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Preface

The notion of Γ-convergence has become, over the more than thirty years after its introduction
by Ennio De Giorgi, the commonly-recognized notion of convergence for variational problems, and
it would be difficult nowadays to think of any other ‘limit’ than a Γ-limit when talking about
asymptotic analysis in a general variational setting (even though special convergences may fit bet-
ter specific problems, as Mosco-convergence, two-scale convergence, G- and H-convergence, etc.).
This short presentation is meant as an introduction to the many applications of this theory to
problems in Partial Differential Equations, both as an effective method for solving asymptotic and
approximation issues and as a means of expressing results that are derived by other techniques. A
complete introduction to the general theory of Γ-convergence is the by-now-classical book by Gian-
ni Dal Maso [85], while a user-friendly introduction can be found in my book ‘for beginners’ [46],
where also simplified one-dimensional versions of many of the problems in this article are treated.

These notes are addressed to an audience of experienced mathematicians, with some background
and interest in Partial Differential Equations, and are meant to direct the reader to what I regard as
the most interesting features of this theory. The style of the exposition is how I would present the
subject to a colleague in a neighbouring field or to an interested PhD student: the issues that I think
will likely emerge again and link a particular question to others are presented with more detail,
while I refer to the main monographs or recent articles in the literature for in-depth knowledge of
the single issues. Necessarily, many of the proofs are sketchy, and some expert in the field of the
Calculus of Variations might shudder at the liberties I will take in order to highlight the main points
without entering in details that can be dealt with only in a more ample and dedicated context.

The choice of the issues presented in these notes has been motivated by their closeness to general
questions of Partial Differential Equations. Many interesting applications of Γ-convergence that are
a little further from that field, and would need a wider presentation of their motivations are only
briefly mentioned (for example, the derivation of low-dimensional theories in Continuum Mechanics
[108], functionals on BV and SBV [20, 55], the application of Γ-convergence to modeling problems
in Mechanics [76, 32], etc.), or not even touched at all (for example, non-convex energies defined on
measures [42, 16], stochastic Γ-convergence in a continuous or discrete setting [87, 64], applications
of Γ-convergence to Statistical Mechanics [7, 40] and to finite-element methods [73], etc.). The
reference to those applications listed here are just meant to be a first suggestion to the interested
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reader.
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1 Introduction

Γ-convergence is designed to express the convergence of minimum problems: it may be convenient
in many situations to study the asymptotic behaviour of a family of problems

mε = min{Fε(x) : x ∈ Xε} (1.1)

not through the study of the properties of the solutions xε, but by defining a limit energy F0 such
that, as ε→ 0, the problem

m0 = min{F0(x) : x ∈ X0} (1.2)

is a ‘good approximation’ of the previous one; i.e. mε → m0 and xε → x0, where x0 is itself a
solution of m0. This latter requirement must be thought upon extraction of a subsequence if the
‘target’ minimum problem admits more than a solution. Note that the convergence problem above
can also be stated in the reverse direction: given F0 for which solutions are difficult to characterize,
find approximate Fε whose solution are more at hand. Of course, in order for this procedure to
make sense we must require a equi-coerciveness property for the energies Fε; i.e., that we may find
a pre-compact minimizing sequence (that is, Fε(xε) ≤ inf Fε + o(1)) such that the convergence
xε → x0 can take place.

The existence of such an F0, the Γ-limit of Fε, is a consequence of the two following conditions:
(i) liminf inequality: for every x ∈ X0 and for every xε → x we have

F0(x) ≤ lim inf
ε→0

Fε(xε). (1.3)

In other words, F0 is a lower bound for the sequence Fε, in the sense that F0(x) ≤ Fε(xε) + o(1)
whenever xε → x. If the family Fε is equi-coercive, then this condition immediately implies one
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inequality for the minimum problems: if (xε) is a minimizing sequence and (upon subsequences)
xε → x0 then

inf F0 ≤ F0(x0) ≤ lim inf
ε→0

Fε(xε) = lim inf
ε→0

inf Fε (1.4)

(to be precise, in this argument we take care to start from xεj such that lim infε→0 Fε(xε) =
limj Fεj (xεj ));

(ii) limsup inequality or existence of a recovery sequence: for every x ∈ X0 we can find a sequence
xε → x such that

F0(x) ≥ lim sup
ε→0

Fε(xε). (1.5)

Note that if (i) holds then in fact F0(x) = limε→0 Fε(xε), so that the lower bound is sharp. From
(1.5) we get in particular that F0(x) ≥ lim supε→0 inf Fε, and since this holds for all x we conclude
that

inf F0 ≥ lim sup
ε→0

inf Fε. (1.6)

An F0 satisfying (1.5) is an upper bound for the sequence (Fε) and its computation is usually related
to an ansatz leading to the construction of the sequence xε.

From the two inequalities (1.4) and (1.6) we obtain the convergence of the infima mε in (1.1)
to the minimum m0 in (1.2). Not only: we also obtain that every cluster point of a minimizing
sequence is a minimum point for F0. This is the fundamental theorem of Γ-convergence, that is
summarized by the implication

Γ-convergence + equi-coerciveness =⇒ convergence of minimum problems.

A hidden element in the procedure of the computation of a Γ-limit is the choice of the right
notion of convergence xε → x. This is actually one of the main issues in the problem: a convergence
is not given beforehand and should be chosen in such a way that it implies the equi-coerciveness
of the family Fε. The choice of a weaker convergence, with many converging sequences, makes
this requirement easier to fulfill, but at the same time makes the liminf inequality more difficult to
hold. In the following we will not insist on the motivation of the choice of the convergence, that
in most cases will be a strong Lp-convergence (the choice of a separable metric convergence makes
life easier). The reader is anyhow advised that this is one of the main points of the Γ-convergence
approach. Another related issue is that of the correct energy scaling. In fact, in many cases the
given functionals Fε will not give rise to an equi-coercive family with respect to a meaningful
convergence, but the right scaled functionals, e.g., ε−αFε, will turn out to better describe the
behaviour of minimum problems. The correct scaling is again usually part of the problem.

Applications of Γ-convergence to Partial Differential Equations can be generally related to the
behaviour of the Euler-Lagrange equations of some integral energy. The prototype of such problems
can be written as

mε = inf
{∫

Ω

fε(x,Du) dx−
∫

Ω

〈g, u〉 dx : u = ϕ on ∂Ω
}
. (1.7)

In these notes Ω will always stand for an open bounded (sufficiently smooth) subset of Rn, unless
otherwise specified. Note that the possibility of defining a Γ-limit related to these problems will not
be linked to the properties (or even the existence) of the solutions of the related Euler-Lagrange
equations.

5



It must be noted that the functionals related to (1.7) of which we want to compute the Γ-limit
are usually defined on some Sobolev space W 1,p(Ω; Rm) and can be written as

Fϕ,gε (u) =


∫

Ω

fε(x,Du) dx−
∫

Ω

〈g, u〉 dx if u− ϕ ∈W 1,p
0 (Ω; Rm)

+∞ otherwise,
(1.8)

or, equivalently, we can think of Fϕ,gε as defined on Lp(Ω; Rm) extended to +∞ outsideW 1,p(Ω; Rm).
We will often use this extension to +∞ in the paper, leaving it as understood in most cases.

As written above, the functional Fϕ,gε depends both on the forcing term g and on the boundary
datum ϕ. Suppose now that the growth conditions on fε ensure strong pre-compactness of mini-
mizing sequences in Lp (this is usually obtained by Poincaré’s inequality and Rellich’s Embedding
Theorem), and that g ∈ Lp′(Ω). A first important property, following directly from the definition
of Γ-convergence is the stability of Γ-convergence with respect to continuous perturbations: if G is
a continuous function and F0 = Γ-limε→0 Fε, then Γ-limε→0(Fε +G) = F0 +G. This implies that
we can neglect the forcing term in the computation of the Γ-limit of Fϕ,gε and add it a posteriori.

Another, more particular, property is the compatibility of boundary conditions, which says that
also the boundary condition u = ϕ can be added after computing the Γ-limit of the ‘free’ energy

Fε(u) =


∫

Ω

fε(x,Du) dx if u ∈W 1,p(Ω; Rm)

+∞ otherwise.
(1.9)

This property of compatibility of boundary conditions is not always true, but holds for a large
class of integrals (see Section 4.2.1). Other compatibility properties are available for other types of
functionals, as that of volume constraints for Cahn-Hilliard functionals (see Section 7.2.2).

We have hence seen that to characterize the Γ-limit of Fϕ,gε it will be sufficient to compute the
Γ-limit of Fε. We will see that growth conditions on fε ensure that the limit always exists (up to
subsequences) and can be represented again through an integral functional F0(u) =

∫
Ω
f0(x,Du) dx,

independently of the regularity and convexity properties of fε. This can be done through a general
localization and compactness procedure due to De Giorgi [91] (see Sections 3.3 and 4.2). As a
consequence we obtain a limit problem

m0 = inf
{∫

Ω

f0(x,Du) dx−
∫

Ω

〈g, u〉 dx : u = ϕ on ∂Ω
}
, (1.10)

with f0 independent of the data g and ϕ, and also of Ω.
We will see other classes of energies than the integrals as above for which a general approach

is possible showing compactness with respect to Γ-convergence and representation results for the
Γ-limit. We now briefly outline the description of some specific problems. Many more examples are
included in the text.

A ‘classical’ example of Γ-limit is for functionals of the type (1.9) when fε(x, ξ) = f(x/ε, ξ),
and f is a fixed function that is 1-periodic in the first variable (i.e., f(x + ei, ξ) = f(x, ξ) for the
elements ei of the standard basis of Rn). The Γ-limit is also called the homogenized functional of
the Fε (see Section 5).

It is interesting to note how some general issues arise in the study of these functionals. First,
one notes that the limit energy f0, that always exists up to subsequences by what remarked above,
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is homogeneous; i.e., f0(x, ξ) = f0(ξ) by the vanishing periodicity of fε. At the same time, a general
property is the lower-semicontinuity of Γ-limits, that in this case implies that f0 is quasiconvex, or,
what is more important, that the value f0(ξ) at a fixed ξ ∈Mm×n can be expressed as a minimum
problem;

f0(ξ) = min
{∫

(0,1)n
f0(ξ +Dϕ) dx : u ∈W 1,p

0 ((0, 1)n; Rm)
}
. (1.11)

Now the property of convergence of minima provides an ansatz for the function f0, as the value
given by the asymptotic homogenization formula

fhom(ξ) = lim
ε→0

min
{∫

(0,1)n
f
(x
ε
, ξ +Dϕ

)
dx : u ∈W 1,p

0 ((0, 1)n; Rm)
}

= lim
T→+∞

1
Tn

min
{∫

(0,T )n
f
(
y, ξ +Dϕ

)
dy : u ∈W 1,p

0 ((0, T )n; Rm)
}
.

Note that we have made use both of the compatibility of boundary conditions, and of the fact
that we have Γ-convergence on all open sets (and in particular on (0, 1)n). The problem is thus
reduced to showing that this last limit exists, giving a form for the limit independent of a particular
subsequence. The derivation of suitable formulas is one of the recurrent issues in the characterization
of Γ-limits.

The problem above is made easier in the convex and scalar case. In particular we can apply it
to the study of the behaviour of linear equations−

n∑
i,j=1

Di

(
aij
(x
ε

)
Dju

)
= g in Ω

u = ϕ on ∂Ω

(1.12)

with aij periodic (given the usual boundedness and uniform ellipticity), that are the Euler equations
of the minimum problem

mε = inf
{∫

Ω

n∑
i,j=1

aij

(x
ε

)
DjuDiu dx−

∫
Ω

gu dx : u = ϕ on ∂Ω
}
. (1.13)

In this case an additional property of Γ-limits can be used: that Γ-limits of quadratic forms are still
quadratic forms, so that we obtain fhom(ξ) =

∑
i,j qijξiξj with qij constant coefficients. Since in

this case the limit problem has a unique solution we deduce that the solutions uε weakly converge
in H1(Ω) to the solution of the simpler problem−

n∑
i,j=1

qijDiDju = g in Ω

u = ϕ on ∂Ω.

(1.14)

Note that the coefficients qij depend in a non-trivial way on all the coefficients of the matrix aij , and
in particular differ from their averages aij , which give the pointwise limit

∫
Ω

∑
ij aijDiDju dx of

Fε(u). Even in the simple case aij ∈ {αδij , βδij} the characterization of the homogenized matrices
is not a trivial task (see Section 5.4). More interesting effects of the form of the Γ-limit are obtained
by introducing Dirichlet or Neumann boundary conditions on varying domains (see Section 6).
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A feature of Γ-convergence is that it is not linked to a particular assumption of the form of
solutions, but relies instead on energetic approaches, tracing the behaviour of energies. In this way
we could end up with problems of a different nature than those we started with. One of the first
examples of this fact, included in an early paper by Modica and Mortola [124], is the study of the
asymptotic behaviour of minimizers of

mε = min
{∫

Ω

(1− |u|)2 dx+ ε2

∫
Ω

|Du|2 dx : u ∈ H1(Ω),
∫

Ω

u dx = C
}
, (1.15)

where |C| < |Ω|. This is a problem connected to the Cahn-Hilliard theory of liquid-liquid phase
transitions. It is also known as the ‘scalar Ginzburg-Landau’ energy. In this case it is easily
seen by energy considerations that minimizers are weakly pre-compact in L2(Ω) and that in that
topology the Γ-limit is simply

∫
Ω
W ∗∗(u) dx (W ∗∗ denotes the convex hull of W (u) = (1 − |u|)2).

Since W ∗∗(u) = 0 for |u| ≤ 1 we conclude that minimizers converge weakly in L2(Ω) to functions
with |u| ≤ 1, and that all such functions arise as limit of minimizing sequences. This is clearly
not a satisfactory description, and a more meaningful scaling must be performed, considering the
functionals

Fε(u) =
1
ε

∫
Ω

(1− |u|)2 dx+ ε

∫
Ω

|Du|2 dx. (1.16)

These functionals are equi-coercive with respect to the strong convergence in L1(Ω) and from the
first term we may deduce that the limit u of a sequence uε equi-bounded in energy satisfies |u| = 1
a.e. in Ω. By using compactness arguments for sets of finite perimeter, we actually may deduce
that E = {u = 1} is a set of finite perimeter. By the invariance properties and representation
theorems we may deduce that F0(u) = σHn−1(Ω ∩ ∂E). Once the Γ-limit is computed we may
show the compatibility of the integral constraint thus expressing the limit of uε in terms of a set E
that minimizes

m0 = min{Hn−1(Ω ∩ ∂E) : 2|E| − |Ω| = C}. (1.17)

This form of the limit problem is common to many phase-transition energies (see Section 7).
The computation of this Γ-limit shows some remarkable features, such as the one-dimensional

nature of minimizers (i.e., their value essentially depends only on the distance to ∂E) that allows for
a slicing procedure (see Section 3.4), the necessity of finding a ‘correct scaling’ for the energies, the
use of Γ-convergence as a selection criterion when we have many solutions to a variational problem
(in this case problem (1.15) with ε = 0), and, not least, the ‘change of type’ in the limit energy
that turns from a ‘bulk’ energy into a ‘surface’ energy.

Other types of limits present an even more dramatic change of type, such as the (complex)
Ginzburg-Landau energies (note the different scaling with respect to the ‘scalar’ ones)

Fε(uε) =
1

ε2| log ε|

∫
Ω

(1− |u|)2 dx+
1

| log ε|

∫
Ω

|Du|2 dx (1.18)

where Ω ⊂ R2 and u : Ω → R2. In this problem the relevant objects for a sequence with Fε(uε)
equi-bounded for which we have a compactness property are the distributional Jacobians J(uε) that
converge (upon subsequences) to measures µ = π

∑
i diδxi , with xi ∈ Ω and di integers, describing

the formation of ‘vortices’. The limit energy is then defined as F0({(xi, di)}i) = 2π
∑
i |di| (see

Section 8.1).
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Another type of problems with concentration can be dealt with, as the Bernoulli free-boundary
problem: look for an open set A and a function u which is the weak solution of

∆u = 0 in Ω \A
u = 1 on ∂A

u = 0 on ∂Ω
∂u

∂ν
= q on ∂A,

and describe the asymptotic behaviour of such A and u when q → +∞. These can be considered as
the Euler-Lagrange equations of the following family of variational problems depending on a small
parameter ε > 0

SVε (Ω) = max
{
|{u ≥ 1}| : u ∈ H1

0 (Ω) ,
∫

Ω

|∇u|2dx ≤ ε2
}

= max
{
|A| : Cap(A,Ω) ≤ ε2

}
(1.19)

(where Cap(A,Ω) denotes the capacity of A with respect to Ω) with q = qε a Lagrange multiplier.
Again, maximizers show concentration phenomena since maximal sets A will shrink to a point,
and can be treated by Γ-convergence (actually, since we have a maximum problem we must use
the symmetric notion fit for maxima). This asymptotic description can be adapted to treat more
general concentration problems (see Section 8.2).

Beside the study of asymptotic properties of minimum problems, we will describe other uses of
Γ-convergence. One is the construction of suitable Γ-converging functionals Fε to a given F0. This
is the case for example of functionals in Computer Vision, such as the Mumford-Shah functional,
that are difficult to treat numerically. Their approximation by elliptic functionals (such as the
Ambrosio-Tortorelli approximation) provides approximate solutions and numerical schemes, but
also many other types of approximating functionals are available (see Section 10). Γ-convergence is
particularly suited to such issues, not being linked to a particular form or domain for the energies
to be constructed. Moreover, Γ-convergence is also used in the ‘justification’ of physical theories
through a limit procedure. One example is the derivation of low-dimensional theories from three-
dimensional elasticity (see Section 9), another one is the deduction of properties in Continuum
Mechanics from atomistic potentials (see Section 11).

Notation. We will use standard notation and results for Lebesgue, Sobolev and BV spaces (see
[97, 146, 20]). For functionals defined on Sobolev spaces we will identify the distributional derivative
Du with its density, so that the same symbol will denote the corresponding L1-function. We
will abandon this identification when we will deal with functions of bounded variation, where the
approximate gradient will be denoted by ∇u (Sections 10 and 11).

In the proofs we will often use the letters c and C to indicate unspecified strictly positive
constants. A family of objects, even if parameterized by a continuous parameter, will also be often
called a ‘sequence’ not to overburden notation.

2 General theory of Γ-convergence

This first chapter is devoted to an introduction to the main properties of Γ-convergence, in particular
to those that are useful in the actual computation of Γ-limits. The reader is referred to [46] for a

9



proof of these results, many of which are nevertheless simple applications of the definitions, and to
[85] for a more refined introduction (see also [27]). The original papers on the subject by De Giorgi
and collaborators are colected in [92].

In what follows we will usually compute the Γ-limit of a family Fε of functionals indexed by the
positive parameter ε. Within the proofs of the lower bounds it is generally useful to invoke some
compactness argument, and consider the problem of computing the Γ-limit of a sequence Gj := Fεj .
We will give the definitions for the whole family Fε. The reader can easily rewrite every definition
for functionals depending on a discrete parameter j.

2.1 The definitions of Γ-convergence

We have seen in the introduction how a definition of Γ-convergence can be given in terms of
properties of the functions along converging sequences. That one will be the definition we will
normally use. For the sake of completeness we now consider the most general case of a family
Fε : X → [−∞,+∞] defined on a topological space X. In that case we say that Fε Γ-converges to
F : X → [−∞,+∞] at x ∈ X as ε→ 0 if we have

F (x) = sup
U∈N (x)

lim inf
ε→0

inf
y∈U

Fε(y)
(

= sup
U∈N (x)

sup
0<ρ

inf
ε<ρ

inf
y∈U

Fε(y)
)

(2.1)

= sup
U∈N (x)

lim sup
ε→0

inf
y∈U

Fε(y)
(

= sup
U∈N (x)

inf
0<ρ

sup
ε<ρ

inf
y∈U

Fε(y)
)
,

where N (x) denotes the family of all neighbourhoods of x in X. In this case we say that F (x) is
the Γ-limit of Fε at x and we write

F (x) = Γ- lim
ε→0

Fε(x). (2.2)

If (2.2) holds for all x ∈ X then we say that Fε Γ-converges to F (on the whole X).
Note that we sometime will consider families of functionals Fε : Xε → [−∞,+∞], where the

domain may depend on ε. In this case it is understood that we identify such functionals with

F̃ε(x) =

{
Fε(x) if x ∈ Xε

+∞ if X \Xε,

where X is a space containing all Xε where the convergence takes place.
The definition above makes sense in any topological space and is rather suggestive as it shows

as these limits are constructed from the elementary operations of ‘sup’ and ‘inf’. This definition
is sometimes handy to prove general properties as compactness or lower semicontinuity; however
it is less suited to most direct computations. In applications we will usually deal with metric
spaces (as Lp spaces) or metrizable spaces (as bounded subsets of Sobolev spaces or of spaces of
measures, equipped with the weak topology), that in addition are also separable. For such spaces
the definitions above are simplified as follows.

Theorem 2.1 (equivalent definitions of Γ-convergence) Let X be a metric space and let Fε, F :
X → [−∞,+∞]. Then the Γ-convergence of Fε to F at x is equivalent to any of the following con-
ditions

10



(a) we have

F (x) = inf
{

lim inf
ε→0

Fε(xε) : xε → x
}

= inf
{

lim sup
ε→0

Fε(xε) : xε → x
}

; (2.3)

(b) we have

F (x) = min
{

lim inf
ε→0

Fε(xε) : xε → x
}

= min
{

lim sup
ε→0

Fε(xε) : xε → x
}

; (2.4)

(c) (sequential Γ-convergence) we have
(i) (liminf inequality) for every sequence (xε) converging to x

F (x) ≤ lim inf
ε→0

Fε(xε); (2.5)

(ii) (limsup inequality) there exists a sequence (xε) converging to x such that

F (x) ≥ lim sup
ε→0

Fε(xε); (2.6)

(d) the liminf inequality (c)(i) holds and
(ii)’ (existence of a recovery sequence) there exists a sequence (xε) converging to x such

that
F (x) = lim

ε→0
Fε(xε). (2.7)

(e) the liminf inequality (c)(i) holds and
(ii)” (approximate limsup inequality) for all η > 0 there exists a sequence (xε) converging

to x such that
F (x) ≥ lim sup

ε→0
Fε(xε)− η. (2.8)

Moreover, the Γ-convergence of Fε to F on the whole X is equivalent to
(f) (limits of minimum problems) inequality

inf
U
F ≥ lim sup

ε→0
inf
U
Fε (2.9)

holds for all open sets U and inequality

inf
K
F ≤ sup{lim inf

ε→0
inf
U
Fε : U ⊃ K, U open} (2.10)

holds for all compact sets K.
Finally, if d denotes a distance on X and we have a uniform lower bound Fε(x) ≥ −c(1 +

d(x, x0)p) for some p > 0 and x0 ∈ X, then the Γ-convergence of Fε to F on the whole X is
equivalent to
(g) (convergence of Moreau-Yosida transforms) we have

F (x) = sup
λ≥0

lim inf
ε→0

inf
y∈X
{Fε(y) + λd(x, y)p}

= sup
λ≥0

lim sup
ε→0

inf
y∈X
{Fε(y) + λd(x, y)p}. (2.11)
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Proof The equivalence between (a)–(e) is easily proved, as their equivalence with definition (2.1).
In particular note that (2.7) is equivalent to (2.6) since (2.5) holds, and (2.8) is equivalent to (2.7)
by the arbitrariness of η and a diagonal argument. The proofs of (f) and (g) are only a little more
delicate (see [46] Section 1.4 for details).

The two inequalities in (c) are usually taken as the definition of Γ-convergence (for first-countable
spaces). Note the asymmetry between inequalities with upper and lower limits, due to Γ-convergence
being ‘unbalanced’ towards minimum problems.

Remark 2.2 From the definitions above we can make some immediate but interesting observation:
1) Stability under continuous perturbations: if (Fε) Γ-converges to F and G : X → [−∞,+∞]

is a d-continuous function then (Fε +G) Γ-converges to F +G. This is an immediate consequence
of the definition (e.g. from condition (d));

2) Γ-limit of a constant sequence: Γ-convergence does not enjoy the property that a constant
family Fε = F converges to F . In fact if this were true, then from the liminf inequality we would
have F (x) ≤ lim infε→0 F (xε) for all xε → x; i.e., F would be lower semicontinuous (which is not
always the case);

3) Comparison with uniform and pointwise limits. The previous observation in particular shows
that we cannot deduce the existence of the Γ-limit from pointwise convergence. If Fε converge to
G pointwise and F = Γ-limε→0 Fε then F ≤ G. However, if Fε converge uniformly to a continuous
F on an open set U then we easily see that Fε Γ-converge to F ;

4) Dependence on the metric. Note that the value and the existence of the Γ-limit depend on
the metric d. If we want to highlight the role of the metric, we can add the dependence on the
distance d, and write Γ(d)-limit, Γ(d)-convergence, and so on. When two distances d and d′ are
comparable then from (2.3) we get an inequality between the two Γ-limits (if they exist); in general,
note that the existence of the Γ-limit in one metric does not imply the existence of the Γ-limit in
the second.

2.1.1 Upper and lower Γ-limits

As for usual limits, it is convenient to define quantities that always exist (as upper and lower limits)
and rephrase the existence of a Γ-limit as an equality between those two quantities. Theorem 2.1(a)
suggests the following definition of lower and upper Γ-limits:

Γ- lim inf
ε→0

Fε(x) = inf
{

lim inf
ε→0

Fε(xε) : xε → x
}
, (2.12)

Γ- lim sup
ε→0

Fε(x) = inf
{

lim sup
ε→0

Fε(xε) : xε → x
}
, (2.13)

respectively. In this way the existence of the Γ-limε→0 Fε(x) = F (x) is stated as

Γ- lim inf
ε→0

Fε(x) = Γ- lim sup
ε→0

Fε(x) = F (x). (2.14)

Remark 2.3 If (Fεk) is a subsequence of (Fε) then

Γ- lim inf
ε→0

Fε ≤ Γ- lim inf
k

Fεk , Γ- lim sup
k

Fεk ≤ Γ- lim sup
ε→0

Fε.

In particular, if F = Γ- limε→0 Fε exists then for every infinitesimal sequence (εk) F = Γ-limk Fεk .
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2.2 Γ-convergence and lower semicontinuity

As remarked above the Γ-limit of a constant family Fε = F does not converge to F . This is true,
however, if F is d-lower semicontinuous. More, the class of lower-semicontinuous functions provides
a ‘stable class’ for Γ-convergence. This is summarized in the following propositions.

Proposition 2.4 (lower semicontinuity of Γ-limits) The Γ-upper and lower limits of a family
Fε are d-lower semicontinuous functions.

Proposition 2.5 (Γ-limits and lower-semicontinuous envelopes – relaxation)
1) The Γ-limit of a constant sequence Fε = F is equal to

F (x) = lim inf
y→x

F (y); (2.15)

that is, the lower-semicontinuous envelope of F , defined as the largest lower-semicontinuous function
not greater than F . This operation is also called relaxation.

2) The Γ-limit is stable by substituting Fε by its lower-semicontinuous envelope F ε; i.e., we have

Γ- lim inf
ε→0

Fε = Γ- lim inf
ε→0

F ε, Γ- lim sup
ε→0

Fε = Γ- lim sup
ε→0

F ε. (2.16)

Remark 2.6 If Fε → F pointwise then Γ-lim supε→0 Fε ≤ F , and hence, taking both lower-
semicontinuous envelopes, also Γ-lim supε→0 Fε ≤ F .

Remark 2.7 The following observations are often useful in computations:
(i) the supremum of a family (non necessarily finite or countable) of lower-semicontinous func-

tions is itself lower semicontinuous;
(ii) if f : X → R is bounded from below and p > 0; then for all x ∈ X

f(x) = sup
λ≥0

inf
y∈X
{f(y) + λd(x, y)p}.

In particular, every lower-semicontinuous function bounded from below is the supremum of an
increasing family of Lipschitz functions.

2.3 Computation of Γ-limits

For some classes of functionals, a common compactness procedure has been formalized (see Section
3 below), but in general the computation of the Γ-limit of a family (Fε) is usually divided into the
computation of a separate lower and an upper bound. A lower bound is a functional G such that
G ≤ Γ- lim infε→0 Fε; i.e., such that

G(x) ≤ lim inf
j

Fεj (xj) for all εj → 0 and xj → x. (2.17)

The lower semicontinuity of Γ-limit allows us to limit our search for lower bounds to the class of
lower-semicontinuos G. If we can characterize a large enough family G of G satisfying (2.17) then
the optimal lower bound is obtained as G(x) := sup{G(x) : G ∈ G}. Note that this function is
lower semicontinuous, being the supremum of a family of lower semicontinuous functions.

The optimization of the lower bound usually suggests an ansatz (or more) to approximate a
target element x ∈ X by a family xε → x, thus defining H(x) := limε→0 Fε(xε). By definition
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H ≥ Γ- lim supε→0 Fε, so that H is an upper bound for the Γ-limit. If we use more ansätze, we
obtain a family H and then a candidate optimal upper bound as H(x) = inf{H(x) : H ∈ H}. The
existence (and computation) of the Γ-limit is then expressed in the equality G = H.

Remark 2.8 (a density argument) The lower semicontinuity of the Γ-limsup can be used to
reduce its computation to a dense class. Let d′ be a distance on X inducing a topology which is
not weaker than that induced by d; i.e., d′(xε, x)→ 0 implies d(xε, x)→ 0, and suppose that

(i) D is a dense subset of X for d′;
(ii) we have Γ-lim supε→0 Fε(x) ≤ F (x) on D, where F is a function which is continuous with

respect to d;
then we have Γ-lim supε→0 Fε ≤ F on X.

To check this, it suffices to note that if d′(xk, x)→ 0 and xk ∈ D then

Γ- lim sup
ε→0

Fε(x) ≤ lim inf
k

(
Γ- lim sup

ε→0
Fε(xk)

)
≤ lim inf

k
F (xk) = F (x).

This method will be used very often in the following, without repeating these arguments. It will be
applied for example for integral functionals with d the Lp-topology and d′ the strong W 1,p-topology.

2.4 Properties of Γ-convergence

Definition 2.9 We will say that a sequence Fε : X → R is equi-coercive if for all t ∈ R there
exists a compact set Kt such that {Fε ≤ t} ⊂ Kt.

If needed, we will also use the more general definition: for all εj → 0 and xj such that Fεj (xj) ≤ t
there exist a subsequence of j (not relabeled) and a converging sequence x′j such that Fεj (x

′
j) ≤

Fεj (xj) + o(1).

We can state the main convergence result of Γ-convergence, whose proof has been shown in the
Introduction.

Theorem 2.10 (fundamental theorem of Γ-convergence) Let (X, d) be a metric space, let
(Fε) be a equi-coercive sequence of functions on X, and let F = Γ-limε→0 Fε; then

∃min
X

F = lim
ε→0

inf
X
Fε. (2.18)

Moreover, if (xε) is a precompact sequence such that limε→0 Fε(xε) = limε→0 infX Fε, then every
limit of a subsequence of (xε) is a minimum point for F .

