SEQUENCING DNA FRAGMENTS BY USING A SIMULATED
ANNEALING ALGORITHM

Abstract

We use a simulated annealing algorithm to solve an ordering problem which consists in
sequencing fragment lenghts to recover the structure of DNA. This is known as the multiple
digest problem in molecular biology. The problem of molteplicity of solutions and the
problem of measurement error are considered.

The algorithm allows to solve large wa?ﬁm m.noEoBm. For istance,a morun-ou to a double
digest problem of size 7.9 x 10%? is found running the algorithm on a VAX computer
spending a little more than 4 days of CPU computer time.

1.Introduction

In this paper we consider 2 mathematical approach to some combinatorial ordering prob-
lems which naturally arise in several different contexts. Particularly,we treat an ordering
problem which finds an important application in molecular biology.

Indeed,we consider in the following the so called multiple digest mapping vnoEoB.
Let us consider a linear segment of DNA ;this segment is cut at all occurrences of a specific
short pattern by restriction enzymes.DNA sequences can be viewed as finite sequences over
the four aminoacid bases A (= amine) ,C (= cytosine) ,G (= guanine) , T (= timine) .
Each restriction enzyme cuts the double stranded DNA at a short pattern specific to that
enzyme ; for istance,the restriction enzyme EcoRI cuts at GAATTC .
Some different enzymes can be used singly or in combination and by means of gel elec-
trophoresis techniques the resulting fragment lenghts are observed,and then recorded in
an arbitrary order (thus,the order in which the fragments are disposed onto the considered
segment of DNA is unknown).
The multiple digest problem consists in finding the right permutation of elements of the set
of restriction fragments to show the locations of cleavage sites. Such a problem is referred
to as constructing a restriction map of DNA.

The multiple digest problem is nothing but a combinatorial problem; obviously it
finds application not only in molecular biology, but also in a lot of different contexts. For
istance,we can consider the following problem. Let Q;,...Qn be n distinct telephonic

devices and let the times of arrivals of a call to each device be distibuted accordinge.g. toa
Poisson process.We observe the above devices over a time interval [0, n._ jlet Hu , Ty n_ «e.TE be

- the times of arrivals of a call to the device Q;,i = 1,...n, and let m. = .N+H IN: j=1,.r-1

be 2”« ~a=.mr: of time intervals between two successive E.Ea.&m to the %Soo Q; ,where
r—

<<M nw.bh noaz_nn one or more devices simultaneously ;for fixing ideas suppose to consider

two devices (for istance,two telephone sets in a room,with independent lines ).

Now,let us observe the calls arriving to the device @Q; and record the lenghts of time

intervals between two successive calls to @, ;do the same thing for the device Q, . Then,let

us observe the calls arriving to the cluster (Q;,Q2) and record the lenghts of time intervals

between successive calls to one or the other of devices Q;,Q, ,without distinction.

The problem is to reconstruct exatly the times of arrivals of calls to the devices Q; and

Q. ,respectively. This is nothing but a "double digest problem”.

Several authors ([3],(4],{10},(13],[14],[15]) considered computer algorithms to resolve
the above problem in the context of molecular biology. In [11] Pearson proposed solving
the double digest problem in exhaustive way by considering all permutations of two single
digests. Naturally,this method is succesfull (with respect to computation time) only when
the number of sites where enzymes cut is small enough.

In this paper ,we are concerned with a simulated annealing algorithm to solve the
multiple digest problem and we present computer results showing its efficacy. The problem
of nonuniqueness of solutions is considered,and also the problem of measurement errors in
the lenght of observed fragments is discussed.

An analogous approach can be found in [6],where the case of the usual small mapping
problems of molecular biology is emphasized.Here,we present in details a simulated an-
nealing algorithm adapted to the actual problem ;this w—moﬂ;s allows us to solve also
large mapping problems. .

For istance,a solution to a double digest problem of size 7.9 x 10°?® was found running
our simulated annealing algorithm on a VAX computer spending about 4 days of CPU
computer time.
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2. A solution to the multiple digest problem via simulated annealing.

2.1 The SA algorithm.

We review briefly the theory of the simulated annealing algorithm .

The simulated annealing algorithm (SAA) is a successfull tool in many optimization
problem in which one wishes to find a global minimum of a function f defined on a finite
space {}(the state space or the space of configurations).

