KOVIA(I;(II‘L\(IPDEL FOR COOPERATIVE INTERACTIONSI,LN EROTEINS

astic m r cooperative interactions in proteins

is based on the theory of Markov’s chains and of birth-and-death processes. Even if
the model depends only on two parameters: the mean probability p and the coupling
eapacity Ap, it presents a surprising wealth of qualitative behaviors when the two pa-
rameters are varied. In particular we provide numerical evidence of change of concavity
of the stationary distribution at a critical value of the coupling capacity Ap. The main
mathematical feature is that the probability of creating a new chemical bond depends
on the total number of bonds already present in the system. In this sense, we speak of
a cooperative behavior.

1. Introduction

Dynamical models for the description of protein folding/unfolding have been stud-
ied by many authors.®71! In this paper we propose a phenomenological model of
protein folding based on the remark that, as known from experience, when the
polypeptidic chain is collapsing toward the native conformation, the greater the
number of the chemical bonds already formed among amino acidic residues, the
greater the probability that additional bonds can be formed. In this sense, we can
say that our model of protein folding is a cooperative one.

S The proposed model is a first approximation of the complex chain of events
leading to the protein folding/unfolding and it is based on the following assumptions:

(a) the macromolecules do not interact (therefore a single protein is considered);

(b) all the external physico-chemicals parameters (temperature, pH, ionic strength,
etc.) are constant;

(c) all the intramolecular weak chemical bonds leading to the folding are of the same
type but the probability of creating a new bond is not constant, increasing with
the number of already formed bonds.
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The first statement of this last assumption is very crude for a protein where
a hierarchy of bonds between amino acidic residues exists. A simpler biochemical
phenomenon such as the helix-coil transition in homopolipeptides,'® is closer to
the proposed model. In a forthcoming paper a more elaborate model taking into
account hierarchy of bonds between amino acidic residues will be proposed.?

The present model is very simple and depends only on two parameters: the
mean probability p and the coupling capacity Ap. Yet, as it will be shown both
by theoretical analysis and numerical simulation, it renders sufficiently well the
intuitive picture one has of the cooperative aggregation phenomenon. Moreover it
also presents a surprising wealth of qualitative behavior when the two parameters
are varied.

Our model is a stochastic one, whose main mathematical feature is that the
probability of creating a new bond depends on the total number of bonds already
present in the system. We would also like to point out the universal character of
the model, in the sense that, even though it has been developed for protein folding,
its general framework and the results are applicable to many different cooperative
phenomena.

These phenomena are characterized by a sharp transition, where a large variation
of the output corresponds to a very small variation of the independent variable,
followed by an almost equilibrium situation (sigmoidal behavior), and by an increase
of the noise of the output at the midpoint of the transition.

Many examples can be given and, among the best known ones, we mention only
a few:

(i) the sequential binding of four oxygen molecules to a molecule of hemoglobin®;
(i) the thermal transition from the gel phase to the sol phase of artificial and
natural membranes®;
(iii) the conformational transition of macromolecules (DNA, proteins, etc.)!!6;
(iv) the pressure dissociation of oligomeric proteins.}”

Experimental evidence, supporting our model, can be found in Ref. 17, where the
dissociation of oligomeric protein is related to a parameter, called conformational
drift which plays a role analogous to our coupling capacity Ap, in the sense that
it is proportional to the time fluctuation of dissociation and therefore to the coop-
erativity of that phenomenon. As a matter of fact, as we prove in a forthcoming
paper,! this analogy is very strict because our model allows to deduce the sigmoidal
behavior and to express the parameter describing the steepness of the sigmoid in
terms of our coupling parameter Ap.

On the other hand, we underline the fact that, while our model refers to folding
and dissociation of single proteins, the experimental data in Ref. 17 refer to ensem-
bles of proteins. In fact the experimental techniques (such as the atomic resolution
microscopy) currently available to analyze the behavior of single proteins are still
under development. For that reason, the process of folding/unfolding of proteins
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is currently studied by techniques of molecular dynamics.!? This consists, in a de-
tailed computer simulation, of all the atomic trajectories starting from the known
native state (by X-ray crystallography) of small proteins. As an example, we have
considered the recent paper of Daggett and Levitt® where the authors explore the
unfolding of the bovine pancreatic trypsin inhibitor (BPTI) through molecular dy-
namic simulations. In this cited paper, many figures describing the time evolution
of the secondary structure of the BPTI are reported.

