25 IL RAPPORTO INCREMENTALE - DERIVATE

Definizione Sia f una funzione reale di variabile reale. Allora, dati $x, y \in dom f$ con $x \neq y$, si definisce il RAPPORTO INCREMENTALE di f tra x e y come

$$P_f(x,y) = \frac{f(x) - f(y)}{x - y}.$$

OSSERVAZIONI: il rapporto incrementale ci permette di descrivere 'quantitativamente' il comportamento di una funzione. Per esempio:

- i) f è non decrescente $\iff P_f$ è non negativa;
- ii) f è strettamente crescente $\iff P_f$ è strettamente positiva;
- iii) se f(x) = mx + q è affine allora P_f è il coefficiente angolare m.

Più in generale, $P_f(x, y)$ rappresenta la tangente dell'angolo che la retta (la secante al grafico) passante per i punti (x, f(x)) e (y, f(y)) forma con l'asse coordinato orizzontale. Invece di studiare le proprietà di tutte le secanti è più comodo studiare le proprietà delle rette tangenti. Analiticamente, questo si traduce in un'operazione di limite che porta alla seguente definizione.

Definizione Sia I intervallo, $f: I \to \mathbb{R}$ e x_0 un punto di I. Se esiste il limite

$$\lim_{x \to x_0} P_f(x, x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}},$$

esso viene chiamato la DERIVATA di f nel punto x_0 e si indica con $f'(x_0)$. Se $f'(x_0) \in \mathbb{R}$ allora f si dice DERIVABILE in x_0 .

ALTRE NOTAZIONI per
$$f'(x_0)$$
: $Df(x_0)$, $\frac{d}{dx}f(x_0)$, $\frac{dy}{dx}$, y'

ESEMPI

- 1) f = c costante Dc = 0 in ogni punto. Infatti $P_f(x, y) = 0$ per ogni coppia di punti.
- 2) f(x) = x. Allora $P_f(x, y) = 1$ per ogni coppia di punti, per cui f'(x) = 1 per ogni x.
- 3) $f(x) = x^n \ (n \in \mathbb{N}, n \ge 2)$. Allora

$$P_f(x,y) = x^{n-1} + x^{n-2}y + \dots + xy^{n-2}x + y^{n-1}$$
, per cui $f'(x) = nx^{n-1}$.

4)
$$f(x) = \frac{1}{x}$$
. Allora $(x \neq 0)$ $f'(x_0) = \lim_{x \to x_0} \frac{(1/x) - (1/x_0)}{x - x_0}$

$$= \lim_{x \to x_0} \frac{(x_0 - x)/(x_0 x)}{x - x_0} = \lim_{x \to x_0} -\frac{1}{x_0 x} = -\frac{1}{x_0^2}.$$

5) calcoliamo la derivata di e^x . Si ha

$$\lim_{x \to x_0} \frac{e^x - e^{x_0}}{x - x_0} = \lim_{x \to x_0} e^{x_0} \left(\frac{e^{(x - x_0)} - 1}{x - x_0} \right) = e^{x_0}.$$

Dunque $De^x = e^x$

6) dal limite fondamentale $\lim_{t\to 0} \frac{\sin t}{t} = 1$ si deduce

$$\sin x = x + o(x)$$
 $\cos x = 1 - \frac{1}{2}x^2 + o(x^2),$

da cui si ottiene subito la derivata di sin e cos. Per esempio si ha

$$\begin{split} D\sin x &= \lim_{t\to 0} \frac{\sin(x+t) - \sin x}{t} = \lim_{t\to 0} \frac{\sin x \cos t + \sin t \cos x - \sin x}{t} \\ &= \cos x \cdot \lim_{t\to 0} \frac{\sin t}{t} + \sin x \cdot \lim_{t\to 0} \frac{\cos t - 1}{t} = \cos x + \sin x \cdot \lim_{t\to 0} \left(\frac{t}{2} + o(t)\right) = \cos x. \\ \text{Analogamente } D(\cos x) &= -\sin x. \end{split}$$

7) Se $f(x) = \operatorname{sgn} x$ (il segno di x), allora f'(x) = 0 se $x \neq 0$, mentre per x = 0 abbiamo

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{1}{x} = +\infty = \lim_{x \to 0^-} \frac{-1}{x} = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0},$$

e quindi $f'(0) = +\infty$.

Differenziabilità

Dalla derivabilità si ottengono alcune informazioni sul comportamento della funzione f vicino al punto x_0 . Prima di tutto f è continua in x_0 .

Teorema. f derivabile in $x_0 \Longrightarrow f$ continua in x_0 .

