Esercizi su Approsimazione

Svolgere gli esercizi 3.8, 3.9, 3.11, 3.13, 3.14, 3.18, 3.20, 3.24, 3.30

▷ Esercizio 3.8

Si lancia 100 volte una moneta non truccata. Utilizzando l'approssimazione normale, stimare:

- (i) la probabilità di ottenere testa nel 50% dei casi;
- (ii) la probabilità che sia almeno 60 il numero delle volte che esce testa.

Soluzione Per $i=1,2,\ldots,n$, sia X_i la v.a. che vale 1 se esce testa al lancio i-esimo, 0 altrimenti. Il numero totale di teste che si ottengono in 100 lanci è $X_1+X_2+\ldots+X_{100}=X\sim B(100,1/2)$; dunque E(X)=m=50 e Var(X)=X=25. Come nell' Esercizio 3.7, si potrebbero computare esattamente le probabilità richieste, anche se i calcoli sarebbero molto pesanti e impossibili da svolgere senza l'ausilio di un computer.

(i) Utilizzando l'approssimazione normale, si ha:

$$P(X = 50) = P(49.5 < X < 50.5) \cong P\left(\frac{49.5 - 50}{\sqrt{25}} < W < \frac{50.5 - 50}{\sqrt{25}}\right) = \begin{cases} (0.5)^{100} \\ \text{= valore esatto} \end{cases}$$

$$= \Phi(0.1) - \Phi(-0.1) = 2\Phi(0.1) - 1 = 2 \cdot 0.5398 - 1 = 0.0796 ,$$

C 100,50 *

dove $W \sim \mathcal{N}(0,1)$ e i valori di Φ sono stati ottenuti dalla tavola della distribuzione normale. (ii) In maniera analoga al caso (i), utilizzando di nuovo l'approssimazione normale, si ottiene:

$$P(X \ge 60) = P(X > 59.5) \cong 1 - \Phi\left(\frac{59.5 - 50}{5}\right) =$$

= $1 - \Phi(1.9) = 1 - 0.9713 = 0.0287$.

▶ Esercizio 3.9

Due dadi non truccati vengono lanciati simultaneamente 120 volte. Calcolare la probabilità che un 6, un 7 o un 9 si presentino almeno 70 volte.

Soluzione Lanciando due dadi si realizza il punteggio 6 con i seguenti cinque risultati nei due lanci: (3,3), (4,2), (2,4), (1,5) e (5,1); si realizza il punteggio 7 con i seguenti sei risultati nei due lanci: (6,1), (1,6), (5,2), (2,5), (4,3) e (3.4); infine, si realizza il punteggio 9 con i seguenti quattro risultati nei due lanci: (3,6), (6,3), (4,5) e (5,4). Siccome i dadi non sono truccati, ogni coppia (i,j), (i,j=1,2,3,4,5,6) si ottiene con probabilità $\frac{1}{36}$; pertanto $P(\{6\}) = \frac{5}{36}$, $P(\{7\}) = \frac{6}{36} = \frac{1}{6}$ ed infine, $P(\{9\}) = \frac{4}{36}$. Dunque, la probabilità che in ogni lancio dei due dadi, si ottenga un 6, un 7 oppure un 9 è $p = \frac{5}{36} + \frac{6}{36} + \frac{4}{36} = \frac{5}{12}$. Il numero di volte X che si ottiene un 6, un 7 oppure un 9 in 120 lanci, è una v.a. binomiale di parametri

Xi ~ B(1,5/12) sigma^2= (5/12)*(7/12)=35/12; (X1+X2+..+Xn - n*(5/12))/120^0.5* (35/12)^0.5 (120^0.5)* (35/12)^0.5 = (120*35/12)^0.5 = 350^0.5

n=120 e p=5/12. Dunque $E(X)=m=120\cdot\frac{5}{12}=50$ e $Var(X)=\sigma^2=\frac{35}{12}\cdot 120=350$. Utilizzando l'approssimazione normale, come negli esercizi precedenti, si ottiene:

$$P(X \ge 70) = P(X > 69.5) \cong 1 - \Phi\left(\frac{69.5 - 50}{\sqrt{350}}\right) = 1 - \Phi(1.04) =$$

= 1 - 0.8508 = 0.1492.

▷ Esercizio 3.11

Supponiamo che il peso corporeo (misurato in kg) di una popolazione di operai edili, si distribuisca secondo una v.a. di media m = 77 e deviazione standard $\sigma = 9.4$

- (i) Se la numerosità del campione considerato è n=36, quanto vale la probabilità che la media campionaria dei loro pesi sia compresa tra 75 e 79?
- (ii) E se il campione ha numerosità 144?