As the secondary structure of a protein is related to the number of weak chemical
bonds and our model applies both to the folding and unfolding processes of proteins,
the data of one figure of the cited paper have been extracted and analyzed with our
model. The results of this analysis are reported in Sec. 7.4 and the corresponding
graphs (Figs. 13 and 14) show that, even in its admitted simplicity, our model is
satisfactorily applicable to the BPTI data in the sense that it captures its qualitative
behavior (cf. the discussion at the end of Sec. 7).

The aim of this note is the characterization of the cooperativity of the system, as
an increasing function of the coupling capacity Ap. Moreover, for p fixed, a critical
value Apg of Ap exists, corresponding to the change of concavity of the stationary
distribution (cf. Secs. 3 and 7). The parameter Ap also measures the complezity
of the system, in the sense that for Ap = Apy, the fractal dimension of the system
reaches its maximum (see Sec. 7).

Our qualitative analysis of the system combines theoretical analysis and com-
puter simulation.

A detailed description of the content of this paper is at the end of Sec. 2.

2. The Stochastic Model for Cooperative Interactions in Proteins

We consider a certain number of particles (molecules) which can be connected by
chemical bonds. Presently, we shall only consider the possible pairings among par-
ticles, each of which will be described as a binary random variable, i.e. taking the
value +1 if the pairing has been activated and —1 if it has not. More precisely:

if N is the total number of pairings among the particles of the system (i.e. chem-
ical bonds), a configuration is defined by a sequence of binary random variables
{«E,(k)}i:l,...,N, such that §§k) = +1 if the ith pair is linked at the discrete time
k, {}k] = —1, otherwise. The evolution of the system, starting from an initial
configuration £9, is described in terms of the total energy of the system at time k:

N
Sn(E®) =3¢ (2.1)

i=1

and of two parameters p and Ap.
The number p, which we call the mean probability, is the probability of forming a
chemical bond when the total number of existing bonds is exactly N/2. Physically,



this parameter is inversely related to the activation energy for the formation of that
chemical bond.

The number Ap, which we call the coupling capacity, is the maximum increment
of the probability to form a chemical bond, for a given p.

Indeed, as a first approximation, we suppose that:

_ A
Pr ({E’“H) = +1 | g(k)’g(k 1),... 1f(ﬂ)) =p+ FPSN@(M)— (2.2)

It is clear from (2.2) that for Ap large, we have a fast growth of the folded protein
molecule (i.e. high probability of creating new bonds).

The energy Sn(¢(¥)) represents the excess number of positive over negative
bonds, i.e. the number of bonds which have been activated at time k minus the
number of those which have not. It can assume all integer values between —N and
+N.

For each fixed time k, the random variables Efc), see f,(';) are supposed to be
independent. Thus, if we fix the energy at time k to be n, i.e. Sn(¢*)) = n, the
random variables g{"“), can ,ng“} are Bernoullian with distribution

n
Pr {&‘Hl) =+1|Sn(EW) = n} =p+0py

and therefore the probability that at time k+ 1 the energy of the system is m, given
that at time k it was n, is

Pr (SN(E(”“)) =m|Sn(e®) = n)

qGEEDNECS DN

This means that the sequence of r.v. Sy(¢M),Sn(€®@),---,Sn(E®),--- is a
Markov chain with state space {—N,---,0,1,--- , N} in which a transition from
an energy state n at time k to another state m at time k + 1 occurs with the
probability given by (2.3). '

It can be shown that, in the nontrivial cases, the chain is ergodic, so there exists
a unique stationary probability m;,i = —N,---,0,---, N, that is the probability
for the system to stay at state i, in equilibrium (i.e. after an infinite time), is
irrespective of the initial state.

In Sec. 3, we show how to construct the Markov process and we discuss the
existence of absorbing states as a function of the parameters of the model; moreover
we show how the stationary probabilities can be computed by means of an exact
algorithm (for computer simulation and numerical results see Sec. 7).

In Sec. 4, we give an equivalent description of the evolution of the system in
terms of a birth-and-death process, which represents the same process, looking at
a smaller timescale.
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In Sec. 5, we consider the problem of exploring the fractal nature of the simulated
trajectories of the system, by computing the fractal dimension of the set whose
elements are the points of a trajectory, and relating it to the parameters p and Ap.

In Sec. 6, the problem of parameter estimation is considered and solved by means
of a maximum likelihood method.

