

Since uε(0) is a recovery sequence for F (u(0)) we then have

F (u(t)) ≥ lim sup
ε→0

Fε(uε(t)), (9.24)

so that uε(t) is a recovery sequence for u(t) and indeed we have equality in (9.24) and
hence both inequalities in (9.23) are equalities. The second one of those shows that∥∥∥∇XF (u) +

∂u

∂t

∥∥∥2

X
= 0,

for all t, and hence the thesis.



Chapter 10

Parameterized motion driven by
global minimization

A different type of “quasi-static” motion can be defined starting from a global-minimization
criterion. The ingredients are
• a parameter-dependent energy;
• a dissipation satisfying a non-decreasing constraint;
• (time)-parameterized forcing condition.
An entire much more general theory (of rate-independent motion) can be developed

starting from these ingredients. We will only deal with a simplified example, with the aim
of examining its stability with respect to perturbations.

10.1 Damage

We consider a one-dimensional setting. Our functions will be parameterized on a fixed
interval (0, 1). In this case we have
• the parameter space will be that of all measurable subsets A of (0, 1). The set A will

be understood as the damage set;
• the energies depending on a set A will be

FA(u) = α

∫
A
|u′|2 dx+ β

∫
(0,1)\A

|u′|2 dx,

where 0 < α < β. In an elastic interpretation, u represents the deformation of a bar, whose
elastic constant is β in the undamaged set and α < β in the damaged set;
• the dissipation is

D(A) = γ|A|,
with γ > 0. The work done to damage a portion A of the material is proportional to the
measure of A;
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• the condition that forces the solution to be parameter dependent (“time-dependent”)
is a boundary condition

u(0) = 0, u(1) = g(t),

where g is a continuous function with g(0) = 0. Here the parameter is t ∈ [0, T ].

Definition 10.1.1 A solution to the evolution related to the energy, dissipation and bound-
ary conditions above is a pair (ut, At) with ut ∈ H1(0, 1), At ⊂ (0, 1), and such that
• (monotonicity) we have As ⊂ At for all s < t
• (minimization) the pair (ut, At) minimizes

min
{
FA(u) +D(A) : u(0) = 0, u(1) = g(t), As ⊂ A for all s < t

}
(10.1)

• continuity the energy E(t) = FAt(ut) is continuous
• homogeneous initial datum u0 is the constant 0 and A0 = ∅.

The continuity assumption allows to rule out trivial solutions as those with At = (0, 1)
for all t > 0. It is usually replaced by a more physical condition of energy conservation. In
our context this assumption is not relevant.

Note that t acts only as a parameter (the motion is “rate independent”). Hence, for
example if g is monotone increasing, it suffices to consider g(t) = t. We will construct by
hand a solution in this simplified one-dimensional context.

Note that the value in the minimum problem

min
{
FA(u) +D(A) : u(0) = 0, u(1) = t,

}
(10.2)

depends on A only through λ = |A|, and its value is given by

αβ

λβ + (1− λ)α
t2 + γλ. (10.3)

By minimizing over λ we obtain the optimal value of the measure of the damaged region

λmin(t) =


0 if |t| ≤

√
αγ

β(β−α)

1 if |t| ≥
√

βγ
α(β−α)

t
√

αβ
γ(β−α) −

α
β−α otherwise

(10.4)

the minimum value

m(t) =


βt2 if |t| ≤

√
αγ

β(β−α)

αt2 + γ if |t| ≥
√

βγ
α(β−α)

2t
√

αβγ
β−α −

γα
β−α otherwise.

(10.5)
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The interpretation of this formula is as follows. For small values of the total displacement
t the material remains undamaged, until it reaches a first threshold. Then a portion of
size λmin(t) of the material damages, lowering the elastic constant of the material and the
overall value of the sum of the internal energy and the dissipation, until all the material is
damaged when reaching the second threshold. Note that in this case E(t) = m(t).

The value in (10.3) is obtained by first minimizing in u. Conversely, we may first
minimize in A. We then have

min
{∫ 1

0
min
A
{χA(α|u′|2 + γ), χ(0,1)\Aβ|u′|2} dx : u(0) = 0, u(1) = g(t)

}
(10.6)

The lower-semicontinuous envelope of the integral energy is given by the integral with
energy function the convex envelope of

f(z) = min{αz2, βz2 + γ}, (10.7)

which is exactly given by formula (10.5); i.e.,

m(t) = f∗∗(t)

(see Fig. 10.1)

Figure 10.1: minimal value m(t) for the damage problem

Irreversibility. An important feature of the monotonicity condition for At is irre-
versibility of damage, which implies that for non-increasing g the values of m(g(t)) will
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depend on the highest value taken by λmin(g(t)) on [0, t]. In particular, for a “loading-
unloading” cycle with g(t) = T

2 − |t−
T
2 |, the value of E(t) is given by

E(t) =


m(t) for 0 ≤ t ≤ T/2

αβ
λmin(T/2)β+(1−λmin(T/2))α(T − t)2 + γλmin(T/2) for T/2 ≤ t ≤ T .