The SAA is a strategy obtained by means of a stochastic relaxation method;the statis-
tical mechanics interpretation is that of a physical system on which one consider an energy
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function f and a Gibbs distribution at temperature T' . The Gibbs distribution gives the
probability of finding the system in a particular configuration at same given temperature .

The algorithm consists of letting the system evolve according to the Gibbs distribution
and cooling the system slowly enough,so that the limit (as T — 0 ) distribution is the
uniform distribution over the states of minimum energy. So,if the system is not cooled
too rapidly,one can construct a suitable Markov chain X, whose transition probabilities
satisfy the balance equation and such that ,as T is decreased to 0 and n — 00, X, converges
towards a state of minimum energy (see e.g. [5] ) .

The invariant measure of the Markov process is the uniform probability measure on
global minima ([ 1 ]) and the convergence of the algorithm is guaranteeed by the property
of Markov process.

Let the state space () be a finite set whose elements are the configurations ,and let
f : Q@ — R be a real valued function on the state space.

The SAA concerns the problem of finding an element o,,¢ € § such that

Wﬁm_“ f(o) = f(oopt)-
Generally,such a configuration ¢,,, is not unique.
The set of optimal configurations will-be denoted Q,5¢ = {00p: € O}
For any T > 0,let Il be the Gibbs distribution over {2 given by:

(21) EE ezp(—f(a)/T) MEE-

LL3Y

One can observe that for large values of T the distribution tends to be uniform over Q,while
for small values of temperature T the favorable elements of {2,that is those elements o of
Q2 for which f(¢) is small,are weighted with large probability.Thus a probabilistic solution
to the above optimization problem is given by mwﬂvrum from the distribution Iy for small
value of T > 0.

This can be achieved by simulating a Markov chain {X,}n>0 with state space  that
has Iy as its stationary distribution, and letting it to approach equilibrium.

First,it is necessary to determine for each & € Q2 a set. of neighbors , C  where
transitions from o are allowed in such a way that the resulting Markov chain is irreducible.
It is supposed that ¢ € Q, <= ¢0' € , and for every 0 € O | R, |= © = constant .

Now we define the transition probabilities

N.QAQ.,Q.J = Ppr(Xn+1 = | Xy = Qw

" 0 if Q.mbq
Esii ﬁ gx-:@-:éiﬂ\@?.mp,

with the condition that 3_ ..o pr(s,0')=1.
It is easy to see that 1 satisfies the balance equation : (see | 1))

(2.2)
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(2.3) pr(e,0")lIz(o) = pr(c’,o)Iz(')

which is enough to guaarantee that Iy is the unique stationary distribution of the chain
Xn.

In practice,the Markov chain is simulated in the following way : when the system stays
at o a neighbor ¢’ of o is selected from Q, uniformly and f(o') is computed. Then,the
transition from o to ¢’ is accepted with probability p = ezp{—(f(¢') — f(¢))* /T} and the
new state of the chain is ¢',else the transition is rejected and the system remains in the
state o .

If the system is cooled slowly enough ,that is if the temperature T = T, is lowered
at a rate ~ const./log(n) , n — o , Geman and Geman ({5]) showed that,if at stage n in
the algorithm one uses the transition probabilities given by (2.2) with T = T),, the limit
distribution Iy = limp_¢+17 is the invariant distribution of the chain X, and it is the
uniform measure over the states of minimum energy f.

The algorithm is a general tool to resolve combinatorial optimization problems; we
note,however,that the choices of the neighborhood structure on  and of the energy func-
tion f are of peculiar importance to implement the algorithm succesfully.

For a given finite discrete set Q of configurations, a possible good choice of neighbor-
hood structure is as in the travelling salesman problem. It consists in finding an optimal
tour (that is of minimal lenght) to be taken by a salesman who has to visit each of n cities,
we say @3, 0az,...Gn ,and then return home.

Here {2 is the set of all permutations of the indexes {1,2,...n} ; each permutation ¢ € Q
is in one-to-one corrispondence with a tour taken in the order given by ¢ . The energy
function is taken to be the total lenght of the tour.

Now,we give a description of the so called 2-change neighbor structure that many
authors (see e.g.[2,9]) have considered specifically to the travelling salesman problem. The
last problem has a lot of affinities with the multiple digest problem.