DIMOSTRAZIONE Se
$$f(x) = f(x_0) + \lambda(x - x_0) + o(x - x_0)$$
 per $x \to x_0$, allora
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x_0) + \lambda(x - x_0) = f(x_0).$$

Ma il grafico di una funzione derivabile in x_0 ha una proprietà più forte: può essere approssimato con una retta (la sua retta tangente). Per specificare meglio come è definita questa retta introduciamo il concetto seguente.

Definizione Sia I intervallo, $f: I \to \mathbb{R}$ e $x_0 \in I$. Diciamo che f è DIFFERENZIABILE in x_0 quando esiste $\lambda \in \mathbb{R}$ tale che si abbia $f(x) = f(x_0) + \lambda(x - x_0) + o(x - x_0)$ per $x \to x_0$.

SIGNIFICATO GEOMETRICO: la retta $y = f(x_0) + \lambda(x - x_0)$ approssima la curva y = f(x) "ad un ordine superiore a $x - x_0$ " (questa retta è TANGENTE alla curva).

Teorema. f differenziabile in $x_0 \iff f$ derivabile in x_0 . In tal caso $\lambda = f'(x_0)$ e la RETTA TANGENTE è data da

$$y = f(x_0) + f'(x_0)(x - x_0).$$

DIMOSTRAZIONE
$$f(x) = f(x_0) + \lambda(x - x_0) + o(x - x_0)$$
 per $x \to x_0 \iff$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - \lambda(x - x_0)}{x - x_0} = 0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lambda.$$

26 CALCOLO DI DERIVATE

Dal teorema di linearità per i limiti si ha subito:

Teorema. (LINEARITÀ) Sia I intervallo e x_0 punto interno a I. Se $f, g : I \to \mathbb{R}$ sono derivabili in x_0 e $c \in \mathbb{R}$, allora sono derivabili in x_0 anche f + g e cf e si ha

$$(f+g)'(x_0) = f'(x_0) + g'(x_0), \quad (cf)'(x_0) = c(f'(x_0)).$$

Teorema. (DERIVATA DI COMPOSIZIONE) Siano I e J intervalli; $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ x_0 un punto interno a I tale che $f(x_0)$ è interno a J. Se f è derivabile in x_0 e g è derivabile in $f(x_0)$, allora $g \circ f$ è derivabile in x_0 , e si ha

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0).$$

DIMOSTRAZIONE Sia $y_0 = f(x_0)$. Dalla differenziabilità di g in y_0 si ha $g(y) = g(y_0) + g'(y_0)(y - y_0) + o(y - y_0)$, per $y \to y_0$. In particolare per y = f(x) e $x \to x_0$ si ha $g(f(x)) = g(y_0) + g'(y_0)(f(x) - y_0) + o(f(x) - y_0)$, ovvero

 $(g \circ f)(x) = (g \circ f)(x_0) + g'(y_0)(f(x) - y_0) + o(f(x) - y_0)$. Dalla differenziabilità di f abbiamo

$$f(x) - y_0 = f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$$
 e dunque

$$(g \circ f)(x) = (g \circ f)(x_0)$$

$$+g'(y_0)(f'(x_0)(x-x_0)+o(x-x_0))+o(f'(x_0)(x-x_0))$$

$$= (g \circ f)(x_0) + g'(y_0)f'(x_0)(x - x_0) + o(x - x_0).$$

Questo mostra che $(g \circ f)$ è differenziabile in x_0 e la sua derivata è $g'(y_0)f'(x_0)$.

ESEMPI: 1) $n \in \mathbb{N} \ D(x^{-n}) = -nx^{-n-1}$.

La funzione $x \mapsto x^{-n}$ si può considerare come composizione delle funzioni $f(x) = x^n$ e g(y) = 1/y; e sappiamo che $f'(x) = nx^{n-1}$, $g'(y) = -1/y^2$. Dunque

$$D(x^{-n}) = g'(f(x)) f'(x) = -\frac{1}{(x^n)^2} (nx^{n-1}) = -nx^{-n-1};$$

2)
$$D\left(\frac{1}{f}\right) = -\frac{1}{f^2}f'$$
 (considerare $\frac{1}{f}$ come composizione di $f \in 1/y$).

Teorema. (DERIVATA DEL PRODOTTO) Siano $f, g: I \to \mathbb{R}$ derivabili in $x_0 \in I$; allora anche fg è derivabile in x_0 , e si ha

$$(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0).$$

DIMOSTRAZIONE $(fg)(x) - (fg)(x_0) = f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0))$, per cui $P_{fg}(x, x_0) = f(x)P_g(x, x_0) + g(x_0)P_f(x, x_0)$.

Passando al limite per $x \to x_0$ (ricordando che $f(x) \to f(x_0)$) si ha la tesi.

