
2. Finite-difference systems

1 Introduction

In the past years a number of researches have been devoted to the study of discrete systems with
a large number of interactions viewed as a variational limit of energies indexed by the number
of nodes of the system. In this framework the setting in which we have a fairly complete set of
results is that of central interactions for lattice systems; i.e., systems where the reference positions
of the interacting points lie on a prescribed lattice, whose parameters change as the number of
points increases, and each point of the lattice interacts separately with each other point. In more
precise terms, we consider an open set Ω ⊂ Rn and take as reference lattice Zε = Ω ∩ εZn. The
general form of a pair-potential energy is then

Eε(u) =
∑

i,j∈Zε

fε
ij(u(i), u(j)), (1.1)

where u : Zε → Rm. The analysis of energies of the form (1.1) has been performed under various
hypotheses on fij . The first simplifying assumption is that F is invariant under translations (in
the target space); that is,

fε
ij(u, v) = gε

ij(u− v). (1.2)

Furthermore, an important class is that of homogeneous interactions (i.e., invariant under trans-
lations in the reference space); this condition translates into

fε
ij(u, v) = gε

(i−j)/ε(u, v). (1.3)

If both conditions are satisfied, we may rewrite the energies Eε above as

Eε(u) =
∑

k∈Zn

∑
i,j∈Zε,i−j=εk

εnψε
k

(u(i)− u(j)
ε

)
, (1.4)

where ψε
k(ξ) = ε−ngε

k(εξ). In this new form the interactions appear through the (discrete)
difference quotients of the function u. Upon identifying each function u with its piecewise-
constant interpolation (extending the definition of u arbitrarily outside Ω), we can consider
Eε as defined on (a subset of) L1(Ω; Rm), and hence consider the Γ-limit with respect to the
L1

loc-topology. Under some coerciveness conditions the computation of the Γ-limit will give a
continuous approximate description of the behaviour of minimum problems involving the energies
Eε for ε small (see further for definitions, and [11] for a quick introduction to the subject). The
scaling in (1.4) is heuristically motivated by interpreting u(i)−u(j)

ε as the (scaled) gradient of
the piecewise-affine interpolation uε of u, and εn as an integral factor. In the case of only
nearest-neighbor interactions in one space dimension for example, we may rewrite

Eε(u) =
∑
i∈Zε

εψε
(u(i+ ε)− u(i)

ε

)
≈

∫
Ω

ψε(u′) dt.
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1.1 Some convergence results. Continuum energies on Sobolev spaces

Now we address the following question:
• given a sequence of energies Eε, do we have some limit energy (up to subsequences)? is

this limit a ‘local’ integral energy?
Growth conditions on the energy densities ψε

k imply correspondingly boundedness conditions
on gradient norms of piecewise-affine interpolations of functions with equi-bounded energy. The
simplest type of growth condition that we encounter is on nearest neighbours; i.e., for |k| = 1. If
p > 1 exists such that

c1|z|p − c2 ≤ ψε
k(z) ≤ c2(1 + |z|p) (1.5)

(c1, c2 > 0 for |k| = 1), and if ψε
k ≥ 0 for all k then the energies are equi-coercive: if (uε) is

a bounded sequence in L1(Ω; Rm) and supεEε(uε) < +∞, then from every sequence (uεj
) we

can extract a subsequence converging to a function u ∈ W 1,p(Ω; Rm). In this section we will
consider energies satisfying this assumption. Hence, their Γ-limits are defined in the Sobolev
space W 1,p(Ω; Rm).

Remark 1.1 (conditions for the limit to be finite on W 1,p) The energies Eε can also be
seen as an integration with respect to measures concentrated on Dirac deltas at the points of
Zε × Zε. If each ψε

k satisfies a growth condition

ψε
k(z) ≤ cεk(1 + |z|p),

then we have

Eε(u) ≤
∫

Ω×Ω

(1 + |u(x)− u(y)|p)dµε(x, y) ,

where

µε =
∞∑

k∈Zn

∑
i−j=εk, i,j∈Zε

cεk
1
εp
δ(i,j).

A natural condition for the finiteness of the limit of Eε is the equi-boundedness of these measures
(as ε→ 0), regardless to the set Ω; namely, (taking into account that the number of interaction
at range εk is proportional to (diam Ω/ε)− |k|)

lim sup
ε→0

∑
|k|≤K/ε

(K − ε|k|)n−1

εp+n
cεk < +∞

for each fixed K > 0 (for fixed Ω this condition is applied with K = diam Ω). However, under
such assumption, example can be shown exhibiting a non-local Γ-limit, of the form

F (u) =
∫

Ω

f(∇u(x)) dx+
∫

Ω×Ω

ψ(u(x)− u(y))dµ(x, y),

where µ is the weak∗-limit of the measures µε outside the ‘diagonal’ of Rn × Rn. (see [10] for
more detailed examples).

Under some decay conditions, such long-range behaviour may be ruled out: the following
compactness result proved by Alicandro and Cicalese [1] shows that a wide class of discrete
systems possesses a ‘local’ continuous limit. We state it in a general ‘space-dependent’ case.
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Theorem 1.2 (compactness) Let p > 1 and let ψε
k satisfy:

(i) (coerciveness on nearest neighbours) there exits c1 > 0 such that for all (x, z) ∈ Ω × Rm

and i ∈ {1, . . . , n}
c1|z|p − c2 ≤ ψε

ei
(x, z) (1.6)

(ii) (decay of long-range interactions) for all (x, z) ∈ Ω× Rm, and k ∈ Zn

ψε
k(x, z) ≤ cεk(1 + |z|p), (1.7)

where cεk satisfy

(H1): lim sup
ε→0+

∑
k∈Zn

cεk < +∞;

(H2): for all δ > 0 Mδ > 0 exists such that lim sup
ε→0+

∑
|k|>Mδ

cεk < δ.

