
5. Fracture mechanics from inter-atomic potentials

This section will be devoted to the study of a one-dimensional system of lattice interactions
driven by some potentials that are usually involved in the description of atomic interactions.
Examples of such potentials are Lennard-Jones potentials

JLJ(z) =
c1
z12

− c2
z6
,

with c1, c2 > 0 and the restriction that z > 0, or Morse potentials

JM(z) = −cze−z,

with c > 0.
The common features of these potentials J : R → (−∞,+∞] are:
• the domain of J , {z : J(z) < +∞}, is an interval, J admits a unique minimum point z∗,

and on its domain J is (strictly) decreasing and convex for z ≤ z∗ and (strictly) increasing for
z ≥ z∗;

• J is smooth on its domain;
• J satisfies the growth conditions at ±∞:

lim
z→−∞

J(z)
|z|

= +∞, lim
z→+∞

J(z) = 0

(JLJ(z) is set equal to +∞ for z ≤ 0).

1 Nearest-neighbors

We consider energies of the form
n∑

i=1

J(vi − vi−1), v : {0, . . . n} → R

where n ∈ N. For the sake of simplicity we consider a potential with the constraint that
vi−vi−1 ≥ 0 (for example, Lennard-Jones potentials). This will simplify some descriptions since
the function v will always be non decreasing. To remove this constraint, it is sufficient to note
that the growth condition at −∞ will provide strong compactness properties for the decreasing
part of the function. Note that at this stage we have not performed any scaling of the energy.

1.1 A first scaling giving a trivial bulk energy

The first possibility is to perform the usual change of variables t0 interpret vi−vi−1 as a difference
quotient, and consider energies ε = 1

n ,

Eε(u) =
n∑

i=1

εJ
(ui − ui−1

ε

)
, u : εZ ∩ [0, 1] → R
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Note that if we consider simple problems of the form

mε(L) = min{Eε(u) : u(0) = 0, u(1) = L},

then the monotonicity of test functions along with the fixed boundary conditions, provides a
bound in BV (0, 1) of minimizers, and hence compactness in any Lp(0, 1) (p < +∞)). We can then
compute the Γ-limit of Eε in L1(0, 1) (or equivalently with respect to the weak∗ convergence in
BV (0, 1)). A trivial lower bound is obtained by identifying each u with its continuous piecewise-
affine interpolation and correspondingly the sum with an integral: if uε → u

lim inf
ε

Eε(uε) = lim inf
ε

∫ 1

0

J(u′ε) dt ≥ lim inf
ε

∫ 1

0

J∗∗(u′ε) dt ≥
∫ 1

0

J∗∗(u′) dt.

It must be noted that u is not AC, so that u′ must be understood as the almost-everywhere
defined derivative of u (that exists since u is non-decreasing). Note that u may be discontinuous
(more precisely, it may have ‘increasing’ jumps), and that its discontinuities do not affect the
value of the latter integral.

We have to check that this inequality is sharp. To this end note explicitly that

J∗∗(z) =
{
J(z) if z ≤ z∗

J(z∗) if z ≥ z∗,

and that a general u ∈ BV (0, 1) may be approximated by uk ∈ SBV (0, 1) with a finite number
of jumps and u′ ≤ z∗ in such a way that

lim
k

∫ 1

0

J(u′k) dt =
∫ 1

0

J∗∗(u′) dt.

It suffices then to consider u ∈ SBV (0, 1), with 0 < u′ ≤ z∗ and with a finite number of jumps.
For these functions we may just take uε = u (more precisely, the discrete interpolation of u),
and note that

Eε(uε) =
∑

i∈{1,...,N}\I∗ε

εJ
(ui − ui−1

ε

)
+

∑
i∈I∗ε

εJ
(ui − ui−1

ε

)
,

where
I∗ε = {i : [ε(i− 1), εi) ∩ S(u) 6= ∅},

so that, for ε small enough,

Eε(uε) =
∑

i∈{1,...,N}\I∗ε

εJ
(ui − ui−1

ε

)
+

∑
i∈I∗ε

εJ
(ui − ui−1

ε

)
≤

∑
i∈{1,...,N}\I∗ε

εJ
(ui − ui−1

ε

)
=

∫ 1

0

J(u′) dt+ o(1),

as desired.

We must also note that if (uε) is a sequence satisfying some boundary conditions; e.g.,
uε(0) = 0, uε(1) = L, then the limit function for this energy may not satisfy these conditions.
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Anyhow, since each one of these uε is increasing we deduce that we have u(0+) ≥ 0 and u(1−) ≤ L
(u(t±) are the traces of u at the point t). For such u the construction above still works unchanged.