Remark 2.11 (Γ-convergence as a choice criterion) If in the theorem above all functions Fε
admit a minimizer xε then, up to subsequences, xε converge to a minimum point of F . The converse
is clearly not true: we may have minimizers of F which are not limits of minimizers of Fε. A trivial
example is Fε(t) = εt2 on the real line. This situation is not exceptional; on the contrary: we may
often view some functional as a Γ-limit of some particular perturbations, and single out from its
minima those chosen as limits of minimizers.

Γ-limits of monotone sequences
We can state some simple but important cases when the Γ-limit does exist, and it is easily

computed.

14



Remark 2.12 (i) If Fj+1 ≤ Fj for all j ∈ N, then

Γ- limj Fj = (infj Fj) = (limj Fj). (2.19)

In fact as Fj → infk Fk pointwise, by Remark 2.6 we have Γ-lim supj Fj ≤ (infk Fk), while the other
inequality comes trivially from the inequality (infk Fk) ≤ infk Fk ≤ Fj ;

(ii) if Fj ≤ Fj+1 for all j ∈ N, then

Γ- limj Fj = supj F j = limj F j ; (2.20)

in particular if Fj is l.s.c. for every j ∈ N, then

Γ- lim
j
Fj = lim

j
Fj . (2.21)

In fact, since F j → supk F k pointwise,

Γ- lim supj Fj = Γ- lim supj F j ≤ supk F k

by Remark 2.6. On the other hand F k ≤ Fj for all j ≥ k so that the converse inequality easily
follows.

Γ-limits and pointwise properties

Proposition 2.13 If each element of the family (Fε) is positively homogeneous of degree d (re-
spectively, convex, a quadratic form) then their Γ-limit is F0 is positively homogeneous of degree d
(respectively, convex, a quadratic form).

Proof The proof follows directly from the definition. The only care is to note that F : X → [0,+∞]
is a quadratic form if and only if F (0) = 0, F (x+ x′) + F (x− x′) ≤ 2(F (x) + F (x′)) and F (tx) ≤
t2F (x) for all x, x′ ∈ X and t > 0.

2.4.1 Topological properties of Γ-convergence

Proposition 2.14 (Compactness) Let (X, d) be a separable metric space, and for all j ∈ N let
Fj : X → R be a function. Then there is an increasing sequence of integers (jk) such that the
Γ-limk Fjk(x) exists for all x ∈ X.

Proof The proof follows easily from the topological definition (2.1) by extracting a subsequence
such that infy∈U Fjk(y) converges in a countable basis of open sets U .

Proposition 2.15 (Urysohn property) We have Γ-limj Fj = F if and only if for every subse-
quence (fjk) there exists a further subsequence which Γ-converges to F .

Remark 2.16 (Metrizability) Γ-convergence on spaces of lower-semicontinuous functions satis-
fying some uniform equi-coerciveness properties is metrizable (see [85] Chapter 10 for more detailed
statements). This property is often useful, for example in the definition of ‘diagonal’ Γ-converging
sequences.
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2.5 Development by Γ-convergence

In many cases a first Γ-limit provides a functional with a lot of minimizers. In this case a further
‘Γ-limit of higher order’, with a different scaling, may bring more information, as formalized in this
result by Anzellotti and Baldo [25] (see also [26]).

Theorem 2.17 (development by Γ-convergence) Let Fε : X → R be a family of d-equi-
coercive functions and let F 0 = Γ(d)-limε→0 Fε. Let mε = inf Fε and m0 = minF 0. Suppose
that for some δε > 0 with δε → 0 there exists the Γ-limit

F 1 = Γ(d′)- lim
ε→0

Fε −m0

δε
, (2.22)

and that the sequence F 1
ε = (Fε − m0)/δε is d′-equi-coercive for a metric d′ which is not weaker

than d. Define m1 = minF 1 and suppose that m1 6= +∞; then we have that

mε = m0 + δεm
1 + o(δε) (2.23)

and from all sequences (xε) such that Fε(xε)−mε = o(δε) (in particular this holds for minimizers,
if any) there exists a subsequence converging in (X, d′) to a point x which minimizes both F 0 and
F 1.

3 Localization methods

The abstract compactness properties of Γ-convergence (Proposition 2.14) always ensure the exis-
tence of a Γ-limit, upon passing to a subsequence, but in general the limit function defined in this
way remains an abstract object, that needs more information to be satisfactorily identified. In
applications to minimum problems of the Calculus of Variations, we often encounter functionals
as volume or surface integrals depending on the ‘local’ behaviour of some function u; e.g., integral
functionals of the form

Fε(u) =
∫

Ω

fε(x,Du(x)) dx u ∈W 1,p(Ω; Rm) (3.1)

(see Section 4) or free-discontinuity energies

Fε(u) =
∫

Ω

fε(x,Du(x)) dx+
∫
S(u)

ϕ(x, u+ − u−, νu)dHn−1 (3.2)

for u ∈ SBV (Ω; Rm) (see Section 10). These energies can be localized on open subsets A of Ω; i.e.,
we may define

Fε(u,A) =
∫
A

fε(x,Du(x)) dx u ∈W 1,p(Ω; Rm) (3.3)

and
Fε(u,A) =

∫
A

fε(x,∇u(x)) dx+
∫
S(u)∩A

ϕε(x, u+ − u−, νu)dHn−1 (3.4)

(u ∈ SBV (Ω; Rm)), respectively.
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The essential property defining local functionals F (u,A) is that

F (u,A) = F (v,A) if u = v a.e. on A. (3.5)

For the rest of the section, with the examples above in mind we suppose to have a sequence of
functionals Fj(u) (i.e., we may fix a subsequence (Fεj ) of some (Fε)) that may be ‘localized’ by
defining Fj(u,A) for all open subsets of some open set Ω.

3.1 Supremum of measures

The localization methods can be used to simplify the computation of lower bounds. A simple but
useful observation is that if Fj are local, then, for fixed u, the set function A 7→ F ′(u,A) := Γ-
lim infj Fj(u,A) is a super-additive set function on open sets with disjoint compact closures; i.e.,

F ′(u,A ∪B) ≥ F ′(u,A) + F ′(u,B)

if A∩B = ∅, A∪B ⊂⊂ Ω. This inequality directly derives from the definition of Γ-liminf since test
functions for F ′(u,A ∪B) can be used as test functions for both F ′(u,A) and F ′(u,B).

If we have a family of lower bounds of the form

F ′(u,A) ≥ Gi(u,A) =:
∫
A

ψi dλ,

where λ is a positive measure and ψi are positive Borel functions, then we can apply to µ(A) =
F ′(u,A) the following general lemma (see, e.g., [46] Lemma 15.2).

Lemma 3.1 (supremum of a family of measures) Let µ be a function defined on the family
of open subsets of Ω which is super-additive on open sets with disjoint compact closures, let λ be a
positive measure on Ω, let ψi be positive Borel functions such that µ(A) ≥

∫
A
ψi dλ for all open sets

A and let ψ(x) = supi ψi(x). Then µ(A) ≥
∫
A
ψ dλ for all open sets A.

3.2 The blow-up technique

The procedure described above highlights that for local functionals the liminf inequality can be itself
localized on open subsets. Another type of localization argument is by the ‘blow-up’ technique
introduced by Fonseca and Müller [104] (see also [43]). It applies to the lower estimate along
a sequence Fj(uj) with uj → u, for energies that for fixed j can be written as measures; i.e.,
Fj(uj , A) = µj(A). For the functionals in (3.3), (3.4) we have µj = fεj (x,Duj)Ln and µj =
fεj (x,∇uj)Ln + ϕεj (x, u

+
j − u

−
j , νuj )Hn−1 S(uj), respectively.

Step 1: definition of a limit measure. If lim infj Fj(uj) is finite (which is the non-trivial case)
then we deduce that the family of measures (µj) is finite and hence, up to subsequences, we
may suppose it converges weakly∗ to some measure µ. We fix some measure λ (whose choice is
driven by the target function u) and consider the decomposition µ = (dµ/dλ)λ + µs in a part
absolutely continuous with respect to λ and a singular part. In the case of Sobolev functionals and
u ∈W 1,p(Ω; Rm) we expect the limit to be again an integral of the same type and we choose λ = Ln;
for free-discontinuity energies instead we expect the limit to have an additional term concentrated
on S(u), and we may choose λ = Ln or λ = Hn−1 S(u);
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Step 2: local analysis. We fix a ‘meaningful’ x0; i.e., such that: x0 is a Lebesgue point for µ
with respect to λ; i.e.,

dµ

dλ
(x0) = lim

ρ→0

µ(x0 + ρD)
λ(x0 + ρD)

,

where D is a suitable open set properly chosen for the problem. In the case when λ = Ln, for
example, we may choose D = (−1/2, 1/2)n so that λ(x0 + ρD) = ρn. Note that for all ρ except
for a countable set, we have µ(∂(x0 + ρD)) = 0, and hence µ(x0 + ρD) = limj µj(x0 + ρD) =
limj Fj(uj , x0 + ρD); for λ = Hn−1 S(u) we choose D a cube with one face orthogonal to the
normal vector νu(x0) to S(u) at x0, so that λ(x0 + ρD) = ρn−1 + o(ρn−1);

Step 3: blow up. We choose ρj → 0 such that we still have

dµ

dλ
(x0) = lim

j

Fj(uj , x0 + ρjD)
λ(x0 + ρjD)

,

and change our variables obtaining functionals

Gj(vj , D) = λ(x0 + ρjD)−1Fj(uj , x0 + ρjD).

Up to a proper choice of scaling we may suppose that vj converges to a meaningful v0. In the
case λ = Ln we have vj(x) := 1

ρj
(uj(x0 + ρjx) − uj(x0)) → 〈∇u(x0), x − x0〉 =: v0(x); in the case

λ = Hn−1 S(u) we choose vj(x) = uj(x0 + ρjx), converging to the function taking the only two
values u±(x0) jumping across the linear hyperplane orthogonal to νu(x0);

Step 4: local estimates. At this point we only have to estimate the limit of the scaled energies
Gj(vj , D) when vj converges to a simple target v0. This is done in different ways depending on the
type of energies, obtaining then an inequality dµ

dλ (x0) ≥ ϕλ(x0), and some formulas linking ϕλ(x0)
with the local behaviour of u at x0. In the case λ = Ln, ϕλ(x0) = f0(x,∇u(x0)); if λ = Hn−1 S(u)
then ϕλ(x0) = ϕ0(x, u+(x0)− u−(x0), νu(x0));

Step 5: global estimates. We integrate the local estimates above. For integral functionals, for
example, we then conclude that

F0(u,Ω) = µ(Ω) ≥
∫

Ω

dµ

dλ
dλ =

∫
Ω

f0(x,∇u(x0)) dx. (3.6)

3.3 A general compactness procedure

If the functionals Fε Γ-converge to some F , we may look at the behaviour of the localized limit
functionals F (u,A) both with respect to u and A, and deduce enough information to give a de-
scription of F (e.g., that it is itself an integral in the cases above). The great advantage of this
piece of information is that it reduces the computation of a particular Γ-limit within that class to
the pointwise characterization of its energy densities. We briefly describe a procedure introduced
by De Giorgi [91] that leads e.g. to compactness results for classes of integrals as above (see [85, 54]
for more details).

Step 1: compactness The first step is to apply the compactness result (not only on Ω, but also)
on a dense countable family V of open subsets of Ω. For example we can choose as V the family
of all unions of open polyrectangles with rational vertices. Since V is countable, by a diagonal
argument, upon extracting a subsequence we can suppose that all Fj(·, A) Γ-converge for A ∈ V.
We denote by F0(·, A) the Γ-limit, whose form may a priori depend on A.
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Step 2: inner regularization The next idea is to consider F0(u, ·) as a set function and prove
some properties that lead to some (integral) representation. The first property is ‘inner regularity’
(see below). In general there may be exceptional sets where this property is not valid; hence, in
place of F0, we define the set function F 0(u, ·), the inner-regular envelope of F0, on all open subsets
of Ω by setting

F 0(u,A) = sup{F0(u,A′) : A′ ∈ V, A′ ⊂⊂ A}.

In this way, F 0(u, ·) is automatically inner regular; i.e., F 0(u,A) = sup{F 0(u,A′) : A′ ⊂⊂ A}.
An alternative approach is directly proving that F0(u, ·) can be extended to an inner-regular set
function (which is not always the case).

Step 3: subadditivity A crucial property (see Step 4 below) of F 0 is subadditivity; i.e., that

F 0(u,A ∪B) ≤ F 0(u,A) + F 0(u,B)

(which is enjoyed for example by non-negative integral functionals). This is usually the most
technical part to prove that may involve a complex analysis of the behaviour of the functionals Fj .

Step 4: measure property The next step is to prove that F 0(u, ·) is the restriction of a finite
Borel measure to the open sets of Ω. To this end it is customary to use the De Giorgi Letta Measure
Criterion (see below).

Step 5: integral representation Since F 0(u, ·) is (the restriction of) a measure we may write it
as an integral. For example, in the case of Sobolev spaces if F 0(u, ·) is absolutely continuous with
respect to the Lebesgue measure, then it can be written as

F 0(u,A) =
∫
A

fu(x) dx;

subsequently, by combining the properties of F 0 as a set function with those with respect to u we
deduce that indeed we may write fu(x) = f(x,Du(x)).

This step is usually summarized in separate integral representation theorems that state that a
local functional F0(u,A) satisfying suitable growth conditions, that is lower-semicontinuous in u
and that is a measure in A, can be written as an integral functional (see Section 4.1.1 for the case
of functionals on Sobolev spaces).

Step 6: recovery of the Γ-limit The final step is to check that, taking A = Ω, indeed F 0(u,Ω) =
F0(u,Ω) so that the representation we have found holds for the Γ-limit (and not for its ‘inner
regularization’). This last step is an inner regularity result on Ω and for some classes of problems
is sometime directly proved in Step 2.

Remark 3.2 (fundamental estimate) The subadditivity property in Step 3 is often derived by
showing that the sequence Fj satisfies the so-called fundamental estimate. In the case of Γ-limits
with respect to the Lp-convergence this is stated as follows: for all A,A′, B open subsets of Ω with
A′ ⊂⊂ A, and for all σ > 0, there exists M > 0 such that for all u, v in the domain of Fj one may
find a function w such that w = u in A′, w = v on B \A such that

Fj(w,A′ ∪B) ≤ (1 + σ)(Fj(u,A) + Fj(v,B)) (3.7)

+M
∫

(A∩B)\A′
|u− v|p dx+ σ ,
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and
‖u− w‖Lp + ‖v − w‖Lp ≤ C‖u− v‖Lp .

In the case of functionals on Sobolev spaces w is usually of the form ϕu + (1 − ϕ)v with
ϕ ∈ C∞0 (A; [0, 1]), ϕ = 1 in A′, but can also be constructed differently (e.g., solving some auxiliary
minimum problem in A \A′ with data 0 on ∂A and 1 on ∂A′).

The subadditivity of F 0 in Step 3 above is easily proved from this property by directly using
the definition of Γ-convergence.

The proof of the following characterization of measures can be found in [95] (see also [54])

Lemma 3.3 (De Giorgi Letta Measure Criterion) If a set function α defined on all open sub-
sets of a set Ω satisfies

(i) α(A) ≤ α(B) is A ⊂ B (α is increasing);
(ii) α(A) = sup{α(B) : B ⊂⊂ A} (α is inner regular);
(iii) α(A ∪B) ≤ α(A) + α(B) (α is subadditive);
(iv) α(A ∪B) ≥ α(A) + α(B) if A ∩B = ∅ (α is superadditive),

then α is the restriction to all open sets of Ω of a regular Borel measure.

3.4 The ‘slicing’ method

In this section we describe a fruitful method to recover the liminf inequality for Γ-limits through
the study of one-dimensional problems by a ‘sectioning’ argument. An example of application of
this procedure will be given by the proof of Theorem 7.3.

The main idea of this method is the following. Let Fε be a sequence of functionals defined on a
space of functions with domain a fixed open set Ω ⊂ Rn. Then we may examine the behaviour of
Fε on one-dimensional sections as follows: for each ξ ∈ Sn−1 we consider the hyperplane

Πξ := {z ∈ Rn : 〈z, ξ〉 = 0} (3.8)

passing through 0 and orthogonal to ξ. For each y ∈ Πξ we then obtain the one-dimensional set

Ωξ,y := {t ∈ R : y + tξ ∈ Ω}, (3.9)

and for all u defined on Ω we define the one-dimensional function

uξ,y(t) = u(y + tξ) (3.10)

defined on Ωξ,y. We may then give a lower bound for the Γ-liminf of Fε by looking at the limit of
some functionals ‘induced by Fε’ on the one-dimensional sections.

Step 1. We ‘localize’ the functional Fε highlighting its dependence on the set of integration. This
is done by defining functionals Fε(·, A) for all open subsets A ⊂ Ω as in (3.3) and (3.4).

Step 2. For all ξ ∈ Sn−1 and for all y ∈ Πξ, we find functionals F ξ,yε (v, I), defined for I ⊂ R
and v ∈ L1(I), such that setting

F ξε (u,A) =
∫

Πξ

F ξ,yε (uξ,y, Aξ,y) dHn−1(y) (3.11)

we have Fε(u,A) ≥ F ξε (u,A). This is usually an application of Fubini’s Theorem.
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Step 3. We compute the Γ-lim infε→0 F
ξ,y
ε (v, I) = F ξ,y(v, I) and define

F ξ(u,A) =
∫

Πξ

F ξ,y(uξ,y, Aξ,y) dHn−1(y) . (3.12)

Step 4. Apply Fatou’s Lemma. If uε → u, we have

lim inf
ε→0+

Fε(uε, A) ≥ lim inf
ε→0+

F ξε (uε, A) = lim inf
ε→0+

∫
Πξ

F ξ,yε ((uε)ξ,y, Aξ,y) dHn−1(y)

≥
∫

Πξ

lim inf
ε→0+

F ξ,yε ((uε)ξ,y, Aξ,y) dHn−1(y)

≥
∫

Πξ

F ξ,y(uξ,y, Aξ,y) dHn−1(y) = F ξ(u,A) .

Hence, we deduce that Γ- lim inf
ε→0+

Fε(u,A) ≥ F ξ(u,A) for all ξ ∈ Sn−1.

Step 5. Describe the domain of the limit. From the estimates above and some directional char-
acterization of function spaces we deduce the domain of the Γ-lim inf. For example, if F ξ(u,A) ≥∫
A
|〈Du, ξ〉|p dx for p > 1 for ξ in a basis of Rn we deduce that the limit is a W 1,p-function.

Step 6. Optimize the lower estimate. We finally deduce that F ′(u,A) ≥ sup{F ξ(u,A) : ξ ∈
Sn−1}. If the latter supremum is obtained also by restricting to a countable family (ξi)i of directions,
if possible use Lemma 3.1 to get an explicit form of a lower bound.

4 Local integral functionals on Sobolev spaces

The most common functionals encountered in the treatment of Partial Differential Equations are
integral functionals defined on some subset of a Sobolev space; i.e., of the form (we limit to first
derivatives)

Fε(u) =
∫

Ω

gε(x, u,Du) dx.

It must be previously noted that if we can isolate the explicit dependence on u; i.e., if we can write

Fε(u) =
∫

Ω

fε(x,Du) dx+
∫

Ω

h(x, u) dx,

and h is a Carathéodory function satisfying a growth condition of the form |h(x, u)| ≤ c(α(x)+ |u|p)
with α ∈ L1(Ω), then the second integral is a continuous functional on Lp, and can therefore be
dropped when computing the Γ-limit in the Lp topology. Note that this observation in particular
applies to the continuous linear perturbations

u 7→
∫

Ω

〈ψ, u〉 dx,

where ψ ∈ Lp′(Ω; Rm).
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4.1 A prototypical compactness theorem

Integral functionals of the form

F (u) =
∫

Ω

f(x,Du) dx u ∈W 1,p(Ω; Rm) (4.1)

c1(|ξ|p − 1) ≤ f(x, ξ) ≤ c2(|ξ|p + 1) (4.2)

(f : Ω × Mm×n → R Borel function) with Ω a bounded open subset of Rn, p > 1 and ci > 0,
represent a ‘classical’ class of energies for which the general compactness procedure in Section 3.3
can be applied. For minimum problems of the form

min
u=ϕ on ∂Ω

F (u) , min
{
F (u)−

∫
Ω

〈ψ, u〉 dx : u ∈W 1,p(Ω; Rm)
}

(4.3)

(with the usual conditions of Ω connected and
∫

Ω
ψ dx = 0 in the second case) we easily infer that

minimizers satisfy some W 1,p bound depending only on ci, ϕ or ψ. Hence the correct convergence to
use in the computation of the Γ-limit is the weak convergence in W 1,p or, equivalently by Rellich’s
Theorem, the strong Lp convergence.

Remark 4.1 (growth conditions) The growth conditions (4.2) can be relaxed to cover more
general cases. The case p = 1 can be dealt with in the similar way, but in this case the natural
domain for these energies is the space of functions with bounded variation BV (Ω; Rm) on which
the relaxation of F take a more complex form (see [20]), whose description goes beyond the scopes
of this presentation. Moreover, we may also deal with conditions of the form

c1(|ξ|p − 1) ≤ f(x, ξ) ≤ c2(|ξ|q + 1) (4.4)

if the gap between p and q is not too wide. The methods in this chapter work exactly the same if
q < p∗ by the Sobolev embedding theorem, but wider gaps can also be treated (see the book by
Fonseca and Leoni [103]). Outside the convex context, a long-standing conjecture that I learned
from De Giorgi is that it should be sufficient to deal with the class of f that satisfy a condition

c1(ψ(ξ)− 1) ≤ f(x, ξ) ≤ c2(ψ(ξ) + 1) (4.5)

where ψ is such that Ψ(u) =
∫

Ω
ψ(Du) dx is lower semicontinuous. This is a completely open

problem, in particular because in general we do not have a characterization of good dense sets in
the domain of Ψ.

Theorem 4.2 (Compactness of local integral energies) Let p > 1 and let fj be a sequence of
Borel functions uniformly satisfying the growth condition (4.2). Then there exist a subsequence of
fj (not relabeled) and a Carathéodory function f0 satisfying the same condition (4.2) such that, if
we set

F0(u,A) =
∫
A

f0(x,Du) dx u ∈W 1,p(A; Rm), (4.6)

and the localized functionals defined by

Fj(u,A) =
∫
A

fj(x,Du) dx u ∈W 1,p(A; Rm), (4.7)

then Fj(·, A) converges to F0(·, A) with respect to the Lp(A; Rm) convergence for all A open subsets
of Ω.
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Proof To prove the theorem above the steps in Section 3.3 can be followed. In this case the Γ-limit
can be proved to be inner regular (this can be done by using the argument in Section 4.2.1 below,
which also proves the subadditivity property) and we may use the integral representation result in
the next section.

Remark 4.3 (convergence of minimum problems with Neumann boundary conditions)
In the class above we immediately obtain the convergence of minimum problems as the second one
in (4.3). The only thing to check is equi-coerciveness, which follows from the Poincaré-Wirtinger
inequality. Note in fact that we may reduce to the case

∫
u dx = 0 upon a translation of a constant

vector.

4.1.1 An integral representation result

The prototype of the integral representation results is the following classical theorem in Sobolev
spaces due to Buttazzo and Dal Maso (see [66, 54]).

Theorem 4.4 (Sobolev integral representation theorem) If F = F (u,A) is a functional de-
fined for u ∈W 1,p(Ω; Rm) and A open subset of Ω satisfying

(i) (lower semicontinuity) F (·, A) is lower semicontinuous with respect to the Lp convergence;
(ii) (growth estimate) 0 ≤ F (u,A) ≤ C

∫
A

(1 + |Du|p) dx;
(iii) (measure property) F (u, ·) is the restriction of a regular Borel measure;
(iv) (locality) F is local: F (u,A) = F (v,A) if u = v a.e. on A,

then there exists a Borel function f such that

F (u,A) =
∫
A

f(x,Du) dx.

Remark 4.5 Note that f(x, ξ) can be obtained by derivation for all ξ ∈Mm×n and a.a. x ∈ Ω as

f(x, ξ) = lim
ρ→0+

F (uξ, Bρ(x))
|Bρ(x)|

, (4.8)

where uξ(y) = ξy.
A remark by Dal Maso and Modica shows that this formula can be used to give an indirect

description of f0 from fj in Theorem 4.2, by introducing the functions

Mj(x, ξ, ρ) := min
w∈W 1,p

0 (Bρ(x);Rm)

∫
Bρ(x)

fj(y, ξ +∇w) dy .

Then Fj Γ-converges to F0 if and only if

f0(x, ξ) = lim inf
ρ→0

lim inf
j

Mj(x, ξ, ρ)
|Bρ(x)|

= lim sup
ρ→0

lim sup
j

Mj(x, ξ, ρ)
|Bρ(x)|

for almost every x ∈ Ω and every ξ ∈Mm×n.
This fact can be proved by a blow-up argument, upon using the argument in Section 4.2.1 to

match the boundary conditions.
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Remark 4.6 (Other classes of integral functionals) The compactness procedure above can
also be applied to energies of the form

Fε(u) =
∫

Ω

fε(x, u,Du) dx, (4.9)

with fε satisfying analogous growth conditions. It must be remarked that more complex integral-
representation results must be used, for which we refer to the book by Fonseca and Leoni [103].

4.1.2 Convexity conditions

It is useful to note that the Borel function f0 in the compactness theorem enjoys some convexity
properties in the gradient variable due to the fact that the Γ-limit is a lower semicontinuous func-
tional (more precisely sequentially lower semicontinuous with respect to the weak convergence in
W 1,p). The following theorem by Acerbi and Fusco [4] shows that the function f0(x, ·) satisfies
Morrey’s quasiconvexity condition [127].

Theorem 4.7 (Quasiconvexity and lower semicontinuity) Let f be a Borel function satisfy-
ing (4.2) and let F (u) =

∫
Ω
f(x,Du) dx be defined on W 1,p(Ω; Rm). Then F is sequentially weakly

lower semicontinuous on W 1,p(Ω; Rm) if and only if f(x, ·) is quasiconvex; i.e., we have

|D|f(x, ξ) = min
{∫

D

f(x, ξ +Dϕ(y)) dy : ϕ ∈W 1,p
0 (D; Rm)

}
, (4.10)

where D is any open subset of Rn.

Remark 4.8 1) In the scalar case m = 1 or for curves n = 1 quasiconvexity reduces to the usual
convexity and (4.10) to Jensen’s inequality; in all other cases convexity is a restrictive condition.
A family of non-convex quasiconvex functions is that of polyconvex functions (i.e., convex functions
of the minors of ξ; for example, det ξ if m = n) (see [29, 82] and[54] Chapter 5).

2) Quasiconvexity implies convexity on rank-1 lines, in particular in the coordinate directions.
This, together with the growth condition (4.2) implies a locally uniform Lipschitz condition on f0

with a Lipschitz constant growing like |ξ|p−1 (see [54] Remark 5.15).
3) Condition (4.10) can be equivalently stated with the more general condition of ϕ periodic

(and D a periodicity set for ϕ).
4) The integrand of the lower-semicontinuous envelope of a functional as in (4.1) is given by the

quasiconvex envelope Qf of f

Qf(x, ξ) = min
{
|D|−1

∫
D

f(x, ξ +Dϕ(y)) dy : ϕ ∈W 1,p
0 (D; Rm)

}
(4.11)

(see e.g. [4, 82, 54]). Note that here x acts as a parameter.

4.2 Useful technical results

4.2.1 The De Giorgi method for matching boundary values

From the Γ-convergence of functionals Fj to F0 as in Theorem 4.2 we do not immediately deduce
the convergence of minimum problems with Dirichlet boundary conditions. In fact, to do so we
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must prove the compatibility of the condition u = ϕ on ∂Ω; i.e., that the functionals

Fϕj (u) =

Fj(u) =
∫

Ω

fj(x,Du) dx if u = ϕ on ∂Ω

+∞ otherwise

Γ-converge to Fϕ0 analogously defined. The liminf inequality is an immediate consequence of the
stability of the boundary condition under weak W 1,p-convergence. It remains to prove an approx-
imate limsup inequality; i.e., that for all u ∈ ϕ + W 1,p

0 and fixed η > 0 there exists a sequence
uj ∈ ϕ+W 1,p

0 such that lim supj Fj(uj) ≤ F0(u) + η.
The proof of this fact will use a method introduced by De Giorgi [91]. From the Γ-convergence

of the Fj we know that there exists a sequence vj → u such that F0(u) = limj Fj(vj); in particular
the W 1,p-norms of vj are equi-bounded. We wish to modify vj close to the boundary. For simplicity
suppose that the Lebesgue measure of ∂Ω is zero and all fj are positive. We consider functions
wj = φvj + (1− φ)u, where φ = 0 on ∂Ω and φ(x) = 1 if dist(x, ∂Ω) > η. Such functions tend to u
and satisfy the desired boundary condition. However, we may obtain only the estimate

Fj(wj) ≤ Fj(vj) + C

∫
Ωη

(
|Du|p + |Dvj |p +

1
ηp
|u− vj |p

)
dx, (4.12)

(where Ωη = {x ∈ Ω : dist(x, ∂Ω) < η}), and passing to the limit we get

lim sup
j

Fj(wj) ≤ F0(u) + C

∫
Ωη

(|Du|p + |Dvj |p) dx, (4.13)

which is not sufficient to conclude since we do not know if we can choose
∫

Ωη
|Dvj |p dx arbitrarily

small. Note that this would be the case if (|Dvj |p) were an equi-integrable sequence (see Section 4.2.2
below).

This choice of wj can be improved by fixing an integer N and considering φk (for k = 1, . . . , N)
such that φk = 0 on Ω(N+k−1)η/N , φk = 1 on Ω \ Ω(N+k)η/N and |Dφk| ≤ N/η. With this φk in
place of φ we define wkj and obtain for each j the estimate

Fj(wkj ) ≤ Fj(vj ,Ω \ Ωη) + CFj(u,Ω2η) + C

∫
Dkη

(
|Dvj |p +

Np

ηp
|u− vj |p

)
dx, (4.14)

where Dk
η = Ω(N+k)η/N \ Ω(N+k−1)η/N . Now, summing up for k = 1, . . . , N , we obtain

N∑
k=1

Fj(wkj ) ≤ NFj(vj ,Ω \ Ωη) +NCFj(u,Ω2η) + C

∫
Ω2η\Ωη

(|Dvj |p +
Np

ηp
|u− vj |p) dx, (4.15)

and we may choose k = kj such that

Fj(wkj ) ≤ Fj(vj ,Ω \ Ωη) + C Fj(u,Ωη) +
C

N

∫
Ω2η\Ωη

(
|Dvj |p +

Np

ηp
|u− vj |p

)
dx. (4.16)

If we define uj = w
kj
j we then obtain

lim sup
j

Fj(uj) ≤ F0(u) + C

∫
Ω2η

(1 + |Du|p) dx+
C

N
sup
j

∫
Ω

|Dvj |p dx, (4.17)

which proves the approximate limsup inequality.
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Remark 4.9 1) The idea of the method above consists in finding suitable ‘annuli’, where the energy
corresponding to |Duj |p does not concentrate, and then taking cut-off functions with gradient
supported in those annuli to ‘join’ uj and u through a convex combination. An alternative way
to construct such annuli would be to consider sets that are not charged by the weak∗ limit of the
measures µj = |Dvj |pLn (this method is for instance used in the book by Evans [97]).