Let Eε be defined by

Eε(u) =
∑

k∈Zn

∑
i∈Rk

ε

εnψε
k

(
i,
u(i+ εk)− u(i)

ε|k|

)
,

where Rk
ε := {i ∈ Zε : i + εk ∈ Zε}. Then for every sequence (εj) of positive real numbers

converging to 0, there exists a subsequence (εjk
) and a Carathéodory function f : Ω × Rd×N

satisfying
c(‖M‖p − 1) ≤ f(x,M) ≤ C(‖M‖p + 1),

with 0 < c < C, such that (Eεjk
(·)) Γ-converges with respect to the Lp(Ω)-topology to the func-

tional F : Lp(Ω) → [0,+∞] defined as

F (u) =


∫

Ω

f(x,∇u) dx if u ∈W 1,p(Ω; Rm)

+∞ otherwise.

(1.8)

Moreover, for any u ∈W 1,p(Ω) and A ∈ A(Ω),

Γ- lim
k
Fεjk

(u,A) =
∫

A

f(x,∇u) dx.

Remark 1.3 (multi-phase limits) The condition of coerciveness on nearest-neighbors is the
easiest one that ensure that the limit is described by just one variable. The trivial counterexample
to this in one dimension is when only second neighbors are taken into account; e.g.,

Eε(u) =
∑

i

ε
∣∣∣u(i+ 2ε)− u(i)

ε

∣∣∣2.
In this case the lattices of even and odd interactions are completely decoupled, and the correct
limit is described by two variables

F (u1, u2) =
1
2

∫
Ω

(|u′1|2 + |u′2|2) dt,
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where, for example, u is the limit of interpolations in the ‘even’ lattice and v the limit of inter-
polations in the ‘odd’ one. We may even have a more complex situation, as in the example

Eε(u) =
∑

i

ε
(∣∣∣u(i+ 2ε)− u(i)

ε

∣∣∣2 + |u(i+ ε)− u(i)|2
)
,

where c1 = ε, and the limit is

F (u1, u2) =
1
2

∫
Ω

(|u′1|2 + |u′2|2) dt+
∫

Ω

|u1 − u2|2 dt,

with a coupling between u1 and u2. This type of limits arise in some kinds of homogenization
problems in the continuum, where some complex geometries are usually involved. It must be
remarked that their appearance seems much more ‘natural’ in a discrete setting.

Coerciveness conditions on nearest neighbors may be obtained indirectly; for examples in
dimension one by difference by requiring an analogous growth condition both on second and
third neighbors.

Remark 1.4 (homogenization) In the case of energies defined by a scaling process; i.e., when

ψε
k(x, z) = ψk

(z
ε

)
, (1.9)

then the limit energy density ϕ(M) = f(x,M) is independent of x and of the subsequence, and
is characterized by the asymptotic homogenization formula

ϕ(M) = lim
T→+∞

1
TN

min {FT (u), u|∂QT
= Mi} , (1.10)

where QT = (0, T )N ,

FT (u) =
∑

k∈Zn

∑
i∈Rk

1 (QT )

ψk

(
u(i+ k)− u(i)

|k|

)

and u|∂QT
= Mi means that “near the boundary” of QT the function u is the discrete interpola-

tion of the affine functionMx (see [1] for further details). In the one-dimensional case this formula
was first derived in [18] (see also (3.4) below), and it is the discrete analog of the nonlinear asymp-
totic formula for the homogenization of nonlinear energies of the form Gε(u) =

∫
Ω
g(x/ε,Du) dx,

that reads
ϕ(M) = lim

T→+∞

1
TN

inf
{
GT (u) : u = Mx on ∂QT

}
,

where now
GT (u) =

∫
QT

g(y,Du) dy

(see [14] for exact statements and hypotheses on g). Note however that the two formulas differ
in two important aspects: the first is that (1.10) transforms functions depending on difference
quotients (hence,vectors or scalars) into functions depending on gradients (hence, matrices or
vectors, respectively); the second one is that the boundary conditions in (1.10) must be carefully
specified, since we have to choose whether considering or not interactions that may ‘cross the
boundary’ of QT .
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Remark 1.5 (special cases) It is worth examining formula (1.10) in some special cases. First,
if all ψk are convex then, apart from a possible lower-order boundary contribution, the solution
in (1.10) is simply ui = Mi. In this case the Γ-limit coincides with the pointwise limit. Note
that convexity in a sense always ‘trivializes’ discrete systems, in the sense that their continuous
counterpart, obtained by simply substituting difference quotients with directional derivatives
is already lower semicontinuous, and hence provides automatically an optimal lower bound.
However, in some cases constraints are worse expressed in the continuous translation rather
than in the original lattice notation, so that a direct treatment of the discrete system is easier.
A striking and simple example is the computation of bounds for composite linear conducting
networks as shown by Braides and Francfort [15].

Next, if only nearest-neighbour interactions are present then it reduces to

ϕ(M) =
n∑

i=1

ψ∗∗i (Mei),

where ψi = ψei and f∗∗ denotes the lower semicontinuous and convex envelope of f . Note
that convexity is not a necessary condition for lower semicontinuity at the discrete level: this
convexification operation should be interpreted as an effect due to oscillations at a ‘mesoscopic
scale’ (i.e., much larger than the ‘microscopic scale’ ε but still vanishing as ε → 0). If not only
nearest neighbours are taken into account then the mesoscopic oscillations must be coupled with
microscopic ones (see [18, 32] and the next section).

Finally, note that also in the non-convex case (the relaxation of) the pointwise limit always
gives an upper bound for the Γ-limit and is not always trivial (see e.g. the paper by Blanc, Le
Bris and Lions [8]).