Section 7 deals with computer simulation: we describe the qualitative behavior
of the system obtained by varying the parameter p and Ap. Moreover, we report
the numerical results relative to Secs. 3-6.

The numerical results are commented in Sec. 8.

3. Modelling the System by Means of a Markov Process
3.1. The Markov chain '
Here, we briefly show how to construct a Markov chain (MC) with one-side state
space {0,1,--- ,N}.
In the notations of Sec. 2, let N be the total number of permitted couplings
between the particles of the system; if r is the number of particles then N = [5].
The energy of the system at time k > 0 is supposed to be proportional (and, in
fact, identified with a proper choice of the unit of measure) to the random variable
Sn(€®), defined by (2.1).
Note that Eq. (2.2) is consistent only if the following condition holds:

0<pxAp<l. (3.1)

This follows from defining £ = +1 or €% = —1,Vi=1,--. ,N in (2.2). We also
suppose that the further condition is satisfied:

p=>Ap>0 (3.2)

which amounts to saying that the interaction potential is not greater than the
average potential.

Setting n; = (&; +1)/2, we obtain that the r.v. 7; can assume values 0, +1, with
probabilities:

PI‘(‘I}(IH.I) +1) = PI(§§k+1) = +1)
Ap < (o (k)
+5 2 @ —1)
h=1

A N
= (p-p) +258 Y nY, (33)
h=1

Pr(nf**) = 0) =1 - Pr(n{*tV = +1).



Then, if we define a new energy in the variables #;, at time k:

N
An(n®) =" n | (3.4)
h=1

and define Xj := An(n‘®)), we obtain an MC with state space {0,1,--- , N} with
transition probabilities matrix given by

Pnm = Pr (Xk+1 =m | Xk = n)
N 2Ap 1™ 2Ap (N-m
Z(m) p-p+ Fn] " 1= -9 - T 39)

Here, the state m € {0,1,--- , N} is in fact the number of activated bonds (i.e. the
number of pairs i € {0,1,---, N} such that & = +1).

Following Feller,!? a class C of states of an MC is said to be closed if any exit
from this class is impossible, that is if p;x =0,i€ C, k€ {0,--- ,N} -C =T. The
probability y; that the system will pass finally into the class C, starting from the
initial state 4, is given by the minimal solution of the equation (see Ref. 10):

Y= P+ ) Div- (3.6)

veT vel

A single state j forming a closed class is called absorbing, that is p;; = 1, pjx =
0, Vj # k. If the process enters an absorbing state, it remains there forever.

Moreover, a state § of an MC is said to be persistent (see Ref. 10) if, starting
from the state j, a return to j is certain, that is the probability of such an event
is 1. Otherwise, if the probability is positive, but less than 1, the state j is called
transient.

If the process starts from a transient state, two cases are possible: in the first
case it enters the class of persistent states and it remains there forever; in the second
one, the process remains in the class of transient states forever. If the state j is
transient, we have!?:

S <00 Vi (37
n=0
which implies
pg?)—ro as n—oo Vie{0,---,N}. (3.8)

Here, pg‘) is the probability that the system passes from the state ¢ into the state

7 in n steps.

The Markov chain is called irreducible if there exists no closed set other than the
set of all states; a sufficient condition for irreducibility is that ppm > 0Vn,m. In
the case where the MC is irreducible, (in particular if p,m > 0V n,V m) the ergodic
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theorem holds and there exists an invariant distribution {74}, k = 0,--- , N such
that
Hﬂ;op(:)=“k vie{0,---,N}. (3.9)

1

The probabilities 7, are called stationary probabilities, in our case m; represents the
probability that the process stays at state k, at equilibrium, i.e. after an infinite
time, irrespective of the initial state 4.

Now, we set @ = p — Ap,3 = 2Ap; let us suppose that p and Ap are not

" fixed, but are functions of N such that, for N large, the difference o = p — Ap

becomes almost zero. Specifically, let us suppose that « is a decreasing function
of N, a = a(N) = v/N*,u > 1. This corresponds to the situation in which, for
large-N, the difference between the mean potential and the interaction potential
goes to zero more quickly than 1/N. The fact that p = Ap for N large, can be
justified by observing that, when the number of pairings, N, becomes infinite, and
the number of existing bonds is also large, then only minor modifications can occur
in the system, i.e. only a few additional bonds can be formed and only a few bonds
can be destroyed.

In the situation above, from (3.5) we obtain, as N — oo:

o B+ OWNH)”

nm

1 - Bn/N +o(1/N))"

~ %(l — Bn/N)N ~ (Br)™ —pn. (3.10)

m!