2) (Proof of the inner regularity and fundamental estimate) We can use the method above to
prove the inner regularity in Step 2 of Section 3.3. Note that we have F0(u,B) ≤ c2

∫
B

(1+|Du|p) dx
for all B. Fix an open set A, η > 0 and set A′ = A\Aη in the notation above. Then from inequality
(4.16) with A in the place of Ω and (uj) an optimal sequence for F0(u,A′) we have

F0(u,A) ≤ lim sup
j

Fj(uj , A) ≤ F0(u,A′) + C

∫
A2η

(1 + |Du|p) dx+
C

N
(4.18)

so that we obtain the inner regularity of F0 by the arbitrariness of η and N .
In a similar fashion we may use the same argument to ‘join’ recovery sequences on sets A′ and

B and prove the fundamental estimate (Remark 3.2), and hence the subadditivity property of Step
3 of Section 3.3.

3) The method described above is very general and can be extended also to varying domains
(see, e.g., Lemma 6.1). In the scalar case m = 1 and with a fixed Ω a simpler truncation argument
can be used (see [46] Section 2.7).

Remark 4.10 (convergence of minimum problems with Dirichlet boundary conditions)
The result above immediately implies the convergence of problems with Dirichlet boundary condi-
tions from the Γ-convergence of the energies, as remarked in the Introduction.

4.2.2 An equi-integrability lemma

As remarked in the proof exhibited in the previous section, sequences of functions with |Duj |p
equi-integrable are often easier to handle. A method introduced by Acerbi and Fusco [4] shows that
this is essentially always the case, as stated by the following theorem due to Fonseca, Müller and
Pedregal [105].

Theorem 4.11 (equivalent sequences with equi-integrability properties) Let (uj) be a se-
quence weakly converging to u in W 1,p(Ω; Rm); then there exist a subsequence of (uj), not relabeled,
and a sequence (wj) with (|Dwj |p) equi-integrable such that

lim
j
|{x ∈ Ω : uj(x) 6= wj(x)}| = 0

and still converging to u.

Thanks to this result we can limit our analysis to such (wj) with (|Dwj |p) equi-integrable. In
fact, set Ωj = {uj = wj} and note that Duj = Dwj a.e. on Ωj and limj

∫
Ω\Ωj |Dwj |

p dx = 0 by the
equi-integrability property. Then we have (for simplicity assume fj ≥ 0)

lim inf
j

∫
Ω

fj(x,Dwj) dx ≤ lim inf
j

∫
Ωj

fj(x,Dwj) dx+ lim
j

∫
Ω\Ωj

c2(1 + |Dwj |p) dx

= lim inf
j

∫
Ωj

fj(x,Dwj) dx = lim inf
j

∫
Ωj

fj(x,Duj) dx

≤ lim inf
j

∫
Ω

fj(x,Duj) dx,
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with c2 given by (4.2), so that if we give a lower bound for such (wj) we obtain a lower bound also
for a general (uj).

4.2.3 Higher-integrability results

When using the characterization of Γ-limits of integral functionals via Moreau-Yosida transforms
with respect to the Lp(Ω; Rm) convergence it is often useful to resort to some regularity properties
of solutions of variational problems stated as follows.

Theorem 4.12 (Meyers regularity theorem) Let f be as in (4.2), let A be a bounded open set
with smooth boundary and u ∈ C∞(A; Rm). Then there exists η = η(c1, c2, A, u) > 0 such that for
all λ > 0 any solution uλ of

min
{∫

A

f(x,Du+Du) dx+ λ

∫
A

|u|p dx : u ∈W 1,p(A; Rm)
}

(4.19)

belongs to W 1,p+η(A; Rm), and there exists C = C(λ, c1, c2,Ω, u) such that

‖uλ‖W 1,p+η(A;Rm) ≤ C. (4.20)

This theorem shows that for fixed λ minimizers of the Moreau-Yosida transforms related to a
family Fε as in (4.1) (see (2.11)) satisfy a uniform bound (4.20) independent of ε.

4.3 Convergence of quadratic forms

From the stability property of quadratic forms (Proposition 2.13) we have the following particular
case of the compactness Theorem 4.2 (for simplicity we treat the scalar case n = 1 only).

Theorem 4.13 (compactness of quadratic forms) Let Aj : Ω→Mm×n be a sequence of sym-
metric matrix-valued measurable functions, and suppose that α, β > 0 exist such that α Id ≤ Aj ≤
β Id for all j. Then there exist a subsequence of Aj, not relabeled, and a matrix-valued function A
satisfying the same conditions, such that∫

Ω

〈A(x)Du,Du〉 dx = Γ- lim
j

∫
Ω

〈Aj(x)Du,Du〉 dx (4.21)

with respect to the L2(Ω)-convergence, for all u ∈ H1(Ω).

As a consequence of this theorem we have a result of convergence for the related Euler equations.
Note that all functionals are strictly convex, so that the solutions to minimum problems with
Dirichlet boundary conditions are unique.

Corollary 4.14 (G-convergence) If Aj, A are as above then for all ϕ ∈ H1(Ω) and f ∈ L2(Ω)
the solutions uj of {

−div(AjDuj) = f in Ω
uj − ϕ ∈ H1

0 (Ω)

weakly converge in H1(Ω) to the solution u of{
−div(ADu) = f in Ω
u− ϕ ∈ H1

0 (Ω).

This is usually referred to as the G-convergence of the differential operators Gj(v) = −div(AjDv).
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4.4 Degenerate limits

If the growth conditions of order p are not uniformly satisfied, then the limit of a family of integral
functionals may take a different form, and in particular lose the locality property. In this section
we give two examples of such a case.

4.4.1 Functionals of the sup norm

A simple example of a family of functionals not satisfying uniformly a p-growth condition is the
following

Fε(u) = ε

∫
Ω

|a(x)Du|1/ε dx, u ∈W 1,1/ε(Ω), (4.22)

where a ∈ L∞(Ω) and inf a > 0. These functionals can be thought to be defined on W 1,1(Ω),
and each Fε satisfies a 1/ε-growth condition. Limits of problems involving these functionals are
described by the following result by Garroni, Nesi and Ponsiglione [114].

Theorem 4.15 (i) The functionals Fε Γ-converge with respect to the L1-convergence to the func-
tional F0 given by

F0(u) =

{
0 if ‖aDu‖∞ ≤ 1
+∞ otherwise.

(4.23)

(ii) The functionals Gε given by Gε(u) = (Fε(u))ε Γ-converge with respect to the L1-convergence to
the functional G0 given by

G0(u) = ‖aDu‖∞. (4.24)

Proof (i) the liminf inequality follows by noticing that if supε Fε(uε) < +∞ and uε → u in L1,
then actually uε ⇀ u in W 1,q(Ω) for each q > 1, so that

|{|aDu| > t}|tq ≤
∫

Ω

|aDu|q dx ≤ lim inf
ε→0

∫
Ω

|aDuε|q dx ≤ lim inf
ε→0

(1
ε
Fε(u)

)εq
= 1,

and we get |{|aDu| > t}| = 0 for all t > 1. A recovery sequence is trivially uε = u.
(ii) follows from the increasing convergence of ε−εGε to G0.

We can apply the result above to minimum problems of the form

mε = min
{∫

Ω

|a(x)Du|1/εdx : u = ϕ on ∂Ω
}

; (4.25)

note however that the limit minimum problem (of the scaled functionals)

min
{
‖a(x)Du‖∞ : u = ϕ on ∂Ω

}
(4.26)

possesses many solutions. Hence, the limit of the (unique) solutions of mε should be characterized
otherwise (see, e.g., [30, 81]).

For generalizations of this result we refer e.g. to the paper by Champion, De Pascale and Prinari
[74].
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4.4.2 The closure of quadratic forms

We consider now the problem of characterizing the closure of all quadratic forms when the coeffi-
cients do not satisfy uniform bounds from above and below as in Theorem 4.13. To this end we
have to introduce some definitions (for details see the book by Fukushima [110]).

Definition 4.16 (Dirichlet form) A quadratic form F on L2(Ω) is called a Dirichlet form if:
(i) it is closed; i.e., its domain Dom(F ) (where F (u) = B(u, u) < +∞, B a bilinear form)

endowed with the scalar product (u, v)F = B(u, v) +
∫

Ω
uv dx is a Hilbert space;

(ii) it is Markovian (or decreasing by truncature); i.e., F ((u∨ 0)∧ 1) ≤ F (u) for all u ∈ L2(Ω).

The following remark helps to get an intuition of a general Dirichlet form.

Remark 4.17 (Deny-Beurling integral representation) A regular Dirichlet form F is such
that Dom(F ) ∩ C0(Ω) is both dense in C0(Ω) with respect to the uniform norm and in Dom(F ).
Such F admits the representation

F (u) =
∑
i,j

∫
Ω

DiuDju dµij +
∫

Ω

|u|2 dν +
∫

Ω×Ω

(u(x)− u(y))2dµ (4.27)

for u ∈ Dom(F )∩C1
0 (Ω), where µij , ν and µ are Radon measures such that µ({(x, x) : x ∈ Ω}) = 0

and
∑
i,j zizjµij(K) ≥ 0 for all compact subsets K of Ω and z ∈ Rn.

For the use of Dirichlet form for the study of asymptotic problems we refer to Mosco [129]. The
following theorem is due to Camar-Eddine and Seppecher [69].

Theorem 4.18 (closure of quadratic forms) Let n ≥ 3. The closure with respect to the L2(Ω)-
convergence of isotropic quadratic forms of diffusion type , i.e. of the form

Fα(u) =
∫

Ω

α(x)|Du|2 dx, u ∈ H1(Ω) (4.28)

where 0 < inf α ≤ supα < +∞ (but not equi-bounded) is the set of all Dirichlet form that are
objective; i.e., F (u+ c) = F (u) for all constants c.

We do not give a proof of this result, referring to the paper [69]. We only remark that the
density of isotropic quadratic forms in all (coercive) quadratic forms can be obtained by local
homogenization (see Remark 5.8 below). The prototype of a non-local term is µ = δx0,y0 in the
Deny-Beurling formula; this can be reached by taking α → +∞ on a set composed of two balls
centred on x0 and y0 and a tubular neighbourhood of the segment joining the two points with
suitable (vanishing) radius. Note that the use of this construction is not possible in dimension two.

5 Homogenization of integral functionals

An important case of limits of integral functionals is that of energies within the theory of homoge-
nization; i.e., when we want to take into account fast-oscillating inhomogeneities. The simpler way
to model such a behaviour is to consider a function f : Rn×Mm×n → R periodic in the first variable
(up to a change of basis, we may suppose it is T -periodic (if not otherwise specified T = 1); i.e.,

f(x+ Tei, ξ) = f(x, ξ) for all x, ξ

29



for all vectors ei of the standard basis of Rn), and examine the asymptotic behaviour of energies

Fε(u) =
∫

Ω

f
(x
ε
,Du

)
dx u ∈W 1,p(Ω; Rm). (5.1)

Note that we may apply the general compactness Theorem 4.2 to any sequence (fj), where fj(x, ξ) =
f(x/εj , ξ), thus obtaining the existence of Γ-converging subsequences. The main issues here are:

(i) prove that the whole family (Fε) Γ-converges;
(ii) give a description of the energy density of the Γ-limit in terms of the properties of f .

In this section we give a simple account of the main features of this problem referring to the book
[54] for more details.

The natural ansatz for the Γ-limit of (Fε) is that it is “homogeneous”; i.e., its energy density
does not depend on x, so that it takes the form

Fhom(u) =
∫

Ω

fhom(Du) dx u ∈W 1,p(Ω; Rm). (5.2)

If such a Γ-limit exists it will be called the homogenized functional of Fε. As a consequence of
the theorem on the convergence of minimum problems, we obtain that families of problems with
solutions with highly oscillating gradients are approximated by solutions of simpler problems with
Fhom in place of Fε, where oscillations are ‘averaged out’.

5.1 The asymptotic homogenization formula

From the localization methods we can easily derive an ansatz for a formula describing fhom. As a
first remark, recall that fhom is quasiconvex, so that it can be expressed as a minimum problem;
e.g., choosing D = (0, 1)n in (4.10), for all ξ ∈Mm×n we may write

fhom(ξ) = min
{∫

(0,1)n
fhom(ξ +Dϕ) dy : ϕ ∈W 1,p

0 ((0, 1)n; Rm)
}
. (5.3)

Now, from the convergence of minima and the compatibility of addition of boundary conditions,
we obtain

fhom(ξ) = lim
ε→0

inf
{∫

(0,1)n
f
(y
ε
, ξ +Dϕ

)
dy : ϕ ∈W 1,p

0 ((0, 1)n; Rm)
}
. (5.4)

The final asymptotic homogenization formula is obtained from this by the change of variables y = εx
that isolates the dependence on ε in a scaling argument (here we set T = 1/ε)

fhom(ξ) = lim
T→+∞

1
Tn

inf
{∫

(0,T )n
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

0 ((0, T )n; Rm)
}
. (5.5)

To make this ansatz into a theorem we need just to prove that the candidate fhom is indeed homo-
geneous, and that the limit on the right-hand side exists. In this way we can use the compactness
theorem, and prove that the limit is independent of the sequence (εj), being characterized by
formula (5.4).

Theorem 5.1 (homogenization theorem) Let f be as above. If Fε are defined as in (5.1), then
Γ-limε→0 Fε = Fhom, given by (5.2) and (5.5) with respect to the L2(Ω; Rm) convergence.
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Proof The ‘homogeneity’ of an fhom = fhom(x, ξ) given by the compactness theorem can be easily
obtained thanks to the ε-periodicity of Fε, that ensures that Fε(u,A) = Fε(uy, y+A) for all open sets
A and y ∈ εZn, where uy(x) = u(x−y). This implies, by a translation and approximation argument,
that Fhom(u,A) = Fhom(uy, y+A) for all open sets A and y ∈ Rn, so that fhom(x, ξ) = fhom(x+y, ξ)
by derivation (see (4.8)). The existence of the limit in (5.5) can be derived from the scaling argument
in Remark 5.3 below.

Proposition 5.2 (asymptotic behaviour of subadditive functions) Let g be a function de-
fined on finite unions of cubes of Rn which is subadditive (i.e., g(A∪B) ≤ g(A)+g(B) if |A∩B| = 0)
such that g(z +A) = g(A) for all z ∈ Zn and g(A) ≤ c|A|. Then there exists the limit

lim
T→+∞

g((0, T )n)
Tn

. (5.6)

Proof It suffices to check that if S > T then we have g((0, S)n) ≤ (S/T )ng((0, T )n) + C(T, S),
with limT→+∞ limS→+∞ C(T, S) = 0, and then take the limsup in S first and eventually the liminf
in T .

Remark 5.3 To prove the existence of the limit in (5.5) it suffices to apply the previous proposition
to

g(A) = inf
{∫

A

f(x, ξ +Dϕ) dx : ϕ ∈W 1,p
0 (A; Rm)

}
. (5.7)

5.1.1 A periodic formula

We can easily derive alternative formulas for fhom, for instance taking periodic minimum problems.
The following asymptotic periodic formula is due to Müller [130] (we suppose that f is 1-periodic)

fhom(ξ) = inf
k∈N

1
kn

inf
{∫

(0,k)n
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

# ((0, k)n; Rm)
}
, (5.8)

where W 1,p
# ((0, k)n; Rm) denotes the space of k-periodic functions in W 1,p

loc (Rn; Rm). Note that
since W 1,p

# ((0, k)n; Rm) ⊂ W 1,p
# ((0, lk)n; Rm) for all l ∈ N with l ≥ 1, the infk is actually a limk.

Moreover, since W 1,p
0 ((0, k)n; Rm) ⊂ W 1,p

# ((0, k)n; Rm) the right-hand side of formula (5.8) is not
greater than the value for fhom(ξ) given by (5.5). It remains to prove the opposite inequality. To
this end we will make use of the following lemma, which is a fundamental tool for dealing with
oscillating energies.

Lemma 5.4 (Riemann-Lebesgue lemma) Let g be an L1
loc periodic function of period Y , let

gε(x) = g
(
x
ε

)
and let g = |Y |−1

∫
Y
g dy. Then gε ⇀ g. In particular

∫
D
gε dx → g|D| for all

bounded open subsets D.

To conclude the proof of formula (5.8) it suffices to fix k and ϕ a test function for the corre-
sponding minimum problem. Define uε(x) = ξx + εϕ

(
x
ε

)
, so that uε → ξx. We can use these

functions in the liminf inequality to get

|Ω|fhom(ξ) = Fhom(ξx,Ω) ≤ lim inf
ε→0

Fε(uε,Ω)

= lim
ε→0

∫
Ω

f
(x
ε
, ξ +Dϕ

(x
ε

))
dx = |Ω| 1

kn

∫
(0,k)n

f(y, ξ +Dϕ) dy,
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where we have used Lemma 5.4 with Y = (0, k)n and g(y) = f(y, ξ +Dϕ(y)). By the arbitrariness
of ϕ and k the desired inequality is proved.

5.2 The convex case: the cell-problem formula

In the convex case (i.e., f(x, ·) convex for a.a. x) the formula for fhom is further simplified. In fact,
in this case we have a single cell-problem formula: (we suppose that f is 1-periodic)

fhom(ξ) = inf
{∫

(0,1)n
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

# ((0, 1)n; Rm)
}
. (5.9)

To check this, by (5.8) it is sufficient to prove that

1
kn

inf
{∫

(0,k)n
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

# ((0, k)n; Rm)
}

≥ inf
{∫

(0,1)n
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

# ((0, 1)n; Rm)
}

for all k, the converse inequality being trivial since W 1,p
# ((0, 1)n; Rm) ⊂ W 1,p

# ((0, k)n; Rm). Now,
take ϕ a k-periodic test function and define

ϕ̃(x) =
1
kn

∑
j∈{1,...,k}n

ϕ(x+ j).

Then ϕ̃ is 1-periodic and it is a convex combination of periodic translations of ϕ. By the convexity
of f then ∫

(0,1)n
f(x, ξ +Dϕ̃) dx =

1
kn

∫
(0,k)n

f(x, ξ +Dϕ̃) dx

≤ 1
kn

∑
j

1
kn

∫
j+(0,k)n

f(x, ξ +Dϕ) dx =
1
kn

∫
(0,k)n

f(x, ξ +Dϕ) dx,

that proves the inequality.

Remark 5.5 (homogenization and convexity conditions) Note that convexity is preserved
by Γ-convergence also in the vectorial case; i.e., fhom is convex if f(x, ·) is convex for a.a. x. On the
contrary it can be seen that the same fails for the condition that f(x, ·) be polyconvex (see [46]).

5.2.1 Müller’s counterexample

The convex formula above proves the ansatz that recovery sequences for convex homogenization
problems can be though locally periodic of minimal period (ε in the case above). Note that in
the case n = 1 or m = 1 convexity is not a restrictive hypothesis, since we may consider the
lower-semicontinuous envelope of Fε in its place, whose integrand is convex.

The local-periodicity ansatz is false if the problem is vectorial, as shown by a counterexample
by Müller [130, 54]. We do not enter in the detail of the example, but try to give an interpretation
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of the physical idea behind the construction: the function f is defined in the periodicity cell (0, 1)3

as

f(x, ξ) =

{
f1(ξ) if x ∈ B1/4( 1

2 ,
1
2 )× (0, 1)

f0(ξ) otherwise,

where f1 is a (suitable) polyconvex function and f0 is a ‘weak’ convex energy; e.g., f0(ξ) = δ|ξ|p
with δ small enough (we may think f0 being 0, even though that case is not covered by our results).
We may interpret the energy Fε as describing a periodic array or thin vertical bars. For suitable
polyconvex f1 we will have buckling instabilities and the array of thin bars will sustain much less
vertical compression than the single bar in the periodicity cell. This corresponds to the inequality

fhom(ξ) < inf
{∫

(0,1)n
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

# ((0, 1)n; Rm)
}

(5.10)

for ξ = −e3 ⊗ e3.

5.3 Homogenization of quadratic forms

As remarked in Theorem 4.13, quadratic forms are closed under Γ-convergence. In the case of
homogenization we can give the following characterization (for simplicity we deal with the scalar
case m = 1 only)

Theorem 5.6 (homogenization of quadratic forms) Let A : Rn → Mm×n be a 1-periodic
symmetric matrix-valued measurable function, and suppose that α, β > 0 exist such that α Id ≤ A ≤
β Id for all j. Then we have∫

Ω

〈AhomDu,Du〉 dx = Γ- lim
ε→0

∫
Ω

〈
A
(x
ε

)
Du,Du

〉
dx (5.11)

with respect to the L2(Ω)-convergence, for all u ∈ H1(Ω), where the constant matrix Ahomis given
by

〈Ahomξ, ξ〉 = inf
{∫

(0,1)n
〈A(x)(ξ +Dϕ), ξ +Dϕ〉 dx : ϕ ∈ H1

#((0, 1)n)
}
. (5.12)

Remark 5.7 (one-dimensional homogenization) In the one-dimensional case, when we simply
have 〈A(x)ξ, ξ〉 = a(x)ξ2 with a : R → [α, β] 1-periodic, the limit energy density is of the simple
form ahomξ

2. The coefficient ahom is easily computed and is the harmonic mean of a

ahom = a :=
(∫ 1

0

1
a(y)

dy
)−1

. (5.13)

Remark 5.8 (laminates) We can easily compute the homogenized matrix for an A of the form
a(〈x, ν〉)Id

a(s) =

{
α if 0 < s− [s] < t

β if t < s− [s] < 1
([s] is the integer part of s). (5.14)

The corresponding energy density is called a lamination of the two energies densities α|ξ|2 and β|ξ|2
in direction ν with volume fractions t and 1− t respectively.
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It is not restrictive, upon a rotation, to consider ν = e1. By a symmetry argument, we see that
Ahom is diagonal. By (5.12) the coefficient akk of Ahom is computed by considering the minimum
problem

akk = inf
{∫

(0,1)n
a(x1)|ek +Dϕ|2 dx : ϕ ∈ H1

#((0, 1)n)
}
. (5.15)

For k = 1 the solution is ϕ(x) = ϕ1(x1), where ϕ1 is the solution of the one-dimensional problem
with coefficient a; hence a11 = a as defined in (5.13). For k > 1 we may easily see that the solution
is ϕ(x) = 0, so that, in conclusion,

a11 =
αβ

tβ + (1− t)α
, akk = tα+ (1− t)β for k > 1.

Note that we have obtained a non-isotropic matrix by homogenization of isotropic ones. Of course,
by varying ν we obtain all symmetric matrices with the same eigenvalues.

The same computation can be performed for A(x) = Πn
k=1ai(xi)|ξ|2, with α ≤ ai(y) ≤ β. Note

that if we vary α and β and ai then we may obtain all symmetric matrices as homogenization of
isotropic ones.

5.4 Bounds on composites

The example of lamination above shows that mixtures of two simple energies can give rise to
more complex ones. A general question is to describe all possible mixtures of a certain number
of ‘elementary’ energies. This is a complex task giving rise to numerous types of questions, most
of which still open (see [122]). Here we want to highlight a few connections with the theory
of homogenization as presented above, by considering only the case of mixtures of two isotropic
energies α|ξ|2 and β|ξ|2.

A ‘mixture’ will be given by a choice of measurable sets Ej ⊂ Ω. We will consider energies of
the form

Fj(u) = α

∫
Ej

|Du|2 dx+ β

∫
Ω\Ej

|Du|2 dx. (5.16)

Note that we can rewrite Fj(u) =
∫

Ω
aj(x)|Du|2 dx and apply Theorem 4.13, thus obtaining, upon

subsequences, a Γ-limit of the form

F0 =
∫

Ω

〈A0(x)Du,Du〉 dx. (5.17)

The problem is to give the best possible description of the possible reachable A0.
The limit local (statistical) description of the behaviour of (Ej) is given by the weak∗-limit of

χEj , which will be denoted by θ and called the local volume fraction of the energy α. Note that
by Remark 5.8 the knowledge of θ is not sufficient to describe the limit of Fj (since we can take
laminates in two different directions with the same θ = t but different limit energies).

5.4.1 The localization principle

With fixed θ we can consider the set of all matrices obtained by homogenization of energies α and
β with volume fraction θ of α, corresponding by (5.12) to matrices A satisfying

〈Aξ, ξ〉 = inf
{
α

∫
E

|ξ +Dϕ|2 dx+ β

∫
(0,1)n\E

|ξ +Dϕ|2 dx : ϕ ∈ H1
#((0, 1)n)

}
. (5.18)
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for some measurable E ⊂ (0, 1)n with |E| = θ. We will denote by H(θ) the closure of the set of all
such matrices; E is called an underlying microgeometry of such A.

The matrices A0 in (5.17) are characterized by a localization principle ([143], [136]).

Proposition 5.9 (localization principle) A0(x) ∈ H(θ(x)) for almost all x ∈ Ω.

Proof We only sketch the main points of the proof. Let x be a Lebesgue point for θ(x). Upon
a translation argument we can suppose that x = 0. For all open sets U the functional defined by∫
U
〈A0(0)Du,Du〉 dx is the Γ-limit of

∫
U
〈A0(ρx)Du,Du〉 dx as ρ → 0 since A0(ρx) converges to

A0(0) in L1 on U . Let Qρ(x) denote the coordinate cube centered at x and with side length ρ. We
can then infer that, for any fixed ξ

〈A0(x)ξ, ξ〉 = min
{∫

Q1(0)

〈A0(ρx)(ξ +Dϕ), (ξ +Dϕ)〉 : ϕ 1-periodic
}

+ o(1)

= ρ−n min{F0(ξ +Dϕ,Qρ(0)) : ϕ ρ-periodic}+ o(1)
= ρ−n min{Fj(ξ +Dϕ,Qρ(0)) : ϕ ρ-periodic}+ o(1)

as ρ → 0 and j → +∞. Upon scaling, the formula in the last limit is of type (5.18) for some θjρ
tending to θ(x) as ρ → 0 and j → +∞, and the proposition is proved, upon remarking that the
limit of matrices in H(θjρ) belongs to H(θ(x)).

The previous proposition reduces the problem of characterizing all A0(x) to that of studying
the sets H(θ) for fixed θ ∈ [0, 1].

Remark 5.10 (set of all reachable matrices) From the trivial one-dimensional estimates we
have

αβ

θβ + (1− θ)α
≤ λi ≤ θα+ (1− θ)β, (5.19)

where λi denote the eigenvalues of the matrices in H(θ).
In the two-dimensional case we deduce that all such matrices have eigenvalues satisfying

αβ

α+ β − λ1
≤ λ2 ≤ α+ β − αβ

λ1
, (5.20)

and actually all matrices satisfying (5.20) belong to some H(θ).

5.4.2 Optimal bounds

The computation of H(θ) is obtained by exhibiting ‘optimal bounds’; it is due to Murat and Tartar
(see [143]; see also the derivation of Cherkaev and Lurie in the two–dimensional case [120]). It is
not based on Γ-convergence arguments, so for completeness we only include the (two–dimensional)
optimal bounds, which only constrain the eigenvalues λ1, λ2 of the macroscopic conductivity tensor
A0. The formula is 

1
λ1 − α

+
1

λ2 − α
≤ 1
a(θ)− α

+
1

a(θ)− α

1
β − λ1

+
1

β − λ2
≤ 1
β − a(θ)

+
1

β − a(θ)
,

(5.21)
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where a(θ) and a(θ) are the harmonic and arithmetic means of α and β with proportion θ:

a(θ) =
αβ

θβ + (1− θ)α
, a(θ) = θα+ (1− θ)β.

Note that the two ‘extremal’ geometries are given by laminates.

5.5 Homogenization of metrics

We conclude this chapter with some observation regarding another type of homogenization, that of
functionals of the type

Fε(u) =
∫

Ω

f
(u
ε
,Du

)
dx, (5.22)

with f periodic in the first variable and satisfying the usual growth conditions. In this case, by
Remark 4.6 we can carry over the compactness procedure and also represent the limit as an integral
of the usual form

fhom(ξ) = lim
T→+∞

1
Tn

inf
{∫

(0,T )n
f(u+ ξy,Du+ ξ) dy : u ∈W 1,p

0 ((0, T )n; Rm)
}

(5.23)

We do not treat the general case (for details see [54] Chapter 15), but briefly outline two applications.

5.5.1 The closure of Riemannian metrics

We consider the one-dimensional integrals, related to distances on a periodic isotropic Riemannian
manifold

Fε(u) =
∫ 1

0

a
(u
ε

)
|u′|2 dt, u ∈ H1((0, 1); Rm). (5.24)

The following result states that the limit of such energies corresponds to a homogeneous Finsler
metric (see Acerbi and Buttazzo [1]) and the converse is also true; i.e., every homogeneous Finsler
metric can be approximated by homogenization of (isotropic) Riemennian metrics (see Braides,
Buttazzo and Fragalà [47]).

Theorem 5.11 (closure of Riemannian metrics by homogenization) (i) Let a be a 1-periodic
function satisfying 0 < α ≤ a ≤ β < +∞; then the Γ-limit of Fε is

Fhom(u) =
∫ 1

0

fhom(u′) dt, (5.25)

where

fhom(z) = lim
T→+∞

1
T

inf
{∫ 1

0

a(v)|v′|2 dt : v(0) = 0, v(T ) = Tz
}

; (5.26)

(ii) for all ψ : Rm → [0,+∞) even, convex, positively homogeneous of degree two and such that
α|z|2 ≤ ψ(z) ≤ β|z|2, and for all η > 0 there exists fhom as above such that |fhom(z)−ψ(z)| ≤ η|z|2
for all z ∈ Rm.
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Proof (i) can be achieved as outlined above. The formula follows from the representation of fhom(z)
as a minimum problem;

(ii) let (νi) be a sequence of rational directions (i.e., such that for all i there exists Ti ∈ R such
that Tjνj ∈ Zm) dense in Sm−1, fix M and define aM as follows:

aM (s) =

{
ψ(νi) if s ∈ (Zm + νiR) \

⋃
j 6=i,1≤j≤M (Zm + νjR), 1 ≤ i ≤M

β otherwise.
(5.27)

The coefficient aM is β except on a Zm periodic set of lines in the directions νi. Then from formula
(5.26) for the corresponding fMhom we easily get that fMhom(νi) = ψ(νi) on all νi for i ≤ M . Note
in fact that for all v we have

∫ 1

0
aM (v)|v′|2 dt ≥

∫ 1

0
ψ(v′) dt and equality holds on the functions

v(t) = tνi. Since ψ is positively homogeneous of degree two and convex this implies that fMhom → ψ
uniformly on Sm−1 as M → +∞, as desired.