1.2 Microscopic oscillations: the Cauchy-Born rule

One issue of interest in the study of discrete-to-continuous problems is whether to a ‘macro-
scopic’ gradient there corresponds at the ‘microscopic’ scale a ‘regular’ arrangements of lattice
displacement. For energies deriving from a scaling process as in (1.9) this can be translated
into the asymptotic study of minimizers for the problems defining ϕ(M); in particular whether
ui = Mi is a minimizer (in which case we say that the (strict) Cauchy-Born rule holds at M),
or if minimizers tend to a periodic perturbation of Mi; i.e. ground states are periodic (in which
case we say that the weak Cauchy-Born rule holds at M). Note that the strict Cauchy-Born rule
can be translated into the equality

ϕ(M) =
∑

k∈ZN

ψk

(Mk

|k|

)
, (1.11)

and that it always holds if all ψk are convex, as remarked above.
A simple example in order to understand how the validity and failure of the Cauchy-Born

rule can be understood in terms of the form of ϕ is given by the one-dimensional case with
next-to-nearest neighbours; i.e. when only ψ1 and ψ2 are non zero. In this case ϕ = ψ∗∗, where

ψ(z) = ψ2(2z) +
1
2

min
{
ψ1(z1) + ψ1(z2) : z1 + z2 = 2z

}
. (1.12)

The second term, obtained by minimization, is due to oscillations at the microscopic level:
nearest neighbours rearrange so as to minimize their interaction coupled with that between
second neighbours (see [11] for a simple treatment of these one-dimensional problems). In this
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case we can read the microscopic behaviour as follows (for the sake of simplicity we suppose that
the minimum problem in (1.12) has a unique solution, upon changing z1 into z2):
(i) first case: ψ is convex at z (i.e., ψ(z) = ϕ(z)). We have the two cases

(a) ψ(z) = ψ1(z) +ψ2(z); in this case z = z1 = z2 minimizes the formula giving ϕ and (1.11)
holds; hence, the strict Cauchy-Born rules applies;

(b) ψ(z) < ψ1(z) + ψ2(z); in this case we have a 2-periodic ground state with ‘slopes’ z1 and
z2, and the weak Cauchy-Born rules applies;
(ii) second case: ψ is not convex at z (i.e., ψ(z) > ϕ(z)). In this case the Cauchy-Born rule
is violated, but a finer analysis (see below) shows that minimizers are fine mixtures of states
satisfying the conditions above; hence the condition holds ‘locally’.

For energies in higher-dimensions this analysis is more complex. A similar argument as in the
one-dimensional case is used in [28] to show the non-validity of the Cauchy-Born rule even for
some types of very simple lattice interactions in dimension two, with nonlinearities of geometrical
origin.

Finally, it must be noted that formula (1.10) does not simplify even in the simplest case of
three levels of interactions in dimension one (as suggested by the physical literature as in [30]),
thus showing that this effect, typical of nonlinear homogenization, is really due to the lattice
interactions and not restricted to vector-valued functions as in the case of homogenization on
the continuum.

Higher-order developments: phase transitions

In the case of failure of the Cauchy-Born rule, non-uniform states may be preferred as minimizers,
and surface energies must be taken into account in their description. A first attempt to rigor-
ously describe this phenomena can be found in Braides and Cicalese [12], again in the simplest
nontrivial case of next-to-nearest neighbour interactions of the form independent of ε. In that
case, using the notion of equivalence by Γ-convergence (see [19]) we may infer that (under some
technical assumptions) the discrete systems are equivalent to the perturbation of a non-convex
energy on the continuum, of the form∫

Ω

ψ(u′) dt+ ε2C

∫
Ω

|u′′|2 dt,

thus recovering a well-known formulation of the gradient theory of phase transitions. This result
shows that a surface term (generated by the second gradient) penalizes high oscillations between
states locally satisfying some Cauchy-Born rule.

1.3 Continuous energies on functions of bounded variation

In this paper we extend the homogenization formula as above for systems whose continuous
counterpart is naturally defined on some set of functions of bounded variation (see below for
definitions). In particular we will consider energies defined on the Ambrosio-De Giorgi SBV
spaces (see [6, 25, 4, 9]). In the one-dimensional case we can picture a function u ∈ SBV (a, b)
as a piecewise-Sobolev functions. If denoting by S(u) its set of discontinuity points, then (local,
homogeneous and translation-invariant) energies on SBV (a, b) are of the form

E(u) =
∫ b

a

f(u′(x)) dx+
∑

t∈S(u)

g([u](t)), (1.13)

where u±(t) are the right and left-hand side limits of u at t.
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The pioneering example for this case is due to Chambolle [20], who treated the limit of some
finite-difference schemes in Computer Vision (see [7]), producing as the continuum counterpart
the one-dimensional version of the Mumford-Shah functional ([31]). That is however a ‘limit’
case when the potential is a truncated quadratic function and the decoupling process between
bulk and surface parts is obtained by considering the effect of the quadratic and constant parts
separately. A different approach is started in a subsequent paper by Braides, Dal Maso and
Garroni [13], who consider potentials of convex-concave type and express the limit in terms of
different scalings of the two parts (the same type of interactions are analyzed by Truskinovsky
[35]).

The general case of nearest-neighbour interactions has been treated by Braides and Gelli in
[17], where the following result is proved (for missing definitions see the sections below).

Theorem 1.6 (Nearest-neighbour interactions) Let Ω = (a, b) and let ψε : R → [0,+∞] satisfy

ψε(z) ≥ c1|z|p − c2 for all z < 0 (1.14)

for some p > 1 and c1 > 0, and let Eε be given by

Eε(u) =
∑

i,i+ε∈Zε

εψε

(u(i+ ε)− u(i)
ε

)
.