This formula highlights that once the maximal value λmin(T/2) is reached, then the dam-
aged region At remains fixed, so that the problem becomes a quadratic minimization (plus
the constant value of the dissipation). We plot m′(t) and draw a cycle in Fig. 10.2 In

Figure 10.2: plot of m′(t) and derivative of the energy E along a cycle

particular, if T
2 ≥

√
βγ

α(β−α) then the material is completely damaged in the “unloading”
regime.

10.1.1 Homogenization of damage

We now examine the behaviour of the previous process with respect to Γ-convergence in
the case of homogenization. To that end we introduce the energies

Fε,A(u) =
∫

(0,1)\A
β
(x
ε

)
|u′|2 dx+

∫
A
α
(x
ε

)
|u′|2 dx, (10.8)

where α and β are 1-periodic functions with

α(y) =
{
α1 for 0 ≤ y < 1

2
α2 for 1

2 ≤ y < 1
β(y) =

{
β1 for 0 ≤ y < 1

2
β2 for 1

2 ≤ y < 1
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with 0 < αj < βj . Note that for fixed A the functionals Fε,A Γ-converge to

Fε,A(u) = β

∫
(0,1)\A

|u′|2 dx+ α

∫
A

(x
ε

)
|u′|2 dx, (10.9)

with
α =

2α1α2

α1 + α2
<

2β1β2

β1 + β2
= β.

Hence, the Γ-limit is exactly of the form examined beforehand.
We now examine instead the damage process at fixed ε. For simplicity of computation

we suppose that 1
ε ∈ N. The dissipation will be of the form

Dε(A) =
∫
A
γ(
x

ε

)
|u′|2 dx,

where again γ is a 1-periodic function with

γ(y) =
{
γ1 for 0 ≤ y < 1

2
γ2 for 1

2 ≤ y < 1

with γj > 0. In the case γ1 = γ2 we obtain the same dissipation as above, independent of
ε.

In order to compute the minimum value

mε(t) = min
{
Fε,A(u) +Dε(A) : u(0) = 0, u(1) = t, A ⊂ (0, 1)

}
we first remark that, for the one-dimensional nature of the problem, this value is equal to
m(t) := m1(t) independent of ε. This value can be obtained by minimizing separately on
(0, 1/2) and (1/2, 1), so that

m(t) =
1
2

min
{
m1(t1) +m2(t2) :

t1 + t2
2

= t
}
,

and m1, m2 are given by the damaging process in the two subintervals, so that by (10.5)

mj(t) =


βjt

2 if |t| ≤
√

αjγ
βj(βj−αj)

αjt
2 + γ if |t| ≥

√
βjγj

αj(βj−αj)

2t
√

αjβjγj
βj−αj −

γjαj
βj−αj otherwise.

(10.10)

We can therefore easily compute m(t). In the hypothesis, e.g, that

p2 :=

√
α2β2γ2

β2 − α2
<

√
α1β1γ1

β1 − α1
=: p1,
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we can easily compute m′(t) as

m′(t) =



2βt if |t| ≤ p2
β

2p2 if p1
β < |t| < p2(β1+α2)

2β1α2

4β1α2

β1+α2
t if p2(β1+α2)

2β1α2
≤ |t| ≤ p1(β1+α2)

2β1α2

2p1 if p1(β1+α2)
2β1α2

< |t| < p1
α

2αt if |t| ≥ p1
α .

The outcome is pictured in Fig. 10.3. It highlights that the behaviour is different from the

Figure 10.3: damage in a periodic microstructure

one computed above: for small values of the total displacement t the overall response is
the same as the one of the homogenized behaviour of the two ‘strong’ materials. At a first
critical value one (and only one) of the two materials starts to damage (this corresponds
to the first constant value 2p1 of m′) until it is completely damaged. Then the material
behaves as a mixture of a strong and a damaged material, until also the second material
starts to damage. After also this has completely damaged, the behaviour is that of the
homogenized energy for two weak materials.
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Exam Problems

1. In Example 7.1 take the intervals where F is constant with variable length (e.g. periodic,
or random).

2. In Example 7.3.2 consider the case ε ≈ τ (in the spirit of Section 7.2.2).

3. In Example 8.1.3 compute the scaled motion
1) when the initial datum has three (or more) jump points
2) with Neumann boundary conditions instead of Dirichlet boundary conditions.

4. In Example 8.2.1:
1) consider the case ε ≈ τ .
2) compute the motion with different functions of the distance (as in Example 6.1.1).

5. In Example 10.1.1
1) describe what happens if α1 < β1 but β2 < α2;
2) consider the case when D(A) = |A|+#(∂A) or when we assume that A is an interval.
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