This result has been generalized to the approximation of arbitrary (non-homogeneous) Finsler
metrics by Davini [90].

5.5.2 Homogenization of Hamilton-Jacobi equations

The solution uε of a Hamilton-Jacobi equation of the form
∂uε
∂t

+H
(x
ε
,Duε(x, t)

)
= 0 in Rm × [0,+∞)

uε(x, 0) = ϕ(x) in Rm,
(5.28)

where H is a quadratic Hamiltonian and ϕ is a smooth bounded initial datum, is given by the Lax
formula

uε(x) = inf{ϕ(y) + Sε(x, t; y, s) : y ∈ Rm, 0 ≤ s < t},

Sε(x, t; y, s) = inf
{∫ t

s

L
(u
ε
, u′
)
dτ : u(s) = y, u(t) = x

}
,

L(x, z) = sup{〈z, z′〉 −H(x, z′) : z′ ∈ Rm}

(the Legendre transform of H). By the Γ-convergence of the integrals above, the pointwise limit of
Sε is given by

Shom(x, t; y, s) = inf
{∫ t

s

Lhom(u′) dτ : u(s) = y, u(t) = x
}

= (t− s)Lhom

(x− y
t− s

)
,

where Lhom is obtained through formula (5.23), and uε converge uniformly on compact sets to the
corresponding u. As a conclusion we may prove that u satisfies the homogenized Hamilton-Jacobi
equation 

∂u

∂t
+Hhom(Du(x, t)) = 0 in Rm × [0,+∞)

u(x, 0) = ϕ(x) in Rm,
(5.29)

where Hhom is given by

Hhom(x, z) = sup{〈z, z′〉 − Lhom(x, z′) : z′ ∈ Rm}.

Details can be found in [46] Section 3.4 (see also [99]).

37



6 Perforated domains and relaxed Dirichlet problems

A class of problems that cannot be directly framed within the class of integral functionals considered
above are those defined on varying domains. The prototype of these domains are perforated domains;
i.e., obtained from a fixed Ω by removing some periodic set, the simplest of which is a periodic
array of closed sets:

Ωε = Ω \
⋃
i∈Zn

(εi+ δεK). (6.1)

On the setK, we suppose that it is a bounded closed set. On the boundary of Ωε (or on the boundary
of Ωε interior to Ω) we can consider various types of conditions. We will examine Dirichlet and
Neumann boundary conditions, leading to different relevant scales for δε and technical issues.

6.1 Dirichlet boundary conditions: a direct approach

We first treat the model case of Ωε as in (6.1) and u = 0 on ∂Ωε, with in mind minimum problems
of the form

min
{∫

Ω

|Du|2 dx− 2
∫

Ω

gu dx : u = 0 on ∂Ωε
}
. (6.2)

The results of this section can be extended to vector u, to different boundary conditions on ∂Ω
(provided we introduce a ‘safe zone’ close to ∂Ω vanishing with ε where the perforation is absent
in order not to make the boundary conditions interact) and to general integrands satisfying the
growth conditions of Section 4.

The observation that for suitable δε the solutions uε of the equations{
−∆uε = g in Ωε
uε = 0 on ∂Ωε,

(6.3)

extended to 0 inside the perforation, may converge to a function u satisfying{
−∆u+ Cu = g in Ω
u = 0 on ∂Ω,

(6.4)

for some C > 0, goes back to Marchenko and Khruslov [121], and was subsequently recast in a
variational framework by Cioranescu and Murat [75]. We want to re-read this phenomenon on
problems in (6.2), of which (6.3) is the Euler equation.

We will extend our functions to the whole Ω by setting u = 0 on the perforation. As usual,
we will neglect the continuous part 2

∫
Ω
gu dx since it commutes with the Γ-limit, and consider the

functionals

Fε(u) =


∫

Ω

|Du|2 dx if u ∈ H1
0 (Ω) and u = 0 on Ω \ Ωε

+∞ otherwise.
(6.5)

It remains to understand the role of δε. We have to understand the meaningful scalings of the
energy and possibly an optimal minimum formula describing the limit. To this end, consider a
sequence uε → u. We make the assumption that the energy ‘far from the perforation’ gives a term
of Dirichlet form that can be dealt with separately, and focus on the contribution ‘close to the
perforation’. We also assume that the energy due to each set εi+ δεK can be dealt with separately.
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Suppose for the time being that u is continuous; since uε → u close to εi+ δεK the function uε will
be close to the limit value u(εi). Assume that this is true (and then that we may directly suppose
uε = u(εi)) on the boundary of some ball BεR(εi) containing εi+ δεK. We have∫

BεR(εi)

|Duε|2 dx

≥ min
{∫

BεR(0)

|Dv|2 dx : v = 0 on δεK, v = u(εi) on ∂BεR(0)
}

= δn−2
ε min

{∫
BεR/δε (0)

|Dv|2 dy : v = 0 on K, v = u(εi) on ∂BεR/δε(0)
}

≥ δn−2
ε inf

T
min

{∫
BT (0)

|Dv|2 dy : v = 0 on K, v = u(εi) on ∂BT (0)
}

= δn−2
ε |u(εi)|2 inf

T
min

{∫
BT (0)

|Dv|2 dy : v = 0 on K, v = 1 on ∂BT (0)
}
. (6.6)

For the sake of simplicity we suppose that n > 2; in that case the last minimum problem is the
capacity of the set K (with respect to Rn), that we will denote by Cap(K). We then have a lower
estimate on the contribution ‘close to the perforation’ of the form∑

i

∫
BεR(εi)

|Duε|2 dx ≥ Cap(K)
∑
i

δn−2
ε |u(εi)|2 (6.7)

The last is a Riemann sum provided that δn−2
ε = Mεn + o(ε). This given a guess for the correct

meaningful scaling for which the limit is influenced by the perforation (we may suppose M = 1
upon scaling K)

δε = ε
n
n−2 . (6.8)

We will see that all other scaling can be reduced to this one by a comparison argument.
The argument above needs some refinement if n = 2, due to the scaling-invariance properties

of the Dirichlet integral. In that case, the minimum problem on BT in (6.6) scales as (log T )−1, so
that taking the infimum in T would give a trivial lower bound. Instead, to obtain an inequality as
in (6.7) from the first inequality in (6.6), we choose δε so that (log T )−1 = ε2 (T = εR/δε). This
choice gives the correct scaling δε = e−c/ε

2
. Note that the dependence on K in the limit disappears.

In this section we will always assume that n ≥ 3.

6.1.1 A joining lemma on perforated domains

In the argument in (6.6) we have supposed that it is not restrictive to vary the value of a sequence
uε on some sets surrounding the perforation. This can be obtained easily if the family (|Duε|2) is
equi-integrable. Unfortunately, Theorem 4.11 cannot be directly used since the modified sequence
might violate the constraint uε = 0 on the perforation. Nevertheless, we can modify De Giorgi’s
method to match boundary conditions and obtain the following technical lemma proved by Ansini
and Braides. We suppose that K ⊂ B1(0) for simplicity.

Lemma 6.1 Let (uε) converge weakly to u in H1(Ω). Let k ∈ N be fixed and R < 1/2. Let Zε be
the set of all i ∈ Zn with dist(εi, ∂Ω) > nε. For each such i there exists ki ∈ {0, . . . , k − 1} such
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that, having set
Cεi =

{
x ∈ Ω : 2−ki−1Rε < |x− εi| < 2−kiRε

}
, (6.9)

uiε =
1
|Cεi |

∫
Cεi

uε dx and ρiε =
3
4

2−kiRε (6.10)

(the mean value of uε on Cεi and the middle radius of Cεi , respectively), there exists a sequence
(wε), with wε ⇀ u in H1(Ω) such that

wε = uε on Ω \
⋃
i∈Zε

Cεi , wε(x) = uiε if |x− εi| = ρiε (6.11)

and ∫
Ω

∣∣∣|Dwε|2 − |Duε|2∣∣∣ dx ≤ c1
k
. (6.12)

Proof The proof of the lemma follows the idea of the De Giorgi method for matching boundary
values. In this case the value to match is uiε, and the choice where to operate the cut-off procedure
is between the annuli Cεi , i ∈ {1, . . . , N}. The proof is a little more complex since we have to
use Poincaré’s inequality on Cεi to estimate the excess of energy due to this process (note that the
annuli are all homothetic in order to control the Poincaré constant by the scaling ratio). We refer
to [22] for the details of the proof.

With this lemma, it is relatively easy to describe the Γ-limit of Fε.

Theorem 6.2 Let n > 2 and let Fε be given by (6.5) and δε = ε
n
n−2 . Then the Γ-limit of Fε with

respect to the L2(Ω) convergence is given by

F0(u) =
∫

Ω

|Du|2 dx+ Cap(K)
∫

Ω

|u|2 dx (6.13)

on H1
0 (Ω).

Proof By Lemma 6.1 we can use the argument in (6.6) with uiε in place of u(εi) to give a
lower bound on the contribution close to the perforation with Cap(K)

∑
i∈Zε |u

i
ε|2, which con-

verges to Cap(K)
∫

Ω
|u|2 dx. As for the contribution away from the perforation, we can write it as∫

Ω
|Dzε|2 dx, where zε is the H1(Ω)-extension of wε which is constant on each ball Bρiε(εi). The

limit of zε is still u so that we have the inequality lim infε→0

∫
Ω
|Dzε|2 dx ≥

∫
Ω
|Du|2 dx, completing

the lower bound.
The upper bound can be achieved by a direct construction. We first show it for u = 1 constant

(even though this does not satisfy the boundary condition u ∈ H1
0 (Ω)). In this case we simply

choose T > 0 and vT minimizing the last minimum problem in (6.6), and define

uε(x) =

{
vT (ε

n
2−n (x− εi)) on ε

n
n−2BT (εi)

1 otherwise.
(6.14)

Then uε → u and limε→0 Fε(uε) = |Ω|
∫
BT (0)

|DvT |2 dx, which proves the approximate limsup
inequality. For u ∈ C∞0 (Ω) we can use the recovery sequence ũε = uεu with uε as in (6.14), and for
u ∈ H1

0 (Ω) use a density argument.
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Remark 6.3 (other limits) (i) As a first remark, note that we may consider perforations with
locally varying size. For example, we can fix a smooth bounded function g : Rn → [0,+∞) and
take

Ωε = Ω \
⋃
i∈Zn

(εi+ ε
n
n−2 g(εi)K). (6.15)

We can follow word for word the proof above, noting that a term (g(x))n−2 appears in (6.6), and
obtain the limit functional

F0(u) =
∫

Ω

|Du|2 dx+
∫

Ω

a(x)|u|2 dx (6.16)

on H1
0 (Ω), where a(x) = Cap(K)(g(x))n−2. By approximation, in this way we may obtain any

a ∈ L1
loc(Rn) in the limit functional;

(ii) the ‘non-critical cases’ can be easily dealt with by comparison. If we take a perforation as
in (6.1) with

lim
ε→0

δε

ε
n
n−2

= 0 (6.17)

then we have an upper bound for the Γ-limit by any functional of the form (6.16) with a any fixed
constant, so that we may take a = 0 and obtain that the contribution of the perforation disappears
leaving only the Dirichlet integral (the lower bound is trivial in this case by the lower semicontinuity
of the Dirichlet integral). Conversely, if

lim
ε→0

δε

ε
n
n−2

= +∞, (6.18)

then the functionals (6.16) with a any fixed constant are a lower bound and in the limit we obtain
that the functional is finite (and its value is 0) only on the constant 0 (for which the upper bound
is trivial);

(iii) we can extend the method outlined above to cover other cases. For example we can require
the unilateral condition u ≥ 0 on the perforation. In this case the proof above shows a limit of the
form

F0(u) =
∫

Ω

|Du|2 dx+ Cap(K)
∫

Ω

|u−|2 dx, (6.19)

where the sole negative part of u contributes to the extra term. It is sufficient to note that

min
{∫

BT (0)

|Dv|2 dy : v ≥ 0 on K, v = u(εi) on BT (0)
}

= |u−(εi)|2 min
{∫

BT (0)

|Dv|2 dy : v = 0 on K, v = 1 on BT (0)
}

in the last equality of (6.6).

Remark 6.4 (perforated domains as degenerate quadratic forms) We note that for n ≥ 3
at fixed ε the functional in (6.5) can be seen as the Γ-limit of a family of usual quadratic integral
functionals on H1

0 (Ω). We can easily check this by a double-limit procedure. We first fix ρ > 0
and consider the set Gρ = {x : dist(x,G) ≤ ρ}, where G is the ‘integer grid’ G = {x ∈ Rn : #{i :
xi 6∈ Z} ≤ 1}. It is not restrictive to suppose that 0 ∈ K and K connected, so that the set
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Cρ = Gρ ∪
⋃
i(εi+ δεK) is periodic and connected (and in particular connected with ∂Ω). We can

then define

aρn(x) =

{
n if x ∈ Cρ
1 otherwise,

F ρn(u) =
∫

Ω

aρn|Du|2 dx, u ∈ H1
0 (Ω). (6.20)

As n→ +∞ F ρn converge increasingly to the functionals F ρ defined by the Dirichlet integral with
zero boundary conditions on ∂Ω ∪ Cρ (note that we may use Remark 2.12(ii) to deduce that F ρ

is also the Γ-limit of F ρn). We now let ρ → 0 so that F ρ converge decreasingly to Fε as defined in
(6.5) and use Remark 2.12(i) to deduce their Γ-convergence. Note that here we use that G has zero
capacity (this fact is not true for n = 2). A diagonal sequence (that we may construct thanks to
Remark 2.16) does the job.

6.2 Relaxed Dirichlet problems

The problem of the computation of the Γ-limit for an arbitrary family of perforations needs a
general setting including both the original constraint u = 0 on some E, and the limit case obtained
in the previous section with the ‘extra term’

∫
|u|2 dx. To this end, note that both energies can be

written as
F (u) =

∫
Ω

|Du|2 dx+
∫

Ω

|u|2dµ,

where the Borel measure µ is defined either as µ = Cap(K)Ln or as µ =∞E , where

∞E(B) =

{
0 if Cap(B \ E) = 0
+∞ otherwise,

(6.21)

corresponding to the zero condition on the set E. The notion of capacity is naturally linked to
H1-functions, that are defined up to sets of zero capacity, so that in the second case the condition
F (u) < +∞ can be equivalently read as u ∈ H1(Ω) and u = 0 (up to a set of zero capacity) on E.

Definition 6.5 (relaxed Dirichlet problems) We denote by M0 the set of all (possibly non-
finite) non-negative Borel measures µ on Rn such that µ(B) = 0 for every Borel set B ⊂ Rn of zero
capacity.

A relaxed Dirichlet problem is a minimum problem of the form

min
{∫

Ω

|Du|2 dx+
∫

Ω

|u|2 dµ− 2
∫

Ω

gu dx : u ∈ H1
0 (Ω)

}
,

where µ ∈M0 and g ∈ L2(Ω); the solution to this minimum problem solves the problem{
−∆u+ uµ = g

u ∈ H1
0 (Ω).

We define the γ-convergence of µj to µ as the Γ-convergence of the functionals defined on H1
0 (A)

by

Fµj (u,A) =
∫
A

|Du|2 dx+
∫
A

|u|2 dµj
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to the corresponding

Fµ(u,A) =
∫
A

|Du|2 dx+
∫
A

|u|2 dµ

for all A bounded open subset of Rn.

For the class M0 we have a compactness and density result as follows.

Theorem 6.6 (closure of relaxed Dirichlet problems) (i) For every sequence (µj) inM0 there
exist a subsequence, not relabeled, and µ in M0 such that µj γ-converge to µ.

(ii) For every µ ∈ M0 there exists a sequence (Kj) of compact subsets of Rn such that the
measures µj =∞Kj (defined as in (6.21) with E = Kj) γ-converge to µ.

Proof For a complete proof we refer to the paper by Dal Maso and Mosco [88] Section 4. Here we
want to highlight that for the proof of (i) (a variation of) the compactness method in Section 3.3
can be applied. In this case the limit F0 of the functionals Fµj , obtained by a compactness and lo-
calization argument, can be written as

∫
A
|Du|2 dx+G(u,A), and a suitable representation theorem

for G by Dal Maso (see [83]) shows that G(u,A) =
∫
A
g(x, u) dµ. Eventually, as F0 is a quadratic

form, we deduce that we may take g(x, u) = |u|2, so that F0 = Fµ.
As for (ii) note that the case µ = a(x)Ln with a ∈ L∞ is taken care in Remark 6.3(i). In the

general case, one proceeds by approximation.

Remark 6.7 (computation of the limit of perforated domains) The construction in the pre-
vious section shows that in the case of functionals F∞Kε

, where Kε =
⋃
i εi+ ε

n
n−2K the measure µ

in limit energy Fµ can be computed as the weak∗ limit of the measures
∑
i ε
nCap(K)δεi (here δεi

stands for the Dirac mass at εi), and the effect of the capacity of the set Kε can be decomposed as
the sum of the capacities of each εi+ ε

n
n−2K. This is not the case in general, since the capacity is

not an additive set function. Nevertheless, a formula for the limit of a family Fµj can be proved (in
particular we may have µj = ∞Kj , with Kj an arbitrary perforation): the limit is Fµ if a Radon
measure ν exists and f : Rn → [0,+∞] is such that f(x) < +∞ up to a set of zero capacity and

f(x) = lim inf
ρ→0

lim inf
j

Capµj (Bρ(x), B2ρ(x))
ν(Bρ(x))

= lim inf
ρ→0

lim sup
j

Capµj (Bρ(x), B2ρ(x))
ν(Bρ(x))

,

where the µj-capacity is defined as

Capµj (E,A) = min
{∫

A

|Du|2 dx+
∫
E

u2 dµj : u− 1 ∈ H1
0 (A)

}
(6.22)

then we have µ = f ν (see Buttazzo, Dal Maso and Mosco [68] Theorem 5.2).
In particular, if µj =∞Kj , then we have to compute the behaviour of

Capµj (E,A) = Cap(E ∩Kj , A)

= min
{∫

A

|Du|2 dx : u− 1 ∈ H1
0 (A), u = 1 on Kj ∩ E

}
.
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This formula describes the local behaviour of the energies due to a perforation in terms of the
µj-capacities.

Another way to express the measure µ is as the least superadditive set function satisfying

µ(A) ≥ inf
U open
A⊆U

sup
B compact
B⊆U

lim sup
j

Cap(Kj ∩B,Ω)

for every Borel subset A ⊆ Ω (see Dal Maso [84]).

Remark 6.8 (limits of obstacle problems) As noted in Remark 6.3(iii) problems on perforated
domains can be extended to problems with (unilateral or bilateral) obstacles. In particular the
condition u = 0 on the perforation can be seen as a particular case of bilateral obstacle. We refer
to the paper by Dal Maso [83] for the treatment of limits of such problems, and in particular for
their integral representation, which is used to represent limits of relaxed Dirichlet problems.

Remark 6.9 (closure of quadratic forms with Dirichlet boundary conditions) Theorem 4.18
shows that the closure of quadratic forms of diffusion type are all objective Dirichlet forms. On
the other hand, Remark 6.4 has shown that functionals on perforated domains, and hence also all
functionals of relaxed Dirichlet problems by the result above, can be obtained as limits of quadratic
forms of diffusion type on H1

0 (Ω). Note that relaxed Dirichlet problems possess the missing non-
objective part in the Deny-Beurling formula. In fact, a result by Camar-Eddine and Seppecher
shows that the closure of quadratic forms of diffusion type are all Dirichlet forms. We refer to [69]
for details.

6.3 Neumann boundary conditions: an extension lemma

The issues in the treatment of Neumann boundary conditions are different; the first one being which
convergence to use in the definition of Γ-limit; the second one being the most general hypothesis
under which a limit exists and defines a non-degenerate functional. The fundamental tool to answer
these questions is an extension lemma by Acerbi, Chiadò Piat, Dal Maso and Percivale [3] (see also
[54] Appendix).

Lemma 6.10 Let E be a periodic, connected, open subset of Rn, with Lipschitz boundary. Given
a bounded open set Ω ⊂ Rn, and a real number ε > 0, there exist a linear and continuous extension
operator Tε : W 1,p(Ω ∩ εE)→W 1,p

loc (Ω) and three constants k0, k1, k2 > 0, such that

Tεu = u a.e. in Ω ∩ εE, (6.23)∫
Ω(εk0)

|Tεu|pdx ≤ k1

∫
Ω∩εE

|u|pdx, (6.24)∫
Ω(εk0)

|D(Tεu)|pdx ≤ k2

∫
Ω∩εE

|Du|pdx, (6.25)

where we use the notation A(λ) for the retracted set {x ∈ A : dist (x, ∂A) > λ}, for every u ∈
W 1,p(Ω ∩ εE). The constants k0, k1, k2 depend on E,n, p, but are independent of ε and Ω.
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With this result in mind we can look for the behaviour of solutions to problems of the form

mε = min
{∫

Ω∩εE
f
(x
ε
,Du

)
dx−

∫
Ω∩εE

gu dx : u = ϕ on ∂Ω
}
. (6.26)

In fact, if uε is a solution to mε, then we can consider Tεuε as defined above (componentwise
if u : Ω ∩ εE → Rm with m > 1). If f satisfies the growth condition of Theorem 4.2 then we
infer that (Tεuε) is locally bounded in W 1,p(Ω; Rm) so that a limit u ∈ W 1,p

loc (Ω; Rm) exists up to
subsequences. Actually, it is easily seen that we obtain a uniform bound on |Du|p on each Ω(λ)
independent of λ, so that u ∈ W 1,p(Ω; Rm). The notion of Γ-convergence in this case must follow
this compactness result.

Theorem 6.11 (homogenization of perforated domains) Let f satisfy the hypotheses of The-
orem 5.1, let E be a periodic, connected, open subset of Rn, with Lipschitz boundary and let

Fε(u) =
∫

Ω∩εE
f
(x
ε
,Du

)
dx u ∈W 1,p(Ω ∩ εE; Rm). (6.27)

Then Fε Γ-converge with respect to the weak convergence in W 1,p
loc (Ω; Rm) to the functional defined

on W 1,p(Ω; Rm) by Fhom(u) =
∫

Ω
fhom(Du) dx, with fhom still satisfying a growth condition as f ,

given by

fhom(ξ) = lim
T→+∞

1
Tn

inf
{∫

(0,T )n∩E
f(x, ξ +Dϕ) dx : ϕ ∈W 1,p

0 ((0, T )n ∩ E; Rm)
}
. (6.28)

This formula can be simplified to a cell-problem formula if f(y, ·) is convex. Furthermore, if Ω has
a Lipschitz boundary then problems mε converge to

mhom = min
{∫

Ω

fhom(Du) dx− C
∫

Ω

gu dx : u = ϕ on ∂Ω
}
, (6.29)

where C = |E ∩ (0, 1)n|.

It must be noted that the result of Γ-convergence still holds if we only suppose that E is
connected and contains a periodic connected set with Lipschitz boundary (for example we can take
E as the complement of a periodic array of ‘cracks’; i.e., of n − 1-dimensional closed sets). Of
course, in this case in general the solutions to mε cannot be extended to W 1,p

loc -functions in Ω. For
details we refer to [54] Chapter 20.

6.4 Double-porosity homogenization

The homogenization of perforated media presents an interesting variant when the ‘holes’ are not
‘empty’, but the energy density therein has a different scaling. The prototype of such problems is
of the form

mε = min
{∫

Ω∩εE
|Du|2 dx+ ε2

∫
Ω\εE

|Du|2 dx−
∫

Ω

gu dx : u = ϕ on ∂Ω
}
, (6.30)

where E is a periodic open subset of Rn, with Lipschitz boundary, not necessarily connected.
Contrary to (6.26) on the part Ω \ εE we consider a ‘weak’ energy scaling as ε2 (other scalings as
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usual can be considered giving less interesting results). Note moreover that now the forcing term∫
Ω
gu dx is considered on the whole Ω.
A first observation is that if E is also connected then the Γ-limit with respect to the weak con-

vergence in W 1,p
loc (Ω; Rm) of

∫
Ω∩εE |Du|

2 dx+ε2
∫

Ω\εE |Du|
2 dx is the same as that of

∫
Ω∩εE |Du|

2 dx

by Theorem 6.11 and a simple comparison argument. However, it must be noted that we cannot
derive from this result the convergence of problems mε, as we cannot obtain a bound on the L2

norms of the gradients of solutions (uε).
A way to overcome this lack of compactness is by considering only the part of Ω where we can

apply the compactness argument in the previous section: we define a limit u considering only the
limit of Tεuε. In this way the contribution of ε2

∫
Ω\εE |Duε|

2 dx −
∫

Ω\E guε dx can be considered
as a perturbation. In order to understand its effect, suppose that K = (0, 1)n \ E is compactly
contained in (0, 1)n, and g is continuous.

We focus on the energy contained on a set εi + εK. Since uε → u, we may suppose that
uε = u(εi) on ∂(εi+ εK), so that we may estimate the contribution

ε2

∫
εi+εK

|Duε|2 dx−
∫
εi+εK

guε dx

≥ inf
{
ε2

∫
εK

|Dv|2 dx−
∫
εK

g(εi+ x)v dx : v = u(εi) on ∂εK
}

= εn inf
{∫

K

|Dv|2 dx−
∫
K

g(εi+ εx)v dx : v = u(εi) on ∂K
}
.

If we set
φ(x, u) = inf

{∫
K

|Dv|2 dx− g(x)
∫
K

v dx : v = u on ∂K
}

then we deduce a lower estimate of the limit of the contributions on Ω \ εE by
∫

Ω
φ(x, u(x)) dx.

This argument can be carried over rigorously and also removing the assumption that E consists
of a single connected component, as stated in the next section.

6.4.1 Multi-phase limits

Let E =
⋃N
i=1Ei where Ei are periodic connected open subsets of Rn with Lipschitz boundary

and such that Ei ∩ Ej = ∅ for i 6= j. We also set E0 = Rn \ E. Let the extension operators T jε
corresponding to Ω∩Ej be defined as in Theorem 6.10. We define the convergence on H1(Ω) as the
L2

loc convergence of these extensions. Namely, we will write that uε → (u1, . . . , uN ) if T jε uε → uj
for all j = 1, . . . , N , or, equivalently, if

lim
ε→0

N∑
i=1

∫
Ω∩εEi

|uε − ui|2 dx = 0. (6.31)

We define the energies

Fε(u) =
∫

Ω∩εE
|Du|2 dx+ ε2

∫
Ω∩εE0

|Du|2 dx+
∫

Ω

|u|2 dx (6.32)

for u ∈ H1(Ω). For simplicity we only consider the quadratic perturbation
∫

Ω
|u|2 dx. By Theo-

rem 6.10 Fε are equicoercive with respect to the convergence above.
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Note that by the closure of quadratic forms there exist Ajhom constant matrices such that∫
Ω

〈AjhomDu,Du〉 dx = Γ- lim
ε→0

∫
Ω∩εEj

|Du|2dx, (6.33)

in the sense of Theorem 6.11. Moreover we define

φ(z1, . . . , zN ) = min
{∫

E0∩(0,1)n
(|Dv|2 + |v|2) dy :

v ∈ H1
#((0, 1)n), v = zj on Ej , j = 1, . . . , N

}
. (6.34)

The following theorem is a particular case of a result by Braides, Chiadò Piat and Piatnitski
[50], where general integrands in the vector case are considered.

Theorem 6.12 If |∂Ω| = 0 then the functionals Fε defined by (6.32) Γ-converge with respect to the
convergence (6.31) to the functional Fhom with domain H1(Ω; RN ) defined by

Fhom(u1, . . . , uN ) =
N∑
j=1

∫
Ω

(〈AjhomDuj , Duj〉+ Cj |uj |2) dx+
∫

Ω

φ(u1, . . . , uN ) dx, (6.35)

where Cj = |Ej ∩ (0, 1)n| and Ajhom and φ are given by (6.33) and (6.34), respectively.

7 Phase-transition problems

In the previous chapters we have examined sequences of functionals defined on Sobolev spaces,
whose minimizers satisfy some weak compactness properties, so that the limit is automatically
defined on a Sobolev space, even though the actual form of the limit takes into account oscillations
and compactness effects. In this section we will consider families of functionals whose minimizers
tend to generate sharp interfaces between zones where they are approximately constant. In the limit
we expect the relevant properties of such minimizers to be described by energies, whose domain are
partitions of the domain Ω into sets (the phase domains).

7.1 Interfacial energies

The types of energies we have in mind are functionals defined on partitions of a reference set Ω
into sets, which take into account some measure of the interface between those sets. The simplest
of such functionals is the ‘perimeter functional’, suitably defined to suit problems in the Calculus
of Variations.

7.1.1 Sets of finite perimeter

The simplest way to have a definition of perimeter which is lower semicontinuous by the L1-
convergence of the sets is by lower-semicontiuity: if E ⊂ Rn is of class C1 define the perimeter
P(E,Ω) of the set E inside the open set Ω in a classical way, and then for an arbitrary set, define

P(E,Ω) = inf{lim inf
j
P(Ej ,Ω) : χEj → χE in L1(Ω), Ej of class C1}.
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Another choice leading to the same definition is to start with Ej of polyhedral type.
If P(E,Ω) < +∞, then we say that E is a set of finite perimeter or Caccioppoli set in Ω. For

such sets it is possible to define a notion of measure-theoretical boundary, where a normal is defined,
so that we may heuristically picture those sets as having a smooth boundary. In order to make
these concepts more precise we recall the definition of the k-dimensional Hausdorff measure (in this
context we will limit ourselves to k ∈ N). If E is a Borel set in Rn, then we define

Hk(E) = sup
δ>0

ωk
2k

inf
{∑
i∈N

(diamEi)k : diamEi ≤ δ, E ⊆
⋃
i∈N

Ei

}
,

where ωk is the Lebesgue measure of the unit ball in Rk.
We say that x ∈ E is a point of density t ∈ [0, 1] if the limit limρ→0+(ωn)−1ρ−n|E ∩Bρ(x)| = t

exists. The set of all points of density t will be denoted by Et. If E is a set of finite perimeter in Ω
then the De Giorgi’s essential boundary of E, denoted by ∂∗E, is defined as the set of points x ∈ Ω
with density 1/2.

Theorem 7.1 (De Giorgi’s Rectifiability Theorem) Let E ⊂ Rn be a set of finite perimeter
in Ω. Then ∂∗E is rectifiable; i.e., there exists a countable family (Γi) of graphs of C1 functions
of (n− 1) variables such that Hn−1(∂∗E \

⋃∞
i=1 Γi) = 0. Moreover the perimeter of E in Ω′ ⊆ Ω is

given by
P(E,Ω′) = Hn−1(∂∗E ∩ Ω′).

By the previous theorem and the Implicit Function Theorem a internal normal ν = νE(x) to E
is defined at Hn−1-almost all points x of ∂∗E as the normal of the corresponding Γi. A generalized
Gauss-Green formula holds, which states that the distributional derivative of χE is a vector measure
given by

DχE(B) =
∫
B

νE dHn−1.