Let Tε ∈ R be an arbitrary sequence satisfying

lim
ε→0+

Tε = +∞, lim
ε→0+

εTε = 0, (1.15)

and let Fε, Gε : R → [0,+∞] be defined by

Fε(z) =
{
ψε(z) z ≤ Tε

+∞ z > Tε
(1.16)

Gε(z) =

{
εψε

(z
ε

)
if z > εTε

+∞ otherwise.
(1.17)

Assume that there exist F,G : R → [0,+∞] such that (note that this assumption is always
satisfied, upon extracting a subsequence)

Γ- lim
ε→0+

F ∗∗ε = F on R, (1.18)

Γ- lim
ε→0+

sub−Gε = G on R \ {0}, (1.19)

where sub−g is the lower semicontinuous and subadditive envelope of g. Then, (Eε)ε Γ-converges
to E with respect to the convergence in L1

loc(0, L) and the convergence in measure, where

E(u) =



∫ b

a

F (u̇) dx+
∑
S(u)

G([u]) + σDu+
c (0, L)

if u ∈ BVloc(0, L) Dcu
− = 0 and [u] > 0 on S(u)

+∞ otherwise in L1(0, L),

where F and G are defined by (for notation convenience we set G(0) = 0)

F (z) := inf{F (z1) +G0(z2) : z1 + z2 = z},
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G(z) := inf{F∞(z1) +G(z2) : z1 + z2 = z},

and σ := F
∞

(1), where F∞(z) = lim
z→+∞

F (z)
z and G0(z) = lim

z→0+

G(z)
z .

The fundamental issue here is the separation of scale effect highlighted by equations (1.16)–
(1.17), that allows to derive the bulk and surface energy densities of the limit from the discrete
interactions. In this paper, always remaining in the one-dimensional framework, we show how
in the case of long-range interactions this scale separation can be coupled with the nonlinear
homogenization process described in formula (1.10) (see Theorem 3.2 further on). The general
n-dimensional vector-valued case can be dealt with by using the localization and integral repre-
sentation methods of Γ-convergence [2]). Particular cases when a simpler description of the limit
energy densities is possible are treated in [21, 22, 16].

1.4 Some results on non-central interactions

Going back to the initial paragraph of this Introduction it is worth remarking once more that all
the results listed so far are concerned with “central interactions” that is, energies obtained by
summing up “pairwise” interactions depending on the distance u(i)−u(j). From a general point
of view it will be interesting also to study energies of type Eε(u) =

∑
i∈Zε

E
(i)
ε (u) where E(i)

ε (u) is
the energy of a single node i given by a potential ψε

i (u) = ψε(u(i), u(j1), . . . , u(jm)) accounting for
interactions between i and all the nodes j1, . . . , jm lying in a fixed neighbourhood of i, suggested
by the crystalline structure underlying the model (for example a slanted or regular polyhedrum
generated by fixed directions). In case ψε(u(i), u(j1), . . . , u(jm)) =

∑
`=1,...,m ψε(u(i), u(j`)) one

goes back to the previous case but in general these interactions may have a more complex form.
Actually this kind of approach has revealed to be successful (and also necessary) in order to
approximate with difference schemes the functional describing the linearized elastic energy of a
body with prescribed Lamè constants.

In [3] Alicandro, Focardi and Gelli have applied this approach including also the possibility
of fracture and have given a variational approximation by difference schemes of the functional

µ

∫
Ω

|Eu|2 dx+
λ

2

∫
Ω

|div(u)|2 dx+
∫

Ju

Φ([u], νu) dHN−1 (1.20)

defined on the space SBD(Ω) of integrable functions u whose symmetrized distributional deriva-
tive E(u) is a bounded Radon measure with density Eu with respect to the Lebesgue measure
and with singular part concentrated on an (N − 1)-dimensional set Ju on which it is possible to
define a normal νu and a jump [u] (defined in a weak sense; see [6] for precise definitions).

For such a functional an approximation with energies of type (1.4) leads as limit to a proper
subclass of functionals in (1.20); more precisely, those with coefficients µ and λ related by a fixed
ratio (according to the classical computation of the Cauchy relations starting from a lattice with
pairwise interactions). Here the right energies to be considered are of the form

Eε(u) =
∑
i∈Zε

∑
k∈ZN

ψε
k(Dk

εu(i) + θdivk
εu(i))

where Dk
εu, divk

εu are proper discretizations of ∇u and div u, respectively, obtained by the
interactions of i with the nodes j` lying along each coordinate directions and having discrete
distance along each coordinate equal to k (j` = i± ke`) and θ is a positive parameter (for more
details we refer to [3]). Another type of “non-central” interactions has been studied by Focardi
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and Gelli in [27] to approximate functionals of Fracture Mechanics with prescribed quasi-convex
bulk density and subadditive surface density, that is functionals of the form∫

Ω

ψ(∇u) dx+
∫

Ju

g
(
u+ − u−, νu

)
dH2

defined for u ∈ SBV (Ω; R3), where here Ω is an open set in R3, ψ and g are assigned. In this
last case the energy potentials considered take into account the interactions between the vertices
of given simplices chosen in order to provide a regular triangulation of Z3.

For the sake of completeness it must be mentioned that according to the variational nature
of the approximations all these convergence results lead to the study of convergence of minimum
problems. To this regard we have to remark that in the case of the so called “long-range inter-
actions” for functional allowing for fracture (that is, when the limit energy presents a non-zero
surface part) more than one type of boundary-value problem can be formulated and an effect of
boundary layer also occurs. The problem was first studied by Braides and Gelli in [16] where
two type of problems where treated. The first one is to define discrete functions on the whole
εZN and to fix the values on the nodes outside the domain Ω equal to a fixed function ϕ; in this
case the interactions ‘across the boundary of Ω’ give rise to an additional boundary term in the
limit energy of the type ∫

∂Ω

G(γ(u)− ϕ, ν∂Ω) dHN−1 (1.21)

where γ(u) is the inner trace of u with respect to ∂Ω (i.e.,

γ(u)(x) = lim
ρ→0+

−
∫

B(x,ρ)∩Ω

u(y) dy).

The second method consists in considering the functions as fixed only on ∂Ω that is, only a proper
subset of pairwise interactions are linked with the constraint; in this case, the boundary term
gives a different contribution, corresponding to a boundary-layer effect. Indeed, the additional
term is still of type (1.21) but with the surface density G′ strictly less than G, the gap magnifying
with the range of interaction considered.

