
4. A weak membrane with randomly distributed defects

The discrete setting provides an easy framework where to model problems with some random
choice. In this chapter we will study the description of a two-dimensional square network mixing
two types of connections: ‘weak’ and ‘stong’ ones. The strong connections are simple quadratic
ones, while the weak connections are ‘truncated quadratic potentials’ that are quadratic below
some threshold, and constant above. We may imagine that this network model a two-dimensional
membrane, and that the unknown function u represents the vertical displacement of the mem-
brane. A ‘strong connection’ may be simply viewed as a linear spring between two neighboring
nodes of the network. A ‘weak spring’ behaves in the same way as a ‘strong spring’ below the
fracture threshold, at which it breaks, and the two neighboring nodes get disconnected. The
distribution of weak springs can be viewed as a distribution of defects in an otherwise linear
material. We will investigate the ‘typical’ overall behavior of such a model in the hypothesis
that the defects be randomly distributed. To this end we will briefly give an overview of some
percolation results, and preliminarily treat the case when only weak connections are present.

1 The weak membrane

We consider the energies

Eε(u) =
1
2

∑
α,β

εNfε
(u(α)− u(β)

ε

)
where fε are truncated quadratic potentials:

fε(z) = min
{

z2,
1
ε

}
.

The sum is extended to all nearest neighbors. Note that if∣∣∣u(α)− u(β)
ε

∣∣∣2 ≤ 1
ε

for all α, β, then Fε(u) is just a discretization of the Dirichlet integral, while if for example u
takes just two values, say u0 and u1, then for ε small enough we have

fε
(u(α)− u(β)

ε

)
=

{
0 if u(α) = u(β)
1
ε otherwise,

so that, identifying each u with its piecewise-constant extension, we have

Eε(u) = εN−1#{{α, β} : u(α) 6= u(β)} = HN−1(∂{u = u0}) + o(1),

where the o(1) comes from some boundary corrections.
In general the Γ-limit will be finite on functions that may have a discontinuity set S(u) of

dimension N − 1 and such that this set is rectifiable, and that are otherwise approximately
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differentiable outside this set. The space of such u is called the space of special functions
of bounded variation SBV (Ω) and is defined as the space of all u ∈ BV (Ω) such that the
distributional derivative of u can be split in a N -dimensional and a N − 1-dimensional part. To
be more precise, since we will not directly have a bound on BV norms, the u for which our limit
energies will make sense are in GSBV (Ω) (i.e., their truncations (−T ∨ u) ∧ T are in SBV (Ω)
for all T ).

On this space the Γ-limit of Fε can be written as

F (u) =
∫

Ω

|∇u|2 dx +
∫

S(u)

‖νu‖1 dHN−1.

Note that if u ∈ H1(Ω) then F (u) =
∫
Ω
|∇u|2 dx. Note moreover that in many problems we will

have an a priori bound for the L∞ norm of the solution, that in this way belongs to SBV (Ω).

2 A naive view to percolation theory

We want to compute a Γ-limit as in the previous section, of an energy where we randomly mix
fε as above and simple quadratic interactions. To this end we have to introduce some notions of
percolation theory for what is called the ‘bond percolation model’ (i.e., when the random choice
is thought to be performed on the connections. A different model, that can be treated similarly,
is the site percolation model. In our intuition it would correspond to choosing weak and strong
nodes – and to define a weak connection as a connection between two nodes of which at least
one is a weak node).

We do not want to introduce the formal definition of a random variable, but just to look at
the relevant elements of percolation theory that will allow us to describe the model of a weak
membrane. From now on we will restrict to the two-dimensional case N = 2. We start by
introducing the dual lattice

Z =
{α + β

2
: α, β ∈ Z2, |α− β| = 1

}
.

A choice of connections between nodes of Z2 is a function ω : Z → {−1, 1}; 1 corresponds to a
strong connection, and −1 to a weak connection. We identify each point γ ∈ Z with the segment
[α, β] such that α, β ∈ Z2 and 2γ = α + β. Given ω, we say that two points γ, γ′ ∈ Z such that
ω(γ) = ω(γ′) are connected if there exists a path in Z (now identified as a set of segments) such
that each element of this path γ′′ is such that ω(γ′′) = ω(γ). Such a path is called a weak channel
if ω(γ) = −1 and a strong channel if ω(γ) = 1. In this way, we subdivide Z into ‘connected
subsets’ where either ω(γ) = 1 or −1.