In particular, we have P(E,Ω) = |DχE |(Ω), the total variation of the measure DχE on Ω, so that
χE is a function with bounded variation.

A finite Caccioppoli partition; i.e., a partition of Ω into sets of finite perimeter E1, . . . , EM can
be identified with an element u ∈ BV (Ω;T ), where #T = M . In this case we will also use the
notation S(u) for

⋃
i ∂
∗Ei, which is the jump set of u. This notation also holds if u = χE .

7.1.2 Convexity and subadditivity conditions

From the characterization above we easily see that the characteristic functions of a sequence of
sets with equi-bounded perimeter are bounded in BV , so that we may extract a converging sub-
sequence in L1, and P(E,Ω) = |DχE |(Ω) ≤ lim infj |DχEj |(Ω) = lim infj P(Ej ,Ω) by the lower
semicontinuity of the total variation, so that P(·,Ω) is a lower semicontinuous functional.

Actually, it may be easily seen that functionals of the form

F (E) =
∫

Ω∩∂∗E
ϕ(ν) dHn−1 (7.1)

are L1-lower semicontinuous if and only if the positively homogeneous extension of degree 1 of ϕ
to Rn is convex.
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7.1.3 Integral representation

The application of the localization methods often necessitates the representation of functionals
defined on sets of finite perimeter or on (finite) Caccioppoli partitions. An analogue of the repre-
sentation theorem for integral functionals is the following, of which a simple proof can be obtained
from that in the paper by Braides and Chiadò Piat [49] Section 3, where it is directly proved for
infinite Caccioppoli partitions.

Theorem 7.2 (integral representation on Caccioppoli partitions) Let T be a finite set and
F : BV (Ω;T )× B(Ω) → [0,+∞) be a function defined on pairs Caccioppoli partition/Borel subset
of Ω, satisfying

(i) F (u, ·) is a measure for every u ∈ BV (Ω;T )
(ii) F is local on open sets; i.e.,F (u,A) = F (v,A) whenever u = v a.e. in A
(iii) F (·, A) is L1-lower semicontinuous for all open sets A
(iv) there exist constants c1, c2 > 0 such that c1Hn−1(B∩S(u)) ≤ F (u,B) ≤ c2Hn−1(B∩S(u)).

Then there exist Borel functions ϕij : Ω× Sn−1 → [0,+∞) such that

F (u,B) =
∑
i6=j

∫
B∩∂∗Ei∩∂∗Ej

ϕij(x, νj)dHn−1 (7.2)

for all u ∈ BV (Ω;T ) identified with the partition E1, . . . , EM with inner normal νj to Ej, and every
Borel subset B of Ω.

For Caccioppoli partitions lower-semicontinuity conditions are more complex than the simple
convexity: for homogeneous functionals F as in (7.2) of the form

F (E1, . . . , EM ) =
∑
i<j

∫
Ω∩∂∗Ei∩∂∗Ej

ϕij(νi) dHn−1, (7.3)

where νi is the interior normal to Ei, necessary conditions are the convexity of each ϕij , and their
subadditivity: ϕij(ν) ≤ ϕik(ν) + ϕkj(ν) for all ν. These two combined conditions are not sufficient,
and a more complex condition called BV-ellipticity, that mirrors the notion of quasiconvexity, turns
out to be necessary and sufficient [18].

7.1.4 Energies depending on curvature terms

In the literature other types of energies defined on boundaries of sets have been introduced, espe-
cially for Computer Vision models. One type of energy (in a two dimensional setting) is the elastica
functional (see Mumford [132])

F (E) =
∫
∂E

(1 + κ2)dH1, (7.4)

defined on sets with W 2,2 boundary, where κ denotes the curvature of ∂E. Note that on one hand
the W 2,2 bounds ensure easier compactness properties for sets with equi-bounded energy, while on
the other hand parts of the boundary of such sets may ‘cancel’ in the limit, giving rise to sets with
cusp singularities. As a consequence the functional is not lower semicontinuous and its relaxation
exhibits complex non-local effects that have been studied by Bellettini, Dal Maso and Paolini [33]
and more recently by Bellettini and Mugnai [34].
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7.2 Gradient theory of phase transitions

It is well known that the minimization of a non-convex energy often leads to minimizing sequences
with oscillations, highlighted by a relaxation of the energy. This is not the case if we add a singular
perturbation with a gradient term. We will be looking at the behaviour of minimum problems

min
{∫

Ω

W (u) dx+ ε2

∫
Ω

|Du|2 dx :
∫

Ω

u dx = C
}
, (7.5)

where u : Ω → R, and W is a non-convex energy. Upon an affine translation of u, that does not
change the minimizers of problem (7.5), is not restrictive to suppose that

W ≥ 0 and W (u) = 0 only if u = 0, 1 (7.6)

(or two other points). W is called a double-well energy and the energies above are related to the
Cahn-Hilliard theory of liquid-liquid phase transitions.

Note that under the hypotheses above, if 0 < C < |Ω| then the minimum of
∫

Ω
W (u) dx is 0, and

is achieved on any u = χE with |E| = C. The gradient term however forbids such configurations,
and we expect the creation of interfaces to be penalized by the second integral. A heuristic scaling
argument can be performed in dimension one to understand the scale of this penalization: if the
transition of u is on an interval I of size δ, where the gradient is of the order 1/δ, we have∫

I

W (u) dx+ ε2

∫
I

|u′|2 dx ≈ δ +
ε2

δ
. (7.7)

The minimization in δ gives δ = ε and a contribution of order ε. This argument suggests a scaling
of the problem and to consider

mε = min
{1
ε

∫
Ω

W (u) dx+ ε

∫
Ω

|Du|2 dx :
∫

Ω

u dx = C
}
, (7.8)

whose minimizers are clearly the same as the problem above.

7.2.1 The Modica-Mortola result

The Γ-limit of the energy above is one of the first examples in the literature and is due to Modica
and Mortola [124] (see also [123, 142, 41, 45, 5]). In this section we will examine the behaviour of
the energies

Fε(u) =
1
ε

∫
Ω

W (u) dx+ ε

∫
Ω

|Du|2 dx, u ∈ H1(Ω), (7.9)

with W as above and such that W (u) ≥ c(|u|2 − 1).
Note that the volume constraint

∫
Ω
u dx = C is not continuous, so that it cannot be simply

added to the Γ-limit, so that a separate argument must, and will, be used.

Theorem 7.3 (Modica-Mortola’s theorem) The functionals above Γ-converge with respect to
the L1(Ω) convergence to the functional

F0(u) =

{
cWP({u = 1},Ω) = cWHn−1(∂∗{u = 1} ∩ Ω) if u ∈ {0, 1} a.e.
+∞ otherwise,

(7.10)

where cW = 2
∫ 1

0

√
W (s) ds.
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Proof The one-dimensional case. Suppose that limj Fεj (uj) < +∞. Fix some η > 0 and consider
an interval I such that uj takes the values η and 1− η at the endpoints of the interval. We can use
the following Modica-Mortola trick to estimate∫

I

( 1
εj
W (uj) + εj |u′|2

)
dt ≥ 2

∫
I

√
W (uj)|u′j | dt ≥ 2

∫ 1−η

η

√
W (s) ds =: Cη, (7.11)

(we have simply used the algebraic inequality a2 + b2 ≥ 2ab and the change of variables s = uj(t)).
From this inequality we easily deduce that the number of transitions between η and 1 − η is
equibounded. Since

∫
Ω
W (uj) dt ≤ εC we also deduce that uj → {0, 1} in measure, so that we have

(up to subsequences) uj → u, where u is a piecewise-constant function taking values in {0, 1}. If
we denote by S(u) the set of discontinuity points of u the inequality above yields

lim inf
j

Fεj (uj) ≥ Cη #(S(u)), (7.12)

and then the lower bound is achieved by the arbitrariness of η.
To prove the limsup inequality, take v the solution of

v′(s) =
√
W (v) v(0) =

1
2

(7.13)

(suppose for simplicity that we have a global solution to this problem), and define vε(t) = v(t/ε).
Note that vε tends to H = χ[0,+∞) (the Heaviside function with jump in 0) and it optimizes
the inequality in (7.11): 1

εW (vε) + ε|v′ε|2 = 2
√
W (vε)|v′ε| so that it gives a recovery sequence for

u(t) = H(t). For a general u ∈ {0, 1} we easily construct a recovery sequence by suitably gluing
the functions vε((t± t)/ε), where t ∈ S(u).

The n-dimensional case. In order to to apply the ‘slicing procedure’ we will need a result
characterizing sets of finite perimeter through their sections. For a piecewise-constant function u
on an open set of R we use the notation S(u) for its set of discontinuity points (if u is thought as an
L1 function we mean its essential discontinuity points). We use the notation for one-dimensional
sections introduced in Chapter 3.4.

Theorem 7.4 (sections of sets of finite perimeter)
(a) Let E be a set of finite perimeter in a smooth open set Ω ⊂ Rn and let u = χE. Then for

all ξ ∈ Sn−1 and for Hn−1-a.a. y ∈ Πξ the function uξ,y is piecewise constant on Ωξ,y. Moreover,
for such y we have S(uξ,y) = {t ∈ R : y + tξ ∈ Ω ∩ ∂∗E}, and for all Borel functions g∫

Πξ

∑
t∈S(uξ,y)

g(t) dHn−1(y) =
∫

Ω∩∂∗E
g(x)|〈νE , ξ〉|dHn−1 . (7.14)

(b) Conversely, if E ⊂ Ω and for all ξ ∈ {e1, . . . , en} and for Hn−1-a.a. y ∈ Πξ the function uξ,y
is piecewise constant in each interval of Ωξ,y and∫

Πξ

#(S(uξ,y)) dHn−1(y) < +∞ , (7.15)

then E is a set of finite perimeter in Ω.
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We follow the steps outlined in Section 3.4.
Step 1. The localized functionals are

Fε(u,A) =
1
ε

∫
A

W (u) dx+ ε

∫
A

|Du|2 dx. (7.16)

Step 2. We choose

F ξ,yε (v, I) =
1
ε

∫
I

W (v) dt+ ε

∫
I

|v′|2 dt (7.17)

(in this case F ξ,yε is independent of y). We then have, by Fubini’s Theorem,

F ξε (u,A) =
1
ε

∫
A

W (u) dx+ ε

∫
A

|〈ξ,Du〉|2 dx (7.18)

Note that F ξε ≤ Fε.
Step 3. By the one-dimensional proof the Γ-limit

F ξ,y(v, I) := Γ- lim
ε→0

F ξ,yε (v, I) = cW#(S(v)) if v ∈ {0, 1} a.e. on I. (7.19)

(+∞ otherwise). We define F ξ as in (3.12). Note that F ξ(u,A) is finite if and only if u ∈ {0, 1}
a.e. in Ω, uξ,y is piecewise constant on Aξ,y for Hn−1-a.a. y ∈ Πξ, and (7.15) holds.
Step 4. From Fatou’s Lemma we deduce that

Γ- lim inf
ε→0+

Fε(u,A) ≥ Γ- lim inf
ε→0+

F ξε (u,A) ≥ F ξ(u,A) ,

for all ξ ∈ Sn−1.
Step 5. By Step 3 and Theorem 7.4(b) we deduce that the Γ-lower limit F ′(u,A) = Γ- lim infε→0+ Fε(u,A)
is finite only if u = χE for some set E of finite perimeter in A. Moreover, C > 0 exists such that
F ′(u,A) ≥ CHn−1(A ∩ ∂∗E).
Step 6. If u = χE for some set E of finite perimeter, from Theorem 7.4(a) we have

F ξ(u,A) = cW

∫
A∩∂∗E

|〈ξ, νu〉|dHn−1(y) . (7.20)

Hence
F ′(u,A) ≥ cW

∫
A∩∂∗E

|〈ξ, νu〉|dHn−1(y) . (7.21)

Step 7. Since all Fε are local, then if u = χE for some set E of finite perimeter the set function
µ(A) = F ′(u,A) is superadditive on disjoint open sets. From Theorem 3.1 applied with λ =
Hn−1 ∂∗E, and ψi(x) = χ∂∗E |〈ξi, νu〉|, where (ξi) is a dense sequence in Sn−1, we conclude that

F ′(u,A) ≥ cW
∫
S(u)∩∂∗E

sup
i
{|〈ξi, ν〉|}dHn−1. (7.22)

The liminf inequality follows noticing that supi{|〈ξi, ν〉|} = 1.
The liminf inequality is sharp for functions with a ‘unidimensional’ profile; i.e., that on lines

orthogonal to ∂∗E follow the one-dimensional recovery sequences. This argument can be easily
carried over if ∂∗E is smooth; the general case will then be achieved by approximation via the
following result (whose proof easily follows from Sard’s theorem by using the coarea formula).
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Proposition 7.5 (density of smooth sets) If Ω is a Lipschitz set and E is a set of finite perime-
ter in Ω, then there exists a sequence (Ej) of sets of finite perimeter in Ω, such that limj |E∆Ej | = 0,
limj P(Ej ,Ω) = P(E,Ω), and for every open set Ω′ with Ω ⊂⊂ Ω′ there exist sets E′j of class C∞

in Ω′ and such that E′j ∩ Ω = Ej.

It remains to exhibit a recovery sequence when ∂E is smooth. In that case it suffices to take

uε(x) = v
(d(x)

ε

)
(7.23)

where d(x) = dist(x,Ω\E)−dist(x,E) is the signed distance function to ∂E. A simple computation
using the coarea formula in the form∫

Ω

f(x)|Dd| dx =
∫ +∞

−∞

∫
{d=t}∩A

f(y)dHn−1(y) dt (7.24)

valid if f is a Borel function (recalling that |Dd| = 1 a.e.) gives the desired estimate.

Remark 7.6 (optimal profile problem) We may rewrite the constant cW as the minimum prob-
lem

cW = min
{∫ +∞

−∞
(W (v) + |v′|2) dt : u(−∞) = 0, u(+∞) = 1

}
. (7.25)

By the proof above we get that the function v defined in (7.13) is a solution to this minimum problem
(optimal profile problem). The proof of the limsup inequality shows that a recovery sequence is
obtained by scaling an optimal profile.

Remark 7.7 (generalizations) By some easy convexity arguments we can adapt the proof above
to the case when we substitute |Du|2 by a more general ϕ2(Du) with ϕ convex and positively
homogeneous of degree one (see [45] Section 4.1.2), in which case the limit is given by

F0(u) = cW

∫
Ω∩∂∗E

ϕ(ν)dHn−1 (7.26)

if u = χE . As a particular case, we may take ϕ(ν) =
√
〈Aν, ν〉.

7.2.2 Addition of volume constraints

As for boundary conditions for integral functionals, to apply the theorem above to the convergence
of the minimum problems mε we have to prove that the volume constraint

∫
Ω
u dx = C is compatible

with the Γ-limit. Clearly, the constraint is closed under L1(Ω)-convergence. By taking the density
argument into account, the compatibility then amounts to proving the following.

Proposition 7.8 (compatibility of volume constraints) Let E be a set with smooth boundary;
then there exist uε → χE such that

∫
Ω
uε dx = |E ∩ Ω| and lim

ε→+∞
Fε(uε) = cWHn−1(∂E ∩ Ω).

Proof The proof of this proposition can be easily achieved by adding to the recovery sequence
constructed above uε a suitable perturbation. For example, if W is smooth in 0 and 1, we can
choose a ball B contained in E (or Ω \ E; it is not restrictive to suppose that such B exists by
approximation) and φε ∈ C∞0 (B) with 0 ≤ φε ≤ 1, φε → 1 and

∫
B

(|φε|2 + ε2|Dφε|2) dx = O(ε),
and consider uε = uε + cεφε where cε → 0 are such that

∫
Ω
uε dx = |E ∩ Ω|.
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With this proposition the proof of the Γ-limit of the functionals in (7.8) is complete. Note
moreover that the sequence is equi-coercive by the proof of Theorem 7.3. We then obtain the
convergence result as follows.

Corollary 7.9 (convergence to minimal sharp interfaces) Let uε be a minimizer for problem
mε as defined in (7.8). Then, we have mε → m, and, up to subsequences, uε → u, where u = χE,
and E is a minimizer of the problem

m = min
{
cWP(E; Ω) : |E| = C

}
. (7.27)

7.2.3 A selection criterion: minimal interfaces

The convergence above can also be read as a result on the convergence of the original minimum
problems in (7.5). Note that we have∫

Ω

W ∗∗(u) dx = Γ- lim
ε→0

∫
Ω

(W (u) + ε2|Du|2) dx (7.28)

with respect to the weak-L2(Ω) convergence, so that the limit of (7.5) can be expressed as

min
{∫

Ω

W ∗∗(u) dx :
∫

Ω

u dx = C
}
, (7.29)

where W ∗∗ is the convex envelope of W . In our case W ∗∗ = 0 on [0, 1] so that the first minimum
is 0 and is achieved on all test functions with 0 ≤ u ≤ 1.

In other words, sequences (uε) with
∫

Ω
(W (uε) + ε2|Duε|2) dx = o(1) may converge weakly in

L2(Ω) to any 0 ≤ u ≤ 1. On the contrary if
∫

Ω
(W (uε) + ε2|Duε|2) dx = o(ε), then uε → χE , where

E is a set with minimal perimeter. Since the minimum in (7.29) coincides with

min
{∫

Ω

W (u) dx :
∫

Ω

u dx = C
}

(7.30)

the addition of the singular perturbation represents a choice criterion between all minimizers of this
non-convex variational problem.

7.2.4 Addition of boundary values

It is interesting to note that boundary values are trivially not compatible with this Γ-limit, as the
limit energy is defined only on characteristic functions. Nevertheless the limit of an energy of the
form

Fϕε (u) =


1
ε

∫
Ω

W (u) dx+ ε

∫
Ω

|Du|2 dx if u = ϕ on ∂Ω

+∞ otherwise,
(7.31)

can be easily computed.
To check this, we may first consider the one-dimensional case, with Ω = (0, 1) and the boundary

condition u(0) = u0. The same line of proof as above shows that the Γ-limit is again finite only
if u ∈ {0, 1} and is piecewise-constant, but we have the additional boundary term φ(u0, u(0+)),
where

φ(s, t) = 2
∣∣∣∫ t

s

√
W (τ) dτ

∣∣∣, (7.32)
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and u(0+) is the (approximate) right-hand side limit of u at 0. This term accounts for the boundary
mismatch of the two wells from the boundary condition, and is derived again using the Modica-
Mortola trick. The same applies with a boundary condition u(1) = u1.

In the general n-dimensional case, we may obtain results of the following form.

Theorem 7.10 (relaxed boundary data) Let Ω be a set with smooth boundary and ϕ be a con-
tinuous function. Then the Γ-limit of the functionals Fϕε in (7.31) is given by

Fϕ0 (u) = cWP({u = 1}; Ω) +
∫
∂Ω

φ(ϕ(y), u(y))dHn−1(y), (7.33)

where u(y) for y ∈ ∂Ω is understood as the inner trace of u at y.

7.3 A compactness result

As for integral functionals, the gradient theory of phase transitions above can be framed in a more
abstract framework by proving a compactness theorem via the localization methods. This has been
done for example by Ansini, Braides and Chiadò Piat [23], to get a result as follows.

Let W : R→ [0,+∞) be a continuous function satisfying the conditions above, let Vε : Rn×R→
[0,+∞) be functions satisfying c1W (u) ≤ Vε(x, u) ≤ c2W (u) and let fε be a sequence of integrands
as in Theorem 4.2. We will consider the functionals Gε : L1

loc(Rn)×A → [0,+∞] defined by

Gε(u,A) =
∫
A

(Vε(x, u)
ε

+ εfε(x,Du)
)
dx, u ∈ H1(A) (7.34)

(extended to +∞ elsewhere), where A denotes the family of bounded open subsets of Rn.

Theorem 7.11 (compactness by Γ-convergence) For every sequence (εj) converging to 0, there
exist a subsequence (not relabeled) and a functional G : L1

loc(Rn) × A → [0,+∞], such that (Gεj )
Γ-converges to G for every A bounded Lipschitz open set, and for every u ∈ L1

loc(Rn) such that
u = χE with E a set of finite perimeter, with respect to the strong topology of L1(A). Moreover,
there exists a Borel function ϕ : Rn × Sn−1 → [0,+∞) such that

G(u,A) =
∫
∂∗E∩A

ϕ(x, ν) dHn−1 (7.35)

for every open set A.

Proof We may follow the localization method in Section 3.3. Note that we may follow the same line
as in Section 4.2.1 to prove the fundamental estimate, with some finer technical changes. Moreover,
by a simple comparison argument we obtain c1cWP(E,A) ≤ G(u,A) ≤ c2cWP(E,A), so that we
may apply the representation theorem in Section 7.1.3. Details are found in [23].

Remark 7.12 (a formula for the interfacial energy density) Note that a simple derivation
formula for ϕ as in Theorem 4.4 does not hold; in particular ϕ is not determined by the behaviour
of G(u,A) when S(u) is an hyperplane (this would be the analogue of an affine function in a
Sobolev setting). To see this it is sufficient to take ϕ(x, ν) = 2 − χ∂B1(0)(x), which gives a lower-
semicontinuous G; in this case, G(u,A) = 2Hn−1(A∩S(u)) if S(u) is an hyperplane, but for example

55



G(χB1(0), A) = Hn−1(A ∩ ∂B1(0)) . Nevertheless, if G is translation invariant then ϕ = ϕ(ν) and
hence by convexity

ϕ(ν) = min
{
G(u,Qν) : u = χE ν⊥-periodic, u = 1 on Q+

ν , u = 0 on Q−ν

}
, (7.36)

where Qν is a cube with centre 0, side length 1 and Q±ν = ∂Qν ∩ {〈x, ν〉 = ±1/2} are the two faces
of Qν orthogonal to ν. The ν⊥-periodicity of u must be understood as periodicity in the n − 1
directions given by the edges of the cube Qν other than ν, the values on Q±ν are taken in the sense
of traces, and the functional G is extended to a measure on all Borel sets.

The formula above is useful to derive a characterization of ϕ in terms of the approximating Gε
simply by applying the theorem on convergence of minimum problems after Γ-convergence, in the
same spirit of the derivation of the homogenization formula in Section 5.1.

7.4 Other functionals generating phase-transitions

In this section we present some other types of functionals whose Γ-limit is a phase-transition energy,
briefly highlighting differences and analogies with the gradient theory outlined above.

7.4.1 A non-local model

Another class of energies giving rise to phase transitions, and linked to some models deriving from
Ising systems, have been studied by Alberti and Bellettini [6] (see also [7]). They have the form

Fε(u) :=
1
ε

∫
Ω

W (u(x)) dx+
ε

4

∫
Ω×Ω

Jε(x′ − x)
(u(x′)− u(x)

ε

)2

dx dx′

where Jε(y) := 1
εN
J(yε ), and J is an even positive L1 kernel with

∫
Rn J(h)|h| dh < +∞. Note

that Fε can be obtained from the functional studied by Modica and Mortola (Section 7.2.1) by
replacing the term |Du(x)| in the second integral in (7.9) with the average of the finite differences
1
ε |u(x + εh) − u(x)| with respect to the measure JεLn. An equi-coerciveness property for the
functionals Fε in L2(Ω) can be proved. The Γ-limit is finite only on characteristic functions of sets
of finite perimeter; its characterization is the following.

Theorem 7.13 The Γ-limit of Fε in the L2(Ω) topology is given by

F (u) =
∫

Ω∩∂∗E
g(ν) dHn−1 (7.37)

on u = χE characteristic functions of sets of finite perimeter, where the anisotropic phase-transition
energy density g is defined as

g(ν) = lim
T→+∞

1
Tn−1

inf
{∫

TQν

W (u) dx+
∫
TQν×Rn

J(h)(u(x+ h)− u(x))2 dx dh :

u Tν⊥-periodic, u(x) = 1 if 〈x, ν〉 ≥ T

2
, u = 0 if 〈x, ν〉 ≤ −T

2

}
(we use the notation of Remark 7.12).

Proof Even though the functions are non-local, the limit contribution to the surface energy can
be computed by using the arguments of Remark 7.12 (which explains the form of g). A particular
care must be used to deal with the boundary data. Details can be found in [6].
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7.4.2 A two-parameter model

An intermediate model between the local Cahn-Hilliard model and the non-local above deriving
from Ising systems, can be obtained by considering energies depending on one more parameter v,
of the form

Fε(u, v) =
1
ε

∫
Ω

W (u) dx+
α

ε

∫
Ω

(u− v)2 dx+ ε

∫
Ω

|Dv|2 dx (7.38)

for u ∈ L2(Ω) and v ∈ H1(Ω). These functionals arise independently in the study of thin bars,
with the additional variable taking into account the deviation from one-dimensional deformations
(see Rogers and Truskinovsky [138]), and their Γ-limit has been studied by Solci and Vitali [141].
In the case α = +∞ we recover the Modica-Mortola functionals.

Note that the second term in (7.38) forces u = v as ε→ 0 and the first one gives u ∈ {0, 1}. Note
however that the variable u may be discontinuous at fixed ε > 0. An equi-coerciveness theorem
can be proved for the family Fε with respect to the L2-convergence, as well as that the Γ-limit is
finite only on characteristic functions of sets of finite perimeter. The characterization of the Γ-limit
(which is finite for u = v = χE) is the following.

Theorem 7.14 Let Fε be as above. Then Γ-limε→0 Fε(u, v) = Fα(u), where

Fα(u) = cαWHn−1(Ω ∩ ∂∗E), (7.39)

if u = χE, and cαW is defined as

cαW =
√
α inf

{∫
R
W (ϕ) dx+

α2

4

∫
R2
e−α|x−y|(ϕ(x)− ϕ(y))2 dx dy :

ϕ(−∞) = 0, ϕ(+∞) = 1
}
.

Furthermore, we have lim
α→+∞

cαW = 2
∫ 1

0

√
W (s)) ds.

Proof The idea of the proof is to reduce to the one-dimensional case by slicing, and then minimize
the effect of v for fixed u. In this way we recover a non-local one-dimensional functional as in
Theorem 7.13. Details can be found in [141].

Note that we may recover anisotropic functionals by considering terms of the form g2(Dv) in
the place of |Dv|2, with g a norm.

7.4.3 A perturbation with the H1/2 norm

Energies similar to those in Section 7.4.1 are the following ones studied by Alberti, Bouchitté and
Seppecher [9]

Gε(u) =
∫

Ω

W (u) dt+ ε2

∫
Ω×Ω

∣∣∣u(t)− u(s)
t− s

∣∣∣2 dt ds, (7.40)

on a one-dimensional set Ω = (a, b). In this case, a different scaling is needed. Adapting the
argument in Section 7.2 we can argue that the first term forces u ∈ {0, 1}, and we look at a
transition from 0 to 1 taking place on an interval [t, t+ δ]. We then have

Gε(u) ≥ Cδ + 2ε2

∫
(a,t)×(t+δ,b)

∣∣∣ 1
t− s

∣∣∣2 dt ds ≥ Cδ − 2ε2(log δ + C).
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By optimizing the last expression we get δ = 2ε2/C and hence Gε(u) ≥ 4ε2| log ε|+O(ε2). We are
then led to the scaled energies

Fε(u) =
1

ε2| log ε|

∫
Ω

W (u) dt+
1

| log ε|

∫
Ω×Ω

∣∣∣u(t)− u(s)
t− s

∣∣∣2 dt ds, (7.41)

for which we have the following Γ-convergence result (see [9], to which we also refer for the proof
of their equi-coerciveness).

Theorem 7.15 (phase transitions generated by a H1/2-singular perturbation) The Γ-limit
F0 of Fε with respect to the L1-convergence is finite only on piecewise-constant functions, for which
F0(u) = 4 #(S(u)).

Proof The crucial point is a compactness and rearrangement argument that allows to reduce to
the case where u is close to 0 or 1 except for a finite number of intervals, to which the computation
above can be applied. A recovery sequence is obtained by taking uε = u except on intervals of
length ε2 around S(u).

It must be noted that contrary to the energies considered until now, here we do not have an
‘equi-partition’ of the energy in the two terms of Fε, but the whole lower bound is due to the
double integral. As a consequence we do not obtain an optimal profile problem by scaling the
energy. The loss of such a property makes the problem more difficult and will be found again for
Ginzburg-Landau energies (see Section 8.1).

Remark 7.16 By renaming ε the scaling factor 1
| log ε| we obtain the Γ-convergence of the energies

Hε(u) = λε

∫
Ω

W (u) dt+ ε

∫
Ω×Ω

∣∣∣u(t)− u(s)
t− s

∣∣∣2 dt ds, (7.42)

to 2K#(S(u)) whenever ε log λε → K.

Remark 7.17 (An application: the line-tension effect) The result above has been applied
by Alberti, Bouchitté and Seppecher [10] to the study of energies defined on Ω ⊂ R3 with smooth
boundary by

Fε(u) =
1
ε

∫
Ω

W1(u) dx+ λε

∫
∂Ω

W2(u)dH2 + ε

∫
Ω

|Du|2 dx, (7.43)

where Wi are two double-well potentials.
We can give a heuristic derivation of the limit of such energies, and for the sake of simplicity

we suppose that Ω ⊂ R2 (the case treated in [10] uses further blow-up and slicing arguments). If
Fε(uε) < +∞, then uε → u in Ω and, if vε is the trace of uε on ∂Ω, then (up to subsequences)
vε → v as ε→ 0. Note that we can rewrite Fε as F1

ε + F2
ε , where

F1
ε (u) =

1
ε

∫
Ω

W1(u) dx+ δε

∫
Ω

|Du|2 dx, (7.44)

F2
ε (u) = λε

∫
∂Ω

W2(u)dH1 + (1− δ)ε
∫

Ω

|Du|2 dx. (7.45)

This latter term will give the contribution due to v. Upon a blow-up close to each essential
discontinuity points of v in ∂Ω and change of variables argument we can reduce to treat the case
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{x2
1 +x2

2 < r, x2 > 0} a half-disk and (0, 0) is a discontinuity point of v on (−r, r), for which a lower
bound for this latter functional is

G2
ε (vε) = λε

∫ r

−r
W2(vε)dx1 +

1
2π

(1− δ)ε
∫

(−r,r)2

∣∣∣vε(t)− vε(s)
t− s

∣∣∣2 dt ds (7.46)

(the last term obtained by minimization at fixed vε).
If ε log λε → K, the use of the previous result (see Remark 7.16) adapted to G2

ε gives v ∈ {0, 1}
and provides a term in the limit energy of the form (1 − δ)K#(S(v))/π, where S(v) denotes the
essential discontinuity points of v in ∂Ω. Since uε → u in Ω with limit relaxed boundary condition
v (see Section 7.2.4), from the limit of F1

ε we get that u ∈ {0, 1} and a term in the limit energy of
the form √

δ
(
cW1H1(S(u) ∩ Ω) + 2

∫
∂Ω

∣∣∣∫ v

u

√
W1(s) ds

∣∣∣dH1
)
. (7.47)

Note that this last term can also be written as cW1H1(∂Ω ∩ {u 6= v}) taking into account that
both u and v may only take the value 0 and 1, but gives a general form if the wells of Wi differ.
We can use Lemma 3.1 to optimize the role of

√
δ and (1 − δ) separately. We refer to [10] for the

construction of a recovery sequence which optimizes these lower bounds.
In the three-dimensional case and for W2 with wells α and β possibly different from 0 and 1 we

have the Γ-limit of the form

F0(u, v) = K
(β − α)2

π
H1(S(v)) + cW1H2(S(u) ∩ Ω) + cW12

∫
∂Ω

∣∣∣∫ v

u

√
W1(s) ds

∣∣∣dH2. (7.48)

Note that to get a more formally correct statement we should identify Fε with the functional
defined on H1(Ω)×H1/2(∂Ω) by

Fε(u, v) =

{
Fε(u) if v is the trace of u
+∞ otherwise,

(7.49)

where now S(v) denotes the essential boundary of {v = α} on ∂Ω.
These functionals have applications in the study of capillarity phenomena. Similar functionals

arise in the study of dislocations, where additional difficulties are related to the presence of an
infinite-wells potential (see Garroni and Müller [113]).