2 Lattice systems with limits defined in BV

We finally state and prove a theorem in a simple one-dimensional setting, with limit defined
on functions of bounded variation. We include some preliminary definitions for the sake of
completeness.

For a set A of R we denote intA the interior of A. We write sgn t and [t] to denote the sign of
t and the integer part of t, respectively. We write L1(A) or |A| to denote the Lebesgue measure
of A ⊂ R, # for the counting measure and δt for the Dirac mass at t. We use standard notation
for Sobolev and Lebesgue spaces. If φ is a measurable function then −

∫
B
φdx is its mean value

on the set B. If µ is a (signed) Borel measure then µ+ and µ− denote its positive and negative
parts, respectively, and |µ| its total variation; if B is a Borel set, then the measure µ B is
defined as µ B(A) := µ(A ∩ B). The letter c will denote a strictly positive constant whose
value may vary from line to line.

2.1 Functions of bounded variation

We recall that the space BV (a, b) of functions of bounded variation on (a, b) is defined as the
space of functions u ∈ L1(a, b) whose distributional derivative Du is a signed Borel measure. For
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each such u there exists f ∈ L1(a, b), a (at most countable) set S(u) ⊂ (a, b), a sequence of real
numbers (at)t∈S(u) with

∑
t |at| < +∞ and a non-atomic measure Dcu singular with respect to

the Lebesgue measure such that the equality of measures Du = f L1 +
∑

t∈S(u) atδt + Dcu
holds. It can be easily seen that for such functions the left hand-side and right hand-side
approximate limits u−(t), u+(t) exist at every point, and that S(u) = {t ∈ R : u−(t) 6= u+(t)}
and at = u+(t) − u−(t) =: [u](t). We will write u′ = f , which is an approximate gradient of u.
Dcu is called the Cantor part of Du. A sequence uj converges weakly to u in BV (a, b) if uj → u
in L1(a, b) and supj |Duj |(a, b) < +∞.

The space SBV (a, b) of special functions of bounded variation is defined as the space of
functions u ∈ BV (a, b) such that Dcu = 0; i.e., whose distributional derivative Du can be
written as Du = u′ L1 +

∑
t∈S(u)(u

+(t) − u−(t))δt. This notation describes a particular case
of a SBV -functions space as introduced by De Giorgi and Ambrosio [25]. We will mainly deal
with functionals whose natural domain is that of piecewise-W 1,p functions, which is a particular
sub-class of SBV (a, b) corresponding to the conditions u̇ ∈ Lp(a, b) and #(S(u)) < +∞, but we
nevertheless use the more general SBV notation for future reference and for further generalization
to higher dimensions (see [5]). For an introduction to BV and SBV functions we refer to the
book by Ambrosio, Fusco and Pallara [6], while approximation methods for free-discontinuity
problems are discussed by Braides [9].

A class of energies on SBV (a, b) are those of the form (1.13) with f, g : R → [0,+∞]. Lower
semicontinuity conditions on E are equivalent to requiring that f is lower semicontinuous and
convex and g is lower semicontinuous and subadditive; i.e., g(x + y) ≤ g(x) + g(y). The latter
can be interpreted as a condition penalizing fracture fragmentation, whereas convexity penalizes
oscillations. If ϕ is not lower semicontinuous and convex (respectively, subadditive) then we
may consider its lower semicontinuous and convex (respectively, subadditive) envelope; i.e., the
greatest lower semicontinuous and convex (respectively, subadditive) function not greater than
ϕ, that we denote by ϕ∗∗ (respectively, sub−ϕ). For a discussion on the role of these conditions
for the lower semicontinuity of E we refer to [9] Section 2.2 or [11]. Energies in BV must satisfy
further compatibility conditions between f and g.

2.2 Γ-convergence

We recall the definition of De Giorgi’s Γ-convergence in a metric space space (X, d): given a
family of functionals Fn : X → [0,+∞], n ∈ N, for u ∈ X we define the Γ-lower limit and
Γ-upper limit of (Fn) as

F ′(u) = Γ(d)- lim inf
n

Fn(u) := inf
{

lim inf
n

Fn(un) : lim
n
d(un, u) = 0

}
, (2.1)

and
F ′′(u) = Γ(d)- lim sup

n
Fn(u) := inf

{
lim sup

n
Fn(un) : lim

n
d(un, u) = 0

}
. (2.2)

Note that the functions F ′ and F ′′ are lower semicontinuous. If these two quantities coincide
then their common value is called the Γ-limit of the sequence (Fn) at u, and is denoted by
Γ- limn Fn(u) or Γ(d)- limn Fn(u). Equivalently, F (u) = Γ-limn Fn(u) if and only if the two
following conditions are satisfied:

(i) (lower semicontinuity inequality) for all sequences (un) converging to u in X we have
F (u) ≤ lim infn Fn(un);

(ii) (existence of a recovery sequence) there exists a sequence (un) converging to u in X such
that F (u) ≥ lim supn Fn(un).

We will use as d the L1-metric or a metric giving convergence in measure.
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For a comprehensive study of Γ-convergence we refer to the books of Dal Maso [24] and
Braides [11] (see also [14] Part II). The reason for the introduction of this notion is explained by
the following fundamental theorem.

Theorem 2.1 Let F = Γ-limn Fn, and let a compact set K ⊂ X exist such that infX Fn =
infK Fn for all n. Then

∃min
X

F = lim
n

inf
X
Fn.

Moreover, if (un) is a converging sequence with limn Fn(un) = limn infX Fn then its limit is a
minimum point for F .

3 Statement of the result

With fixed L > 0, consider an open interval (0, L) of R and for n ∈ N let λn = L/n. This
parameter will play the role played by ε in the Introduction. We use the notation xi

n = iλn.
We define An(0, L) as the set of discrete functions u : λnZ ∩ [0, L] → R. This set will be
identified as the subset of L1(0, L) of functions constant almost everywhere on each interval(
xi

n −
λn

2
, xi

n +
λn

2
)
, i ∈ {1, . . . , n}.