We now want to express the fact that

ω(γ) =
{

1 with probability p
−1 with probability 1− p.

This can be done rigorously by introducing some ‘independent identically distributed’ random
variables. This is not however the scope of our presentation. It suffices to describe the ‘almost-
sure’ properties of such ω.

If p < 1/2 then it is ‘more probable’ to have some γ with ω(γ) = −1; not only, it is not
likely to have a large number of connected points with ω(γ) = 1. This is expressed by the fact
that there is one (necessarily unique) infinite connected component of {ω = −1}. We call this
set the infinite weak cluster (or simply weak cluster). Of course, the situation is symmetrical for
p > 1/2, in which case we have an infinite strong cluster.
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If two points γ and γ′ belong to the weak cluster then there is at least one path L in the
cluster (now we identify points with segments) joining γ and γ′. We denote by |L| the length of
this path. The chemical distance of γ and γ′ is defined as

dω(γ, γ′) = min |L|,

where the minimum is taken over all such paths L.
This distance is not isotropic (it suffices to think about the trivial case p = 0) and depends

on ω. Nevertheless, its limit behavior as the points γ and γ′ are scaled properly is well defined
and independent of ω: we define

ϕp(ν) = lim inf
T→+∞

inf
{ 1
|T |

dω(γ, γ′) : γ − γ′ = Tν
}

.

This limit is finite and independent of ω for all ν, except for a set of ω with zero probability.
Note that for p = 1 we have ϕp(ν) = ‖ν‖1.

The number ϕp(ν) describes the average distance on the weak cluster in the direction ν (and
by symmetry also in the orthogonal direction). Its value cannot be decreased by using ‘small
portions’ of strong connections: if δ > 0 then there exists T > 0 and c = c(δ) ∈ (0, 1) such that
if L is a path joining γ and γ′ = γ + Tν and |L| < (ϕp(ν) − δ)T , then there are at least c(δ)T
strong connections in the path L.

The weak cluster (and the strong cluster for p > 1/2) are ‘well distributed’. This can be
expressed in the following way (channel property): there exist constants c(p) > 0 and c1(p) > 0
such that a.s. for any δ, 0 < δ ≤ 1 there is a large enough number N0 = N0(ω, δ) such that for
all N > N0 and any square of size length δN contains at least c(p)δN disjoint weak channels
which connect opposite sides of the square. Moreover, the length of each such a channel does
not exceed c1(p)δN .

3 Randomly distributed defects

We fix the probability p of strong connections and choose a realization ω (naively, we toss a
coin at each lattice connection) and, with this realization fixed, we consider the energy of the
corresponding membrane

Eω
ε (u) =

1
2

∑
α,β

ε2fε
ω(γ)

(u(α)− u(β)
ε

)
,

where
γ =

α + β

2
, fε

1 (z) = z2, fε
−1(z) = fε(z),

with fε the weak membrane energy density defined above.
At the two extreme cases we have:
• p = 0 (zero probability of strong connections) then we almost surely are in the case of the

weak membrane, and the Γ-limit is

F 0(u) =
∫

Ω

|∇u|2 dx +
∫

S(u)

‖νu‖1 dHN−1

defined on SBV (Ω);
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• p = 1 (strong connections with probability one) then we almost surely are in the case of
the ‘strong’ membrane, and the Γ-limit is simply

F 1(u) =
∫

Ω

|∇u|2 dx

on H1(Ω).
We will show that
(1) the percolation threshold p = 1/2 separates two different regimes. Fracture may appear

only below this threshold;
(2) below the percolation threshold the Γ-limit is of fracture type, and the surface interaction

energy is described by the asymptotic chemical distance ϕp only, being independent of ω, and is
given by

F p(u) =
∫

Ω

|∇u|2 dx +
∫

S(u)

ϕp(νu) dHN−1

defined on SBV (Ω). This means that fracture essentially occurs on the weak cluster, and that
the energy density is simply obtained by minimizing the length of the fracture paths;

(3) above the percolation threshold the effect of the weak connections is negligible, and the
overall behavior is simply described by the Dirichlet integral, independently of p > 1/2.

4 The supercritical case

We first treat the case p > 1/2. In this case we already have an upper bound since

Eω
ε (u) ≤ E1

ε (u) :=
1
2

∑
α,β

(u(α)− u(β))2 =
1
2

∑
α,β

ε2
(u(α)− u(β)

ε

)2

,

and the Γ-limit of the latter is the Dirichlet integral. We only have to prove the lower bound
inequality.

