
ANDREA BRAIDES

Homogenization of Lattice Systems

Ginzburg-Landau equations, Dislocations and Homogenization

May 23, 2011, Ile de Ré
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From discrete to continuous energies

Discrete system: with discrete variables u = {ui} indexed on a lattice (e.g.,
Ω ∩ Zd)

Discrete energy: (e.g., pair interactions)

E(u) =
X
ij

fij(ui, uj)

Scaling arguments: derive

Eε(u) =
X
ij

fεij(ui, uj)

indexed on a scaled lattice (e.g., Ω ∩ εZd)

Identification: identify u with some continuous parameter (e.g., its
piecewise-constant interpolation; a sum of Dirac deltas, etc.)

Effective continuous theory: obtained by Γ-limit as ε→ 0.

B. Γ-convergence for Beginners, OUP 2002

B. Handbook of Γ-convergence (Handbook of Diff. Eqns, Elsevier, 2006)
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BINARY SYSTEMS

Fine multi-scale effects occur even for the simplest discrete systems.
Starting example:

Cubic lattice: variables parameterized on Ω ∩ Zd

Binary systems: variable taking only two values; wlog ui ∈ {−1, 1} (spins).

Nearest-neighbour (NN) interactions: the energies depend only on (ui, uj)
with |i− j| = 1.

Only two possible energies (up to affine change of variables):

E(u) = Eferr(u) = −
X
NN

uiuj (ferromagnetic energy)

(with two trivial minimizers ui ≡ 1 and ui ≡ −1)

E(u) = Eanti(u) =
X
NN

uiuj (antiferromagnetic energy)

(with two minimizers ui ≡ ±(−1)i)

Note: the change of variables vi = (−1)iui is such that Eanti(v) = Eferro(u), so
actually we have only one energy
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BINARY SYSTEMS: Continuous limits of ferromagnetic energies

Bulk scaling: (mixtures of ground states)

Eε(u) = −
X

εduiuj −→
Z

Ω
ψ(u) dx, with ψ(u) =

(
−1 if −1 ≤ u ≤ 1

+∞ otherwise

Surface scaling: (crystalline perimeter) u ∈ BV (Ω; {±1})

Eε(u) =
X

εd−1(1− uiuj) −→ 2

Z
Ω∩∂{u=1}

‖ν‖ dHd−1, with ‖ν‖ =
X
k

|νk|

ν

=-1 =+1
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BINARY SYSTEMS: Equivalent asymptotic expansions

Equivalent Cahn-Hilliard Theory: the analysis above shows that

−
X

εduiuj ∼
Z

Ω
ψeff(u) dx+ ε2

Z
Ω
‖∇u‖2 dx

(ψeff a suitable two-well energy density with minima in ±1)

Equivalent Ginzburg-Landau Theory/screw dislocations: a similar
expansion holds for the 2D vector case: d = 2 and ui ∈ S1 ⊂ R2 and

−
X

εd〈ui, uj〉 ∼
Z

Ω
ψeff(u) dx+ ε2

Z
Ω
|∇u|2 dx

(ψeff a suitable energy density with minima in S1), but the relevant scaling is
ε2| log ε|, in which case we have vortices (Alicandro-Cicalese, ARMA 2009).
This formulation is ‘dual’ to screw-dislocation energies (Alicandro-Cicalese-

Ponsiglione, Indiana UMJ 2010)
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General lattices

With the due changes the process can be repeated on more general periodic
lattices (e.g. triangular, exagonal, FCC, BCC, etc.); even though we do not have
in general a duality between ferro- and anti-ferromagnetic energies (frustration).

Techniques must be refined to take care of a-periodic lattices (e.g. Penrose
tilings or quasicrystals)

(B-Solci M3AS 2011)

A.Braides: Homogenization of Lattice Systems



BINARY SYSTEMS: “Dynamic” Continuous Theory

Continuous “flows” of the perimeter
Motion is obtained by introducing a discrete time-step τ , define a time-discrete
motion by successive minimizations for fixed τ , and pass to the limit as τ → 0

Perimeter-driven motion of sets
⇓

motion by mean curvature
(Almgren-Taylor-Wang

SIAM J.Control.Optim. 1983)

Motion by curvature

The ‘gradient flow’ of the perimeter functional Hn−1(∂E) is
motion by mean curvature, where the evolution of a set E(t) is
characterized by the velocity at its boundary, proportional to its
curvature

v = Kν

|v| = K

Crystalline perimeter-driven motion of sets
⇓

motion by crystalline mean curvature
(Almgren-Taylor J.Diff.Geom. 1995 in 2D) L

V

|v| =
2

L
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Motion of discrete interfaces

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009) We follow the
Almgren-Taylor-Wang scheme letting ε, τ → 0 at the same time.