Let K ∈ N be fixed and for n ∈ N and j ∈ {1, . . . ,K} let ψj
n : R → (−∞,+∞] be given Borel

functions bounded below. Define En : L1(0, L) → [0,+∞] as

En(u) =


K∑

j=1

n−j∑
i=0

λnψ
j
n

(
u(xi+j

n )− u(xi
n)

jλn

)
x ∈ An(0, L)

+∞ otherwise in L1(0, L).

(3.1)

We will describe the asymptotic behaviour of En as n→ +∞ when the energy densities are
potentials of Lennard-Jones type. More precisely, we will make the following assumption:
(growth conditions: superlinearity at −∞, mixed type at +∞) there exists a convex function
Ψ : R → [0,+∞] such that

lim
z→−∞

Ψ(z)
|z|

= +∞

and there exist constants c1j , c
2
j > 0 such that

c1j (Ψ(z)− 1) ≤ ψj
n(z) ≤ c2j max{Ψ(z), |z|} for all z ∈ R. (3.2)

Under this hypothesis it will be possible to describe explicitly the behaviour of the energies
En by means of their Γ-limit. The exact statement of the result will be given at the end of this
section.

Remark 3.1 Hypothesis (3.2) is designed to cover the case of Lennard-Jones potential (and
potential of the same shape), where ψj

n = ψ is equal for all j and n, and

ψ(z) =
k1

z12
− k2

z6

for some k1, k2 > 0. In this case, we can take

Ψ(z) =

{
1
z12

if z > 0
+∞ otherwise.
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Another case included in hypothesis (3.2) is when all functions satisfy a uniform growth condition
of order p > 1; i.e.,

cj(|z|p − 1) ≤ ψj
n(z) ≤ C cj(|z|p + 1)

for all j and n.

Note that in the case K = 1 (nearest-neighbour interaction) the right hand-side of (3.2) can
be dropped (see Theorem 1.6).

Before stating our main result, we have to introduce the counterpart of the energy densities
Fn and Gn in Theorem 1.6 for the case K > 1. Following the idea already performed in [18], we
consider clusters of N subsequent points (N large) and define an average discrete energy for each
of those clusters, so that the energy En may be approximately regarded as a ’nearest neighbour
interaction energy’ acting between such clusters, to which the above description applies.

Actually, we fix a sequence (Nn) of natural numbers with the property

lim
n
Nn = +∞, lim

n

Nn

n
= 0, (3.3)

and we define

ψn(z) = min
{ 1
Nn

K∑
j=1

Nn−j∑
i=0

ψj
n

(u(i+ j)− u(i)
j

)
: u : {0, . . . , Nn} → R,

u(x) = zx if x = 0, . . . ,K,Nn −K, . . . , Nn

}
. (3.4)

By using the energies ψn we will regard a system of Nn neighbouring points as a single interaction
between the two extremal ones, up to a little error which is negligible as Nn → +∞. We can
now state our convergence result, whose thesis is exactly the same as that of Theorem 1.6 with
εn := Nnλn.

Theorem 3.2 Let ψj
n satisfy (3.2) and let (En) be given by (3.1). Let ψn be given by (3.4) and

let εn = Nnλn. For all n ∈ N let Tn ∈ R be defined as in (1.15), and let Fn, Gn : R → [0,+∞]
be defined by

Fn(z) =
{
ψn(z) z ≤ Tn

+∞ z > Tn
(3.5)

Gn(z) =

{
εnψn

(
z

εn

)
if z > εnTn

+∞ otherwise.
(3.6)

Assume that there exist F,G : R → [0,+∞] such that

Γ- lim
n
F ∗∗n = F on R, (3.7)

Γ- lim
n

sub−Gn = G on R \ {0}. (3.8)

Note that this assumption is always satisfied, upon extracting a subsequence. Then, (En)n Γ-
converges to E with respect to the convergence in L1

loc(0, L) and the convergence in measure,
where

E(u) =



∫ L

0

F (u̇) dx+
∑
S(u)

G([u]) + σDu+
c (0, L)

if u ∈ BVloc(0, L) Dcu
− = 0 , and [u] > 0 on S(u)

+∞ otherwise in L1(0, L),
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where F and G are defined by (for notation convenience we set G(0) = 0)

F (z) := inf{F (z1) +G0(z2) : z1 + z2 = z},

G(z) := inf{F∞(z1) +G(z2) : z1 + z2 = z},

and σ := F
∞

(1).

Proof. Upon adding a fixed positive constant we may assume that all ψj
n are non negative.

We begin by proving the liminf inequality. We thus fix un, u ∈ L1
loc(0, L) such that un → u in

measure and supnEn(un) < +∞. Upon extracting a subsequence we may suppose that un → u
a.e. and that the limit limnEn(un) exists. By using (3.2) and reasoning as in the proof of
Theorem 1.6 we get that u ∈ BVloc(0, L) and un → u weakly in BVloc(0, L) (see [17] for details).
It will be enough to show that for all 0 < a < b < L fixed we have∫ b

a

F (u̇(x)) dx+
∑

t∈S(u)∩(a,b)

G([u](t)) + σDu+
c (a, b) ≤ lim

n
En(un). (3.9)

As already mentioned, for all n ∈ N we will estimate the energy En(un) with a ‘nearest neighbour
interaction’ one, with energy density ψn and discretization step εn = λnNn. Thus, with fixed
Nn, we will choose w ∈ {1, . . . , Nn} in such a way that we can find a suitable piecewise affine
interpolation of un on the lattice (λnw + εnZ) ∩ (a, b), call it vn, so that vn still converges to u
in measure and En(un) = E1

n(vn) + o(1).
For all w ∈ {1, . . . , Nn} let

Zn(w) = {` ∈ w +NnZ : λn` ∈ (a, b)},

Φn(w) =
∑

`∈Zn(w)

( K∑
j=1

`+2K−1∑
i=`−2K

λnψ
j
n

(un(λn(i+ j))− un(λni)
jλn

))
`+2K−1∑
s=`−2K

|un(λn(s+ 1))− un(λns)| (3.10)

Note that
∑`+2K−1

s=`−2K |un(λn(s + 1)) − un(λns)| = |Dun|([(` − 2K)λn, (` + 2K)λn]), where we
consider the discrete function un identified with the L1 function piecewise constant. Since each
interval [λns, λn(s+ 1)] belongs at most to 4K interval of the type [λn(`− 2K), λn(`+ 2K)] we
have that

Nn∑
w=1

∑
`∈Zn(w)

`+2K−1∑
s=`−2K

|un(λn(s+ 1))− un(λns)| ≤ 4K|Dun|(a, b).

