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From discrete to continuous energies
Discrete system: with discrete variables u = {ui} indexed on a
lattice (e.g., Ω ∩ Zd)
Discrete energy: (e.g., pair interactions)

E(u) =
∑
ij

fij(ui, uj)

Scaling arguments: derive

Eε(u) =
∑
ij

f εij(ui, uj)

indexed on a scaled lattice (e.g., Ω ∩ εZd)
Identification: identify u with some continuous parameter (e.g.,
its piecewise-constant interpolation)
Effective continuous theory: obtained by Γ-limit as ε→ 0.

I present two case studies to highlight differences/mutual
interactions with the continuous case



Part One: A prototypical model for defects
A “non-defected” simple model: the discrete membrane:
quadratic mass-spring systems. Ω ⊂ Rd, u : εZd → R

Eε(u) =
∑
NN

εd
(ui − uj

ε

)2

(NN = nearest neighbours (in Ω))

As ε→ 0 Eε is approximated by the Dirichlet integral

F0(u) =
∫

Ω
|∇u|2 dx



A prototypical ‘defected’ interaction:
at a ‘defected spring’

substitute
(ui − uj

ε

)2
by

(ui − uj
ε

)2
∧ Cε

(truncated quadratic potential)

The spring ‘breaks’ when
ui − uj

ε
=
√
Cε



The Blake-Zisserman weak membrane

The meaningful scaling for Cε is (of order) 1
ε , in which case the

energy of a ‘broken’ spring scales as a surface: εd · 1
ε

= εd−1.
When all springs are ‘defected’ the total energy

Eε(u) =
∑
NN

εd
((ui − uj

ε

)2
∧ 1
ε

)
is then approximated as ε→ 0 by an (anisotropic) Griffith
fracture energy (Chambolle 1995)

F1(u) =
∫

Ω\S(u)
|∇u|2 dx+

∫
S(u)
‖ν‖1dHd−1

S(u) = discontinuity set of u (crack site in reference config.)
ν = (ν1, . . . , νd) normal to S(u), ‖ν‖1 =

∑
i |νi| (lattice anisotr.)

Hd−1 = surface measure; u ∈ SBV (Ω)



G-closure theory for defects in discrete systems

Q: describe the overall effect of the presence of defects

“G-closure” approach: Fix any family of distributions of
defectsWε, and compute all the possible limits of the
corresponding energies.
What type of energies do we get?
How does it depend on the local volume fraction of the defects?

NOTE: a possible limit energy is always sandwiched between
F0 (Dirichlet, from above) and F1 (Blake and Zisserman, from
below); in particular it equals F0 if no fracture occurs.



Design of Weak Membranes
Contrary to usual continuous G-closure problems (bulk
homogenization) it is essential to handle particular
concentrations of defects on a single surface.

A side result: (quadratic) discrete transmission problems

limit interface K

voids

interfacial strong springs

Eε(u) =
∑
NN

εdcεij

(ui − uj
ε

)2
cεij =

{
1 (strong spring)
0 (void)



Theorem (B-Sigalotti) Let pε be the percentage of strong
springs over voids at the (coordinate) interface K. If

pε =

{
c ε| log ε| if d = 2
c ε if d ≥ 3

then Eε can be approximated by a “transmission energy”

F (u) =
∫

Ω
|∇u|2 dx+ b

∫
K
|u+ − u−|2dHd−1,

defined on H1(Ω \K), where

b =

{
c π2 if d = 2
c Cd

4+Cd
if d ≥ 3

and Cd is the 2-capacity of a ‘dipole’ in Zd.



The Building Block for the design

Same geometry with voids substituted by defects

limit interface K

defects

interfacial strong springs
concentrated
capacitary contribution

diffuse surface energy 
due to defects

Proposition. The same pε give

F (u) =
∫

Ω
|∇u|2 dx+Hd−1({u+ 6= u−}) + b

∫
K
|u+− u−|2dHd−1

for u ∈ H1(Ω \K)



Note:
(i) surface contribution of defects and capacitary contribution of
strong springs can be decoupled as they live on different
microscopic scales
(ii) the construction is local, and is immediately generalized to
K a locally finite union of coordinate hyperplanes (i.e.,
hyperplanes with normal in {e1, . . . , en})
(iii) the limit functional F can be interpreted as defined on
SBV (Ω) and can be identified with F1,b,K , where

Fa,b,K(u) =
∫

Ω
|∇u|2 dx+

∫
S(u)