As a consequence of this Γ-convergence result, we obtain that the limit of mε(L) is given by

m(L) = min{
∫ 1

0

J∗∗(u′) dt : u increasing, u(0+) ≥ 0, u(1−) ≤ L} = J∗∗(L)

The information we can draw from this minimum problem is that we have two types of regimes
corresponding to the case:

• if L ≤ z∗ then the unique minimizer of m(L) is the linear function u(t) = Lt;
• if L > z∗ then every increasing function with u′ ≥ z∗, u(0+) ≥ 0 and u(1−) ≤ L is a

minimizer for m(L).

If we interpret our system as a chain of atoms, then we may interpret the corresponding
continuous model as having an elastic behavior in a compressive regime (z ≤ z∗), while it
undergoeas complete failure in a tensile regime (z > z∗).

It must be noted that our result is in a sense ‘trivial’, as it says that Eε can be identified
with the integral ∫ 1

0

J(u′) dt,

whose relaxation is precisely
∫ 1

0
J∗∗(u′) dt.

1.2 A second scaling giving Griffith fracture energy

We first perform a translation of the energy, by setting

ψ(z) = J(z + z∗)− J(z∗),

so that the minimum of ψ is ψ(0) = 0. We then perform a different scaling of the energies, whose
underlying idea is to have the bulk and interfacial energy of the same order.

The energies we consider are now

Eε(u) =
N∑

i=1

ψ
(ui − ui−1√

ε

)
The choice of this scaling is heuristically explained as follows: if u is (the interpolation of) a

smooth funtion, then

ψ
(ui − ui−1√

ε

)
= ψ

(√
ε
ui − ui−1

ε

)
≈ ψ(

√
εu′(εi)) ≈ ε

1
2
ψ′′(0)(u′(εi))2;

here and after we make the assumption that

α :=
1
2
ψ′′(0) > 0. (1)

In this way we have

Eε(u) ≈ α

∫ 1

0

|u′|2 dt.
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Conversely, if we only have (increasing) jumps (i.e., u is piecewise constant and non-decreasing),
then if t ∈ S(u) ∩ [ε(i− 1), εi] we have

ψ
(ui − ui−1√

ε

)
≈ ψ

(u+(t)− u−(t)√
ε

)
≈ ψ(+∞) = −J(z∗) =: β,

and
Eε(u) ≈ β#(S(u)).

Actually, what we have just shown (to have a complete proof it suffices to use a density
argument by functions that are smooth except for a finite numbers of increasing jumps) is that
we have an upper bound with the functional, whose domain are SBV functions with only a finite
number of increasing jumps, given by

F (u) = α

∫ 1

0

|u′|2 dt+ β#(S(u)) (u+ > u− on S(u)).

We now show that this is also a lower bound. To do this, we compare our energy with a family of
energies whose limit is easier to compute, and subsequently optimize this estimate. The family
F of energy densities we consider are all f ≤ ψ of the form

f(z) =
{
c1|z|2 ∧ c3 if z ≤ 0
c1|z|2 ∧ c2 if z ≥ 0,

with ci > 0; i.e. f is a ‘non-symmetrically-truncated quadratic potential’.
Note that

sup{c1 : f ∈ F} = α, sup{c2 : f ∈ F} = β, sup{c3 : f ∈ F} = +∞. (2)

Note also that

f
(ui − ui−1√

ε

)
=


c3 if ui−ui−1

ε ≤ −
√

c3
c1

1√
ε

εc1

∣∣∣ui−ui−1
ε

∣∣∣2 if −
√

c3
c1

1√
ε
< ui−ui−1

ε <
√

c2
c1

1√
ε

c2 if ui−ui−1
ε ≥

√
c2
c1

1√
ε
.

(3)

Let (uε) be a sequence converging to some u. Then we identify each uε with its piecewise-affine
discontinuous interpolation vε with discontinuity set S(vε) = S+

ε ∪ S−ε , where

S+
ε = {εi :

uε(εi)− uε(ε(i− 1))√
ε

≥
√
c2
c1
}, S−ε = {εi :

uε(εi)− uε(ε(i− 1))√
ε

≤ −
√
c3
c1
},

and vε is constant on the corresponding intervals (ε(i− 1), εi).
We then have

lim inf
ε

Eε(uε) = lim inf
ε

Ff (vε)

=: lim inf
ε

(
c1

∫ 1

0

|v′ε|2 dt+ c2#(S+(vε)) + c3#(S−(vε))
)

≥ c1

∫ 1

0

|u′|2 dt+ c2#(S+(u)) + c3#(S−(u)),

4



where
S+(v) := {t ∈ S(u) : u+ > u−}, S−(v) := {t ∈ S(u) : u+ < u−}.