Soluzione Consideriamo un campione di n operai; per $i=1,2,\ldots,n,$ sia X_i il peso (misurato in kg) dell'i-esimo operaio. Le v.a. X_i sono indipendenti ed equidistribuite con media m=77 e deviazione standard $\sigma=9.4$. Si ha:

$$P\left(75 \le \frac{X_1 + X_2 + \dots + X_n}{n} \le 79\right) = P(75 \cdot n \le X_1 + \dots + X_n \le 79 \cdot n) =$$

$$= P\left(\frac{75n - nm}{\sigma\sqrt{n}} \le \frac{X_1 + X_2 + \dots + X_n - nm}{\sigma\sqrt{n}} \le \frac{79n - nm}{\sigma\sqrt{n}}\right).$$

Per l'approssimazione normale, se W è Gaussiana standard, tale probabilità è circa uguale a:

$$P\left(\frac{75n - nm}{\sigma\sqrt{n}} \le W \le \frac{79n - nm}{\sigma\sqrt{n}}\right) = P\left(\frac{-2\sqrt{n}}{9.4} \le W \le \frac{2\sqrt{n}}{9.4}\right) =$$
$$= \Phi\left(\frac{2\sqrt{n}}{9.4}\right) - \Phi\left(-\frac{2\sqrt{n}}{9.4}\right) = 2\Phi\left(\frac{2\sqrt{n}}{9.4}\right) - 1.$$

Pertanto:

(i) per n = 36

$$P\left(75 \le \frac{X_1 + X_2 + \dots + X_n}{n} \le 79\right) = 2\Phi\left(\frac{12}{9.4}\right) - 1 =$$
$$= 2\Phi(1.27) - 1 = 2 \cdot 0.9980 - 1 = 0.796.$$

(ii) per n = 144

$$P\left(75 \le \frac{X_1 + X_2 + \ldots + X_n}{n} \le 79\right) = 2\Phi\left(\frac{24}{9.4}\right) - 1 =$$

$$= 2\Phi(2.55) - 1 = 2 \cdot 0.9946 - 1 = 0.9892.$$

▷ Esercizio 3.13

Sia $\{X_n\}$ una successione di v.a. indipendenti ed esponenziali di parametro λ e sia $\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \ldots + X_n)$.

- (i) stimare con la disuguaglianza di Chebicev $P(|\bar{X}_n \frac{1}{\lambda}| \geq \epsilon)$
- (ii) stimare la stessa quantità usando il T.L.C.
- (iii) confrontare le due stime per $\lambda = 2$, $\epsilon = 1/100$, n = 10000.

Soluzione Le v.a. X_n sono indipenenti con media $E(X_n) = 1/\lambda$ e $Var(X_n) = 1/\lambda^2$. Si ha:

$$p \doteq P(|\bar{X}_n - 1/\lambda| \ge \epsilon) = P(|X_1 + X_2 + \ldots + X_n - n/\lambda| \ge n\epsilon).$$

Posto $X = X_1 + X_2 + \ldots + X_n$, risulta $E(X) = n/\lambda$, $Var(X) = n/\lambda^2$ e $p = P(|X - E(X)| \ge n\epsilon)$.

(i) Per la disuguaglianza di Chebicev:

$$p \le \frac{Var(X)}{(n\epsilon)^2} = \frac{n/\lambda^2}{n^2\epsilon^2} = \frac{1}{n\epsilon^2\lambda^2} \tag{*}$$

(ii) Se $W \sim \mathcal{N}(0,1)$, utilizzando il Teorema limite centrale, si ottiene:

$$p = 1 - P(|X_1 + X_2 + \dots + X_n - n/\lambda| < n\epsilon) =$$

$$= 1 - P(-n\epsilon < X_1 + \dots + X_n - n/\lambda < n\epsilon) =$$

$$1 - P\left(\frac{-n\epsilon}{\frac{1}{\lambda}\sqrt{n}} < \frac{X_1 + \dots + X_n - n/\lambda}{\frac{1}{\lambda}\sqrt{n}} < \frac{n\epsilon}{\frac{1}{\lambda}\sqrt{n}}\right) \cong$$

$$= 1 - P\left(\frac{-n\epsilon}{\frac{1}{\lambda}\sqrt{n}} < W < \frac{n\epsilon}{\frac{1}{\lambda}\sqrt{n}}\right) =$$

$$1 - [2\Phi(\lambda\epsilon\sqrt{n}) - 1] = 2(1 - \Phi(\lambda\epsilon\sqrt{n})$$
(**)

(iii) Per $\lambda=2,~\epsilon=0.01$ e n=10000, da (*) si ottiene p=1/4, mentre (**) fornisce p=0.0456 .

