METODI MATEMATICI PER L'INGEGNERIA - A.A. 2010-11 Primo appello del 10/6/2011

COGNOME: NOME:

Risolvere i seguenti esercizi, spiegando il procedimento usato

- 1. Sia V il sottospazio di $L^2(-\pi,\pi)$ generato dalle funzioni $x_1(t) = \sin t, x_2(t) = \sin t \cos t$ $e x_3(t) = \sin^2 t \cos t$.
 - (1) Trovare una base ortogonale di V:
 - (2) Calcolare la proiezione della funzione x(t) = t i su V.
- 2. Calcolare i residui nei poli della funzione $f(z) = \frac{e^{iz}}{(z^3 i)^2}$. Dire se è applicabile il teorema dei residui al calcolo di $\int_{\gamma} f(z) dz$, nei due casi in cui γ sia rispettivamente
- (a) una parametrizzazione della frontiera di $\{z \in \mathbb{C} : 2|z| < 1\}$ in senso antiorario;
- (b) una parametrizzazione della frontiera di $\{z \in \mathbb{C} : 1 |\text{Re } z|^2 > |\text{Im } z|\}$ in senso antiorario.
- **3.** Usando la trasformata di Laplace trovare la soluzione y di $\begin{cases} y' = \int_0^x e^t y(x-t) dt \\ y(0) = -\frac{1}{4} \end{cases}$
- **4.** Sia f la funzione periodica di periodo 2π tale che $f(x) = \max\{x+1,1\}$ in $(-\pi,\pi]$. Scrivere la serie di Fourier di f, discuterne la convergenza puntuale, verificandola per $x=\pi$.
- **5.** Sia $f(x) = \frac{\cos t}{1+t^2}$. Calcolare la trasformata di Fourier $\widehat{f}(\omega)$ di f per $\omega < -1$. (Suggerimento: usare la forma esponenziale per $\cos t$)
- **6.** (a) Sia $f(x) = (x^3 3x) \chi_{(-1,1)}(x)$. Calcolare $f' \in f''$ nel senso delle distribuzioni; (b) Sia $f_h(x) = h \max\{1 - h|x|, 0\}$. Calcolare il limite di f_h nel senso delle distribuzioni per $h \to +\infty$.