We have used the lower semicontinuity of Ff .
We can locally optimize this estimate; i.e., we may take the supremum in c1, c2, c3 separately.

Taking the supremum in c3 implies that S−(u) = ∅, while the other two ‘optimizations’ give the
desired lower bound.

This new scaling approximates minimum boundary value problems for Eε with

m(L) = min{α
∫ 1

0

|u|2 dt+ β#(S̃(u)) : u+ > u−, u(0+) ≥ 0, u(1−) ≤ L}

=
{

min{αL2, β} if L ≥ 0
αL2 if L < 0,

where we take into account that the jump of u may occur at the boundary, setting

S̃(u) = S(u) ∪ {t ∈ {0, 1} : ũ−(t) < ũ+(t)},

ũ− = u− on (0, 1], ũ+ = u+ on [0, 1), ũ−(0) = 0 and ũ+(1) = L.
The case L ≥ 0 corresponds to the tensile regime in the previous scaling, and the correspond-

ing energy may be interpreted as a Griffith fracture energy.
Note that for m(L) = β we have infinitely many minimizers given by

u(t) =
{

0 if t ≤ t0
L if t > t0;

i.e., the fracture site is not localized.

2 Next-to-nearest neighbors

We now consider energies taking into account first and second neighbors; i.e., both terms of the
form J(ui − ui−1) and of the form J(ui+1 − ui−1).

In this case, the way boundary conditions are stated does influence the form of the limit
problems. Dirichlet boundary conditions

u(0) = 0, u(1) = L

may be imposed as a pointwise condition on 0 and 1, or by requiring that u be a periodic
perturbation of the linear function uL(t) = Lt. In terms of minimum problems, in the first case
we consider

min
{ N∑

i=1

J(ui − ui−1) +
N−1∑
i=1

J(ui+1 − ui−1) : u0 = 0, uN = L
}

(note that we have N nearest-neighbor interactions and N − 1 next-to-nearest neighbor interac-
tions in the interval 0, . . . , N), while in the second one

min
{ N∑

i=1

(
J(ui − ui−1) + J(ui+1 − ui−1)

)
: u0 = 0, uN = L, uN+1 = u1 + L

}
(equivalently, this minimum is performed among u : Z → R satisfying the periodicity condition
ui+N = ui + L).
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2.1 First scaling

In this case boundary conditions given in either way give the same limit energy. We briefly
illustrate the result in a more general case, for energies of the form

Eε(u) =
N∑

i=1

ε
(
J1

(ui − ui−1

ε

)
+ J2

(ui+1 − ui−1

ε

))
,

where J1, J2 satisfy the same conditions as the Lennard-Jones potentials.
The idea is to rewrite the energy in a more symmetric way as

Eε(u) =
N∑

i=1

ε
(1

2
J1

(ui − ui−1

ε

)
+

1
2
J1

(ui+1 − ui

ε

)
+ J2

(ui+1 − ui−1

ε

))
.

then to integrate out the nearest-neighbor interactions by considering

J̃(z) =
1
2

min{J(z1) + J(z2) : z1 + z2 = z},

and the ‘effective energy density’

Jeff(z) = J2(2z) + J̃(2z).

Note that (1
2
J1

(ui − ui−1

ε

)
+

1
2
J1

(ui+1 − ui

ε

)
+ J2

(ui+1 − ui−1

ε

))
≥

(
J̃
(ui+1 − ui

ε

)
+ J2

(ui+1 − ui

ε

))
= Jeff

(ui+1 − ui−1

2ε

)
.

In this way we have the inequality

Eε(u) ≥
N∑

i=1

εJeff

(ui+1 − ui−1

2ε

)
=

1
2

( ∑
i even

2εJeff

(ui+1 − ui−1

2ε

)
+

∑
i odd

2εJeff

(ui+1 − ui−1

2ε

))
,

and hence a lower bound is given by

F (u) =
∫ 1

0

(Jeff)∗∗(u′) dt.