A configuration (a tour) o = (ay,a3,...a,)consists of an oriented connected graph
where for each node a; ,i = 1,..n there exist exatly one preceding edge'a;—; and one
successive edge a;41 and oriented paths (or links) which connect a;—; to a; and a; to aiy;.
For a given configuration ¢ we say that the configuration o' is a 2-change neighbor of
o if o' is obtained from ¢ by breaking 2 links and substituting them with other two links
in such a way o' is still a configuration connecting all the nodes a;,az,...a, (in the sense
given above).
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We observe that the presented 2-change mechanism is a little different from analogue
other ones ([2],[9]) ; indeed,in the case when ly =} +landl; =lorly =n—2 ,2 new
configuration that reverses order of the broken link [ai,ai41] , [ = I1,{; is permitted, that
is the link [a+1, @] is allowed in the new configuration.

As easily seen,the size of the neighbor of a configuration ¢ ,according to the 2-change
above, is constant (independent of o) and it is :(*)

(2.4) ; _oq_uwaamHv

"WXA:"HVAS|NV.

Moreover,any configuration o; can be obtained by any other configuration &; through
a finite sequence of permutations of nodes a,,...a, which are obtained by means of the
2-change mechanism described above.

Thius,the notion of neighbourhood implied by the 2-change mechanism yields an irreducible
Markov chain ,to be used in the SAA.

(*) In the usual 2-change neighbourhood structure,for the travelling salesman problem one
has @ =(n-1)(n-2).

2.2 The multiple digest problem

In this subsection we describe the multiple digest problem of molecular biology. In
particular,we treat here the case of two digests,without considering for the moment mea-
surement errors.This problem is called ’double digest problem’.

Let us consider a linear tract of DNA of lenght L, and two restriction enzymes used

singly or in combination. Each of restriction enzymes cuts the DNA at all occurrences of
a short specific pattern.
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In practice,this has been achieved by starting off at small positive value of Ty and multiply-
ing it with a constant factor larger than 1 ,untill the corresponding value of xo ,calculated
from the generated transitions, was greater than 0.8 .

Typical values of Ty used in our computation were To = 10 + 20.

We remark that the success of the algorithm depends very strongly on the choice of
the initial temperature T} jindeed, a too small value of the initial temperature Ty does not
allow to accept virtually all proposed transitions ,when starting,and this may cause the
failure of the algorithm .

The lenght of Markov chains was choosen independent from the temperature T} and equal
to the size of neighbor of configurations o = (7, ) ,that is : L(Ti) = L = 20 ,where O is
given by (2.4) .

The initial configuration (oyq, f9) was taken in such a way the fragment lenghts in oy and
o were listed in increasing order. )

3. On the molteplicity of solutions in the multiple digest problem

For given multiple digest ,the solution to the multiple digest problem is not unique.
For istance,in the case of double digest, we can consider the exact sequence taken from
Human 3-Globin gene sequence (see sect. 4 ).

1 digest  {556,15,760,11,57,49,130,217,66,128,63}

27 digest  {664,262,132,994}

double digest  {556,8,7,255,132,373,11,57,49,130, 217,66,128,63}
Now,we say respectively A,B,C the digests obtained from the above ones by taking the
fragment lenghts in increasing order.
By choosing different initial values of the random numbers generator , by means of SAA
,we found several solutions to the above problem of size 11! x 4! = 958003200 . Two of
these solving orderings are :

(I) A ={63,217,11,760,15,556,66,130,57,128,49}
B = {664,132,262,994}
(II) A = {49,57,556,66,130,128,15,760,11,63,217}

B = {994, 262,132, 664}.

»

Here ,we will discuss the problem of nonuniqueness of the solution to the multiple digest
problem. To this end,we recall the following Kingman subadditive ergodic theorem (8] :

Subadditive ergodic theorem.
For any two integers n < m ,let X, m be 2 collection of random variables such that :

9

(i) n<k<m=Xom< Xnp+ Xiym;

(ii)  the joint distributions of {X.+1,m+1} are the same as
those of {Xp,m} ;

(iii) E(Xo,n) exists and satisfies E(Xo,n) > —Cn,
for some constant C and alln > 1.

Then :
there exists the finite limit :

with probability one and in mean .

Let us consider now the following probability model for the multiple digest problem.
Take a segment of DNA of lenght L with sites labeled 1,2,...L4 and consider NV restriction
enzymes .Assume any one of the restriction enzyme used in a single digest cuts at site {
independently with probability p; € (0,1) ,i =1,..N .

Indeed,a segment of DNA can be viewed as a string of independent, identically distributed
random variables with values in a four alphabet.

