ANALYSIS OF LENNARD-JONES INTERACTIONS IN 2D

Andrea Braides (Roma Tor Vergata)

ongoing work with Maria Stella Gelli (Pisa)

Otranto, June 6-8 2012

Variational Problems with Multiple Scales

(ロ) (同) (三) (三) (三) (○) (○)

Variational Analysis of Lennard-Jones interactions

Equilibrium configurations linked to the energy

$$\sum_{i \neq j} J(|u_i - u_j|), \qquad \left(e.g., \ J(z) = \frac{1}{z^{12}} - \frac{2}{z^6}\right)$$
$$u_i \in \mathbb{R}^2; i = 0, \dots, N \text{ as } N \to +\infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1D analysis - nearest neighbours

Early works by Truskinovsky ('96), B-Dal Maso-Garroni ('99)

1D parameterization: We can always reparameterize points on $i \in \frac{1}{N}\mathbb{Z} \cap [0,1]$

Set $\varepsilon = \frac{1}{N}$ and scale energies

$$\sum_{i} \varepsilon J\left(\frac{u_{i} - u_{i-1}}{\varepsilon}\right) \quad \text{with } u_{i} > u_{i-1}$$

 $\{u_i\} \approx$ piecewise-constant or piecewise-affine function

Note: minimum is achieved for u_i the discretization of the identity (up to constants)

Derivation of bulk and surface energies

Limit analysis by different scalings Bulk scaling $(u_{i-1} - u_i \ll \varepsilon) \Longrightarrow$ elastic approximation Surface scaling $(u_{i-1} - u_i \gg \varepsilon) \Longrightarrow$ (opening) fracture

Note: Bulk energy= O(1), surface energy= $O(\varepsilon) \implies$ relaxation

(Asymmetric) Blake-Zisserman weak membrane

Asymptotic behaviour (Chambolle '92 - Γ-limit)

$$\int_0^1 |u'|^2 \, dt + \#(S_u) \qquad u^+ > u^- \text{ on } S_u$$

(ロ) (同) (三) (三) (三) (○) (○)

(Griffith brittle fracture energy with unilateral constraint)

'Universal form' of the Blake-Zisserman energy

Analysis of the Γ -development by comparison with (scaled, asymmetric) Blake-Zisserman energies:

$$\min\left\{\alpha' z^2, \beta'\right\} \le J(z) \le \min\left\{\alpha'' z^2, \beta''\right\} \qquad (z > 0)$$

NOTE: $\sup \alpha' = \inf \alpha'' = \frac{1}{2}J''(0) =: \alpha$ (Taylor expansion at 0) $\sup \beta' = \inf \beta'' = J(+\infty) =: \beta$ (depth of the well) Scaling argument to recover Griffith fracture (B-Lew-Ortiz '06):

$$\min\left\{\alpha' z^2, \frac{\beta'}{\varepsilon}\right\} \leq \frac{1}{\varepsilon} J(\sqrt{\varepsilon} z) \leq \min\left\{\alpha'' z^2, \frac{\beta''}{\varepsilon}\right\}$$

Change of variables ('linearization' around 0) $u = \sqrt{\varepsilon} v$

$$E_{\varepsilon}(u) = \sum_{i} \varepsilon J\left(\frac{u_{i} - u_{i-1}}{\varepsilon}\right) = \varepsilon \sum_{i} \varepsilon \cdot \frac{1}{\varepsilon} J\left(\sqrt{\varepsilon}\left(\frac{v_{i} - v_{i-1}}{\varepsilon}\right)\right)$$
$$\approx \varepsilon \left(\alpha \int |v'|^{2} dt + \beta \#(S_{v})\right)$$
$$= \varepsilon \left(\alpha \int \left|\frac{u'}{\sqrt{\varepsilon}}\right|^{2} dt + \beta \#(S_{u})\right)$$
$$= \alpha \int |u'|^{2} dt + \varepsilon \beta \#(S_{u}) \quad \text{(with } u^{+} > u^{-}\text{)}$$

(Griffith energy with an internal parameter) (Uniform equivalence by Γ -convergence, B-Truskinovsky '08)

Effects of long-range interaction

1) Surface relaxation: The fracture energy density β is not simply given by a scaling argument (resizing the depth of the well of *J*), but must take into account *atomic relaxation* on the side(s) of the fracture

(B-Cicalese '07)

2) Optimization of the reference lattice: (in this case we cannot translate the minimum in 0) ground state are achieved on some discretization of rx with 0 < r < 1.

1D ANALYSIS

1) Different behaviour in **compression** (no fracture/elasticity) and in **tension** (Griffith fracture)

2) Opening fracture

3) Surface energy with possible surface relaxation (that can be characterized by taking the limit of $\frac{1}{\varepsilon}F_{\varepsilon}$)

4) An approximate **linearized Griffith fracture** description (with parameter ε and an opening constraint)

5) (up to slightly changing potential) can consider only nearest neighbours

(日) (日) (日) (日) (日) (日) (日)

The two-dimensional case

Simplified hypotheses

Parameterization on the triangular lattice \mathbb{T} : justified by the **validity of the "Cauchy-Born rule" for ground states** (*crystallization*; see Theil '06 in 2D)

Positive-determinant constraint (this replaces the condition u' > 0): admissible functions are $\{u_i\}_{i \in \mathbb{T}}$ whose piecewise-affine interpolation u satisfies

 $\det \nabla u > 0$

(see Friesecke-Theil '02)

(geometrically: vertices of deformed triangles maintain the order)

Nearest-neighbour interactions. This reduces surface relaxation (for that see recent work of Theil)

The scaled energy reads

$$E_{\varepsilon}(u) = \sum_{NN} \varepsilon^2 J\left(\left| \frac{u_i - u_j}{\varepsilon} \right| \right) \quad (\text{+ positive-det. constraint})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with the sum taken on nearest neighbors of $\Omega \cap \varepsilon \mathbb{T}$ (Ω fixed open subset of \mathbb{R}^2).