• For τ << ε the motion E(t) is trivial (pinning):

E(t) = E0

for all (sufficiently regular) bounded initial sets E0;

• For ε << τ the sets E(t) follow motion by crystalline mean curvature.

• At the critical scale τ = αε we have
‘quantized’ cristalline motion

L
V

|v| =
1

α

j2α

L

k
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Discreteness effects at the critical scale

(i) (critical pinning side length) If all L > 2α then the motion is trivial:
E(t) = E0;

(ii) (partial pinning and non strict inclusion principle; e.g for rectangles) If
L1 < 2α and L2 > 2α only one side is (initially) pinned

First case: complete pinning
If L1, L2 > 4

α then the rectangle does not move:
the change in energy obtained by removing a stripe of ‘atoms’ is
−2ε + 1

2τ ε2L1α > 0

Second case: partial pinning If L2 > 4
α and L1 < 4

α with
4

αL1
"∈ N then the shorter sides move inwards. The length of the

longer side decreases with velocity

L̇2 = −2α
[ 4
αL1

]
(until L2 = 4

α )

L1

L2(t)

(iii) (quantized velocity)
2α/L(t) 6∈ N ⇒ velocity integer multiple of 1/α;

(iv) (non-uniqueness)
2α/L(t) ∈ N ⇒ velocity not uniquely determined ⇒ non-uniqueness

(v) (non-convex pinned sets)
(vi) (pinning after initial motion)

Motion of general sets is obtained by localization through the
use of barriers.
Large sets get pinned

barriers

4/!

pinned final state

local barrier vanishing in finite time

Smalls sets shrink to a point
barriers

4/!

pinned final state

local barrier vanishing in finite time

2α
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SPIN SYSTEMS

Coming back to the static framework, within binary systems (u ∈ {±1}) we
may have more complex interactions:

E(u) = −
X
i,j

σijuiuj

Conditions of the type
• (uniform minimal states) σij ≥ 0
• (coerciveness conditions) σij ≥ c > 0 for |i− j| = 1
• (decay conditions)

P
j σij ≤ C < +∞ for all i

guarantee that (up to subsequences)X
ij

εd−1σij(1− uiuj) −→
Z

Ω∩∂{u=1}
ϕ(x, ν) dHd−1

i.e., the limit is still a (possibly inhomogeneous) interfacial energy.

The integrand ϕ is determined by a family of discrete (non-local) minimal-surface
problems. In the 2D case and if only nearest-neighbours are considered (σij = 0 if
|i− j| > 1) equivalently it is given by an asymptotic distance on the lattice Z2

(where the distance between the nodes i and j is σij) (B-Piatnitsky 2010)
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Dilute Spin Systems - A Percolation Result

Non-coercive spin systems (only σij ≥ 0). We may consider ω a realization of
an i.i.d. random variable in Z2, and the corresponding energy

Eω(u) = −
X
i,j

σωijuiuj with σωij =

(
1 with propability p

0 with propability 1− p

(only nearest-neighbour interactions)

Percolation Theorem (B-Piatnitsky 2010)

In the surface scaling, the Γ-limit Fp of Eωε is a.s.

(1) Fp(u) = 0 on all u ∈ L1(Ω; [−1, 1]) for p ≤ 1/2

(2) Fp(u) =

Z
Ω∩∂{u=1}

ϕp(ν) dH1 for p > 1/2

The limit is deterministic and ϕp(ν) is given by a first-passage percolation formula
for p > 1/2.