To this end, we use an indirect argument: first, we use the coerciveness of the discrete energies
for the weak membrane to deduce that we may suppose that the limit of a sequence such that
Eω

ε (uε) is equi-bounded is indeed in SBV (Ω); subsequently, we use the percolation properties to
show that the discontinuity set of the limit function u must be negligible and hence u ∈ H1(Ω).
The final equality then follows since on H1(Ω) all limits coincide with the Dirichlet integral.

First step. We use the inequality fε
ω(γ) ≥ fε to check that

Eω
ε (u) ≥ E0

ε (u) :=
1
2

∑
α,β

ε2fε
(u(α)− u(β)

ε

)
.

Let uε → u; we deduce that supε E0
ε (uε) is equi-bounded and then that u ∈ GSBV (Ω). Moreover

we have the lower bound
lim inf

ε
Eω

ε (uε) ≥ F 0(u).

Since F 0 = F 1 on H1(Ω), it will suffice to prove that u ∈ H1(Ω).
Second step. We now prove that H1(S(u)) = 0. This shows that u ∈ H1(Ω) and concludes

the proof. We will actually prove more: for any fixed any c > 0 the number of points in S(u)
such that |u+(x)− u−(x)| ≥ c is finite.

Take any N such points x1, . . . , xN . Let νi = νu(xi), and fix ρ > 0 such that the cubes
Qνi

ρ (xi) of side length ρ, center xi and one side orthogonal to νi have disjoint closures.
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We now estimate the contribution to the total energy due to the interactions contained in
Qν1

ρ (x1). Upon a translation we can suppose x1 = 0. We may take ρ small enough so that it
is not restrictive to suppose that |u(x) − u(y)| ≥ c/2 if x ∈ S+

ρ and y ∈ S−ρ , where S±ρ are the
two sides of Qνi

ρ orthogonal to ν; we may also suppose that |uε(x) − uε(y)| ≥ c/4 for such x, y.
We now use the channel property of the strong cluster (after scaling) to deduce that for ε small
enough there are at least c(p)ρ/ε disjoint strong channels Cj joining S−ρ and S+

ρ , of length at
most c1ρ. If x, y are points in S−ρ and S+

ρ belonging to the same strong channel, we can estimate

c

4
≤ |uε(x)− uε(y)| ≤

∑
x′,y′

ε
∣∣∣uε(x′)− uε(y′)

ε

∣∣∣
≤ √

c1ρ

√√√√∑
x′,y′

ε
∣∣∣uε(x′)− uε(y′)

ε

∣∣∣2,
where the sum is performed over ordered neighboring x′, y′ along the same strong channel, so
that

c2ε

16c1ρ
≤

∑
x′,y′

ε2
∣∣∣uε(x′)− uε(y′)

ε

∣∣∣2.
We sum up over all disjoint strong channels to obtain

c2c(p)
16c1

≤
∑
Cj

∑
x′,y′

ε2
∣∣∣uε(x′)− uε(y′)

ε

∣∣∣2 ≤ 1
2

∑
α,β

ε2fε
ω

(u(α)− u(β)
ε

)
,

where the sum is performed over all pairs α, β in Qν1
ρ .

Since the Qνi
ρ (xi) are disjoint we can repeat the reasoning for all i = 1, . . . , N , and deduce

the estimate
N ≤ 16c1

c2c(p)
Eω

ε (uε)

on the number of such points, as desired.

5 The subcritical case

In the subcritical case we have to prove both an upper and a lower bound. Again, we can use a
comparison argument with the weak-membrane energies to deduce that the limit of a sequence
with equi-bounded energy is a function in GSBV (Ω).