Moreover, we also have

Nn∑
w=1

∑
`∈Zn(w)

K∑
j=1

`+2K−1∑
i=`−2K

λnψ
j
n

(un(λn(i+ j))− un(λni)
jλn

)

=
4K∑
i′=0

Nn∑
w=1

∑
`∈Zn(w)

λnψ
j
n

(un(λn(`− 2K + j + i′))− un(λn(`− 2K + i′)
jλn

)
≤ 5KEn(un). (3.11)
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Hence,
Nn∑

w=1

Φn(w) ≤ 5KEn(un) + 4K|Dun|(a, b) ≤ c

and we can find wn ∈ {1, . . . , Nn} such that Φn(wn) ≤ c
Nn

.
For all ` ∈ Zn(wn) we define

z`
n =

un(λn(`+Nn −K))− un(λn(`+K))
λn(Nn − 2K)

and ũ`
n on {0, . . . , Nn} by

ũ`
n(i) =


1
λn

(un(λn(`+ i))− un(λn(`+K))) + z`
nK

if i = K, . . . , Nn −K
z`
ni otherwise.

Finally, we define vn as the continuous piecewise-affine interpolate function such that vn(a) =
u(a) and v′n = z`

n on (λn`, λn(` +Nn)) for ell ∈ Zn(wn). Note that vn → u in measure and ũ`
n

is a test function for the minimum problem defining ψn(z`
n). We then have

En(un) ≥
∑

`∈Zn(wn)

K∑
j=1

`+Nn−K−j∑
i=`+K

λnψ
j
n

(un(λn(i+ j))− un(λni)
jλn

)

≥
∑

`∈Zn(wn)

K∑
j=1

Nn−j∑
i=0

λnψ
j
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)

−
∑

`∈Zn(wn)

K∑
j=1

K−1∑
i=0

λnψ
j
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)

−
∑

`∈Zn(wn)

K∑
j=1

Nn−j∑
i=Nn−K−j+1

λnψ
j
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)
. (3.12)

As for the first term in (3.12), for any ` ∈ Zn(wn), we have

K∑
j=1

Nn−j∑
i=0

ψj
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)
≥ Nnψn(z`

n),

so that, denoting Zn = {i ∈ Z : λnwn + εni ∈ Zn(wn)},

∑
`∈Zn(wn)

K∑
j=1

Nn−j∑
i=0

λnψ
j
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)
≥

∑
i∈Zn

εnψn

(vn(εn(i+ 1))− vn(εni)
εn

)
. (3.13)

By plugging estimate (3.13) in (3.12) we get

En(un) ≥
∑
i∈Zn

εnψn

(vn(εn(i+ 1))− vn(εni)
εn

)
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−
∑

`∈Zn(wn)

K∑
j=1

K−1∑
i=0

λnψ
j
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)

−
∑

`∈Zn(wn)

K∑
j=1

Nn−j∑
i=Nn−K−j+1

λnψ
j
n

( ũ`
n(i+ j)− ũ`

n(i)
j

)
=:

∑
i∈Zn

εnψn

(vn(εn(i+ 1))− vn(εni)
εn

)
− I1

n − I2
n. (3.14)

It remains to give an estimate of the terms I1
n, I

2
n. We will confine ourselves to prove that

I1
n = o(1), the proof of the same estimate for I2

n being analogous. Indeed, by using hypothesis
(3.2), we have

I1
n ≤ c2j

∑
`∈Zn(wn)

K∑
j=1

K−1∑
i=0

(
λnΨ

(un(λn(`+ i+ j))− un(λn(`+ i))
jλn

)
+

∣∣∣un(λn(`+ i+ j))− un(λn(`+ i))
j

∣∣∣)
(3.15)

and, by convexity, we have also

I1
n

≤
∑

`∈Zn(wn)

K∑
j=1

c2j

K−1∑
i=0

i+j−1∑
s=i

1
j

(
λnΨ

(un(λn(`+ s+ 1))− un(λn(`+ s))
jλn

)
+|un(λn(`+ s+ 1))− un(λn(`+ s))|

)
≤ c

∑
`∈Zn(wn)

K∑
j=1

2K−j∑
i>K−j

i+j−1∑
s=i

1
j
λnψ

1
n

(un(λn(`+ s+ 1))− un(λn(`+ s))
λn

)
+

c

Nn
+ Φn(wn). (3.16)

By taking into account our choice of wn, it follows

I1
n ≤

c

Nn

(
1 +

∑
i∈Zn

εnψn

(vn(εn(i+ 1))− vn(εni)
εn

))
. (3.17)

Eventually we get

En(un) ≥ (1− c

Nn
)

∑
i∈Zn

εnψn

(vn(εn(i+ 1))− vn(εni)
εn

)
− c

Nn

and it suffices to pass to the liminf and use Theorem 1.6 on the interval (a, b) to have the desired
inequality.