Therefore, in the case & = a(N) = v/N*,u > 1, we obtain the estimate, as N — oo:

~ (Bn)™ePm ' (3.11)

Pnm ,
m.

This means that the process X;; conditioned to X; is a Poisson process with mean
BX;.

3.2. The properties of the MC
Consider some special cases of the MC with transition probabilities given by (3.5).

3.2.1. The case when p= Ap # %
From (3.5) we obtain:

Pam = (ﬂ ) (2;;%)'“(1 - 2p%)N_m. (3.12)

Thus poo = 1,pon = 0Vn € {1,---,N}. Therefore, the state 0 is an absorbing
state. In terms of the variable £;, we see that the state 0 corresponds to an energy
Sn(€) = =N, that is to the case of full uncoupling. Putting C = {0} in (3.6) we



obtain that the probability of ultimate absorption in the state 0, starting from any
state 4, is equal to 1.

3.2.2. The case whenp+Ap=1,p+# %
From (3.5) we obtain:

Do = (an) (1-2Ap(1 —n/N))™(28p(1 —n/N))" ™. (3.13)

Thus pyny = 1 and pyp =0V m # N.

Therefore, the state N is absorbing, it corresponds to the situation of full cou-
pling. From (3.6) it follows that the probability of ultimate absorption in the state
Nis 1.

3.2.3. The case when p=Ap = %
From (3.5) we obtain:

pon= () (F) -7 314

It is easily seen by induction that:

) N
Z m:Pam =N, (3'15)

m=0

that is the MC is a martingale. It also results pgo = pnyn = 1; then the states 0
and N are absorbing, the other states are transient. The process, starting from the
state n, will ultimately finish in either the state 0 or state N. By using (3.15), we
obtain:

p(kg,, — 2 ask— 0o. (3.16)

n N

Therefore, the probabilities of ultimate absorption in 0 and N, starting from the
state n, are respectively

(1—%) and . (3.17)

These values can also be found by solving Eq. (3.6).
By using the formula: (see e.g. Ref. 10)

N-1
=1+ Y pjaTh (3.18)

h=1

one can compute the expected time 7; of ultimate absorption in the closed class
{0, N}, starting from j (see Sec. 7 for numerical results).
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3.2.4. The case whenp >Ap>0andp+Ap<1

It is the most interesting case from the physical point of view. Indeed, for Ap=20
the Markov process reduces to a Binomial process:

pun = () -9 (319)

Then, one expects that, if Ap > 0 and Ap << p, the system behaves approximately
as in the Binomial case. In fact, the numerical simulation confirms the behavior for
Ap << p.

It is easy to see that p,.,, > 0V n,m and this implies that the chain is irreducible.
Indeed, as is easily seen from the definition of ppm, (see (3.5)), the second factor in
(3.5) is always positive (since p > Ap), as is the third one, because

2Ap

1—p+Ap—Tn2 1-p+Ap—-2Ap=1-p—-Ap>0,n=0,1,--- ,N
since p+ Ap < 1.

Then, the ergodic, stationary probabilities m; = 0,1,--- , N exist and they can
be computed by solving (see e.g. Ref. 10) the equation:

i = Z MPji (320)
i .

which is the left eigenvector problem for the matrix P with the corresponding
eigenvalue 1. From the ergodic theorem, it follows that:

lim Pr (X, =i)=m = lim p(") (3.21)
n—oo

irrespective of the initial state k, where p{" is the probability of transition from
the state k to the state i, in n steps.

Now, we introduce a heuristic argument which suggests a guess for an asymptotic
approximation of the stationary probabilities given by (3.21), in the limit N — oo.
We shall see that, at least for some values of the parameters, this guess is confirmed
by the numerical simulations. -

A heuristic application of the law of large numbers suggests the following ap-
* proximation, for N large:

*)
Av (” z *) (3.22)
or ® N
Sy (¢ 1 _
_*—Ngfr )=§Z£§")~Zak—1, (3.23)

where a, = B({")) = Pr (") = +1).