We want to give a ‘local’ estimate on the limit energy. To this end, we define

Eω
ε (u, A) =

1
2

∑
α,β∈A

ε2fε
ω(γ)

(u(α)− u(β)
ε

)
,

where we limit to interactions such that α, β ∈ A.
Let uε → u. We may suppose that u ∈ L∞(Ω), upon a truncation argument, and hence that

u ∈ SBV (Ω). Fix c > 0, δ > 0 and take x ∈ S(u) such that |u+(x) − u−(x)| ≥ c and for all ρ
small enough

lim inf
ε

Eω
ε

(
uε, R

νu(x)
δ,ρ (x)

)
≤ ρ(ϕp(νu(x))− 3δ), (1)

where Rν
δ,ρ(x) is the rectangle of center x, one side of length ρ orthogonal to ν and the other

side of length δρ. With fixed ρ we may suppose that uε → u on the two sides S±ρ (x) of R
νu(x)
δ,ρ (x)

that are orthogonal to νu(x).
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We can give an estimate on the size of the set of indices γ such that the corresponding
α, β ∈ R

νu(x)
δ,ρ (x), and

ω(γ) = −1,
∣∣∣uε(α)− uε(β)

ε

∣∣∣2 >
1
ε
.

If we denote by Iε(ρ) such set of indices, by (1) we have (upon passing to a subsequence of ε)

#(Iε(ρ)) ≤ ρ

ε
(ϕp(νu(x))− 2δ)

for ρ small enough. In the complement of this set the interactions are quadratic (either because
ω(γ) = 1 or because the difference quotient is below the threshold 1/

√
ε).

We then deduce that we may find c(δ)ρ
ε paths in the complement of Iε(ρ). In fact, upon

scaling and setting T = ρ
ε , if this were not true then we could find a path L connecting two

points γ, γ′ with γ − γ′ = Tν such that |L| ≤ (ϕp(νu(x))− δ)T and with a percentage of strong
connection less than c(δ).

At this point, we have a fixed percentage of paths where we can reason as in the supercritical
case, to deduce in particular that for all c > 0

H1({x ∈ S(u) : |u+(x)− u−(x)| ≥ c, (1) holds}) = 0,

and hence that for H1-almost all x ∈ S(u)

lim inf
ε

Eω
ε

(
uε, R

νu(x)
δ,ρ (x)

)
≥ ρ(ϕp(νu(x))− 3δ). (2)

By a covering argument of (compact sets of) S(u) by rectangles R
νu(x)
δ,ρ (x), (2) and the lower

bound coming from the weak membrane (applied to the complement of such sets), for all σ > 0
we deduce that

lim inf
ε

Eω
ε (uε) ≥

∫
Ω

|∇u|2 dx +
∫

S(u)

(ϕp(νu(x))− 3δ) dH1 − σ,

and the lower bound by the arbitrariness of δ and σ.

It remains to check the upper bound. As usual we do not consider a general target function u,
but limit our analysis to u in a ‘dense class’, the general case being obtained by approximation.
In this case, we can consider u such that S(u) is a finite union of segments, and u ∈ C1(Ω \
S(u)) ∩H1(Ω \ S(u)).

We only treat the case when S(u) = (−1/2, 1/2)×{0}, since our argument is local and can be
easily extended to all orientations of S(u). We fix δ > 0 consider the rectangle 1

ε ([−1/2, 1/2] ×
[0, δ])). We apply our percolation properties in a slightly different ‘dual’ way: we identify each
point/segment γ ∈ Z with the orthogonal segment with the same middle point. This identi-
fication defines a ‘dual’ lattice Z ′, in which we may find a path L′ε of weak connections (i.e.,
still ω(γ) = −1) joining the two opposite ‘vertical’ sides of 1

ε ((−1/2, 1/2) × (0, δ)) and with
|L′ε| ≤ (ϕp(e2) + δ).

The path L′ε divides 1
ε ([−1/2, 1/2] × [0, δ]) in two connected components that we denote by

R+
ε and R−ε (the latter the one containing 1

ε [−1/2, 1/2]× {0}). We then simply define:

uε(α) =
{

u(α1, 0) if α/ε ∈ R−ε
u(α) otherwise.
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Note that for ε small enough the set of γ ∈ εZ2 such that∣∣∣uε(α)− uε(β)
ε

∣∣∣2 >
1
ε

is contained in εL′ε ∪ ({−1/2} × (0, δ)) ∪ ({1/2} × (0, δ)), and hence we have

lim sup
ε

Eω
ε (uε) ≤

∫
Ω

|∇u|2 dx +H1(S(u))ϕp(e2) + 2δ.

Now we may further extract a diagonal subsequence in δ and obtain a sequence, still denoted by
(uε), such that uε → u and

lim sup
ε

Eω
ε (uε) ≤

∫
Ω

|∇u|2 dx +H1(S(u))ϕp(e2) =
∫

Ω

|∇u|2 dx +
∫

S(u)

ϕp(νu) dH1,

as desired.
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