To prove the limsup inequality we will first prove that

Γ- lim sup
n

En(u) ≤
∫ L

0

F (u̇(x)) dx+
∑

t∈S(u)

G([u](t))

15



on the functions u ∈ SBV (0, L) with #S(u) < +∞ and then we will use a relaxation argument.
For the sake of simplicity as a first step we provide a recovery sequence for functions of the form
u(x) = ξx+ zχ(x0,L). Thus, let us consider the case of u(x) = ξx. By proceeding as in the proof

of Theorem 1.6 (for details see [17]) we can find ξ1n, ξ
2
n ∈ R and a set of indices Jn ⊂ {0, . . . ,

[
L
εn

]
}

such that, set βn := #(Jn) and Mn :=
[
L/εn

]
, there holds

εnβnξ
1
n + εn(Mn − βn)ξ2n = Lξ + o(1)

εnβnψn(ξ1n) + εn(Mn − βn)ψn(ξ2n) = LF (ξ) + o(1) (3.18)

For s = 1, 2, let vs
n be a minimum point for the problem defining ψn(ξi

n), and define un as

un(iλn) := λnv
s
n(i− `) + ξ2n`λn +

∑̀
j=1

(ξ1n − ξ2n)χJn
(j)Nnλn

if i ∈ [`, `+Nn). It can be proved that un → u in L1(0, L) and

En(un) ≤ εnβnψn(ξ1n) + εn(Mn − βn)ψn(ξ2n)

+
∑

`∈Zn(0)

K∑
j=1

K−1∑
i=0

λnψ
j
n

(un((i+ j + `)λn)− un((i+ `)λn)
jλn

)

+
Nn−j∑

i=Nn−K−j+1

λnψ
j
n

(un((i+ j + `)λn)− un((i+ `)λn)
jλn

)
.

Since by (3.18) limn εnβnψn(ξ1n) + εn(Mn − βn)ψn(ξ2n) = LF (ξ), it remains to prove that the
second terms in (3.19) tend to 0. To do this we will proceed exactly as in the estimate of the terms
I1
n, I

2
n in the liminf inequality, by taking into account hypothesys (3.2) and using the convexity

of Ψ(z) + |z| to consider only interactions of order one. Thus, it holds

En(un) ≤ LF (ξ) + o(1)

+c
∑

`∈Zn(0)

K∑
j=1

K−1∑
i=0

j−1∑
s=0

1
j
λnψ

1
n

(
un(λn(`+i+s+1))−un(λn(`+i+s))

λn

)

+c
∑

`∈Zn(0)

K∑
j=1

Nn−K∑
i=Nn−K−j

j−1∑
s=0

1
j
λnψ

1
n

(
un(λn(`+i+s+1))−un(λn(`+i+s))

λn

)
+

c

Nn
(1 + εn(βn|ξ1n|+ (Mn − βn)|ξ2n|))

≤ c

Nn
(F (ξ) + 1 + εn(βn|ξ1n|+ (Mn − βn)|ξ2n|)). (3.19)

By the growth condition on Ψ (and then on ψn, F ) the terms εn(βn|ξ1n| + (Mn − βn)|ξ2n|) are
equibounded. Then it suffices to take the limsup as n goes to +∞.

Let us come now to the case u(x) = ξx+zχ(xo,L)(x) with z 6= 0 and G(z) < +∞. Analogously
to the proof of Theorem 1.6 we can find natural numbers Ln ∈ N and real numbers zs

n ∈ [0,+∞)
for s = {1, . . . , Ln} with the following properties

lim
n
Lnεn = 0, lim

n

Ln∑
s=1

zs
n = z, G(z) = lim

n

Ln∑
s=1

Gn(zs
n). (3.20)
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Let `o ∈ Zn(0) be such that xo ∈ [`oλn, (`o +Nn)λn) . If vs
n is a minimum point for the problem

defining ψn

(
z/εn

)
for s = 1, . . . , Ln and un is the recovery sequence for ξx previously defined,

we set for i ∈ [`λn, (`+Nn)λn) with ` ∈ Zn(0)

wn(iλn) =


un(iλn) if ` < `o

λnv
s
n(i− `) + un(`0λn) +

∑s
s′=1 z

s
n if ` ∈ [`o, `o + LnNn)

un(iλn + (`o + LnNn)λn) +
∑Ln

s=1 z
s
n if ` ≥ `o + LnNn.

By using (3.20) it can be easily checked that wn converges to u in L1(0, L) and, by proceeding
as above,

En(un) = LF (ξ) +G(z) + o(1).

This procedure can be applied, up to slight modifications, to any function in SBV (0, L), piecewise
affine and with a finite number of jumps. So the thesis follows by usual density and relaxation
arguments (see e.g. [11]) .

Remark 3.3 (next-to-nearest neighbour interactions) In the case that ψj
n = 0 for all j > 2

then we can equivalently take in place of ψn the function ψ̃n defined as in the Sobolev case, by

ψ̃n(z) = ψ2
n(z) +

1
2

min{ψ1
n(z1) + ψ1

n(z2) : z1 + z2 = 2z}.

With the previous remark in mind, we can examine the behaviour of next-to-nearest neighbour
systems for Lennard-Jones potentials.

Example 3.4 (next-to-nearest neighbour Lennard Jones interactions) Let ψ be as in
Remark 3.1, for any n let ψ1

n(z) = ψ(z), ψ2
n(z) = ψ(2z) and ψj

n = 0 for j ≥ 3. By using the
previous remark, we obtain

F (z) =



+∞ if z ≤ 0

1 + 2−12

z12
k1 −

1 + 2−6

z6
k2 if 0 < z ≤ zmin

− k2
2

4k1
(1 + 2−12)(1 + 2−6)2 =: mF if z > zmin,

where

zmin =
(
2
(1 + 2−12)k1

(1 + 2−6)k2

)1/6

is the minimum point for ψ̃ = ψ̃n given by the previous remark. The two values zmin and
mF can be compared to the corresponding minimum point and minimum value for ψ̃, that are
(2k1/k2)1/6 and −k2

2/4k1, respectively. It is also interesting to note that

lim
w→+∞

ψ̃(w) = − k2
2

8k1
=

1
2

minψ.
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