Now, from (2.2) and (3.3), taking into account (3.22), (3.23), we obtain:
ars1 = Pr (n1) = +1) = Pr (€Y = +1) = p + ApSn(§*®)/N

~p+ Ap(2ax — 1) = (p — Ap) + 2arAp
= (p— Ap) + 2Ap ((p — Ap) + 20x14p)  (3.24)

and, iterating this procedure, we have for any integer h < k:

h
ars1 = (p— Ap) Y _(2Ap)* + 2" Ap"Hlagn. (3.25)

i=0
For k = h, we obtain:
k -
ar41 = (p— Ap) Y _(2Ap)* + 251 Ap*Hag
i=0

In the limit N — oo,k — oo, this suggests the approximation:

—n L Pp-Ap
Goo -_k]_—l-{goak 1-2Ap°

(3.26)

Note tha.t the term 2F+1Ap**! tends to zero since Ap < 1 —p < 1 — Ap implies
Ap < 1; moreover (3.26) is consistent, since p+ Ap <1 implies f’ﬁ% <1.
Hence

Pr(X) = n) = Pr(zn“" ) (f ) ax™(1 —ag)N " (3.27)

from which we finally obtain the following estimate for the stationary probability
for large N:

p = lim Pr(Xi =n)~ (N) Goo™(1 — @)V ™
k—oo n

= (I—_ZITP)E (1:) (p—Ap)"(1—Ap-p)" ", Ap# % (3.28)

A more rigorous theoretical estimate of the stationary probabilities 7y, can be found
by considering the diffusion process obtained by the continuous approximation of
the rescaled Markov chain, which has a beta function for stationary probability
density.?

4. Modelling the System by Means of a Birth-and-Death Process

In this section we shall describe the system by means of a birth-and-death process
(BDP). If the state of the system at time ¢ is given by X; =n € {0,1,--- , N}, (that
is there are exactly n links between particles, or n coupled particles, at time t), we
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suppose that the system changes only through transitions to the nearest neighbors
of the state n (that is from n to n+ 1 or n — 1, if n # 0, N, but from 0 to 1 and
from N to N — 1 only). We also suppose that the probability that during a time
interval (¢,t + h), h > 0, more than one change occurs is o(h). Moreover:

{PI‘(Xt+h=ﬂ+1|Xg=ﬂ.)=/\ﬂh+0(h), (4 1)

Pr(Xeyn =n—1| Xy =n) = ph+o(h).

. Here, the numbers A, and p, are called, respectively, the birth and death rates, by
analogy with population growth processes. The choice of ),, and p, characterizes
the model since it prescribes the way according to which changes can occur in the
system. Let us denote:

P,(t) =Pr(X;=n),ne{0,--- ,N}. (4.2)

From the general theory of birth-and-death processes it follows (see e.g. Ref. 10)
that for all bounded coefficients \,, > 0, p,, > 0, with any initial conditions:

P.(0) = b, i X(0) =4, (43)

the numbers P,(t) can be uniquely found for all ¢ in such a way that they satisfy
the condition:

S P,(t)=1. (4.4)

If Ag = 0, the transition 0 — 1 is impossible and 0 is an absorbing state from which
no exit is possible; once the system is in state 0, it remains there forever. In this
case Py(t) increases monotonically. The limit Py(oco) is the probability of ultimate
absorption in 0.

Analogously, if u, = 0, the transition N — N — 1 is impossible and N is an
absorbing state; Py (t) increases monotonically to the limit Py (00), which represents
the probability of ultimate absorption in N. It can be shown that the limits:

Jim Pa(t) = p (45)

exist and are independent of the initial conditions (4.3). The stationary probabilities
Po,* ,PN, satisfy a certain system of linear equations (see e.g. Ref. 10). In fact
they are given by:

f

o N g1y -1
po=|1+"+X) =[] ,
(e ey i I 2)

j=1 Hi
4 p1=ﬁpo, (4.6)
H1
T R R = WP REPAP Y

D
\ 71 TSR 1T |



Now, we return to the problem of the appropriate choice of the birth rate ),, and the
death rate u,. The considerations of the previous section, which led to describing
the evolution of the system in terms of a Markov process, suggest now to take A,
and pu, as follows:

{An=pnn+1,ﬂ'=0:"'yN_l;AN=pNN=(p+Ap)N1

4.7
fn =Pnn-1,n=1,--- ,N; po=poo = (1 —p+Ap)", 7

where p;; is given by (3.5).

Again, if p = Ap, from (3.5) it follows that A\¢ = pp1 = 0 and the state 0
is absorbing, as in the case of the MC; if p + Ap = 1, from (3.5) it follows that
pn = pnnN—1 = 0 and the state N is absorbing. Finally, if p = Ap = 1/2, we
obtain, as in the case of MC, that 0 and 1 are absorbing states.