Deterministic toy problem: discrete ‘perforated domain’; the case p > 1/2
corresponds to well-separated ‘holes’; i.e., where σij = 0.
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Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

Eω(u) = −
X
i,j

σωijuiuj with σωij =

(
1 with propability p

−1 with propability 1− p

(only nearest-neighbour interactions)

Deterministic ‘toy’ problem (for the case p ∼ 0): discrete ‘perforated
domain’ with well-separated ‘holes’ where σij = −1 (B-Piatnitsky 2010). In this
case

• need stronger separation conditions between the perforations

• the Γ-limit may be still described by an interfacial energy

Z
Ω∩∂{u=1}

ϕ(ν) dH1

but ϕ is not given by a least-distance formula
(=⇒ probabilistic approach beyond percolation theory)

Note: when 0 < p < 1 it is not even clear what should be the correct
parameter in the limit
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Systems with different limit parameters

When not only nearest neighbours are taken into account we do not have a
correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM

2006)

E(u) = c1
X
NN

uiuj + c2
X
NNN

ukul ui ∈ {±1}

(NNN = next-to-nearest neighbours)

For suitable positive c1 and c2 the ground states are 2-periodic

(representation in the unit cell)

The correct order parameter is the orientation v ∈ {±e1,±e2} of the ground
state.
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Surface-scaling limit

F (v) =

Z
S(v)

ψ(v+ − v−, ν) dH1

S(v) = discontinuity lines; ν = normal to S(v)
ψ given by an optimal-profile problem

Microscopic picture of a limit state with finite energy
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2) Ferromagnetic-anti-ferromagnetic spin systems in 1D (same form)

E(u) = −c1
X
NN

uiuj + c2
X
NNN

ukul ui ∈ {±1}

For suitable positive c1 and c2 the ground states are 4-periodic

-1

+1

The correct order parameter is the phase φ ∈ {0, 1, 2, 3} of the ground state.
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Surface-scaling limit

-1

+1

φ=0 φ=3 φ=1
Γ-limit of the form

F (φ) =
X

t∈S(φ)

ψ(φ+(t)− φ−(t))

defined on φ : Ω→ {0, 1, 2, 3}
S(φ) = phase-transition set

ψ given by an optimal-profile problem
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Higher-dimensional analog
We can consider e.g. two-dimensional systems with NN, NNN, NNNN (next-to-
next-...) interactions, ui ∈ {±1} and

Eε(u) =
X
NN

uiuj + c1
X
NNN

uiuj + c2
X

NNNN

uiuj

For suitable c1 and c2 again we have a non-trivial 4-periodic ground state

= +1
=  -1
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but also...

and also....

(counting translations 16 different ground states)
and a description for the surface-scaling Γ-limit combining the two previous
examples
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Ternary Systems: the Blume-Emery-Griffith model

εi

Qi

ε6
?

Three phases: −1, 0, 1

E(u) =
X
NN

(k(uiuj)
2 − uiuj)

u : Z2 ∩ Ω 7→ {−1, 0, 1}, k ∈ R

The description of the limit depends on the positive parameter k.
We focus on the case

1

3
< k < 1

for which a richer continuous description is possible (the other cases are
treated as in the binary case)
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Blume-Emery-Griffiths Model

If
1

3
< k < 1 then

• minimal phases are u ≡ 1 and u ≡ −1
• the presence of the phase 0 is energetically-favourable on the interfaces

(Surface) scaling:

Eε(u) =
X
NN

ε(k((uiuj)
2 − 1)− uiuj + 1)

New variables (to keep track of the 0-phase)

I0(u) := {i : ui = 0}; µ(u) :=
X

i∈I0(u)

εδi.

Eε(u, µ) =

(
Eε(u) se µ = µ(u)

+∞ otherwise

(Eε are equi-coercive in (u, µ))
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Surfactant energies as a continuous limit of the BEG model

Theorem (Alicandro-Cicalese-Sigalotti 2010)

Eε(u, µ)
Γ−→ E(u, µ) =

Z
Ω∩∂{u=1}

φ
“ dµ

dH1b∂{u=1}
, ν
”
dH1+2(1−k)|µ|(Ω\∂{u = 1}),

u ∈ BV (Ω; {±1})

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)

ν1∧ν2 ν1∨ν2 z

φ(z, ν)
HYνHYνHYνHYνHYνHYνHYν
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CONCLUSIONS

• As a limit of very simple discrete systems we have obtained: sharp interface
energies, Cahn-Hilliard theories, multi-phase vector functionals, energies on pairs
set/measure, etc. with links to homogenization, Ginzburg-Landau theory,
percolation issues, Statistical Mechanics, etc.

• Such discrete-to-continuous approach allows to ‘justify’ continuous theories from
simple atomistic or ‘molecular’ models

• At the same time it provides a possible simple approximation of a rich zoo of
target continuous energies via lattice systems, or vice versa
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