La stima ottenuta con l'approssimazione normale è molto più precisa di quella ottenuta con la disuguaglianza di Chebicev che, in generale, fornisce una maggiorazione piuttosto larga. In questo caso, l'errore che si commette nel sostituire a p la probabilità ottenuta con l'approssimazione Gaussiana, è molto piccolo, essendo n=1000 piuttosto grande.

▷ Esercizio 3.14

Ogni sera due coniugi fanno lanciare dal proprio figlioletto di tre anni un dado, per decidere chi deve lavare i piatti. Se esce un numero dispari tocca alla moglie lavare i piatti, altrimenti deve lavarli il marito. Visto che il dado lo fornisce la moglie, il marito ha l'impressione che

tocchi a lui un po' troppo spesso: 33 volte su 50. Si tratta solo di sfortuna, oppure egli ha ragione di ritenere che il dado sia truccato e che la moglie lo stia imbrogliando?

Soluzione Se il dado non fosse truccato, la probabilità che in un lancio esca un numero dispari (e quindi tocchi alla moglie lavare i piatti) dovrebbe essere p=1/2. Dunque, se chiamiamo "successo" l'evento che esca un numero dispari, il numero dei successi su n=50 lanci del dado sarebbe $X \sim B(50,0.5)$. Il numero dei successi effettivi è 50-33=17; nell'ipotesi che X fosse binomiale di parametri 50 e 0.5, utilizzando l'approssimazione normale, se W denota una v.a. Gaussiana standard, si avrebbe:

$$P(X \le 17) = P(X < 17.5) = P\left(\frac{X - 25}{0.5\sqrt{50}} < \frac{17.5 - 25}{0.5\sqrt{50}}\right) \cong$$

$$\cong P\left(W < \frac{17.5 - 25}{0.5\sqrt{50}}\right) = \Phi\left(-\frac{7.5}{0.5 \cdot 7.07}\right) =$$

$$= 1 - \Phi(2.12) = 1 - 0.9830 = 0.017.$$

Come si vede, se il dado fosse perfetto l'evento $\{X \leq 17\}$ sarebbe alquanto improbabile, per cui il marito ha ragione di ritenere che la moglie lo stia imbrogliando.

▷ Esercizio 3.18

Supponiamo che il peso dei salmoni cresciuti in un certo allevamento commerciale abbia distribuzione normale con media che varia da stagione a stagione, e con deviazione standard $\sigma = 20$ g.

Quanto grande occorre prendere un campione, affinché con probabilità ≥ 0.95 risulti che la media campionaria del peso dei salmoni di quest'anno sia precisa entro ± 5 g?

Soluzione Il peso dei salmoni si distribuisce secondo una v.a. $X \sim \mathcal{N}(\mu, 400)$, dove la media μ è incognita e $\sigma = 20$. Si vuole determinare la minima ampiezza n di un campione, affinché risulti:

$$P\left(\left|\frac{X_1 + X_2 + \ldots + X_n}{n} - \mu\right| \le 5\right) \ge 0.95\tag{*}$$

ove X_i , $i=1,\ldots,n$ sono v.a. indipendenti e tutte con la stessa distribuzione di X. Il primo membro di (*) può essere riscritto:

$$P\left(\mu - 5 \le \frac{X_1 + X_2 + \dots + X_n}{n} \le \mu + 5\right) =$$

$$= P\left((\mu - 5)n \le X_1 + \dots + X_n \le (5 + \mu)n\right) =$$

$$= P\left(\frac{n(\mu - 5) - n\mu}{\sigma\sqrt{n}} \le \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le \frac{n(\mu + 5) - n\mu}{\sigma\sqrt{n}}\right).$$

Se $W \sim \mathcal{N}(0,1)$ ed n è abbastanza grande, per il Teorema limite centrale tale probabilità è approssimativamente uguale a:

$$P\left(\frac{-5\sqrt{n}}{\sigma} \le W \le \frac{5\sqrt{n}}{\sigma}\right) = \Phi\left(\frac{5\sqrt{n}}{\sigma}\right) - \Phi\left(-\frac{5\sqrt{n}}{\sigma}\right) =$$

$$=2\Phi\left(\frac{5\sqrt{n}}{\sigma}\right)-1.$$

Se vogliamo che tale quantità sia ≥ 0.95 , deve aversi

$$\Phi\left(\frac{5\sqrt{n}}{\sigma}\right) \ge (1 + 0.975)/2 = 0.975 ;$$

siccome $0.975 = \Phi(1.96)$ e la funzione Φ è crescente, segue che (sostituendo $\sigma = 20$) deve essere $5\sqrt{n} \ge 1.96 \cdot 20$, da cui si ottiene infine $n \ge 62$.