By means of the above construction, we have described the evolution of the
system in terms of a BDP, which, up to events with probability of order h%, jumps
only from a state to one of its nearest neighbors during the interval (¢, + h). In
physical terms, h represents the mean time of formation or destruction of a link
between two particles.

5. Fractal Dimension

Here, we deal with the fractal nature of the trajectories of the system, obtained by
computer simulation. _

It will be interesting to investigate the (eventual) structure of strange attractor
for our models of protein folding; this approach has been followed for some physical
model of proteins.!4

We limit ourselves to consider the fractal dimension of the single trajectories of
the system whose evolution is carried by the MC.

We recall that the fractal dimension (of covering) of a set E embedded in R is

defined by (see Ref. 15):
D = lim {[log N(r)]/[tog (1/r)]}, (5.1)

where N(r) is the number of d-cubes of side r which cover the set E. For d = 1,
let E={X):k=0,---,L} C [0,N], the continuous approximation (obtained by
linear interpolation) of the discrete trajectory (simulated by computer) of length
L starting from Xj; we have computed the approzimation of the fractal dimension
of the set E rescaled to the interval [0, 1], obtained by taking r small enough in
(5.1), and we have compared (for the same value of r) the quantities so found,
for several choices of Xy and various values of p and Ap. It is clear that the
fractal dimension of any trajectory obtained by computer simulation is zero, being
a discrete set. However, by computing the quantity in (5.1) for r small enough, but
not infinitesimal, one can obtain a non-trivial qualitative information on the nature



of the trajectory. This information is given by a number which we (improperly) call
fractal dimension.

- 6. Estimation of Parameters

In this section we consider the problem of estimating the parameters p and Ap in
the case of the MC. We make use of a mazrimum likelihood method.

If {io,%1,--- ,ir} represents a trajectory of the process {X;} starting from iy at
time 0, L being the final time, we can consider the likelihood function:

L

f,(p, Ap) = H Piy. igga (P, Ap) ’ (6'1)

k=0

where p;;j(p, Ap) is the transition probability from state i to state j, which was
given by (3.5). By maximizing the logarithm of the likelihood function, we can find
the estimate (p, Ap) of the parameters p, Ap. In practice, we have limited ourselves
to simulated trajectories with given input values of p and Ap and, supposing them
unknown, we have recovered estimates of these values, by using the above method.
The same method has been used to analyze the BPTI data.?

7. Computer Simulation and Numerical Results

In this section, we deal with the qualitative behavior of the system, obtained by
means of computer simulation and examine all the numerical results relative to
Secs. 3-6. Graphical outputs are reported.

We wrote some FORTRAN Programs to simulate the time evolution of the
process, and we have studied the behavior of the system, by varying the parameters
of the model, in both MC and BDP cases.

In Figs. 1-3 the plots referring to some typical simulation runs, in the cases of
the MC and BDP are reported.

7.1. Stationary probabilities and absorbing states for the MC

Let us consider the qualitative behavior of the stationary probabilities m;,i =
0,---,N, as a function of the parameters p and Ap, in the case when the evo-
lution of the system is described by means of the MC.

To find the stationary probability distribution of the states of the system at
equilibrium, an exact algebraic computation has been used. Indeed, though the
convergence of the process to the equilibrium occurs at an exponential rate,® the
pumerical simulation would require rather long CPU time, because the number
of states that the system is allowed to assume is large (for large-IV). Then, the
stationary probabilities have been ezactly found by numerical computation of the
eigenvector in Eq. (3.20). Some care has been used in this operation. Indeed,
practical numerical difficulties have been found to compute the left eigenvector of
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Fig. 1. Graph of Monte—Carlo simulation of a trajectory of the system described by the Markov
chain (MC) in a state vs time for N = 300, p = 0.5, Ap = 0.495 and X, = 150 (initial state).
From the diagram, it is obvious that there are small fluctuations around the mean value.
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Fig. 2. Graph of the state of the system vs time obtained by simulating the BDP; the values of
the parameters and the initial datum are the same as in Fig. 1. Compare this with Fig. 1, there
is qualitative similarity of the trajectories of the BDP and of the MC. Note, however, that in the
BDP the probabilities to remain in the same state are appreciably nonzero, which does not seem
to happen for the MC.
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Fig. 3. Graph of the state of the system vs time obtained by simulating the MC; here N = 100, p =
0.51, Ap = 0.49 and Xy = 0. Notice that N is absorbing (since p + Ap = 1), and the system
ultimately ends up in state N and remain there.

the matrix P = (p;;), since, for large-N, the entries p;; are very small. Moreover,
the computation of p;; itself, involves the binomial coefficient (‘:) (see Eq. (3.5)),
and this is a nontrivial problem from a numerical point of view, for large j and N.

