ESERCIZIO 1

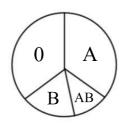
I dati seguenti indicano il gruppo sanguigno di 25 donatori in un centro di raccola del sangue:

 $1) \mbox{Rappresenta}$ questi dati in una tabella delle frequenze e in una tabella delle frequenze relative

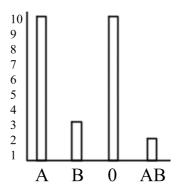
Per fare una tabella delle frequenze basta contare il numero di volte che un determinato dato compare; per quella delle frequenze relative bisogna prendere il valore corrispondente nella tabella delle frequenze e dividerlo per il numero totale di osservazioni:

	Freq	Freq Relativa
A	10	10/25 = 0.4
В	3	3/25 = 0.12
0	10	10/25 = 0.4
AB	2	2/25 = 0.08

2) Rappresenta i dati in un grafico a torta



3)Rappresenta i dati in un grafico a barre



ESERCIZIO 2

I dati seguenti forniscono il peso in libbre dei nati in un ospedale di una metropoli della costa orientale

 $2.4 \ 5.0 \ 5.6 \ 5.9 \ 6.2 \ 6.4 \ 6.7 \ 7.4 \ 7.6 \ 7.8 \ 7.9 \ 8.8 \ 9.8 \ 10.3$

1) Calcola la media

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{2.4 + 5.0 + 5.6 + 5.9 + 6.2 + 6.4 + 6.7 + 7.4 + 7.6 + 7.8 + 7.9 + 8.8 + 9.8 + 10.3}{14} = 6.98$$

2) Calcola la mediana

Poiché, i dati sono in numero pari, per calcolare la mediana facciamo la media tra i dati nelle posizioni $\frac{n}{2}$ e $\frac{n}{2}+1$ (ovviamente i dati devono essere stati precedentemente ordinati)

$$Mediana = \frac{6.7 + 7.4}{2} = 7.05$$

3) Calcola la varianza

Calcoliamo per prima cosa gli scarti quadratici per ogni x_i (che sono uguali ad $(x_i - \bar{x})^2$)

$$(2.4-6.98)^2 = 20.9$$
 $(5.0-6.98)^2 = 3.92$ $(5.6-6.98)^2 = 1.9$ $(5.9-6.98)^2 = 1.16$
 $(6.2-6.98)^2 = 0.6$ $(6.4-6.98)^2 = 0.33$ $(6.7-6.98)^2 = 0.078$ $(7.4-6.98)^2 = 0.17$
 $(7.6-6.98)^2 = 0.38$ $(7.8-6.98)^2 = 0.67$ $(7.9-6.98)^2 = 0.84$ $(8.8-6.98)^2 = 3.31$
 $(9.8-6.98)^2 = 7.95$ $(10.3-6.98)^2 = 11.02$

Per calcolare la varianza facciamo la media degli scarti quadratici

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{1} - \bar{x})^{2}}{n} = \frac{20.9 + 3.92 + 1.9 + 1.16 + 0.6 + 0.33 + 0.078 + 0.17 + 0.38 + 0.67 + 0.84 + 3.31 + 7.95 + 11.02}{14}$$

$$= 3.8$$

4) Calcola la deviazione standard

La deviazione standard s è la radice quadrata della varianza

$$s = \sqrt{3.8} = 1.95$$

5) Rappresenta i dati in un istogramma

Dividiamo i dati in classi:

cominciamo facendo classi di larghezza 1. Le classi sono quindi: [2,3), [3,4), [4,5), etc. dove con la parentesi quadra a sinistra e tonda a destra intendiamo intervallo chiuso a sinistra e aperto a destra, che vuol dire, ad esempio, che il valore 3.00 va conteggiato nella classe [3,4), il valore 4.00 va conteggiato nella classe [4,5). Scriviamo le classi e calcoliamo quanti osservazioni ci sono in ugnuna, poi calcoliamo l'altezza della barra dell'istogramma dividendo il numero di elementi nella classe per la larghezza della classe:

Classe	Larghezza	Elementi	Altezza Barra
[2,3)	1	1	1/1=1
[3,4)	1	0	0/1=0
[4,5)	1	0	0/1=0
[5,6)	1	3	3/1=3
[6,7)	1	3	3/1=3
[7,8)	1	4	4/1=4
[8,9)	1	1	1/1=1
[9,10)	1	1	1/1=1
[10,11)	1	1	1/1=1
[11,12)	1	0	0/1=0

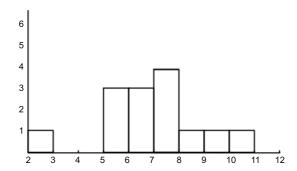


Figure 1: Istogramma con classi di larghezza 1

Ora rifacciamo la stessa cosa ma prendendo classi più piccole, di larghezza 0.5:

Classe	Larghezza	Elementi	Altezza Barra
[2,2.5)	0.5	1	1/0.5=2
[2.5,3)	0.5	0	0/0.5 = 0
[3,3.5)	0.5	0	0/0.5 = 0
[3.5,4)	0.5	0	0/0.5 = 0
[4,4.5)	0.5	0	0/0.5 = 0
[4.5,4)	0.5	0	0/0.5 = 0
[5,5.5)	0.5	1	1/0.5=2
[5.5,6)	0.5	2	2/0.5 = 4
[6,6.5)	0.5	2	2/0.5 = 4
[6.5,7)	0.5	1	1/0.5 = 2
[7,7.5)	0.5	1	1/0.5 = 2
[7.5,8)	0.5	3	3/0.5 = 6
[8,8.5)	0.5	0	0/0.5 = 0
[8.5,9)	0.5	1	1/0.5 = 2
[9,9.5)	0.5	0	0/0.5 = 0
[9.5,10)	0.5	1	1/0.5=2
[10,10.5)	0.5	1	1/0.5=2
[10.5,11)	0.5	0	0/0.5 = 0
[11,11.5)	0.5	0	1/0.5=2
[11.5,12)	0.5	0	0/0.5 = 0

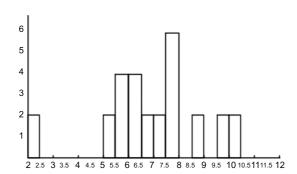


Figure 2: Istogramma con classi di larghezza 0.5

Chiaramente possiamo anche fare istogrammi con classi non tutte della stessa larghezza. Il procedimento sarà esattamente lo stesso:

Classe	Larghezza	Elementi	Altezza Barra
[2,5)	3	1	1/3 = 0.33
[5,5.5)	0.5	1	1/0.5 = 2
[5.5,6)	0.5	2	1/0.5 = 4
[6,7)	1	3	1/1=3
[7,8)	1	4	4/1=4
[8,11)	3	3	3/3=1

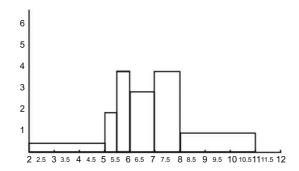


Figure 3: Istogramma con classi di larghezza non costante

Ovviamente dividere per la larghezza della classe quando calcoliamo l'altezza della barra è fondamentale. Se non lo facessimo otterremmo risultati tipo questo:

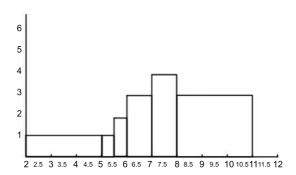


Figure 4: Istogramma sbagliato

Fino ad ora abbiamo fatto l'istogramma utilizzando le frequenze assolute. Possiamo anche farlo (anzi, di solito è meglio) utilizzando le frequenze relative. Prendiamo la prima divisione in classi, quelle costanti di larghezza 1

Classe	Larghezza	Elementi	Freq Relativa	Altezza Barra
[2,3)	1	1	1/14 = 0.0714	0.0714/1 = 0.0714
[3,4)	1	0	0/14 = 0	0/1=0
[4,5)	1	0	0/14 = 0	0/1=0
[5,6)	1	3	3/14 = 0.214	0.214/1 = 0.214
[6,7)	1	3	3/14 = 0.214	0.214/1 = 0.214
[7,8)	1	4	4/14 = 0.285	0.285/1 = 0.285
[8,9)	1	1	1/14=0.0714	0.0714/1 = 0.0714
[9,10)	1	1	1/14=0.0714	0.0714/1 = 0.0714
[10,11)	1	1	1/14=0.0714	0.0714/1 = 0.0714
[11,12)	1	0	0/14=0	0/1=0

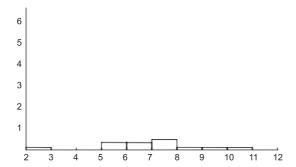


Figure 5: Istogramma con classi di larghezza 1 e frequenze relative non scalato

L'istogramma che risulta è sempre proporzionale a quello che avevamo trovato utilizzando le frequenze assolute. Possiamo rendercene facilmente conto cambiando la scala sull'asse delle ascisse:

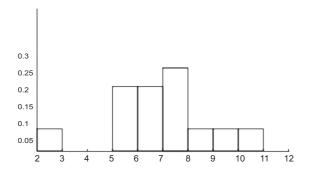


Figure 6: Istogramma con classi di larghezza 1 e frequenze relative scalato