(a+ b|u+ − u−|2)dHd−1

with the constraint S(u) ⊂ K



Limits of energies F1,b,K

1. Weak approximation of surface energies (on coordinate
hyperplanes) Suitable Kh s.t. Hd−1 Kh ⇀ aHd−1 K (a ≥ 1)

1/h

C/h
Kh
K

Then F1,b,Kh Γ-converges to Fa,ab,K
2. Weak approximation of anisotropic surface energies. For
non-coordinate hyperplanes K we find locally coordinate Kh

s.t. Hd−1 Kh ⇀ ‖νK‖1Hd−1 K
K

Kh

1/h

Then Fa,b,Kh Γ-converges to Fa‖νK‖1,b‖νK‖1,K



Summarizing 1 and 2: since all constructions are local, in this
way we can approximate all energies

Fa,b,K(u) :=
∫

Ω
|∇u|2 dx+

∫
S(u)

(a(x)+b(x)|u+−u−|2)‖ν‖1dHd−1

with a ≥ 1, b ≥ 0, K locally finite union of hyperplanes, and u
s.t. S(u) ⊂ K.



3. Homogenization of planar systems
Kh 1/h-periodic of the form

We can obtain all energies of the form

Fϕ(u) =
∫

Ω
|∇u|2dx+

∫
S(u)

ϕ(ν)dHd−1,

with ϕ finite, convex, pos. 1-hom., ϕ(ν) ≥ ‖ν‖1 on Sd−1



Note: The condition ϕ ≥ ‖ · ‖1 is sharp since we have the lower
bound Fϕ ≥ F1(= F‖·‖1).

Proof: choose (νj) dense in Sd−1, Πj := {〈x, νj〉 = 0},

Kh =
1
h

Zd +
h⋃
j=1

Πj ,

bh = 0 and ah(x) = ϕ(νj) on 1
hZd + Πj . Then Fah,0,Kh = Fϕ on

its domain, and the lower bound follows.
Use a direct construction if ν belongs to (νj) Hd−1 a.e. on S(u),
and then use the density of (νj).



4. Accumulation of cracks (micro-cracking)
We can obtain all energies of the form

Fψ(u) =
∫

Ω
|∇u|2dx+

∫
S(u)

ψ(|u+ − u−|)dHd−1,

with ψ finite, concave, ψ ≥
√
d.

Note: ψ ≥
√
d is sharp by the inequality Fψ ≥ F1 and√

d = max{‖ν‖1 : ν ∈ Sd−1}

Kh locally of the form

1/h1/h2

Kh

K



Proof. Choose aj ≥
√
n, bj ≥ 0 such that

ψ(z) = inf{aj + bjz
2}

Z

ψ

1) For a planar K with normal ν, choose Kh =
⋃h
j=1(K + j

h2 ν)
and a(x) = aj , b(x) = bj on K + j

h2 ν;
2) To eliminate the constraint S(u) ⊂ K use the
homogenization procedure of Point 3.



Homogeneous convex/concave limit energies

Theorem (B-Sigalotti) For all positively 1-hom. convex even
ϕ ≥ ‖ · ‖1 and concave ψ ≥ 1 there exists a family of
distributions of defectsWε such that the corresponding Eε
Γ-converge to

Fϕ,ψ(u) :=
∫

Ω
|∇u|2dx+

∫
S(u)

ϕ(ν)ψ(|u+ − u−|)dHd−1,

for u ∈ SBV (Ω).

Note: we can localize the construction to obtain all

Fa,ϕ,ψ(u) :=
∫

Ω
|∇u|2dx+

∫
S(u)

a(x)ϕ(ν)ψ(|u+ − u−|)dHd−1,

with a ≥ 1 lower semicontinuous.



Some comments:
(1) This characterization is clearly not complete. It does not
comprise, e.g.
• F with constrained jump set: S(u) ⊂ K
• non-finite ϕ (as for layered defects)
• non-concave subadditive ψ such as

√
d sub(1 + z2); etc.

Partial conjecture: the reachable (isotropic) subadditive ψ are
all that can be written as the subadditive envelope of
ψ(z) = infj{aj + bjz

2} (aj ≥
√
d, bj ≥ 0).

(2) The complete characterization seems to be out of reach.
It would need e.g. approximation results for general lower
semicontinuous surface energies (BV-elliptic densities); which
is a more mysterious issue than approximation of quasiconvex
functions (!)