Esercizio. Provare la formula $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$.

(Applicare la derivazione del prodotto di f e 1/g ricordando che $D(g^{-1}) = -g^{-2}g'$).

Derivate delle funzioni elementari

È utile imparare a memoria le derivate delle funzioni più usate. In particolare:

$$D(e^x) = e^x, \qquad D1 = 0, \qquad \qquad D(x^\alpha) = \alpha x^{\alpha - 1},$$

$$D\cos x = -\sin x$$
 $D\sin x = \cos x$

e quindi anche $D \tan x = 1 + \tan^2 x$

$$D \cosh x = \sinh x$$
 $D \sinh x = \cosh x$,

dove
$$\cosh x = \frac{e^x + e^{-x}}{2}$$
, $\sinh x = \frac{e^x - e^{-x}}{2}$ sono coseno e seno iperbolico.

Esercizi. Usando le derivate delle funzioni elementari e le regole di calcolo calcoliamo:

1) $D(\sin 2x) = (\cos 2x) 2$;

2)
$$D(\log \cos x) = \frac{1}{\cos x} (-\sin x) = -\frac{\sin x}{\cos x} = -\tan x;$$

3) la derivata di $(\log x)^{\sqrt{x}}$ (x > 1). Possiamo scrivere $(\log x)^{\sqrt{x}} = \exp(x^{1/2}\log(\log x))$. Si ha

$$D(x^{1/2}\log(\log x)) = \log(\log x)Dx^{1/2} + x^{1/2}D\log(\log x)$$

Dato che
$$Dx^{1/2} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$
 e $D\log(\log x) = \frac{1}{\log x} \frac{1}{x}$, si ha dunque

$$D\left(x^{1/2}\log(\log x)\right) = \log(\log x)\frac{1}{2\sqrt{x}} + x^{1/2}\frac{1}{x\log x} = \frac{\log x\,\log(\log x) + 2}{2\sqrt{x}\,\log x},$$

$$D(\log x)^{\sqrt{x}} = \exp\left(x^{1/2}\log(\log x)\right) \frac{\log x \, \log(\log x) + 2}{2\sqrt{x} \, \log x} = (\log x)^{(\sqrt{x}-1)} \, \frac{\log x \, \log(\log x) + 2}{2\sqrt{x}}.$$

Esercizio: verificare la formula generale per la derivata di f^g :

$$D(f^g) = f^g(\frac{f'g}{f} + g'\log f).$$

(scrivere $f^g = \exp(g \log f)...$)

Teorema. (DERIVAZIONE DELLA FUNZIONE INVERSA) Sia I intervallo e $f: I \to \mathbb{R}$ continua e invertibile in I. Se esiste $f'(x_0)$, allora esiste anche la derivata di f^{-1} nel punto $y_0 = f(x_0)$, e si ha

$$D(f^{-1})(y_0) = \frac{1}{f'(x_0)}$$
 ovvero $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$.

NOTA: 1) l'ipotesi di invertibilità su f equivale alla stretta monotonia;

- 2) la formula per la derivata dell'inversa vale anche se $f'(x_0) = 0$ o $f'(y_0) = \pm \infty$, applicando le dovute convenzioni;
 - 3) se $f'(x_0) \neq 0$, allora f^{-1} è derivabile in $f(x_0)$.

DIMOSTRAZIONE Si ha

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{f(f^{-1}(y)) - f(f^{-1}(y_0))} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)},$$
 per il teorema sul limite di composizione.

Esempio. Ora possiamo calcolare la derivata di $\log x$, usando il teorema della derivata della funzione inversa, con $f(x) = e^x$, $f^{-1}(x) = \log x$. Si ha allora

della funzione inversa, con
$$f(x) = e^x$$
, $f^{-1}(x) = \log x$. Si ha allora $D(\log x) = D(f^{-1})(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\exp(\log x)} = \frac{1}{x}$;

Derivate delle funzioni inverse elementari

$$D(\log x) = \frac{1}{x}, \qquad D \arctan x = \frac{1}{1+x^2}$$

$$D(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad D(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$$

(si intende che x appartiene al dominio della singola funzione).

ESERCIZIO: ottenere le formule di derivazione delle funzioni trigonometriche inverse usando il teorema della derivazione dell'inversa.

ESERCIZI: 1)
$$D(\log f) = \frac{f'}{f}$$
;

$$2) D(e^f) = e^f f';$$

3)
$$D(x^{\alpha}) = D(e^{(\alpha \log x)}) = x^{\alpha} D(\alpha \log x) = \alpha x^{\alpha - 1} \ (\alpha \neq 1).$$