The number of cutting by restriction enzymes,for example,relatively to the bacteriophage
) gene sequence,varies from relatively small value of order unity (1 as for Apal , 5 as for
EcoRI enzyme) to higher values (50 as for Rsal) (see [12] ) .

We define a coincidence to be the event that a site is cut by all the NV enzymes ; the
probability of the occurrence of such an event is

(At the ends sites it occurs,by definition).
For n < m we may consider the multiple digest problem for only that segment located
between the n** and m* coincidence, we say this segment [n, m]. We set Yy, »n the number
of solutions to the multiple digest problem for this segment ; that is Y5, », is the number of
orderings of sets A,,...Ay which produce the segment [n,m] of the given set C of fragment
lenghts obtained when all the enzymes are used simultaneously.
It easily follows that Yo, m 2 Yok Yim iin <k <m.
So,if we define X, m = —logY, m ,we obtain

Xnm < Xnk+ Xk,m ;whenever n < k < m ,and condition (i) of the sub. erg. theorem
is satisfied.

The condition (ii) follows by the assumption that the cuts are independently dis-
tributed in each digest, and they are independent of the sites of cutting.
In order to verify condition (iii) holds, we put n; ,i = 1,2,..., the lenght of the segment
between the (i — 1)** and i** coincidence jthe r.v. n; are independent and identically
distributed with mean E(n;) = P71 .
The lenght of the segment from the start until the k**coincidence is m(k) = ny +na2+...+ni.

10
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where v = P -7 . From this formula,it follows that the number of solutions to the multiple
digest problem increases exponentially fast as a function o~ﬁ< the lenght of the segment ;
Bou.ooﬁn,mcowmnﬂﬂ_uonmonnmmObgan:m.ﬂﬁg.m.Hz*nwﬂ..w if p = maz{pr ,k =

1,...N} we have
P = eXone1 19974 < (Niogh _ o=N(log})

andso P—0,asN — 0.
Therefore,we have exatly only one solution to the multiple digest problem in the limit
case when the number of digest is equal to infinity . :
Really,it is enough to suppose that [ef7™] =1 that is Pym <log2. -
In practice,for a given short enough segment of DNA ,the multiple digest problem in
molecular biology is.solved by using a great enough number of restriction enzymes.
Therefore,molteplicity of solutions in the multiple digest problem depends not only
on the lenght of segment,but also on the frequency of cutting sites by restriction enzymes
(the number of solutions increases with the value of P = [[pi ,IV,m fixed ).
In a simulated double digest with Ly = 1000 ,and p; = 0.3 pa = 0.4, (see section 4.)
the number of solution is about :

Z1000 = '37

where

0,073 < 7 < const. - log1000 .

Thus Zyog0 is at least of order 104 .

4. Computer results

We have tested the algorithm on exact known data from the bacteriophage A gene sequence
with restriction enzymes Baml and Pst1 ([11]) yelding a problem of size

| A|!-| B|! = 3!4! = 144 and on data from the Human $-Globine gene ({7]) with restriction
enzymes Alu and Rsal ,yelding a problem of size | A |I- | B{! = 11!- 41 = 958.0032 - 10° .
Solutions have been obtained spending a few seconds of CPU computer time (*) ,after 3
and 880 iterations ,respectively, for the first and second digest.

(*) Computations have been executed by means of VAX 8250 computer at the De-
partment of Mathematics of the Universita’ "Tor Vergata” ,Roma.

The initial configuration (oo, ue) was taken in such a way the fragment lenghts in oo
and o was listed in increasing order.
We tested our algorithm also on simulated data constructed as described in section 3 .
For example,we have considered a simulated segment of DNA of lenght Ly = 100 with
p1 = 0.3 ,p; = 0.4 corresponding to a double digest problem where | A |=29,{B|=36,
| C |=56 ,and the size of neighbors ,according to (2.4), is © = 2919 .
We performed several trials and studied how the choices of the initial temperature, the
number of temperature stages allowed,and of the lenght of Markov chains ,affected the
succes and rapidity of convergenge of the algorithm.
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We have taken the lenght of Markov chains L < 2919 and we observed that for great values
of L the algorithm found a solution at the 4** temperature stage (Ty = 10 ;@ = 0.9) within
1 minute of CPU time .

For L = 50 ,a solution to the above simulated double digest problem was found in only
22 seconds of CPU time ,altough the final temperature was obtained after 20 decrements
of temperature (the solution was located after 1000 iterations from the initial
configuration ).