Figures 4 a—d show that, for values of the parameter Ap far from the critical one
(Ap = 1), he agreement between the stationary probabilities numerically computed
by means of the exact formula (3.20) and those calculated by means of our conjecture
(see (3.28)) is excellent.

However, we have used the exact formula (3.20) to compare the stationary prob-
abilities, at different values of parameters. In fact, in Fig. 5, we report a plot, con-
cerning the case of MC, of the stationary probability m; as a function of the state
i =0,---, N, for several values of the parameter, in the case when the state N is
almost absorbing.

We have computed by formula (3.18) the expected absorbing times. For N
large and p = Ap = %, one can find the following approximation for the times
7jy = 0,---, N of ultimate absorption in the closed class {0, N'}, starting from j:

=0,
7 =N () + (- §)@-§) forj =1 N-1 (@)
T~ =0.
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Fig. 4. Graphs of the stationary probabilities numerically computed by the exact formula (3.21)
and by means of the estimate (3.30). (a) p = 0.49, Ap = 0.4; (b) p = 0.7, Ap = 0.16; (c)
p=0.7, Ap = 0.12; (d) p = 0.7, Ap = 0.1. Note that for p = % the estimate (3.30) is meaningless,
since it gives rise to a binomial distribution with parameter %, independent of Ap. Moreover, the
more p is far from %, the better the agreement is between the curves.

This estimate for 7; can be found, by using the diffusion approximation of the
MC.? In Fig. 6a a plot of 7; versus state j is reported for p = Ap = 0.4 and N = 100
(0 absorbing state). In Fig. 6b a comparison of the graphs of 7; and 7} are reported,
for p= Ap = (0,1 absorbing states).
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Fig. 4. (Continued)

For j = &, the expected time of absorption in {0, N} is 7v/2 = Ty /5 = 2NIn2.

Letting the parameters p and Ap vary according to the constraints (3.1) and
(3.2), we have observed that for p fixed and values of Ap not very large, the distri-
bution of the states at equilibrium appears to be close to the binomial distribution.
By increasing Ap, the shape of the curve appears to be more and more flat, until
for a critical value Ap = Apo, for almost all i € {0,--- , N} (except some states in
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Fig. 5. Graph of the stationary probability vs the state in the case of the MC for N = 50, p = 0.6
and several values of Ap from 0% to (0.4)~, proceeding from the left to the right. Note that for
Ap = 0.4 (which implies p + Ap = 1) the curve approaches the graph of the function &(i — N).

the neighbours of the ends), the stationary probabilities 7; assume almost the same
constant value. Then, the states of the system are almost uniformly distributed, at
equilibrium. If each m; were exactly equal to 1/(N + 1), the transition matrix P
would be bistochastic, i.e.

N N
Zpij =1= Zpij . (7.2)
=0 =0

Really, for Ap = Apg, the numerical calculation shows that the matrix P is almost
symmetric in the sense that p;; — pj; is near zero for most of i € {0,--- ,N};
moreover max; ; | pij; — pji | /pi; is very small. In fact, for Ap = Apy, (p fixed), the
function Zi,j | Pij — pji | reaches the minimum, as we have obtained by numerical
minimization. Beyond the critical value Apyg, the curve of 7; versus i shows a gradual
change of concavity, passing from a negative to a positive second derivative, until
as Ap — 1~ it approximates the function 2[6(i — 0) + 6(i — N)] (for p= Ap = 0.5
the two states at the extrema are absorbing).

In Fig. 7, we report some plots of the stationary probabilities 7; as a function
of the state 4, for some values of the parameter Ap and p fixed equal to %; there is
a visible change of behavior, when Ap reaches the critical value Apy.
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Fig. 6. (a) Graphs of the expected time 7; of absorption in the absorbing state 0, for p = Ap =
0.4, N = 100, as a function of the initial state j = 0,1,-- ,N; (b) compared graphs of 7} (upper
curve) and 7; (lower curve), for p = Ap = %, N = 100, here 0 and N are absorbing states (see
Sec. 7 for the definitions of 7; and 1';)‘

7.2. Stationary probabilities for the BDP and discussion

Let us consider the stationary distribution of states in the case of BDP; we observe
that, if An = fin41, from (4.7) one obtains pg =py =+ =pp =--- = 1/(N + 1),
that is the stationary probabilities are the same for every state i € {0,1,---, N}.
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Fig. 7. Graph of the stationary probability vs the state in the case of the MC for N = 300, p = 0.5
and several values of Ap. When Ap increases, the shape of the curve appears to be flatter, unttil
for Ap = Apo = 0.49834, the stationary probabilities are almost the same V 4, indicating that the
states are almost uniformly distributed, at equilibrium. For Ap > Apg an inversion of concavity

is observed.