⊳ Esercizio 3.20

Supponiamo che il contenuto di nicotina di una certa marca di sigarette segua una distribuzione con media m incognita e varianza $\sigma^2 = 0.0081 \ mg^2$ nota.

Analizzando un campione di 100 di quelle sigarette, si trova che il valor medio campionario del contenuto di nicotina è 1.3 mg. Trovare un intervallo di confidenza al livello $1-\alpha=0.99$ per la media m.

Soluzione Un intervallo I di confidenza a livello $1 - \alpha$ per la media incognita di una distribuzione avente varianza σ^2 , è:

$$I = \left[\bar{x} - \frac{\sigma}{\sqrt{n}}\phi_{1-\alpha/2}, \bar{x} + \frac{\sigma}{\sqrt{n}}\phi_{1-\alpha/2}\right] \tag{*}$$

dove \bar{x} è la media campionaria e ϕ_{β} è il quantile della Gaussiana standard, tale che $\Phi(\phi_{\beta}) = \beta$. Nel caso in esame, si ha n = 100, e la media campionaria è $\bar{x} = 1.3$; inoltre, da $1 - \alpha = 0.99$ segue $1 - \alpha/2 = 0.995$, e quindi dalla tavola dei valori di Φ si ricava $\phi_{1-\frac{\alpha}{2}} = 2.58$. Sostituendo in (*), si ottiene che un intervallo di confidenza per la media del contenuto di nicotina del campione di sigarette, al livello 0.99 è:

$$I = \left[1.3 - \frac{0.09}{10} \cdot 2.58, \ 1.3 + \frac{0.09}{10} \cdot 2.58\right] = [1.276, \ 1.323] \ .$$

▶ Esercizio 3.24 (prova d'esame del 9/07/02)

Una moneta equilibrata viene lanciata n volte. Per ogni $k \leq n$ poniamo $X_k = 1$ se il k-esimo lancio ha dato testa e $X_k = 0$ altrimenti. Indichiamo con $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ la proporzione di teste negli n lanci. Usando l'approssimazione normale, calcolare:

- (i) $P(\bar{X}_n \ge 0.51)$, per n = 900;
- (ii) $P(|\bar{X}_n \frac{1}{2}| \le 0.01)$, per n = 900.
- (iii) Sempre usando l'approssimazione normale, stimare quanto deve essere grande n perché sia $P(|\bar{X}_n-\frac{1}{2}|\leq 0.01)\geq 0.95$.

Soluzione Le v.a. X_k sono di Bernoulli di parametro $p = \frac{1}{2}$; dunque $E(X_k) = p = \frac{1}{2}$ e $Var(X_k) = p(1-p) = \frac{1}{4}$. Posto $S_n = X_1 + X_2 + \ldots + X_n$, risulta $S_n \sim B(n,p)$.

(i) Si ha:

$$P(\bar{X}_{900} \ge 0.51) = P(900 \cdot \bar{X}_{900} \ge 900 \cdot 0.51) =$$

$$= P(X_1 + X_2 + \dots + X_{900} \ge 459) =$$

$$P\left(\frac{X_1 + X_2 + \dots + X_{900} - 900 \cdot \frac{1}{2}}{\frac{1}{2}\sqrt{900}} \ge \frac{459 - 450}{15}\right).$$

Usando l'approssimazione normale, questa probabilità vale circa $P(W \ge 9/15)$, dove $W \sim \mathcal{N}(0,1)$. Dunque:

$$P(\bar{X}_{900} \ge 0.51) \cong 1 - \Phi\left(\frac{9}{15}\right) = 1 - \Phi(0.6) = 1 - 0.7257 = 0.2743$$
.