(3) The result is anyhow sufficient for design of structures with
prescribed failure set and resistance



(4) (Prescribed limit defect density) The theorem holds as is,
also if we prescribe the local “limit volume fraction” θ of the
defects. To check this it suffices to note that we may obtain the
Dirichlet integral also with θ = 1 (i.e., with a “negligible”
percentage of strong springs)

Nε

(with Nε → +∞, εNε → 0)

(5) (Comparison with the random case)

In that case Fp(u) =
∫

Ω
|∇u|2 dx+

∫
S(u)

ϕp(ν)dHd−1

(p = probability of a weak spring)



Part Two: Modeling of phase transitions

A multi-scale variational continuous model for phase transitions

Fε(u) =
∫

Ω

(
W (u)− c1ε

2|∇u|2 + c2ε
4|∇2u|2

)
dx

with W double-well potential.

• if c1 < 0 and c2 = 0 then it’s good old “Modica-Mortola”
• if c1 = 0 and c2 > 0 Fonseca-Mantegazza prove a
sharp-interface limit (MM-like result)
• if c2 > 0 and c1 > 0 small enough Cicalese-Spadaro-Zeppieri
prove a sharp-interface limit
• if c2 > 0 and c1 > 0 large enough Mizel et al. prove that
ground states are periodic (in particular no interface limit: all uε
with F (uε) = minFε + o(ε) converge weakly to 0)



A discrete analog - dimension one
Ferromagnetic-anti-ferromagnetic spin systems in 1D
Substitute continuous u by discrete u = {ui} parameterized on
εZ

W (u) → ui ∈ {±1} (spin system)

∇u → ui − ui−1

ε

∇2u → ui+1 − 2ui + ui−1

ε2

Upon rearranging/renormalizing, we obtain a NNN energy of
the form

Eε(u) =
1
ε
Fε(u) =

∑
i

(
αuiui−1 + ui−1ui+1

)
+ Cε

The case “large c1” corresponds to |α| < 2



Rewrite∑
i

(
αuiui−1 +ui−1ui+1

)
=
∑
i

(
α

1
2

(uiui−1 +ui+1ui)+ui−1ui+1

)
and note that for |α| < 2 the integrand

α
1
2

(uiui−1 + ui+1ui) + ui−1ui+1

is minimal for +,+,− -type configurations; i.e, in that case we
have a 4-periodic ground state (and its translations)

-1

+1

The correct order parameter is the phase φ ∈ {0, 1, 2, 3} of the
ground state.



Surface-scaling limit (B-Cicalese)
Functions u with Eε(u) = minEε + o(1) have the form

-1

+1

φ=0 φ=3 φ=1

F (φ) =
∑
t∈S(φ)

ψ(φ+(t)− φ−(t))

defined on φ : Ω→ {0, 1, 2, 3}
S(φ) = phase-transition set
ψ given by an optimal-profile problem

NOTE: for α < 2 we have flat ground states ±1 (sharp interface
limit); for α > 2 we have 2-periodic oscillating minimizers
(anti-phase interfaces)



Q: Is there a corresponding conjecture on the continuum?
Let

Fε(u) =
∫

Ω

(
W (u)− c1ε

2|u′|2 + ε4|u′′|2
)
dt

with c1 “large”

We may conjecture that there exists a continuous phase
variable φ : R→ S1 (we identify the period of the continuous
ground states with S1) and a scale εα such that sequences uε
with

|Fε(uε)− inf Fε| = O(εα)

have the form (up to subsequences)

uε(x) = v
(x
ε

+ φ(x)
)

+ o(ε)

(v= periodic ground state).
In this way we can define a convergence uε → φ and express
the Γ-limit of 1

εαFε in terms of φ



Q: is there a higher-dimensional analog?
We can consider e.g. two-dimensional systems with NN, NNN
(next-to-nearest), NNNN (next-to-next-...) interactions,
ui ∈ {±1} and

Eε(u) =
∑
NN

uiuj + c1

∑
NNN

uiuj + c2

∑
NNNN

uiuj

Again we can regroup the interactions to study ground states



For suitable c1 and c2 again we have a non-trivial 4-periodic
ground state

= +1
=  -1



but also...

and also....

(counting translations 16 different ground states)
and a description for the surface-scaling Γ-limit similar to the
1-D case



Conclusion

The discrete setting

• on one hand with the additional ‘micro’ dimension may add
interesting effects to discrete problems corresponding to
continuous ones
• on the other hand can be a source of inspiration for
continuous problems in simplifying technical details and
supplying conjectures