If L < 50, the lenght of Markov chains is too small if compared with the size of
neighbors © = 2919 ,so the algorithm has not large enough probability of visiting at
least a major part of the neighbourhood of a given solution ,and this causes failure of the
procedure.

Since the size of neighbors © increases factorially fast as the size of the single di-
gests,giving to L the value of the entire size of neighbors is very time consuming,when
running the algorithm on a computer.

Thus, one has to do 2 compromise between the lenght of Markov chains and the fact that
the algorithm needs to visit a great enough part of neighbors with large probability ,to
avoid failures.

We have considered also simulated segments of DNA of larger lenght

(La =200, 300, 400,...1000) .
In a trial with Ly = 200 ,] A [= 64 ,| B |= 77 ,| C |= 119 ,0 = 14,409 ,we found a
solution to the double digest problem,taking L = 250 ,spending about 20 minutes of CPU
time (the final temperature was obtained after 16 decrements of temperature,Ty = 10 ; the
solution was located after 4000 iterationd from the initial configuration).

In another trial with Ly = 300 ,| A |= 100 ,| B |=112,| C |= 177 ,© = 32,868
,we found a solution taking L = 600,spending only 8 minutes of CPU time (the final
temperature was obtained after 7 decrements of temperature ,Ty = 10 ; the solution was
located after 4200 iterations from the initial configuration).

Well, in these trials we have taken L = %m.

Of course, since the algorithm is based on a stochastic relaxation method, the con-
sumed computing time is not simply a (deterministic) increasing function of sizes of single
digests.

Finally,we considered a simulated segment of DNA of lenght Ly = 1000 ,with | 4 |=
300 ,| B |= 406 ,| C |= 586 ,© = 379083 ,yelding a double digest problem of size

300!
89! x 69! x 32! x 40! x 22! x 16! x 8! x 7! x 9! x 4! x 6! x 2!

406!
"1487 x 113! x 65! x 30! x 22! x 12! x 9! x 3! x 2!

=7.9x105%% .

A solution was found ,taking L = 50,000 ,spending 4 days and 22 hours of CPU time (the
final temperature was obtained after 12 decrements of temperature ,at T = 3.13 ,T;, = 10
;the solution was located after 600, 000 iterations from the initial configuration) .
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A={6.1,13.1,27.1,12.1 wwwwi MU...w =100.6

B ={41.2,30.2,20.2} ,T5_, b; = 100.6
Cc= a;::M:woa:ﬁNﬁ,Mﬂ i =100.6

{Compare the row C with the above one}).

Fig. 4
Data affected by errors obtained perturbating data of fig.1

A ={62,92,121,131,271,3312} , e
B ={29.2,30.3,41.32} ,T%_, b; = 100.82
C= Am.ra.s.o.a,5.8.;.8.5.5_2.8,8.5 v T 5us ¢ = 100.82

= 100.82

Error ~ 2%
A solution found by the algorithm

A=1{9.2,33.1,12.1,27.1 35: T 6 =100.82 "
B ={29.2,30.3,41.32} , X%, b; = 100.82

C = {5.07999,6.1999,9.20,12.10,13.10,13.12,20.0, 22.02} , MU ¢; =100.8

j=1

(Compare the row C with the above one).

6. Concluding Remarks .

We have described a stochastic relaxation method,the so called simulated annealing algo-
rithm,to solve multiple digest mapping problems for DNA ,with the aid of a computer.
The procedure was written in Fortran language and implemented on a VAX computer.
Indeed,we wrote a rather crude sequential program to execute the procedure, so surely it
may be improved to reduce execution time.
Moreover,one can consider the opportunity of modifying the program for implementing it
on a parallel computer ,so the execution time may be further reduced.

With the above improvements,it is realistic to use in the SAA a logarithmical decre-
ment of temperature as requested to do the algorithm converge.
Indeed,the faster exponential decrement of temperature causes failure of the algorithm
in some cases ,for some choices of initial temperature (the system ends in metastable
states),altough our state space is discrete and therefore we have not to observe really
relaxation,but,in the succesfull cases,equilibrium is reached exatly in a finite number of
transitions.
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Finally,increasing the rapidity of execution of the program,makes it more realistic for
large mapping projects,that is for problems of size larger than the size of the double digest
problem considered in section 4.(it was of order 10°?% and H.R_En& about 4 days of CPU
computer time to find a solution).

We remark that the choices of the initial »guvonpacno.om the neighboorhod structure
and of the cost function f are peculiar to make more efficient the algorithm.
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