7.4.4 A phase transition with a Gibbs’ phenomenon

A one-dimensional perturbation problem deriving from a non-linear model of a shell-membrane
transition has been studied by Ansini, Braides and Valente [24]. The energies Fε take the form

Fε(u) =
1
ε3

∫ 1

0

(∫ t

0

u(u− 1) ds
)2

dt+ ε

∫ 1

0

|u′|2 dt, u ∈ H1(0, 1). (7.50)

Note that this energy can be compared with the corresponding Modica-Mortola functional

1
ε

∫ 1

0

(u(u− 1))2 dt+ ε

∫ 1

0

|u′|2 dt, u ∈ H1(0, 1) (7.51)

with W (s) = s2(s − 1)2, which shows a different scaling in ε. Another feature of these energies is
that it is not true that Fε((0∨u)∧ 1) ≤ Fε(u) so that truncation arguments are not applicable (see
Remark 7.19 below).
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Theorem 7.18 The functionals Fε Γ-converge to F with respect to the L1-convergence, whose
domain are piecewise-constant functions taking only the values 0 and 1, and for such functions
F (u) = C#(S(u)), where

C = inf
T>0

min
{∫ T

−T

(∫ t

−T
ϕ(ϕ− 1) ds

)2

dt+
∫ T

−T
|ϕ|2 dt : (7.52)

ϕ ∈ H1(−T, T ), ϕ(−T ) = 0, ϕ(T ) = 1,
∫ T

−T
ϕ(ϕ− 1) ds = 0

}
,

and S(u) denotes the set of essential discontinuity points of u.

Proof The proof of the equi-coerciveness, and hence of the liminf inequality of the functionals
is particularly tricky, since the function u(u − 1) in the double integral may change sign. As a
consequence, the truncation arguments that make computations easier in the Γ-limits considered
above do not hold, and in particular recovery sequences do not satisfy 0 ≤ uε ≤ 1 (and hence
are not monotone). This is a kind of Gibbs’ phenomenon (see the remark below). Note that the
conditions for ϕ in (7.52) make it easy to construct a recovery sequence. It is a much more technical
issue to prove that we may always reduce to sequences (uε) such that

∫ t+εTε
t−εTε uε(uε − 1) ds = 0 and

uε(t±εTε) ∈ {0, 1} for some Tε, from which derives the possibility of localization of the computation
of the Γ-limit on S(u). For details we refer to [24].

Remark 7.19 (Gibbs’ phenomenon as a scaling effect) The condition
∫ T
−T ϕ(ϕ − 1) ds = 0

in (7.52) cannot be satisfied if 0 ≤ ϕ ≤ 1; this implies that the same observation is valid for recovery
sequences uε. More precisely, if uε → u, 0 ≤ uε ≤ 1 and u is not constant, then we have

lim inf
ε→0

ε1/6Fε(uε) > 0.

This shows that the addition of the constraint 0 ≤ uε ≤ 1 not only is not compatible with the
construction of recovery sequences, but even gives a different scaling of the energy.

7.5 Some extensions

7.5.1 The vector case: multiple wells

The vector case of the Modica-Mortola functional when u : Ω → Rm and W : Rm → [0,+∞)
possesses a finite number of wells (or a discrete set of zeros) can be dealt with similarly. Note that
such a setting is necessary when dealing with phases parameterizing mixtures of more than two
fluids. In this case, we may suppose that W is continuous, with superlinear growth at infinity and
{W = 0} = {α1, . . . , αM}. The L1-limit u of a sequence with equi-bounded energy can therefore be
identified with a partition (Ei) with Ei = {u = αi}, and the Γ-limit is described by the following
theorem (see Baldo [28]).

Theorem 7.20 (multiple phase transitions) The Γ-limit of the energies

Fε(u) =
1
ε

∫
Ω

W (u) dx+ ε

∫
Ω

|Du|2 dx, u ∈ H1(Ω; Rm) (7.53)

60



is described by the functional

F (E1, . . . , EM ) =
∑
i>j

cijHn−1(Ω ∩ ∂∗Ei ∩ ∂∗Ej)

cij = inf
{∫

R
(W (u) + |u′|2) dt : u(−∞) = αi, u(+∞) = αj

}
. (7.54)

Proof We may follow the line of the proof of the scalar case through the localization procedure.
The Γ-limit can be represented as in (7.3). By (7.36) we obtain that

ϕij(ν) = lim
ε→0

min
{1
ε

∫
Ω

W (u) dx+ ε

∫
Ω

|Du|2 dx :

u ν⊥-periodic, u = αi on Q+
ν , u = αj on Q−ν

}
≥ lim

ε→0
min

{∫ 1/2ε

−1/2ε

(W (φ) + |φ′|2) dt : φ(− 1
2ε

) = αi, φ(
1
2ε

) = αj

}
,

the last inequality obtained by testing on u(x) = φ(〈x, ν〉/ε). Taking the limit as ε→ 0 we obtain
the inequality ϕij(ν) ≥ cij . The converse inequality is obtained by a direct construction with
one-dimensional scalings of optimal profiles.

Note that the constants cij automatically satisfy the wetting condition cij ≤ cik + ckj corre-
sponding to the necessary subadditivity constraint.

7.5.2 Solid-solid phase transitions

The Cahn-Hilliard theory accounts for liquid-liquid phase transitions. The inclusion of functionals
of elastic problems into this framework would translate into the Γ-limit of energies of the form

Fε(u) =
1
ε

∫
Ω

W (Du) dx+ ε

∫
Ω

|D2u|2 dx, u ∈ H2(Ω; Rn) (7.55)

where u : Ω → Rn represents a deformation, and W is an energy density possessing at least two
minimizers A and B in Mm×n.

If W represents a hyperelastic free energy, it must be remarked that the physical assumption of
frame-indifference would actually force W to vanish on the set SO(n)A∪SO(n)B, where SO(n) is
the set of rotations in Rn. Non-affine weak solutions for the limiting problem may exist if the two
wells are rank-one connected (Hadamard’s compatibility condition); i.e., there exist R,R′ ∈ SO(n)
and vectors a, ν such that RA−R′B = a⊗ ν.

We state the Γ-convergence result only in a simplified version obtained by neglecting the frame-
indifference constraint, as in the following theorem by Conti, Fonseca and Leoni [77].

Theorem 7.21 (solid-solid phase transitions) Let Ω be a convex set of Rn, let A and B be
n× n matrices and suppose that vectors a, ν exist such that A−B = a⊗ ν. We suppose that W is
continuous, positive, growing more than linearly at infinity and vanishing exactly on {A,B}. Then
the Γ-limit F of Fε is finite only on continuous piecewise-affine functions u such that Du ∈ {A,B}
almost everywhere. If S(Du) denotes the set of discontinuity points for Du then S(Du) is the union
of parallel hyperplanes orthogonal to ν, and

F (u) = cA,BHn−1(S(Du)), (7.56)
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where
cA,B = inf

{
lim inf
ε→0

Fε(uε, Qν) : uε → uA,B

}
(7.57)

and

uA,B(x) =

{
Ax if 〈x, ν〉 ≥ 0
Bx if 〈x, ν〉 < 0

(7.58)

(i.e., cA,B = Γ-lim infε→0 Fε(uA,B , Qν)).

Proof Functions u with finite energy for the limiting problem are necessarily piecewise-affine de-
formations, whose interfaces are hyperplanes with normal ν (see the notes by Müller [131]). Despite
the simple form of the limit deformations, a number of difficulties arises in the construction of a
recovery sequence. In particular De Giorgi’s trick to glue together low-energy sequences does not
work as such, and more properties of those sequences must be exploited such as that no rotations
of the gradient are allowed. We refer to [77] for details.

To tackle the physical case more refined results must be used such as rigidity properties of
low-energy sequences (see Theorem 9.8). We refer to the work of Conti and Schweizer [78] for a
detailed proof.

Remark 7.22 The computation of the Γ-limit in the higher-order scalar case, when we consider
energies of the form

Fε(u) =
1
ε

∫
Ω

(1− |Du|2) dx+ ε

∫
Ω

|D2u|2 dx, u ∈W 1,1(Ω), (7.59)

where the ‘rigidity’ of the gradient is missing, is an interesting open problem. For this problem we
have a equi-coerciveness property and lower estimates (see [19, 96]). A key observation is that the
‘Modica-Mortola trick’ as such is not applicable, but other lower bounds can be obtained in the
same spirit.

8 Concentration problems

In the previous sections we have examined the behaviour of functionals defined on Sobolev spaces,
first (Sections 4 –6) in some cases where the Γ-limit is automatically defined on some Sobolev space
and its form must be described (with some notable exception when the ‘dimension’ of the domain
of the limit increases as in Section 6.4), and then for phase-transition limit energies, when the weak
coerciveness on Sobolev spaces fails and the limit can be defined on (functions equivalent to) sets
of finite perimeter. It must be noted that the actual object on which the final phase-transition
energies depend is the measure Hn−1 ∂∗E which can be seen as the limit of the gradients of the
recovery sequences. In this section we examine other cases where concentration occurs in a more
evident way. In such cases, the limit relevant objects can and will again be thought as measures,
and their connection to the corresponding limit functions will be less relevant than in the previous
cases.
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8.1 Ginzburg-Landau

We consider the simplified Ginzburg-Landau energy

1
ε2

∫
Ω

(|u| − 1)2 dx+
∫

Ω

|Du|2 dx, (8.1)

where Ω ⊂ Rn and u : Ω → R2. The formal analogy with the Cahn-Hilliard model (up to scaling)
is apparent, but it must be immediately noted that in this case the zeroes of the potential W (u) =
(|u| − 1)2 are the whole set S1 and that the functional coincides with the Dirichlet integral on the
space H1(Ω;S1). This latter space is not trivial contrary to the space H1(Ω; {−1, 1}). However,
in some problems (e.g., when a boundary datum is added with non-zero degree) a further scaling
of this energy is necessary. We will give a heuristic derivation of this scaling and a description of
the Γ-limit of the scaled energies in dimension two, and give an idea of the extension to higher
dimensions.

8.1.1 The two-dimensional case

An in-depth study of the behaviour of minimizers for the energy above subject to non-trivial
boundary data is contained in the book by Bethuel, Brezis and Hélein [35] (we also refer to the
monograph by Sandier and Serfaty [140] for the case with magnetic field). Some of the results
therein can be rephrased in the language of Γ-convergence. The first step towards an energetic
interpretation is the derivation of the correct scaling of the energies. The heuristic idea is that a
boundary datum with non-zero degree will force minimizing sequences (uε) to create a finite number
of singularities {xi}i in the interior of Ω so that their limit will belong to H1

loc(Ω \ {xi}i;S1), and
the non-zero degree condition on ∂Ω will be balanced by some ‘vortices’ centred at xi.

We now fix a sequence (uε) with fixed non-zero degree on ∂Ω. We note that for fixed δ < 1 the
set Tε = {|uε| < δ} is not empty (otherwise we could ‘project’ uε on S1 obtaining a homotopy with
a map with zero degree). The limit of such sets Tε is a candidate for the set {xi}i above. In order to
estimate the scale of the energy contribution of such a sequence we assume that Tε is composed of
disks Bεi = Bρεi (xi) on the boundary of which the degree of uε is some non-zero integer di. We also
assume that the gradient |Duε| is of order 1/ρεi in Bεi . Note that the restriction of uε to ∂Br(xi)
for each 0 < r < R, with R such that BR(xi) are pairwise disjoint and contained in Ω, has degree
di so that the integral of the square of its tangential derivative on ∂Br(xi) is at least 2πd2

i /r. We
then obtain

1
ε2

∫
Ω

(|uε| − 1)2 dx+
∫

Ω

|Duε|2 dx ≥
∑
i

(
π(ρεi )

2
( (1− δ)2

ε2
+

C

(ρεi )2

)
+2πd2

i

∫ R

ρεi

dr

r

)
≈ π

(
C#({xi}i) +

∑
i

(
(1− δ)2 (ρεi )

2

ε2
+ 2d2

i (| log ρεi |+ logR)
))
.

Optimizing in ρεi gives ρεi = diε/(1− δ), so that we get a lower bound with 2π| log ε|
∑
i d

2
i +O(1).

This estimate suggests the desired scaling, and gives the functionals

Fε(u) =
1

ε2| log ε|

∫
Ω

(|uε| − 1)2 dx+
1

| log ε|

∫
Ω

|Duε|2 dx. (8.2)

Note that, as in the case of Section 7.4.3, the leading part of the energy is logarithmic and is due
to the ‘far-field’ away from the singularities.
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At this point, we have to define the correct notion of convergence, that will give in the limit
the ‘vortices’ xi. To this end, it must be noted (see Jerrard [116]) that the relevant quantity
‘concentrating’ at xi is the distributional Jacobian defined as Ju = D1(u1D2u

2) − D2(u1D1u
2),

which coincides with the usual Jacobian determinant det(Du) if u ∈ H1(Ω; R2), and is a measure
of the form

∑
i πdiδxi if u is regular outside a finite set {xi} with degree di around xi. The notion

of convergence that makes our functionals equi-coercive is the flat convergence (i.e, testing against
C1 functions). If (uε) is such that supε Fε(uε) < +∞ then, up to subsequences, Juε converge flat
to some measure µ of the form

∑
i πdiδxi . This defines the convergence uε → {(xi, di)}i, for which

we have the following result.

Theorem 8.1 (energy of vortices) The Γ-limit of the functionals above is given by

F0({(xi, di)}i) = 2π
∑
i

|di| (8.3)

Proof We do not include the details of the proof for which we refer to [35]. We only remark that
the lower bound above is almost sharp, giving

∑
i d

2
i in the place of

∑
i |di|. This is easily made

optimal by approximating a vortex of degree di with di vortices of degree sign(di) in the limsup
inequality. Moreover, for each vortex of degree ±1 a recovery sequence is obtained by mollifying
(x− xi)/|x− xi|.

Remark 8.2 (interaction of vortices) Note that this results implies that minimizers with bound-
ary datum of degree d 6= 0 will generate |d| vortices of degree sign(d), but does not give any infor-
mation about the location of such vortices. To this end we have to look for the behaviour of the
renormalized energies (in the terminology of [35]).

In terms of higher-order Γ-limits we fix a boundary datum g : ∂Ω → S1 with deg(g) > 0, and
consider the functionals

Gε(u) =


1
ε2

∫
Ω

(|uε| − 1)2 dx+
∫

Ω

|Duε|2 dx− 2πd | log ε| if u = g on ∂Ω

+∞ otherwise;
(8.4)

Then the functionals Gε Γ-converge with respect to the convergence defined above to a limit G0 that
describes the interactions between the vortices. We refer to [35] Theorem 1.7 for the description of
this renormalized limit energy via the Green’s function of some auxiliary boundary value problem.

Finally, we note that Γ-convergence has also been applied to the asymptotic study of the gradient
flows of Ginzburg-Landau energies by Sandier and Serfaty [139].

8.1.2 The higher-dimensional case

The analogue of Theorem 8.1 in three dimensions (or higher) is more meaningful, as we expect
the distributional Jacobian to give rise to a limit with a more complex geometry than a set of
points. Indeed, it can be seen that these problems have a two-dimensional character that forces
concentration on sets of codimension two (hence, lines in three dimensions). Actually, we expect
limit objects with some multiplicity defined, taking the place of the degree in dimension two. These
objects are indeed currents, whose treatment is beyond the scope of these notes and for which we
refer to the introductory book by Morgan [126]. We just mention the following result due to Jerrard
and Soner [117] and Alberti, Baldo and Orlandi [8].
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Theorem 8.3 The Γ-limit of the functionals Fε with respect to the flat convergence of currents is
defined on integer (up to a factor π) rectifiable currents T and is equal to F0(T ) = 2π‖T‖, where
‖T‖ is the mass of the current T .

8.2 Critical-growth problems

Another class of variational problems where concentration occurs are problems related to the critical
growth for the Sobolev embedding. It is well known that the best constant in the Sobolev inequality
is not achieved on domains different from the whole space, due to a scaling-invariance property that
implies that optimal sequences concentrate at a point. The techniques of concentration-compactness
type of P.-L. Lions are the classical tool to study such phenomena for a wide class of variational
problems of the same nature. Some of these concentration phenomena can be also treated within
the theory of Γ-convergence. We give some applications to a large class of variational problems that
exhibit concentration and include critical-growth problems.

We will study the behaviour of the family of maximum problems depending on a small parameter
ε > 0

SΨ
ε (Ω) = ε−2∗ sup

{∫
Ω

Ψ(εu) dx : u ∈ H1
0 (Ω) ,

∫
Ω

|∇u|2dx ≤ 1
}
, (8.5)

where Ω is a bounded open set in Rn with n ≥ 3 and 2∗ = 2n
n−2 is the usual critical Sobolev exponent,

through some limit of the corresponding functionals

Fε(u) =

ε−2∗
∫

Ω

Ψ(εu) dx if
∫

Ω
|Du|2dx ≤ 1

0 otherwise in L2∗(Ω).
(8.6)

We assume: 0 ≤ Ψ(t) ≤ c|t|2∗ for every t ∈ R; Ψ 6≡ 0 and upper semi-continuous, and, in order to
simplify the exposition we also assume that the following two limits

Ψ0(t) = lim
t→0

Ψ(t)
|t|2∗

and Ψ∞(t) = lim
t→∞

Ψ(t)
|t|2∗

exist.

Remark 8.4 (1) Within this class we recover the capacity problem (see the Introduction), with

Ψ(t) =

{
0 if t < 1
1 if t ≥ 1.

(8.7)

(2) If Ψ is smooth and Ψ′ = ψ then the functional is linked to the study of the asymptotic
properties of solutions of {

−∆u = λψ(u) in Ω
u = 0 on ∂Ω,

(8.8)

where λ→ +∞ and 0 ≤ ψ(t) ≤ c|t|2∗−1.

Note that the functionals Fε are weakly equi-coercive in H1
0 (Ω). If Duε ⇀ Du, we may also

assume that there exists a measure µ ∈ M(Ω) := (C(Ω))′ such that |Duε|2Ln ⇀∗ µ in M(Ω). In
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general, by the lower semi-continuity of the norm, we get µ ≥ |Du|2Ln. Thus we can isolate the
atoms of µ, {xi}i∈J , and rewrite µ as follows

µ = |Du|2Ln +
∑
i∈J

µiδxi + µ̃ , (8.9)

where µi denotes the positive weight of the atom xi and µ̃ is the non-atomic part of µ− |Du|2Ln.
In general we say that a sequence uε converges to (u, µ) if

uε ⇀ u in H1
0 (Ω) and |Duε|2Ln ⇀∗ µ in M(Ω). (8.10)

In view of the study of the asymptotic behaviour of the maxima of Fε and the corresponding
maximizing sequences we introduce the notion of Γ+-convergence, symmetric to the notion of Γ-
convergence used until now for minimum problems.

Definition 8.5 Let Fε : X → R, be a family of functionals. We say that the sequence Fε Γ+-con-
verges to the functional F : X → R if the following two properties are satisfied for all x ∈ X

(i) for every sequence xε → x we have that lim supε→0 Fε(xε) ≤ F (x);
(ii) for every x ∈ X, there exists a sequence xε, such that xε → x and lim infε→0 Fε(xε) ≥ F (x).

To define the Γ+-limit we denote by SΨ := SΨ
1 (Rn) the ground-state energy; i.e.,

SΨ = sup
{∫

Rn
Ψ(u) dx : u ∈ D1,2(Rn) ,

∫
Rn
|Du|2dx ≤ 1

}
(8.11)

where D1,2 is the closure of C1 with respect to the L2-norm of the gradient. We then have the
following result proved in Amar and Garroni [17].

Theorem 8.6 (concentration by Γ-convergence) The sequence Fε Γ+-converges with respect
to the convergence given by (8.10) to the functional

F (u, µ) := Ψ0

∫
Ω

|u|2
∗
dx+ SΨ

∑
i∈J

(µi)
2∗
2 . (8.12)

As a consequence we get the result of concentration known for this type of problem (obtained
by Lions in the smooth case and Flucher and Müller in the general case). In fact, by a scaling
argument one can see that S∗Ψ0 ≤ SΨ (S∗ denotes the best Sobolev constant) and that SΨ

ε → SΨ,
hence by the Γ+-convergence we get SΨ = maxF (u, µ). On the other hand by the convexity of the
function |t| 2

∗
2 we get

F (u, µ) = Ψ0

∫
Ω

|u|2
∗
dx+ SΨ

∑
i∈J

(µi)
2∗
2 ≤ Ψ0S

∗
(∫

Ω

|Du|2dx
) 2∗

2

+ SΨ
∑
i∈J

(µi)
2∗
2

≤ SΨ

[(∫
Ω

|Du|2dx
) 2∗

2

+
∑
i∈J

(µi)
2∗
2

]
≤ SΨµ(Ω) ≤ SΨ . (8.13)

Since the Sobolev constant is not attained in Ω the first inequality is strict unless u = 0 and the
third inequality is strict unless µ = δx0 for some x0 ∈ Ω. In other words

F (u, µ) = SΨ = maxF ⇐⇒ (u, µ) = (0, δx0) ,

which corresponds to the concentration of a maximizing sequence at x0.
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Proof (Theorem 8.6) The Γ+-‘limsup inequality’ (i) above is essentially the so-called concentration-
compactness lemma in its generalized version proved by Flucher and Müller (see [100] for details),
where the asymptotic behaviour of the sequence ε−2∗Ψ(εuε) is given in terms of the limit (u, µ).
The optimization of the upper bound is easily achieved on pairs (0, δx) by arguing as in (8.13)
above, while if µ does not contain an atomic part it is derived from the strong convergence in L2∗

due to the concentration-compactness lemma. For details we refer to [17].

We can apply the result above to the case of the capacity, with the choice of Ψ as in Remark
8.4(1). The maximum problem SΨ

ε can be rewritten as (V stands for ‘volume’)

SVε (Ω) = max
{
|A| : Cap(A,Ω) ≤ ε2

}
, (8.14)

after identifying any open set A with the level set {v ≥ 1} of its capacitary potential (see (1.19)).
We have that the maximizing sets Aε concentrate at a single point x0 in Ω; i.e., the corresponding
capacitary potentials (divided by ε) converge to (0, δx0) in the sense of (8.10).

As for the two-dimensional Ginzburg-Landau energies, a classical question in these problems
of concentration is the identification of the concentration points. The answer can also be given
in terms of the Γ+-convergence of Fε suitably scaled. A key role is played by the diagonal of the
regular part of the Green’s function of Ω for the Laplacian and the Dirichlet problem. This plays
the same role as the renormalized energy for the Ginzburg-Landau functionals. It is called the
Robin function τΩ and it is given by

τΩ(x) = HΩ(x, x) ,

where HΩ(x, y) is the regular (harmonic) part of the Green’s function GΩ(x, y). In the case of the
capacity we have the following result (see [101] and [17]).

Theorem 8.7 (identification of concentration points) Let Ψ be as in Remark 8.4(1); then
the sequence

Fε(u)− SV

ε2
,

where SV := SV1 (Rn), Γ+-converges with respect to the convergence given by (8.10) to the functional

F 1(u, µ) =

{
− n

n− 2
SV τΩ(x0) if (u, µ) = (0, δx0)

−∞ otherwise.

Proof The proof of the Γ+-limsup inequality is based on an asymptotic formula for the capacity
of small sets involving the Robin function (see [112, 111]). To prove the converse inequality, if vε is
the capacitary potential of the level set of the Green’s function Aε = {GΩ(x0, ·) > ε−2}, for which
it is not difficult to prove that

|Aε| ≥ ε2∗SV
(

1− n

n− 2
τΩ(x0)ε2 + o(ε2)

)
,

then a recovery sequence is given by uε = vε/ε.
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As a consequence of this Γ+-convergence result we deduce that all sequences of almost maxi-
mizers of problem (8.14); i.e., satisfying

ε2∗ |Aε| = SVε (Ω) + o(ε2) , (8.15)

concentrate at a minimum point of the Robin function (a harmonic center of Ω).
More in general one can compute the asymptotic behaviour of

Fε(u)− SΨ

ε2

under a condition which rules out dilation-invariant problems; e.g., SΨ > max{Ψ0,Ψ∞}S∗.

Theorem 8.8 If SΨ > max{Ψ0,Ψ∞}S∗, then all sequences of almost maximizers for Fε; i.e.,
satisfying

ε2∗
∫

Ω

Ψ(εuε) dx = SΨ
ε (Ω) + o(ε2) , (8.16)

up to a subsequence, concentrate at a harmonic center of Ω.

9 Dimension-reduction problems

The small parameter ε entering the definition of the functionals Fε may be some times related to
some small dimension of the domain of integration. This happens for example in the theory of thin
films, rods and shells. As ε→ 0 some energy defined on a lower-dimensional set is expected to arise
as the Γ-limit. We will illustrate some aspects of this passage to the limit for ‘thin films’ (i.e., for
n-dimensional domains whose limit is n− 1-dimensional, with the case n = 3 in mind).

9.1 The Le Dret-Raoult result

We begin with an illuminating result for homogeneous functionals. We consider a domain of the
form

Ωε = ω × (0, ε), ω bounded open subset of Rn−1, (9.1)

and an energy

Fε(u) =
1
ε

∫
Ωε

f(Du) dx, u ∈W 1,p(Ωε; Rm), (9.2)

where f satisfies a standard growth condition of order p. Note that up to a relaxation argument, we
can suppose that f be quasiconvex. The normalization factor 1/ε is a simple scaling proportional
to the measure of Ωε.

In order to understand in what sense a Γ-limit of Fε can be defined, we first identify Fε with a
functional defined on a fixed domain

Gε(v) =
∫

Ω

f
(
Dαv,

1
ε
Dnv

)
dx, v ∈W 1,p(Ω; Rm), (9.3)

where xα = (x1, . . . , xn−1) and Dαv = (D1v, . . . , Dn−1v), Ω = ω × (0, 1) and v is obtained from u
by the scaling

v(xα, xn) = u(xα, εxn). (9.4)
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Note that Gε satisfies a degenerate growth condition

Gε(v) ≥ C
∫

Ω

(
|Dαv|p +

1
εp
|Dnv|p

)
dx− C. (9.5)

From this condition we deduce first that a family with equi-bounded energies Gε(vε) and bounded
in Lp is weakly precompact in W 1,p(Ω; Rm); second, that if vε ⇀ v (up to subsequences) then∫

Ω

|Dnv|p dx ≤ lim inf
ε→0

∫
Ω

|Dnvε|p ≤ lim inf
ε→0

εpC = 0, (9.6)

so that v is actually independent of the n-th variable and can therefore be identified with a function
u ∈W 1,p(ω; Rm).

With this compactness result in mind, we can define a convergence uε → u of functions uε ∈
W 1,p(Ωε; Rm) to u ∈ W 1,p(ω; Rm) if the corresponding vε defined above converges to the function
v(xα, xn) = u(xα). The functionals Fε are equi-coercive with respect to this convergence. We then
have the following convergence result [119].

Theorem 9.1 (Le Dret-Raoult thin-film limit) Let Fε be defined above, and let

F0(u) =
∫
ω

Qf(Dαu)dxα, u ∈W 1,p(ω; Rm), (9.7)

where Q denotes the quasiconvex envelope (for energy densities on the space of m×(n−1) matrices)
and

f(ξ) = inf{f(ξ | b) : b ∈ Rm} (9.8)

(here (ξ | b) ∈Mm×n is a matrix whose first n− 1 columns coincide with the m× (n− 1) matrix ξ,
and the last column with the vector b).

This result gives an easy way to characterize the energy density of the limit that highlights
the superposition of two optimality processes: first, the minimization in the dependence on the
n-th variable disappearing in the limit. This gives the function f , that may be not m × (n − 1)-
quasiconvex even though f is m × n-quasiconvex; hence a second optimization in oscillations in
the n − 1 ‘planar’ coordinates must be taken into account (expressed by the quasiconvexification
process).

Proof The lower bound is easily achieved since

lim inf
ε→0

Gε(vε) = lim inf
ε→0

∫
Ω

f
(
Dαvε,

1
ε
Dnvε

)
dx

≥ lim inf
ε→0

∫
Ω

f(Dαvε) dx ≥ lim inf
ε→0

∫
Ω

Qf(Dαvε) dx

≥
∫

Ω

Qf(Dαv) dx =
∫
ω

Qf(Dαu) dxα,

the last inequality due to the lower semicontinuity of
∫

Ω
Qf(Dαv) dx.

The limsup inequality needs to be shown only for piecewise-affine function by a density argument.
It is sufficient to exhibit a recovery sequence for the target function u(xα) = ξxα. We may suppose
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that f be quasiconvex and hence continuous (locally Lipschitz), so that we easily get the existence
of b ∈ Rm such that f(ξ) = f(ξ | b). Note that if f were quasiconvex then

uε(x) = ξxα + εbxn (9.9)

would be a recovery sequence for F0(u). In general we have to improve this argument: we can fix
a 1-periodic smooth ϕ(xα) such that∫

(0,1)n−1
f(ξ +Dϕ(xα)) dxα ≤ Qf(ξ) + η.

Let b = b(xα) be such that f(ξ + Dϕ(xα)) = f(ξ + Dϕ(xα), b(xα)). Then a recovery sequence is
given by

uε(x) = ξxα + ϕ(xα) + εxnb(xα).

Note a few technical issues: the existence of b may be proven by suitable measurable-selection
criteria; if b is not differentiable then a mollification argument must be used; we get an extra term
εxnDαb(xα) in Dαuε that can be neglected due to the local Lipschitz continuity of f .

Remark 9.2 (the convex case) Note that if f is convex then f is convex, and the quasiconvex-
ification process is not necessary. In this case recovery sequences for affine functions are simply
given by (9.9).

9.2 A compactness theorem

The localization arguments in Section 3.3 can be adapted to sequences of functionals defined on
thin films. It must be noted that in order to obtain a limit functional defined on W 1,p(ω; Rm) the
localization argument must be performed on open sets of Rn−1, or, equivalently, on cylindrical sets
A× (0, 1) with A open set of Rn−1. With this observation in mind the following theorem holds by
Braides, Fonseca and Francfort [56], which is an analogue of Theorem 4.2.