This is indeed the Γ-limit.
In the Lennard-Jones case

J1(z) = J2(z) = J(z)

the recovery sequences are simple discrete interpolations and we indeed have

Jeff(z) = J(z) + J(2z),

that is an energy again of Lennard-Jones type. Note that the critical state z∗ giving the transition
between the compressive and tensile regions is then defined as the minimizer of Jeff .
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2.2 Second scaling. Periodic case

The first scaling has served in finding the minimal state z∗. Now we may scale differently the
energies by setting

Eε(u) =
N∑

i=1

(1
2
J
(ui − ui−1√

ε
+ z∗

)
+

1
2
J
(ui+1 − ui√

ε
+ z∗

)
+ J

(ui+1 − ui−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
.

A first lower bound is then obtained by the inequality

Eε(u) ≥
N∑

i=1

Jeff

(ui+1 − ui−1√
ε

+ 2z∗
)

The right-hand side is a superposition of two lattice energies and gives the Γ-limit

F0(u) = α

∫ 1

0

|u′|2 dt+ C#(S(u)),

where

α :=
1
2
J ′′eff(z∗) =

1
2
J ′′(z∗) + 2J ′′(2z∗), C :=

1
2

min J −min Jeff = Jeff(+∞)−min Jeff .

This lower bound is also an upper bound if u ∈ H1(0, 1); i.e., if S(u) = ∅. Indeed, if u is
smooth then a recovery sequence is simply its discrete interpolation uε for which

Eε(uε) ≈
N∑

i=1

(J(
√
εu′(εi) + z∗) + J(2

√
εu′(εi) + 2z∗)− Jeff(z∗))

≈
N∑

i=1

(Jeff(
√
εu′(εi) + z∗)− Jeff(z∗))

≈
N∑

i=1

αε|u′(εi)|2 ≈ α

∫ 1

0

|u′|2 dt.

In general the lower bound above is not optimal for jumps. Indeed, suppose that we have
one jump (that in this periodic setting we may always suppose at 0); i.e., uε(0) = 0, uε(ε) ≈
u(0+) = c > 0, then

Eε(u) =
(1

2
J
( u1√

ε
+ z∗

)
+

1
2
J
(u2 − u1√

ε
+ z∗

)
+ J

(u2 − u0√
ε

+ 2z∗
)
− Jeff(z∗)

)
+

N−1∑
i=2

(1
2
J
(ui − ui−1√

ε
+ z∗

)
+

1
2
J
(ui+1 − ui√

ε
+ z∗

)
+ J

(ui+1 − ui−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
+

(1
2
J
(−uN−1√

ε
+ z∗

)
+

1
2
J
( u1√

ε
+ z∗

)
+ J

(u1 − uN−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
≈ 1

2
J
(u2 − u1√

ε
+ z∗

)
− Jeff(z∗)

+
N−1∑
i=2

(1
2
J
(ui − ui−1√

ε
+ z∗

)
+

1
2
J
(ui+1 − ui√

ε
+ z∗

)
+ J

(ui+1 − ui−1√
ε

+ 2z∗
)
− Jeff(z∗)

)
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+
1
2
J
(uN − uN−1√

ε
+ z∗

)
+ J

(u1 − uN−1√
ε

+ 2z∗
)
− Jeff(z∗)

≥ 2 inf{1
2
J(z∗ + z1) +

K∑
i=1

(1
2
J(zi + z∗) +

1
2
J(zi+1 + z∗) + J(2z∗ + zi + zi+1)} − 2Jeff(z∗),

where K is any fixed natural number (≤ N/2). The optimal lower bound for a jump is then
given by

β := 2B − 2 minJeff ,

where

B := inf
K

inf{1
2
J(z∗ + z1) +

K∑
i=1

(1
2
J(zi + z∗) +

1
2
J(zi+1 + z∗) + J(2z∗ + zi + zi+1)

)
}

We may interpret B as a free-boundary energy: the energy to generate a discontinuity amounts
to the energy −2 minJeff (that is positive) due to the complete detachment of the neighboring
atoms plus the energy 2B (that is negative) due to the rearrangements of the atoms on both
sides of the fracture.

Finally, the Γ-limit is again given by

F (u) = α

∫ 1

0

|u′|2 dt+ β#(S(u)).

2.3 Second scaling. Boundary terms

In this case, the Γ-limit for the integral term and for interior jumps is the same, while the
estimate as above performed for a jump at the boundary gives B −min Jeff = β/2; hence, the
resulting limit energy is

F (u) = α

∫ 1

0

|u′|2 dt+ β#(S(u)) +
β

2
#(S̃(u) ∩ {0, 1}).

As a consequence we have a localization at the boundary of the discontinuity points.
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