(ii) Si ha, utilizzando ancora l'approssimazione normale, con $W \sim \mathcal{N}(0,1)$:

$$P(|\bar{X}_{900} - 0.5| \le 0.01) = P(|S_{900} - 450| \le 9) = P\left(\frac{|S_{900} - 450|}{15} \le \frac{9}{15}\right) \cong$$

$$\cong P\left(|W| \le \frac{9}{15}\right) \cong \Phi(0.6) - \Phi(-0.6) = \Phi(0.6) - (1 - \Phi(0.6)) =$$

$$= 2\Phi(0.6) - 1 = 2 \cdot 0.7257 - 1 = 0.4514.$$

(iii) Abbiamo, sempre per l'approssimazione normale:

$$P(|\bar{X}_n - 0.5| \le 0.01) = P\left(\left|S_n - \frac{n}{2}\right| \le 0.01 \cdot n\right) =$$

$$= P\left(\frac{|S_n - 0.5 \cdot n|}{0.5\sqrt{n}} \le \frac{0.01 \cdot n}{0.5\sqrt{n}}\right) \cong P\left(|W| \le 0.02\sqrt{n}\right),$$

dove $W \sim \mathcal{N}(0,1)$. Questa probabilità vale $2\Phi(0.02\sqrt{n}) - 1$; se vogliamo che essa sia maggiore di 0.95, deve essere $\Phi(0.02\sqrt{n}) > 0.975$. Dalla tavola della distribuzione normale standard, si ricava che $0.975 = \Phi(1.96)$, dunque deve aversi $\Phi(0.02\sqrt{n}) > \Phi(1.96)$. Siccome la funzione di distribuzione Φ è crescente, da ciò segue che $0.02\sqrt{n} > 1.96$, ovvero

$$n > \left(\frac{1.96}{0.02}\right)^2 = 9604 \ .$$

\triangleright Esercizio 3.30 (prova d'esame del 12/09/03)

Su 144 campi adibiti alla coltivazione di barbabietole si sperimenta un nuovo fertilizzante e si osserva un aumento medio di produzione di 14 Kg. Sia X la v.a. che indica l'aumento di produzione su un singolo campo.

(i) Supponiamo che la variabile aleatoria X abbia media μ incognita e varianza $\sigma^2 = 121$. Si calcoli un intervallo di confidenza a livello $1 - \alpha = 0.95$ per μ .

(ii) Supponiamo che la variabile aleatoria X abbia una distribuzione normale di media $\mu = 14$ e varianza $\sigma^2 = 121$. Si calcoli la probabilità che l'aumento di produzione sia maggiore di 20 Kg.

Soluzione (i) Siano X_i , $i=1,\ldots,144$ le variabili aleatorie che indicano l'aumento di produzione prodotto dal fertilizzante sull'i-simo campo. Si è osservato il valore $\bar{x}_{144}=14$. Un intervallo di confidenza a livello $1-\alpha$ per la media incognita di una distribuzione di cui è nota la varianza σ^2 è il seguente:

$$I = \left[\bar{x}_n - \frac{\sigma}{\sqrt{n}} \phi_{1-\alpha/2}, \bar{x}_n + \frac{\sigma}{\sqrt{n}} \phi_{1-\alpha/2} \right],$$

dove \bar{x}_n denota la media campionaria e ϕ_β è il quantile della Gaussiana standard, tale che $\Phi(\phi_\beta) = \beta$.

I dati forniti dal problema in esame sono ha $n=144,\ \bar{x}_{144}=14$ e $\sigma^2=121$. Inoltre $1-\alpha=0.95$ da cui $1-\frac{\alpha}{2}=0.975$ e quindi $\phi_{1-\frac{\alpha}{2}}=1.96$. Sostituendo si ottiene l'intervallo:

$$\left[14 - \frac{11}{12} \cdot 196, \ 14 + \frac{11}{12} \cdot 1.96\right] = \left[14 - 1.797, \ 14 + 1.797\right] = \left[12.203, \ 15.797\right] \ .$$

(ii) Indichiamo con W una variabile aleatoria normale standard. Allora

$$P(X > 20) = P\left(\frac{X - 14}{11} > \frac{20 - 14}{11}\right) = P\left(W > \frac{6}{11}\right) =$$

$$= 1 - \Phi\left(\frac{6}{11}\right) \simeq 1 - \Phi(0.54) = 1 - 0.7054 = 0.2946 \ .$$

Tavola della distribuzione normale standard

$$P(X \leq x) = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \, e^{-t^2/2} dt$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.535
.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.575
.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.651
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.687
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.722
.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.754
.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.785
.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.838
.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.883
.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90
.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.91
.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.93
.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.944
.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.963
.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.97
.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976
.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.982
.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.98
.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.993
.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.993
.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.99
.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996
.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997
.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.998
.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.999