Theorem 9.3 (compactness theorem for thin films) Given a family of Borel functions fε :
Ωε × Mm×n → [0,+∞), satisfying growth condition (4.2), there exists a Carathéodory function
f0 : ω×Mm×(n−1) → [0,+∞), satisfying the same growth conditions, such that, up to subsequences,∫

A

f0(xα, Dαu) dxα = Γ- lim
ε→0

1
ε

∫
A×(0,ε)

fε(x,Du) dx (9.10)

with respect to the convergence uε → u as above, for all open subsets A of ω.

Proof Follow the arguments in Section 3.3 applied to the energies

Gε(v,A) =
∫
A×(0,1)

fε

(
xα, εxn, Dαv,

1
ε
Dnv

)
dx.

Note that we can use De Giorgi’s argument to match boundary conditions on (∂A) × (0, 1) to
prove the fundamental estimate, provided we choose the cut-off functions independent of the n-th
variable.
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Remark 9.4 (convergence of minimum problems) Minimum problems of the type

mε = min
{1
ε

∫
Ωε

fε(x,Du) dx : u = φ on ∂ω × (0, 1)
}

(9.11)

can be treated by the usual arguments provided that φ = φ(xα), so that

mε = min
{∫

Ω

fε

(
xα, εxn, Dαv,

1
ε
Dnv

)
dx : v = φ on ∂ω × (0, 1)

}
, (9.12)

converge to

m = min
{∫

ω

f0(xα, Dαu) dxα : u = φ on ∂ω
}
. (9.13)

Again, to prove this, it suffices to use the arguments in Section 4.2.1.
In the same way we may treat the case ω = (0, 1)n−1 and u satisfying 1-periodic conditions in

the xα variables.

Remark 9.5 (alternate formula for the Le Dret-Raoult result) In the case of integrands
that are ‘homogeneous’ and independent of ε (i.e., fε(x, ξ) = f(ξ)) as in Theorem 9.1 we may
easily infer that the function f0 given by the compactness Theorem 9.3 is itself homogeneous (and
quasiconvex) so that

f0(ξ) = min
{∫

(0,1)n−1
f0(ξ +Dαu)dxα : u = 0 on ∂(0, 1)n−1

}
= min

{∫
(0,1)n

f0(ξ +Dαu)dx : u = 0 on (∂(0, 1)n−1)× (0, 1)
}

= lim
ε→0

min
{∫

(0,1)n−1×(0,1)

f
(
ξ +Dαv,

1
ε
Dnv

)
dx : v = 0 on (∂(0, 1)n−1)× (0, 1)

}
= lim

T→+∞

1
Tn−1

min
{∫

(0,T )n−1×(0,1)

f(ξ +Dαv,Dnv)dy : v = 0 on (∂(0, T )n−1)× (0, 1)
}
,

where we have performed the change of variables yα = εxα and set T = 1/ε. This is a formula
of homogenization type, and can be easily extended to cover the case fε(x, ξ) = f(xα/ε, ξ) with f
1-periodic in the xα directions (see [56]). Note moreover that the zero boundary condition can be
replaced by periodicity.

Remark 9.6 (thin films with oscillating profiles) It is interesting to note that the fact that
the dependence on the n-th variable disappears allows to consider more complex geometries for the
sets Ωε; for example we can consider

Ωε = {(xα, xn) : 0 < xn < εψε(xα)}. (9.14)

The compactness argument must be adequately extended since now Ωε cannot be rescaled to a
single set Ω. In order not to have a degenerate behaviour we assume that 0 < c ≤ ψε ≤ 1 uniformly.
The scaling in the n-th variable brings Ωε into Ωε = {(xα, xn) : 0 < xn < ψε(xα)}. If Fε(uε) is
equibounded we can apply the compactness argument to the scaled sequence vε on ω × (0, c) and
define a limit u ∈W 1,p(ω; Rm). We can easily see that we indeed have

lim
ε→0

∫
Ωε
|vε − u|p dx = lim

ε→0

∫
ω

∫ ψε(xα)

0

|vε − u|p dxn dxα = 0,
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by a simple use of Poincaré-Wirtinger’s inequality, since v − uε → 0 on ω × (0, c) and we have
a bound for 1

εDnvε = 1
εDn(vε − u). The sequence Fε is then equi-coercive with respect to this

convergence, and the compactness Theorem 9.3 can be proven using the same arguments as before.
Note that we have used the fact that the sections of Ωε in the n-th direction are connected.

This cannot be dropped, as shown by an example by Bhattacharya and Braides [31] (with Ωε with
an increasing number of small cracks as ε → 0), showing that otherwise we may have a limit in
which the dependence on the n-th variable does not disappear.

Remark 9.7 (equi-integrability for thin films) In the computation of the Γ-limits for thin
films, as for the case of n-dimensional objects, the possibility of reducing to sequences with some
equi-integrability property is very useful. A result of Bocea and Fonseca [39] shows that for any con-
verging sequence (uε) such that supε

∫
Ω

(|∇αuε|p + 1
εp |∇nuε|

p) dx < +∞ there exists an ‘equivalent
sequence’ vε such that the sequence (|∇αvε|p + 1

εp |∇nvε|
p) is equi-integrable on Ω. An alternative

proof and the generalization to any co-dimension of this result can be found in the paper by Braides
and Zeppieri [65].

Note that the general approach outlined above may be generalized to cover the cases when the
‘thin directions’ are more than one, and in the limit we get objects of codimension more than one.
In the case of low-dimensional theories of rods, it must be noted that the one-dimensional nature
of the final objects easily allows for more general growth conditions for the energies (see [2]).

9.3 Higher-order Γ-limits

The analysis carried over in the first part of this chapter can be applied to derive low-dimensional
theories from three-dimensional (finite) elasticity, where m = n = 3 and the function f : M3×3 →
[0,+∞], the elastic stored energy of the material, is continuous and frame indifferent; i.e., f(Rξ) =
f(ξ) for every rotation R and every ξ ∈M3×3, where Rξ denotes the usual product of 3×3 matrices.
We assume that f vanishes on the set SO(3) of rotations in R3, is of class C2 in a neighbourhood
of SO(3), and satisfies the inequality

f(ξ) ≥ C
(
dist(ξ, SO(3))

)2 for every ξ ∈M3×3 , (9.15)

with a constant C > 0.
For these energies other scalings than that considered above, provide a variational justification

of a number of low-dimensional theories commonly used in Mechanics (see Friesecke, James and
Müller [108]). In this section we briefly focus on a derivation of plate theory. In this case the
energies Fε must be further scaled by 1/ε2 obtaining the functionals Fε defined by

Fε(v) :=
1
ε2

∫
Ω

f
(
D1v |D2v |

1
ε
D3v

)
dx v ∈W 1,2(Ω; R3),

where again v(x1, x2, x3) = u(x1, x2, εx3), u : Ωε → R3 is the deformation of Ωε and ξ = (ξ1 | ξ2 |ξ3)
represents a matrix ξ via its columns.

The Γ-limit of Fε with respect to the L2-convergence turns out to be finite on the set Σ(ω; R3) of
all isometric embeddings of ω into R3 of class W 2,2; i.e., v ∈ Σ(ω; R3) if and only if v ∈W 2,2(ω; R3)
and (Dv)TDv = I a.e. on ω. As above, elements of Σ(ω; R3) are also regarded as maps from Ω
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into R3 independent of x3. To describe the Γ-limit we introduce the quadratic form Q3 defined on
M3×3 by

Q3(ξ) :=
1
2
D2f(I)[ξ, ξ] ,

which is the density of the linearized energy for the three-dimensional problem, and the quadratic
form Q2 defined on the space of symmetric 2×2 matrices by

Q2

(
a11 a12

a12 a22

)
:= min

(b1,b2,b3)∈R3
Q3

 a11 a12 b1
a12 a22 b2
b1 b2 b3

 .

The Γ-limit of Fε is the functional F : L2(Ω; R3)→ [0,+∞] defined by

F(v) :=
1
12

∫
Ω

Q2(A(v)) dx if v ∈ Σ(ω; R3),

where A(v) denotes the second fundamental form of v; i.e.,

Aij(v) := −DiDjv · ν , (9.16)

with normal vector ν := D1v ∧D2v. The proof of this fact can be found in the paper by Friesecke,
James and Müller [106].

Equi-coerciveness for problems involving the functionals Fε in L2(Ω; R3) is not trivial; it follows
from (9.15) through the following lemma which is due to Friesecke, James and Müller (see [107]).

Lemma 9.8 (geometric rigidity estimate) Let Ω ⊂ Rn be a Lipschitz domain; then there exists
a constant C(Ω) such that

min
R∈SO(n)

∫
Ω

|Du−R|2 dx ≤ C(Ω)
∫

Ω

(
dist(Du, SO(3))

)2
dx

for all u ∈ H1(Ω; Rn).

10 Approximation of free-discontinuity problems

“Free-discontinuity problems”, following a terminology introduced by De Giorgi, are those problems
in the Calculus of Variations where the unknown is a pair (u,K), with K varying in a class of
(sufficiently smooth) closed hypersurfaces contained in a fixed open set Ω ⊂ Rn and u : Ω\K → Rm
belonging to a class of (sufficiently smooth) functions. Such problems are usually of the form

min{Ev(u,K) + Es(u,K) + “lower-order terms”}, (10.1)

with Ev, Es being interpreted as volume and surface energies, respectively. Several examples can
be described in this setting, among which: image and signal reconstruction problems (linked to the
Mumford and Shah functional, see below), fracture in brittle hyperelastic media (where Ev denotes
the elastic energy, and Es the surface energy due to the crack), equilibrium problems for drops of
liquid crystals, or even simply prescribed curvature problems (for which u = χE and K = ∂E,
Ev(u,K) =

∫
E
g(x) dx and Es(u,K) = Hn−1(∂E)).
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Despite the existence theory developed in SBV-spaces, functionals arising in free-discontinuity
problems present some serious drawbacks. First, the lack of differentiability in any reasonable
norm implies the impossibility of flowing these functionals, and dynamic problems can be tackled
only in an indirect way. Moreover, numerical problems arise in the detection of the unknown
discontinuity surface. To bypass these difficulties, a considerable effort has been spent recently to
provide variational approximations of free discontinuity problems, and in particular of the Mumford-
Shah functional MS defined in (10.8) below, with differentiable energies defined on smooth functions.

10.1 Special functions with bounded variation

The treatment of free-discontinuity problems following the direct methods of the Calculus of Vari-
ations presents many difficulties, due to the dependence of the energies on the surface K. Unless
topological constraints are added, it is usually not possible to deduce compactness properties from
the only information that such kind of energies are bounded. An idea of De Giorgi has been to
interpret K as the set of discontinuity points of the function u, and to set the problems in a space
of discontinuous functions. The requirements on such a space are of two kinds:

(a) structure properties: if we define K as the set of discontinuity points of the function u then
K can be interpreted as an hypersurface, and u is “differentiable” on Ω \ K so that bulk energy
depending on ∇u can be defined;

(b) compactness properties: it is possible to apply the direct method of the Calculus of Variations,
obtaining compactness of sequences of functions with bounded energy.

The answer to the two requirements above has been De Giorgi and Ambrosio’s space of special
functions of bounded variation: a function u belongs to SBV (Ω) if and only if its distributional
derivative Du is a bounded measure that can be split into a bulk and a surface term. This definition
can be further specified: if u ∈ SBV (Ω) and S(u) (the jump set or discontinuity set of u) stands for
the complement of the set of the Lebesgue points for u then a measure-theoretical normal νu to S(u)
can be defined Hn−1-a.e. on S(u), together with the traces u± on both sides of S(u); moreover, the
approximate gradient ∇u exists a.e. on Ω, and we have

Du = ∇uLn + (u+ − u−)νuHn−1 S(u) . (10.2)

Replacing the set K by S(u) we obtain a weak formulation for a class of free-discontinuity problems,
whose energies take the general form∫

Ω

f(x, u,∇u) dx+
∫
S(u)

ϑ(x, u+, u−, νu) dHn−1 . (10.3)

An existence theory for problems involving these kinds of energies has been developed by Ambrosio.
Various regularity results show that for a wide class of problems the weak solution u in SBV (Ω)
provides a solution to the corresponding free-discontinuity problem, taking K = S(u) (see [20, 125,
89]).

10.1.1 A density result in SBV

It is useful to ensure the existence of ‘dense’ sets in SBV spaces to use a density argument in the
computation of the limsup inequality. To this end, we can show that ‘piecewise-smooth functions’
are dense as in the following lemma (see [49]) derived from the regularity results in [93].
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We recall that Mn−1(E) is the n− 1 dimensional Minkowski content of E, defined by

Mn−1(E) = lim
ε→0

1
2ε
|{x ∈ Rn : dist(x,E) < ε}| , (10.4)

whenever the limit in (10.4) exists.

Lemma 10.1 Let Ω be a bounded open set with Lipschitz boundary. Let u ∈ SBV (Ω)∩L∞(Ω) with∫
Ω
|∇u|2 dx + Hn−1(S(u)) < +∞ and let Ω′ be a bounded open subset of Rn such that Ω ⊂⊂ Ω′.

Then u has an extension z ∈ SBV (Ω′) ∩ L∞(Ω′) such that
∫

Ω′
|∇z|2 dx + Hn−1(S(z)) < +∞,

Hn−1(S(z) ∩ ∂Ω) = 0, and ‖z‖L∞(Ω′) = ‖u‖L∞(Ω). Moreover, there exists a sequence (zk) in
SBV (Ω′) ∩ L∞(Ω′) such that (zk) converges to z in L1(Ω′), (∇zk) converges to ∇z in L2(Ω′; Rn),
‖zk‖L∞(Ω′) ≤ ‖u‖L∞(Ω),

lim
k
Hn−1(S(zk)) = Hn−1(S(z)) , (10.5)

lim
k
Hn−1(S(zk) ∩ Ω) = Hn−1(S(z) ∩ Ω) = Hn−1(S(u)) , (10.6)

Hn−1(S(zk)\S(zk)) = 0, and Hn−1(S(zk) ∩K) =Mn−1(S(zk) ∩K) for every compact set K ⊆ Ω′.

Remark 10.2 (approximations with polyhedral jump sets) The result above has been fur-
ther refined in a very handy way by Cortesani and Toader [79], who have proved that a dense class
of SBV -functions are those which jump set S(u) is composed of a finite number of polyhedral sets.

10.1.2 The Mumford-Shah functional

The prototype of the energies in (10.3) derives from a model in Image Reconstruction due to
Mumford and Shah [133], where we minimize∫

Ω\K
|∇u|2 dx+ c1

∫
Ω\K
|u− g|2 dx+ c2H1(K) (10.7)

on an open set Ω ⊂ R2. In this case g is interpreted as the input picture taken from a camera, u
is the “cleaned” image, and K is the relevant contour of the objects in the picture. The constants
c1 and c2 are contrast parameters. Note that the problem is meaningful also adding the constraint
∇u = 0 outside K, in which case we have a minimal partitioning problem. Note moreover that very
similar energies are linked to Griffith’s theory of fracture, where |∇u|2 is substituted by a linear
elastic energy.

In the framework of SBV (Ω) functions, with Ω a bounded open subset of Rn, the Mumford-Shah
functional is written as

MS(u) = α

∫
Ω

|∇u|2 dx+ βHn−1(S(u)) . (10.8)

Comparing with (10.7) note that we drop the term
∫
|u− g|2 dx since it is continuous with respect

to the L2(Ω)-convergence.
Weak solutions for problems involving energies (10.7) are obtained by applying the following

compactness and lower-semicontinuity theorem by Ambrosio [20].

Theorem 10.3 (SBV compactness) Let (uj) be a sequence of functions in SBV (Ω) such that
supj MS(uj) < +∞ and sup ‖uj‖∞ < +∞. Then, up to subsequences, there exists a function u ∈
SBV (Ω) such that uj → u in L2(Ω) and ∇uj ⇀ ∇u weakly in L2(Ω; Rn). Moreover Hn−1(S(u)) ≤
lim infj Hn−1(S(uj)).
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Remark 10.4 (existence of optimal segmentation) Let g ∈ L∞(Ω) and consider the mini-
mum problem

min
{

MS(u) +
∫

Ω

|u− g|2 dx : u ∈ SBV (Ω)
}
. (10.9)

If (vj) is a minimizing sequence for this problem, note that such is also the truncated sequence
uj = ((−‖g‖∞)∨vj)∧‖g‖∞. To this sequence we can apply the compactness result above to obtain
a solution.

If (uε) → u in L1(Ω), uε ∈ SBV (Ω) and supε MS(uε) < +∞ then u need not be a SBV -
function. To completely describe the domain of MS we should introduce the following extension of
SBV (Ω)

Definition 10.5 (generalized special functions of bounded variation) A function u belongs
to GSBV (Ω) if all its truncations uT = (u ∨ (−T )) ∧ T belong to SBV (Ω).

In the rest of the section it will not be restrictive to describe our functionals on SBV since we
will always be able to reduce to that space by truncations.

10.1.3 Two asymptotic results for the Mumford-Shah functional

1) The ‘complete’ Mumford-Shah functional (10.7) with given g may be scaled to understand the
role of the contrast parameter c1, c2. This has been done by Rieger and Tilli [137], who have shown
that an interesting scaling gives the energy

Fε(u) =
1
ε2

∫
Ω

(
|∇u|2 + |u− g|2

)
dx+ εH1(S(u)). (10.10)

In this case the convergence taken into account is the weak∗ convergence of measures applied to
the measures (H1(S(u)))−1H1 S(u), so that the limit is defined on probability measures µ on Ω.
If g ∈ H1(Ω) in this space it takes the form

F0(µ) =
( 9

16

∫
Ω

|∇g|2

(dµ/dx)2
dx
)1/3

, (10.11)

where dµ/dx is the density of the absolutely continuous part of µ with respect to the Lebesgue
measure.

2) The presence of two competing terms with different growth and scaling properties makes
asymptotic problems for energies of the Mumford-Shah type technically more challenging. The
homogenization of functionals of this form has been computed in [55], while a very interesting
variant of the Γ-limit of functionals on perforated domains as in Section 6, with the Mumford-Shah
functional in place of the Dirichlet integral in (6.5), has been performed by Focardi and Gelli [102].
In that case, the scaling is given by δε = εn/n−1 and the limit is represented as

F0(u) = α

∫
Ω

|∇u|2 dx+ βHn−1(S(u)) + β′|{u 6= 0}|, (10.12)

with β′ depending only on K and β and defined through the minimization of the perimeter among
sets containing K (see [102] for details and generalizations).
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10.2 The Ambrosio-Tortorelli approximation

The first approximation by Γ-convergence of the Mumford-Shah functional was given by Ambrosio
and Tortorelli in [21]. Following the idea developed by Modica and Mortola for the approximation
of the perimeter functional by elliptic functionals, they introduced an approximation procedure of
MS(u) with an auxiliary variable v, which in the limit approaches 1−χS(u). As the approximating
functionals are elliptic, even though non-convex, numerical methods can be applied to them. It is
clear, though, that the introduction of an extra variable v can be very demanding from a numerical
viewpoint.

10.2.1 An approximation by energies on set-function pairs

A common pattern in the approximation of free-discontinuity energies (often, in the liminf in-
equality) is the substitution of the sharp interface S(u) by a ‘blurred’ interface, of small but finite
Lebesgue measure, shrinking to S(u). In this section we present a simple result in that direction,
which will be used in the proof of the Ambrosio-Tortorelli result in the next one, and formalizes
an intermediate step present in many approximation procedures (see, e.g., [44]). The result mixes
Sobolev functions and sets of finite perimeter and is due to Braides, Chambolle and Solci [48].

Theorem 10.6 (set-function approximation) Let δε be a sequence of positive numbers con-
verging to 0, and let Fε be defined on pairs (u,E), where E is a set of finite perimeter and u is such
that u(1− χE) ∈ SBV (Ω) and S(u(1− χE)) ⊆ ∂∗E (i.e., u ∈ H1(Ω \ E) if E is smooth) by

Fε(u,E) =

α
∫

Ω\E
|∇u|2 dx+

1
2
βHn−1(∂∗E) if |E| ≤ δε

+∞ otherwise.
(10.13)

Then Fε Γ-converges to the functional (equivalent to MS)

F0(u,E) =

{
MS(u) if |E| = 0
+∞ otherwise

(10.14)

if u ∈ SBV (Ω), with respect to the L2(Ω)-convergence of u and χE. Clearly, the functional F0 is
equivalent to MS as far as minimum problems are concerned.

Proof The proof is achieved by slicing. The one-dimensional case is easily achieved as follows:
if uε → u and supε Fε(uε, Eε) < +∞, then χEε → 0 and Eε are composed by an equi-bounded
number of segments. We can therefore assume, up to subsequences, that Eε shrink to a finite set
S. Since uε ⇀ u in H1

loc(Ω \ S) and
∫

Ω\S |∇u|
2 dx ≤ lim infε→0

∫
Ω\Eε |∇uε|

2 dx we deduce that
u ∈ SBV (Ω) and S(u) ⊂ S ∩ Ω. Since for each point x ∈ S ∩ Ω we have at least two families
of points in ∂Eε converging to x, we deduce that 2#(S(u)) ≤ lim infε→0 #(∂Eε), and then the
liminf inequality. The limsup inequality is then achieved by taking uε = u and Eε any sequence
of open sets containing S(u) with |Eε| ≤ δε. The n-dimensional case follows exactly the proof of
Theorem 7.3 with the due changes.

Note that in the previous result we may restrict the domain of Fε to pairs (u,E) with E with
Lipschitz boundary and u ∈ H1(Ω), up to a smoothing argument for the recovery sequence.
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10.2.2 Approximation by elliptic functionals

We now can introduce the Ambrosio-Tortorelli approximating energies

Fε(u, v) = α

∫
Ω

v2|∇u|2 dx+
β

2

∫
Ω

(
ε|∇v|2 +

1
4ε

(1− v)2
)
dx , (10.15)

defined on functions u, v such that v ∈ H1(Ω), uv ∈ H1(Ω) and 0 ≤ v ≤ 1. The idea behind the
definition of Fε is that the variable v tends to take the value 1 almost everywhere due to the last
term in the second integral, and the value 0 on S(u) in order to make the first integral finite. As a
result, the interaction of the two terms in the second integral will give a surface energy concentrating
on S(u). We present a proof which uses the result in the previous section; in a sense, v2 is replaced
by 1− χE and the second integral by Hn−1(Ω ∩ ∂∗E).

Theorem 10.7 (Ambrosio-Tortorelli approximation) The functionals Fε defined in (10.15)
Γ-converge as ε→ 0 with respect to the (L1(Ω))2-topology to the functional

F (u, v) =

{
MS(u) if v = 1 a.e. on Ω
+∞ otherwise,

(10.16)

defined on (L1(Ω))2.

Proof Let uε → u and vε → v be such that Fε(uε, vε) ≤ c < +∞. We first observe that v = 1
a.e. since

∫
Ω

(vε − 1)2 dx ≤ Cε. For every A open subset of Ω we denote by Fε(·, ·;A) the energy
obtained by computing both integrals on A. The ‘Modica-Mortola trick’ and an application of the
coarea formula gives:

Fε(uε, vε;A) ≥ α

∫
A

v2
ε |∇uε|2 dx+ β

∫
A

|1− vε||∇vε| dx

≥ α

∫
A

v2
ε |∇uε|2 dx+ β

∫ 1

0

(1− s)Hn−1(∂{vε < s} ∩A) ds.

Now, we fix δ ∈ (0, 1). The Mean Value Theorem ensures the existence of tδε ∈ (δ, 1) such that∫ 1

δ

(1− s)Hn−1(∂{vε < s} ∩A) ds ≥
∫ 1

δ

(1− s)ds Hn−1(∂Eδε ∩A) =
1
2

(1− δ)2Hn−1(∂Eδε ∩A),

where Eδε = {vε < tδε}; hence

Fε(uε, vε;A) ≥ αδ2

∫
A\Eδε

|∇uε|2 dx+
β

2
(1− δ)2 Hn−1(∂Eδε ∩A). (10.17)

An application of Theorem 10.6 gives

lim inf
j→+∞

(
αδ2

∫
A\Eδε

|∇uε|2 dx+
β

2
(1− δ)2Hn−1(∂Eδε ∩A)

)
≥ αδ2

∫
A

|∇u|2dx+ β(1− δ)2Hn−1(S(u) ∩A).
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An easy application of Lemma 3.1 with λ = Ln +Hn−1 S(u) gives the lower bound.
By Lemma 10.1 it suffices to prove the limsup inequality when the target function u is smooth

and S(u) is essentially closed with Minkowski content equal to its Hn−1 measure. The proof of the
optimality of the lower bound is obtained through the construction of recovery sequences (uε, vε)
with uε = u and

vε(x) =

{
v((dist (x, S(u))− ε2)/ε) if dist(x, S(u)) ≥ ε2

0 if dist(x, S(u)) < ε2

with a ‘one-dimensional’ structure, as in the proof of the Modica-Mortola result. The function vε
equals to 0 in a neighbourhood of S(u) so that the first integral converges to

∫
Ω
|∇u|2 dx. The

function v is chosen to be an optimal profile giving the equality in the Modica-Mortola trick, with
datum v(0) = 0. In the case above the computation is explicit, giving v(t) = 1− e−t/2.

Remark 10.8 (approximate solutions of the Mumford-Shah problem) A little variation must
be made to obtain coercive functionals approximating MS, by adding a perturbation of the form
kε
∫

Ω
|∇u|2 dx to Gε(u, v) with 0 < kε = o(ε). In this way, with fixed g ∈ L∞(Ω), for each ε we

obtain a solution to

mε = min
{
Fε(u, v) + kε

∫
Ω

|∇u|2 dx+
∫

Ω

|u− g|2 dx : u, v ∈ H1(Ω)
}
, (10.18)

and, up to subsequences, these solutions (uε, vε) converge to (u, 1), where u is a minimizer of (10.9).

10.3 Other approximations

In this section we briefly illustrate some alternative ideas, for which details can be found in [45].
A simpler approach to approximate MS is to try an approximation by means of local integral
functionals of the form ∫

Ω

fε(∇u(x)) dx , (10.19)

defined in the Sobolev space H1(Ω). It is clear that such functionals cannot provide any variational
approximation for MS. In fact, if an approximation existed by functionals of this form, the functional
MS(u) would also be the Γ-limit of their lower-semicontinuous envelopes; i.e., the convex functionals∫

Ω

f∗∗ε (∇u(x)) dx , (10.20)

where f∗∗ε is the convex envelope of fε (see Proposition 2.5(2) and Remark 4.8(4)), in contrast with
the lack of convexity of MS. However, functionals of the form (10.19) can be a useful starting point
for a heuristic argument. We can begin by requiring that for every u ∈ SBV (Ω) with ∇u and S(u)
sufficiently smooth we have

lim
ε→0+

∫
Ω

fε(∇uε(x)) dx = α

∫
Ω

|∇u|2 dx+ βHn−1(S(u))

if we choose uε very close to u, except in an ε-neighbourhood of S(u) (where the gradient of uε
tends to be very large). It can be easily seen that this requirement is fulfilled if we choose fε of the
form

fε(ξ) =
1
ε
f(ε|ξ|2), with f ′(0) = α and lim

t→+∞
f(t) =

β

2
; (10.21)

The simplest such f is f(t) = αt ∧ β
2 .
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10.3.1 Approximation by convolution functionals

Non-convex integrands of the form (10.21) can be used for an approximation, provided we slightly
modify the functionals in (10.19). This can be done in many ways. For example, the convexity
constraint in ∇u can be removed by considering approximations of the form

Fε(u) =
1
ε

∫
Ω

f
(
ε−
∫
Bε(x)∩Ω

|∇u(y)|2 dy
)
dx , (10.22)

defined for u ∈ H1(Ω), where f is a suitable non-decreasing continuous (non-convex) function and
−
∫
B

denotes the average on B. These functionals, proposed by Braides and Dal Maso, are non-local
in the sense that their energy density at a point x ∈ Ω depends on the behaviour of u in the
whole set Bε(x) ∩ Ω, or, in other words, on the value of the convolution of u with 1

|Bε|χBε . More
general convolution kernels with compact support may be considered. Note that, even if the term
containing the gradient is not convex, the functional Fε is weakly lower semicontinuous in H1(Ω)
by Fatou’s Lemma. These functionals Γ-converge, as ε→ 0, to the Mumford-Shah functional MS
in (10.8) if f satisfies the limit conditions in (10.21) (see [52]).

The proof of this result is rather technical in the liminf part, reducing to a ‘non-local slicing
procedure’. It must be remarked that, on the other side, the limsup inequality is easily obtained as
the Γ-limit coincides with the limit (at least for regular-enough S(u)) of mollified uε with a mollifier
with support on a scale finer than ε. In fact for such uε

lim
ε→0

Fε(uε) = lim
ε→0

(
1
ε

∫
Ω∩{dist(x,S(u))>ε}

f
(
ε−
∫
Bε(x)∩Ω

|∇uε(y)|2 dy
)
dx

+
1
ε

∫
Ω∩{dist(x,S(u))≤ε}

f
(
ε−
∫
Bε(x)∩Ω

|∇uε(y)|2 dy
)
dx

)

= lim
ε→0

(
1
ε

∫
Ω∩{dist(x,S(u))>ε}

αε−
∫
Bε(x)∩Ω

|∇u(y)|2 dy dx

+β
|Ω ∩ {dist(x, S(u)) ≤ ε}|

2ε

)

= lim
ε→0

(∫
Ω

α−
∫
Bε(x)∩Ω

|∇u(y)|2 dy dx+ β
|Ω ∩ {dist(x, S(u)) ≤ ε}|

2ε

)

= α

∫
Ω

|∇u(y)|2 dy + βHn−1(Ω ∩ S(u)).

10.3.2 A singular-perturbation approach

A different path can be followed by introducing a second-order singular perturbation. Dealing for
simplicity with the 1-dimensional case, we have functionals of the form (f again as in (10.21))

Fε(u) =
1
ε

∫
Ω

f(ε|u′|2) dx+ ε3

∫
Ω

|u′′|2 dx (10.23)

on H2(Ω). Note that the Γ-limit of these functionals would be trivial without the last term, and
that the convexity in u′′ assures the weak lower semicontinuity of Fε in H2(Ω). Alicandro, Braides
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and Gelli [14] have proven that the family (Fε) Γ-converges to the functional defined on SBV (Ω)
by

F (u) = α

∫
Ω

|u′|2 dx+ C
∑
t∈S(u)

√
|u+(t)− u−(t)| , (10.24)

with C explicitly computed from β through the optimal profile problem

C = min
T>0

min
{
βT +

∫ T

−T
|v′′|2 dt : v(±T ) = ±1/2, v′(±T ) = 0

}
(10.25)

corresponding to minimizing the contribution of the part of the energy Fε(uε) concentrating on an
interval where f(ε|u′ε|2) = β/2, centred in some xε, after the usual scaling v(t) = uε(xε + εt).