Surface scaling

Consider

$$\frac{1}{\varepsilon}E_{\varepsilon}(u) = \sum_{NN} \varepsilon \left(J\left(\left| \frac{u_i - u_j}{\varepsilon} \right| \right) - \min J \right) \quad (\texttt{+ positive-det. constraint})$$

and analyse its behaviour through its Γ -limit. **Questions**:

- can we derive a opening-crack condition?
- can we characterize a surface energy?

Domain of the limit: the limit is finite only if $u \in SBV$ and $\nabla u \in SO(2)$; $\Longrightarrow \nabla u$ is a **piecewise rotation (piecewise rigidity** Chambolle-Giacomini- Ponsiglione '07);

A reference configuration with fracture site and its macroscopic normals

An underlying triangulation at step ε

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Deformed configuration at the level of the triangulation

Macroscopic deformed configuration > (= > (= >) @)

Constraints on the jump set

If the limit interface is achieved by only 'breaking a single row of atoms' (rigid otherwise) we obtain a surface term

$$2\int_{S_u}\varphi(\nu_u)d\mathcal{H}^1$$

(φ with hexagonal Wulff shape), and the positive determinant gives an **opening-angle condition**

$$\langle u^+(x) - u^-(x), R^\pm \nu_i \rangle \ge 0$$
 $i = 1, 2$

where u^{\pm} are the approximate values, ν_u the macroscopic normal, R^{\pm} are the rotations on both sides of S_u , and $(\nu_i)^{\perp}$ are the directions of \mathbb{T} that 'average' to ν (if ν is itself orthogonal to the directions of \mathbb{T} then $\nu_i = \nu$)

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

Note: "surface relaxation" allows to have finite (but larger) energy when

 $\langle u^+(x) - u^-(x), R^{\pm}\nu \rangle \ge 0$ (opening constraint)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Loss of the constraint on interfaces

reference triangulation with a double-layer interface

deformed configuration with 'fictitious' extra fracture

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Note: we may easily obtain deformations violating the opening constraint

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

... or non impenetrability...

By using multiple-layer fracture we can remove all constraints on the interface, but the final energy will have a surface term of the form

$$2N\int_{S_u}\varphi(\nu_u)d\mathcal{H}^1$$

(N the number of layers)

Note: even when the constraint

$$\langle u^+(x) - u^-(x), R^\pm \nu \rangle \ge 0$$

is satisfied we may have to optimize between surface relaxation and fictitious interfaces

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Determinant constraint on triple points

Even if the opening angle condition is verified on all S_u we may have triple points violating the positive determinant constraint

(triple point - reference and deformed configuration)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

These can be "accommodated" by introducing extra fractures at level ε (of non-vanishing length)

This gives a strictly positive extra term (depending on the 'size' of the deformed 'negative triangle')

Limit energy

On a (wide) class of deformations satisfying the *opening angle* condition the Γ -limit is of the form

$$2\int_{S_u}\varphi(\nu_u)d\mathcal{H}^1$$

On the other deformations the computation involves a "relaxation procedure" involving extra layers of highly-deformed triangles at level ε and surface relaxation.

Note: indeed the surface energy density is of the form

$$\varphi = \varphi \Big(u^{\pm}, \frac{\partial u^{\pm}}{\partial \tau}, \nu \Big)$$

Such integrands could be defined also if u has 'enough regularity on S_u ' (Ambrosio-B-Garroni '97). Any use?

'Small deformations'

If we suppose that $u = Id + \delta v$ with $\sqrt{\varepsilon} \ll \delta$ then we still have a compactness theorem with the limit piecewise rigid. The opening constraint reduces to

 $\langle v^+(x) - v^-(x), \nu \rangle \ge 0$

('infinitesimal non-interpenetration condition'). Moreover, the condition on triple points disappears.

This condition is closed (Giaquinta-Giusti, Anzellotti), so that a candidate limit is simply

$$2\int_{S_v}\varphi(\nu_v)d\mathcal{H}^1$$

(for v satisfying the opening-angle condition) **Question**: any density theorem for partitions with this opening condition? (same question in SBV, important for non-interpenetration on the fracture)

Conclusions

In the case of 'finite deformations' we have derived

- conditions on the interface that characterize a 'tensile' regime
- a characterization via an anisotropic energy density on a (wide) class of deformations
- a complex non-local description for deformations violating the 'non-impenetrability constraint'

In the case of 'small deformations' we have

- a linearized 'tensile regime' with a **opening fracture** condition
- a lower-semicontinuous candidate local surface energy

(日) (日) (日) (日) (日) (日) (日)

This gives the conjecture that

$$E_{\varepsilon}(u) \approx \int_{\Omega} Q(\mathcal{E}u) \, dx + \varepsilon \int_{S_u} \varphi(\nu_u) d\mathcal{H}^1$$

(+ opening-angle condition) in **G**SBD(Ω) in the tensile regime (this amounts to compute the 'critical' linearization $\delta = \sqrt{\varepsilon}$ à la B-Lew-Ortiz))

Q quadratic form derived by computing the linearization around Id on $H^1(\Omega)$ (if $\delta \ll \sqrt{\varepsilon}$ – B-Solci-Vitali '07)

(without the positive-determinant constraint related results by Alicandro-Focardi-Gelli '99, Friedrich-Schmidt '11)

Final conclusion: probably the positive-determinant constraint is too strict in some cases; the simplifications seem to be 'acceptable' for small deformations (or for problems ensuring the positive-determinat condition on the recovery sequences).