In contrast with those in (10.15), functionals (10.23) possess a particularly simple form, with
no extra variables. The form of the approximating functionals gets more complex if we want to use
this approach to recover in the limit other surface energies (as, for example, in the Mumford-Shah
functional) in which case we must substitute f by more complex fε.

10.3.3 Approximation by finite-difference energies

A sequence of functionals proposed by De Giorgi provides another type of non-local approximation
of the Mumford-Shah functional, proved by Gobbino [115], namely,

Fε(u) =
1

εn+1

∫
Ω×Ω

f
( (u(x)− u(y))2

ε

)
e−|x−y|

2/ε dx dy , (10.26)

defined on L1(Ω), with f as in (10.21). In this case the constants α and β in MS must be replaced
by two other constants A and B.

The idea behind the energies in (10.26) derives from an analogous result by Chambolle [71] in a
discrete setting, giving an anisotropic version of the Mumford-Shah functional (see Section 11.2.2
below); Fε are designed to eliminate such anisotropy. This procedure is particularly flexible, allowing
for easy generalizations, to approximate a wide class of functionals. The main drawback of this
approach is the difficulty in obtaining coerciveness properties. In this case the Γ-limit coincides
with the pointwise limit. In particular, if u(x) = x1 we get

lim
ε→0

Fε(u) = lim
ε→0

1
εn+1

∫
Ω×Ω

f
( (x1 − y1)2

ε

)
e−|x−y|

2/ε dx dy

= α|Ω|
∫

Rn
|ξ1|2e−|ξ|

2
dξ,

and similarly, if we choose u(x) = sign(x1) we get

lim
ε→0

Fε(u) = lim
ε→0

1
εn+1

∫
Ω×Ω

f
( sign(x1)− sign(y1))2

ε

)
e−|x−y|

2/ε dx dy

= βHn−1(Ω ∩ S(u))
∫

Rn
|ξ|e−|ξ|

2
dξ,

from which we obtain the value of the constants A and B.
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10.4 Approximation of curvature functionals

We close this chapter with a brief description of the approximation for another type of functional
used in Visual Reconstruction; namely,

G(u,C, P ) = #(P ) +
∫
C

(1 + κ2) dH1 +
∫

Ω\(C∪P )

|∇u|2 dx

(to which a ‘fidelity term’
∫

Ω
|u−g|2 dx can be added), where C is a family of curves, P is the set of

the endpoints of the curves in C, and #(P ) is the number of points in P . The functional G has been
proposed in this form by Anzellotti, and has a number of connections with similar energies proposed
in Computer Vision. Existence results for minimizers of G can be found in a paper by Coscia [80].
They are relatively simple, since energy bounds imply a bound on the number of components of C
and on their norm as W 2,2-functions.

We now illustrate an approximation due to Braides and March [63]. This result will use at the
same time many of the arguments introduced before. One will be the introduction of intermediate
energies defined on set-function triplets (as in Section 10.2.1), another will be the iterated use of a
gradient approach as in the Modica-Mortola case to generate energies on sets of different dimensions,
and finally the modification of the Ambrosio-Tortorelli construction to obtain recovery sequences
in H2.

We first show the idea for an approximation by energies on triplets function-sets. The first step
is to construct a variational approximation of the functional #(P ) that simply counts the number
of the points of a set P by another functional on sets, whose minimizers are discs of small radius ε
(additional conditions will force these discs to contain the target set of points). Such a functional
is given by

E(1)
ε (D) =

1
4π

∫
∂D

(1
ε

+ εκ2(x)
)
dH1(x),

where κ denotes the curvature of ∂D. The number 1/4π is a normalization factor that derives
from the fact that minimizers of E(1)

ε (D) are given by balls of radius ε. This functional may be
interpreted, upon scaling, as a singular perturbation of the perimeter functional by a curvature
term.

The next step is then to construct another energy defined on sets, that approximates the func-
tional

∫
C

(1 + κ2)dH1, where C is a (finite) union of W 2,2-curves with endpoints contained in P .
To this end we approximate C away from D by sets A, whose energy is defined as

E(2)
ε (A,D) =

1
2

∫
(∂A)\D

(1 + κ2) dH1, |A| ≤ δε,

where 0 < δε = o(1) play the same role as in Theorem 10.6, and force A to shrink to C. As in
Section 10.2.1, the factor 1/2 depends on the fact that, as A tends to C, each curve of C is the
limit of two arcs of ∂A.

The intermediate function-set approximation is thus constructed by assembling the pieces above
and the simpler terms that account for u:

Eε(u,A,D) = E(1)
ε (D) + E(2)

ε (A,D) +
∫

Ω\(A∪D)

|∇u|2 dx, |A| ≤ δε
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defined for A and D compactly contained in Ω. Note that A∪D contains the singularities of u. By
following a recovery sequence for the Γ-limit of Eε, a triplet (u,C, P ) is approximated by means of
triplets (uε, Aε, Dε).

To obtain an energy defined on functions, we again use a gradient-theory approach as by Modica
and Mortola, where it is shown that the perimeter measures H1 ∂A and H1 ∂D are approxi-
mated by the measures H1

ε(s,∇s) dx and H1
ε(w,∇w) dx where

H1
ε(s,∇s) = ζε|∇s|2 +

s2(1− s)2

ζε
, H1

ε(w,∇w) = ζε|∇w|2 +
w2(1− w)2

ζε
,

ζε → 0 as ε → 0, and s and w are optimal-profile functions approximating 1 − χA and 1 − χD,
respectively. We define the curvature of s and w as

κ(∇s) =

div
( ∇s
|∇s|

)
if ∇s 6= 0

0 otherwise,
κ(∇w) =

div
( ∇w
|∇w|

)
if ∇w 6= 0

0 otherwise,

respectively. The next step is formally to replace the characteristic functions 1 − χA and 1 − χD
by functions s and w. The terms E(1)

ε (D) and E(2)
ε (A,D) are then substituted by

G(1)
ε (w) =

∫
Ω

(1
ε

+ εκ2(∇w)
)
H1
ε(w,∇w) dx,

G(2)
ε (s, w) =

∫
Ω

w2(1 + κ2(∇s))H1
ε(s,∇s) dx,

respectively, and the constraint that |A| ≤ aε by an integral penalization

Iε(s, w) =
1
µε

∫
Ω

((1− s)2 + (1− w)2) dx,

(where µε → 0) that forces s and w to be equal to 1 almost everywhere in the limit as ε → 0, so
that we construct a candidate functional

Gε(u, s, w) =
1

4πb0
G(1)
ε (w) +

1
2b0
G(2)
ε (s, w) +

∫
Ω

s2|∇u|2 dx+ Iε(s, w),

where b0 is a normalization constant.
The following result shows that these elliptic energies are indeed variational approximations of

the energy G, for a suitable choice of ζε and µε.

Theorem 10.9 (approximation of curvature functionals) The functionals Gε Γ-converge to
G as ε → 0+ with respect to the convergence (uε, sε, wε) → (u,C, P ) defined as the convergence of
a.a. level sets (see [63] for a precise definition).

A technical but important difference with the Ambrosio-Tortorelli approach is that there the
double-well potential s2(1− s)2 in the approximation of the perimeter is replaced by the single-well
potential (1−s)2. This modification breaks the symmetry between 0 and 1 and forces automatically
s to tend to 1 as ε → 0+. Unfortunately, it also forbids recovery sequences to be bounded in H2:
with this substitution the curvatures terms in G(1)

ε and G(2)
ε would necessarily be unbounded. In
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our case, the necessary symmetry breaking is obtained by adding the ‘lower-order’ term Iε. We
note that the complex form of the functionals Gε, in particular of G(1)

ε , seems necessary despite the
simple form of the target energy. Indeed, in order to describe an energy defined on points in the
limit, it seems necessary to consider degenerate functionals. Our approach may be compared with
that giving vortices in the Ginzburg-Landau theory or concentration of energies for functionals with
critical growth in Section 8.

11 Continuum limits of lattice systems

In this last section we touch a subject of active research, with connections with many issues in Sta-
tistical Mechanics, Theoretical Physics, Computer Vision, computational problems, approximation
schemes, etc. Namely, that of the passage from a variational problem defined on a discrete set to a
corresponding problem on the continuum as the number of the points of the discrete set increases.
Some of these problems naturally arise in an atomistic setting, or as finite-difference numerical
schemes. An overview of scale problems for atomistic theories can be found in the review paper
by Le Bris and Lions [118], an introduction to some of their aspects in Computational Materials
Science can be found in that by Blanc, Le Bris and Lions [37]. An introduction to the types of
problems treated in this section in a one-dimensional setting can be found in the notes by Braides
and Gelli [60] (see also [46] Chapters 4 and 11).

The setting for discrete problems in which we have a fairly complete set of results is that of
central interactions for lattice systems; i.e., systems where the reference positions of the interacting
points lie on a prescribed lattice, whose parameters change as the number of points increases, and
each point of the lattice interacts separately with each other point. In more precise terms, we
consider an open set Ω ⊂ Rn and take as reference lattice Zε = Ω ∩ εZn. The general form of a
pair-potential energy is then

Fε(u) =
∑
i,j∈Zε

fεij(u(i), u(j)), (11.1)

where u : Zε → Rm. The analysis of energies of the form (11.1) has been performed under various
hypotheses on fij . The first simplifying assumption is that Fε is invariant under translations (in
the target space); that is,

fεij(u, v) = gεij(u− v). (11.2)

Furthermore, an important class is that of homogeneous interactions (i.e., invariant under transla-
tions in the reference space); this condition translates into

fεij(u, v) = gε(i−j)/ε(u, v). (11.3)

If both conditions are satisfied, we may rewrite the energies Fε above as

Fε(u) =
∑
k∈Zn

∑
i,j∈Zε,i−j=εk

εnψεk

(u(i)− u(j)
ε

)
, (11.4)

where ψεk(ξ) = ε−ngεk(εξ). In this new form the interactions appear through the (discrete) dif-
ference quotients of the function u. Upon identifying each function u with its piecewise-constant
interpolation (extending the definition of u arbitrarily outside Ω), we can consider Fε as defined on
(a subset of) L1(Ω; Rm), and hence compute the Γ-limit with respect to the L1

loc-topology. Under
some coerciveness conditions the computation of the Γ-limit will give a continuous approximate
description of the behaviour of minimum problems involving the energies Fε for ε small.
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11.1 Continuum energies on Sobolev spaces

Growth conditions on energy densities ψεk imply correspondingly boundedness conditions on gradi-
ent norms of piecewise-affine interpolations of functions with equi-bounded energy. The simplest
type of growth condition that we encounter is on nearest neighbours; i.e., for |k| = 1. If p > 1 exists
such that

c1|z|p − c2 ≤ ψεk(z) ≤ c2(1 + |z|p) (11.5)

(c1, c2 > 0 for |k| = 1), and if ψεk ≥ 0 for all k then the energies are equi-coercive: if (uε) is a bounded
sequence in L1(Ω; Rm) and supε Fε(uε) < +∞, then from every sequence (uεj ) we can extract a
subsequence converging to a function u ∈ W 1,p(Ω; Rm). In this section we will consider energies
satisfying this assumption. Hence, their Γ-limits are defined in the Sobolev space W 1,p(Ω; Rm).

First, we remark that the energies Fε can also be seen as an integration with respect to measures
concentrated on Dirac deltas at the points of Zε × Zε. If each ψεk satisfies a growth condition
ψεk(z) ≤ cεk(1 + |z|p), then we have

Fε(u) ≤
∫

Ω×Ω

(1 + |u(x)− u(y)|p)dµε,

where

µε =
∞∑
k=1

∑
i−j=εk, i,j∈Zε

cεk
1
εp
δ(i,j).

A natural condition for the finiteness of the limit of Fε is the equi-boundedness of these measures
(as ε→ 0) for every fixed set Ω. However, under such assumption, we can have a non-local Γ-limit
of the form

F (u) =
∫

Ω

f(Du(x)) dx+
∫

Ω×Ω

ψ(u(x)− u(y))dµ(x, y),

where µ is the weak∗-limit of the measures µε outside the ‘diagonal’ of Rn ×Rn (just as we obtain
Dirichlet forms from degenerate quadratic functionals). Under some decay conditions, such long-
range behaviour may be ruled out. The following compactness result proved by Alicandro and
Cicalese [15] shows that a wide class of discrete systems possesses a ‘local’ continuous limit (an
analogue for linear difference operators can be found in Piatnitski and Remy [135]). We state it in
a general ‘space-dependent’ case.

Theorem 11.1 (compactness for discrete systems) Let p > 1 and let ψεk satisfy:
(i) (coerciveness on nearest neighbours) there exists c1, c2 > 0 such that for all (x, z) ∈ Ω×Rm

and i ∈ {1, . . . , n}
c1|z|p − c2 ≤ ψεei(x, z) (11.6)

(ii) (decay of long-range interactions) for all (x, z) ∈ Ω× Rm, and k ∈ Zn

ψεk(x, z) ≤ cεk(1 + |z|p), (11.7)

where cεk satisfy
(H1): lim sup

ε→0+

∑
k∈Zn

cεk < +∞;

(H2): for all δ > 0, Mδ > 0 exists such that lim sup
ε→0+

∑
|k|>Mδ

cεk < δ.
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Let Fε be defined by

Fε(u) =
∑
k∈Zn

∑
i∈Rkε

εnψεk

(
i,
u(i+ εk)− u(i)

ε|k|

)
,

where Rkε := {i ∈ Zε : i+εk ∈ Zε}. Then for every sequence (εj) of positive real numbers converging
to 0, there exist a subsequence (not relabeled) and a Carathéodory function f : Ω ×Mm×n → R
satisfying

c(|ξ|p − 1) ≤ f(x, ξ) ≤ C(|ξ|p + 1),

with 0 < c < C, such that (Fεj ) Γ-converges with respect to the Lp(Ω; Rm)-topology to the functional
F defined as

F (u) =
∫

Ω

f(x,Du) dx, if u ∈W 1,p(Ω; Rm). (11.8)

Proof The proof of this theorem follows the general compactness procedure in Section 3.3. It must
be remarked, though, that discrete functionals are non-local by nature, so that all arguments where
locality is involved must be carefully adapted. The non-locality disappears in the limit thanks to
condition (ii). For a detailed proof we refer to [15].

Remark 11.2 (homogenization) In the case of energies defined by a scaling process; i.e., when

ψεk(x, z) = ψk

(z
ε

)
, (11.9)

then the limit energy density ϕ(M) = f(x,M) is independent of x and of the subsequence, and is
characterized by the asymptotic homogenization formula

ϕ(M) = lim
T→+∞

1
TN

min {FT (u), u|∂QT = Mi} , (11.10)

where QT = (0, T )N ,

FT (u) =
∑
k∈Zn

∑
i∈Rk1 (QT )

ψk

(
u(i+ k)− u(i)

|k|

)

and u|∂QT = Mi means that “close to the boundary” of QT the function u is the discrete inter-
polation of the affine function Mx (see [15] for further details). In the one-dimensional case this
formula was first derived in [61], and it is the discrete analogue of the nonlinear asymptotic formula
for the homogenization of nonlinear energies of the form

∫
Ω
f(x/ε,Du) dx.

Note however that the two formulas differ in two important aspects: the first is that (11.10)
transforms functions depending on difference quotients (hence, vectors or scalars) into functions de-
pending on gradients (hence, matrices or vectors, respectively); the second one is that the boundary
conditions in (11.10) must be carefully specified, since we have to choose whether considering or
not interactions that may ‘cross the boundary’ of QT .

It must be noted that formula (11.10) does not simplify even in the simplest case of three levels
of interactions in dimension one, thus showing that this effect, typical of nonlinear homogenization,
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is really due to the lattice interactions and not restricted to vector-valued functions as in the case
of homogenization on the continuum.

It is worth examining formula (11.10) in some special cases. First, if all ψk are convex then,
apart from a possible lower-order boundary contribution, the solution in (11.10) is simply ui = Mi.
In this case the Γ-limit coincides with the pointwise limit. Note that convexity in a sense always
‘trivializes’ discrete systems, in the sense that their continuous counterpart, obtained by simply
substituting difference quotients with directional derivatives is already lower semicontinuous, and
hence provides automatically an optimal lower bound.

Next, if only nearest-neighbour interactions are present then it reduces to

ϕ(M) =
n∑
i=1

ψ∗∗i (Mei),

where ψi = ψei and ψ∗∗i denotes the lower semicontinuous and convex envelope of ψi. Note that
convexity is not a necessary condition for lower semicontinuity at the discrete level: this convexifi-
cation operation should be interpreted as an effect due to oscillations at a ‘mesoscopic scale’ (i.e.,
much larger than the ‘microscopic scale’ ε but still vanishing as ε→ 0). If not only nearest neigh-
bours are taken into account then the mesoscopic oscillations must be coupled with microscopic
ones (see [61, 134, 46] and the next section).

Finally, note that also in the non-convex case (the relaxation of) the pointwise limit always gives
an upper bound for the Γ-limit and is not always trivial (see, e.g., the paper by Blanc, Le Bris and
Lions [36]).

11.1.1 Microscopic oscillations: the Cauchy-Born rule

One issue of interest in the study of discrete-to-continuous problems is whether to a ‘macroscopic’
gradient there corresponds at the ‘microscopic’ scale a ‘regular’ arrangement of lattice displacement.
For energies deriving from a scaling process as in (11.9) this can be translated into the asymptotic
study of minimizers for the problems defining ϕ(M); in particular whether ui = Mi is a minimizer
(in which case we say that the (strict) Cauchy-Born rule holds at M), or if minimizers tend to a
periodic perturbation of Mi; i.e. ground states are periodic (in which case we say that the weak
Cauchy-Born rule holds at M). Note that the strict Cauchy-Born rule can be translated into the
equality

ϕ(M) =
∑
k∈ZN

ψk

(Mk

|k|

)
, (11.11)

and that it always holds if all ψk are convex, as remarked above.
A simple example in order to understand how the validity and failure of the Cauchy-Born rule

can be understood in terms of the form of ϕ is given by the one-dimensional case with next-to-nearest
neighbours; i.e. when only ψ1 and ψ2 are non zero. In this case ϕ = ψ∗∗, where

ψ(z) = ψ2(2z) +
1
2

min
{
ψ1(z1) + ψ1(z2) : z1 + z2 = 2z

}
. (11.12)

The second term, obtained by minimization, is due to oscillations at the microscopic level: nearest
neighbours rearrange so as to minimize their interaction coupled with that between second neigh-
bours (see [46] for a simple treatment of these one-dimensional problems). In this case we can
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read the microscopic behaviour as follows (for the sake of simplicity we suppose that the minimum
problem in (11.12) has a unique solution, upon changing z1 into z2):
(i) first case: ψ is convex at z (i.e., ψ(z) = ϕ(z)). We have the two cases

(a) ψ(z) = ψ1(z) + ψ2(z); in this case z = z1 = z2 minimizes the formula giving ϕ and (11.11)
holds; hence, the strict Cauchy-Born rule applies;

(b) ψ(z) < ψ1(z) +ψ2(z); in this case we have a 2-periodic ground state with ‘slopes’ z1 and z2,
and the weak Cauchy-Born rule applies;
(ii) second case: ψ is not convex at z (i.e., ψ(z) > ϕ(z)). In this case the Cauchy-Born rule is
violated, but a finer analysis (see below) shows that minimizers are fine mixtures of states satisfying
the conditions above; hence the condition holds ‘locally’.

For energies in higher-dimensions this analysis is more complex. A similar argument as in the
one-dimensional case is used by Friesecke and Theil [109] to show the non-validity of the Cauchy-
Born rule even for some types of very simple lattice interactions in dimension two, with nonlinearities
of geometrical origin.

11.1.2 Higher-order developments: phase transitions

In the case of failure of the Cauchy-Born rule, non-uniform states may be preferred as minimizers,
and surface energies must be taken into account in their description. A first attempt to rigorously
describe this phenomena can be found in Braides and Cicalese [51], again in the simplest nontrivial
case of next-to-nearest neighbour interactions of the form independent of ε. In that case, we may in-
fer that (under some technical assumptions) the discrete systems are equivalent to the perturbation
of a non-convex energy on the continuum, of the form∫

Ω

ψ(u′) dt+ ε2C

∫
Ω

|u′′|2 dt,

thus recovering the well-known formulation of the gradient theory of phase transitions. This result
shows that a surface term (generated by the second gradient) penalizes high oscillations between
states locally satisfying some Cauchy-Born rule.

11.1.3 Homogenization of networks

We have stated above that convex discrete problems are ‘trivial’ since they can immediately be
translated into local integral functionals. However, in some cases constraints are worse expressed
in the continuous translation rather than in the original lattice notation, so that a direct treatment
of the discrete system is easier. A striking and simple example is the computation of bounds for
composite linear conducting networks in dimension two, as shown by Braides and Francfort [57].
This is the discrete analogue of the problem presented in Section 5.4, that translates into the
computation of homogenized matrices given by

〈Aξ, ξ〉 =
1
N2

min
{ ∑
i∈{1,...,N}2

hi(ξ1 + ϕ(i1 + 1, i2)− ϕ(i1, i2))2

+
∑

i∈{1,...,N}2
vi(ξ2 + ϕ(i1, i2 + 1)− ϕ(i1, i2))2 : ϕ : Z2 → R N -periodic

}
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where hi, vi ∈ {α, β} (hi stands for the horizontal connection at i, vi for vertical), N is arbitrary,
and the percentage θ of α-connections is given; i.e., #{i : vi = α} + #{i : hi = α} = 2N2θ. The
set of such matrices Hd(θ) is the analogue of the set H(θ) in Section 5.4.1.

We do not discuss the computation of optimal bounds for H(θ), for which we refer to [57], but
just remark that the additional microscopic dimension brings new micro-geometries. In fact, it is
easily seen that H(θ) ⊂ Hd(θ) since coefficients hi, vi such that hi = vi correspond to discretiz-
ing continuous coefficients, but we can also construct discrete laminates at the same time in the
horizontal and vertical directions, providing a much larger set of homogenized matrices. As an ex-
ample, in the discrete case the set of all reachable matrices (see Remark 5.10) contains all diagonal
matrices with eigenvalues λ1, λ2 with α ≤ λi ≤ β, while in the continuous case we are restricted by
the bounds (5.20).

11.2 Continuum energies on discontinuous functions

In many cases discrete potentials related to atomic theories do not satisfy the hypotheses of the
compactness result above, and the limits are defined on spaces of discontinuous functions.

11.2.1 Phase transitions in discrete systems

The easiest example of a discrete system exhibiting a phase transition is that of nearest-neighbour
interactions for an elementary Ising system. We can consider energies of the form

−
∑
|i−j|=ε

uiuj (ferromagnetic interactions), (11.13)

defined on functions u : εZn ∩ Ω → {−1, 1}, and ui = u(i). Upon a scaling of the energies we can
equivalently consider the functionals

Fε(u) =
∑
|i−j|=ε

εn−1(1− uiuj) (11.14)

Note that we have 1 − uiuj = 0 if ui = uj and 1 − uiuj = 2 if ui 6= uj . With this observation in
mind we may identify each u with the function which takes the value ui in the coordinate cube Qεi
with centre εi and side length ε. In this way we can rewrite

Fε(u) = 2
∫
S(u)∩Ω

‖ν‖1dHn−1 +O(ε) (11.15)

(the error term comes from the cubes intersecting the boundary of Ω), where ‖ν‖1 =
∑
i |νi|. Here

we have taken into account that the interface between {u = 1} and {u = −1} is composed of the
common boundaries of neighbouring cubes Qεi and Qεj where ui 6= uj and that these boundaries
are orthogonal to some coordinate direction (note that ‖ν‖1 is the greatest convex and positively
homogeneous function of degree one with value 1 on the coordinate directions). This heuristic
derivation can be turned into a theorem (see the paper by Alicandro, Braides and Cicalese [12]).
Note that the symmetries of the limit energy density are derived from those of the square lattice,
and that the reasoning above also provides an equi-coerciveness result.

89



Theorem 11.3 (continuum limit of a binary lattice system) The Γ-limit in the L1-conver-
gence of the functional Fε defined in (11.14) is given by

F0(u) = 2
∫

Ω∩S(u)

‖ν‖1dHn−1 (11.16)

on characteristic functions of sets of finite perimeter.

Proof The argument above gives the lower bound by the lower semicontinuity of F0, an upper
bound is obtained by first considering smooth interfaces, for which we may define uε = u, and then
reason by density.

Similar results can also be obtained for long-range interactions, and a more subtle way to define
the limit phases must be envisaged in the case of long-range anti-ferromagnetic interactions (i.e.,
when we change sign in (11.13), so that microscopic oscillations are preferred to uniform states).
Details are found in [12].

11.2.2 Free-discontinuity problems deriving from discrete systems

The pioneering example for this case is due to Chambolle [70, 71], who treated the limit of some
finite-difference schemes in Computer Vision (see [65]), producing as the continuum counterpart
the one-dimensional version of the Mumford-Shah functional.

Theorem 11.4 (Blake-Zisserman approximation of the Mumford-Shah functional) Let Fε
be defined by the truncated quadratic energy

Fε(u) =
∑
|i−j|=ε

εn min
{(ui − uj

ε

)2

,
1
ε

}
(11.17)

defined on functions u : εZn∩Ω→ R; then the Γ-limit in the L1-convergence of Fε is the anisotropic
Mumford-Shah functional

F0(u) =
∫

Ω

|∇u|2 dx+
∫

Ω∩S(u)

‖ν‖1dHn−1. (11.18)

on GSBV (Ω).

Proof In the one-dimensional case it suffices to identify each u with a discontinuous piecewise-affine
interpolation v for which Fε(u) = F0(v) (see [46] Section 8.3). A more complex interpolation can
be used in the two-dimensional case (see [71]), while the general case can be achieved by adapting
the slicing method (see [58, 72]). Note that for functions ui ∈ {−1, 1} the functional coincides (up
to a factor 2) with the one studied in the previous section.

11.2.3 Lennard-Jones potentials

The case of more general convex-concave potentials such as Lennard-Jones or Morse potentials
brings additional problems due to the degenerate behaviour at infinity. In the one-dimensional case
we consider energies

Fε(u) =
∑
i

εJ
(ui − ui−1

ε

)
, J(z) =

1
z12
− 1
z6
, (11.19)
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defined on u : εZ ∩ (0, 1) → R with the constraint ui > ui−1 (non-interpenetration). It must be
noted that the Γ-limit of such an energy is equal to

F0(u) =
∫ 1

0

J∗∗(u′) dt, u increasing (11.20)

(u′ here denotes the absolutely continuous part of the distributional derivative Du). Note that
the singular part of Du does not appear here so that u may in particular have infinitely-many
(increasing) jumps at ‘no cost’.

Note that J∗∗(z) takes the constant value minJ for z ≥ z∗ := argminJ = 21/6, and hence
F0(u) = min J for all increasing u with u′ ≥ z∗. Some other method must be used to derive more
information. These problems can be treated in different ways, which we mention briefly.

1. Γ-developments. We can consider the scaled functionals F 1
ε (u) = 1

ε (Fε(u) −min J). In this
case we obtain as a Γ-limit the functional whose domain are increasing (discontinuous) piecewise-
affine functions with u′ = z∗, on which the limit is F 1(u) = C#(S(u)), and C = −min J . This
limit function can be interpreted as a fracture energy for a rigid body. (see [144] and [46] Section
11.4 for a complete proof).

2. Scaling of convex-concave potentials. The study of these types of energies have been initiated
in a paper by Braides, Dal Maso and Garroni [53], who consider potentials of convex-concave type
and express the limit in terms of different scalings of the two parts, expressing the limit in the space
of functions with bounded variation. In Mechanical terms the limit captures softening phenomena
and size effects. The general case of nearest-neighbour interactions has been treated by Braides
and Gelli in [59]. The fundamental issue here is the separation of scale effect (see also [46] Chapter
11 for a general presentation).

3. Renormalization-group approach. This suggests a different scaling of the energy, and to
consider

F ′ε(u) =
∑
i

(
J
(
z∗ +

ui − ui−1√
ε

)
−min J

)
. (11.21)

The Γ-limit of F ′ε has been studied by Braides, Lew and Ortiz [62], and can be reduced to the case
studied in Theorem 11.4, obtaining as a Γ-limit

F ′(u) = α

∫ 1

0

|u′|2 dt+ β#(S(u)), with u+ > u− on S(u), (11.22)

which is interpreted as a Griffith fracture energy with a unilateral condition on the jumps. Here α
is the curvature of J at its minimum and β = −min J .

All these approaches can be extended to long-range interactions, but are more difficult to repeat
in higher dimension.

11.2.4 Boundary value problems

For the sake of completeness it must be mentioned that according to the variational nature of the
approximations all these convergence results lead to the study of convergence of minimum problems.
To this regard we have to remark that in the case of the so called ‘long-range interactions’ for
functional allowing for fracture (that is, when the limit energy presents a non-zero surface part)
more than one type of boundary-value problem can be formulated and an effect of boundary layer
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also occurs. The problem was first studied by Braides and Gelli in [58] where two types of problems
where treated. The first one is to define discrete functions on the whole εZN and to fix the values
on the nodes outside the domain Ω equal to a fixed function ϕ; in this case the interactions ‘across
the boundary of Ω’ give rise to an additional boundary term in the limit energy of the type∫

∂Ω

G(γ(u)− ϕ, ν∂Ω)dHn−1 (11.23)

where γ(u) is the inner trace of u on ∂Ω.
The second method consists in considering the functions as fixed only on ∂Ω that is, only

a proper subset of pairwise interactions are linked with the constraint; in this case, the boundary
term gives a different contribution, corresponding to a boundary-layer effect. Indeed, the additional
term is still of type (11.23) but with the surface density G′ strictly less than G, the gap magnifying
with the range of interaction considered.

Boundary-layer effects also appear in the definition of the surface energies for fracture in the
case of long-range interactions (see [62, 51]) and in the study of discrete thin films [13].

Note to the bibliography. The following list of references contains only the works directly quoted
in the text, as it would be impossible to write down an exhaustive bibliography. We refer to [85],
[54] and [46] for a guide to the literature.
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[43] Bouchitté G., Fonseca I., Leoni G. and Mascarenhas L. A global method for relaxation in
W 1,p and in SBV p. Arch. Ration. Mech. Anal. 165 (2002), 187–242.

[44] Bourdin B. and Chambolle A. Implementation of an adaptive finite-element approximation
of the Mumford-Shah functional. Numer. Math. 85 (2000), 609–646.

[45] Braides A. Approximation of Free-Discontinuity Problems. Lecture Notes in Mathematics
1694, Springer Verlag, Berlin, 1998.

[46] Braides A. Γ-convergence for Beginners. Oxford University Press, Oxford, 2002.
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appear.

[141] Solci M. and Vitali E. Variational models for phase separation. Interfaces Free Bound. 5
(2003), 27–46.

[142] Sternberg P. The effect of a singular perturbation on nonconvex variational problems. Arch.
Ration. Mech. Anal. 101 (1988), 209–260.

[143] Tartar L. Estimations fines de coefficients homogénéisés. In: Ennio De Giorgi Colloquium (P.
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