This corresponds to the situation in which the stationary distribution of the
states is uniform. In this case, from (4.8) we obtain ppn4+1 = Pn+1n, that is:

w000+ (1) - s 220) (10— 2)

_ (*’:) (- 2p+ %(n+1))“(1—p+m— %(n-&-l))N_
-0. (7.3)

As it is easy to see, for p fixed, the equality (7.3) can be thought of as an equation
in the unknown Ap, having no solution independent of n € {0,--- , N}. The only
thing that we can hope to achieve is to find the value of Ap, say Apyg, for which
22;0 | ¥(p, Ap,n) | is minimum, (p fixed).

This can be obtained by numerical minimization of the function above. Indeed,
we have obtained, for p = %, a value Apyj close to Apg, where Apy is the value of Ap
for which the almost uniform stationary distribution of states {=;} has been observed
in the case of the MC (see above). By inserting the value App into Eq. (4.6), we
have found that the stationary distribution of states {p;} looks very similar to {m;}.



in both the MC and BDP cases. In Fig. 8, we report a graph in which the stationary
probabilities ; and p; are plotted as a function of the state ¢ =0,1,--- , N, in both
cases (MC and BDP), for Ap = Apg. In the case of MC, the stationary probabilities
m; have been computed by finding the left eigenvector with eigenvalue 1 of the
transition probability matrix given by (3.5); in the case of BDP, the stationary
probabilities p; have been computed by using (4.6).

| T L] L] T 'l T T T T | T T T T [ T T T T L] T T ) T |-
0.05 [ 1
& - ]
E 0.04 — —
= ]
-
8 L _
S 0.03f B
=9 4
>_( 4
% .02 MC ]
=z . . i
S ]
3] [ . j
§ OUDL [ g o s - -BDP—
m frraa., AR ]
O-DO . 1 1 1 1 I 1 L. L L I L 1 1 L I L L L L I 1 1 1 1 l L I_
0 20 40 60 80 100 STATE

Fig. 8. Different graphs of the stationary probability vs the state in the cases of the MC (upper
curve) and the BDP (lower curve). Here N = 100, p = 0.5, Ap = 0.4974. The figure shows
that, except for a small region near the extremal states, there is a good agreement between the
stationary probabilities of the BDP and those of the MC.

Now, let us consider some remarks about the relation (4.6); we observe that it
becomes almost natural, when comparing our BDP with a simpler Markov chain
(SMC) having transition probabilities:

n Hn
=" pi=—t2 np=1,---,N-1
Pnn+1 M+ fin 3 Pan—1 M+ m n 3 3
p,‘j=0 if |t'—j|>1, (7.4)

where ), and p, are given by (3.8).

In this SMC, the only transitions which are allowed in one step are: n - n +1
and n — n—1, and they have the same conditional probabilities as in the BDP. The
only difference is that, in the BDP changes can occur at arbitrary times, so that
the number of transitions during a time interval of length ¢ is a random variable.



On the other hand, if ¢ is large, the number of transitions is also large, and so it is
natural to think that, as ¢ — 0o, the probabilities P, (t) behave as the corresponding
probabilities of the SMC.

We also observe that the process carried by the SMC never remains fixed, while
in the case of BDP the system may remain in the same state, for several steps.
Notice that, at any step, the process described by the MC can have jumps of
arbitrary lengths, corresponding to unphysical conditions, because during the mean
time of formation or destruction of a link only one bond can be formed or cut.
While the trajectories of the BDP show a tendency to remain for an appreciably
nonzero time in some states, this does not seem to happen for the trajectories of
the Markov chain (cf. Figs. 1 and 2). Then, a description in terms of BDP is more
satisfactory from a physical point of view.

For several initial states, we have performed many simulation runs and we have
observed that the three processes (MC, SMC, BDP) are qualitatively equivalent, in
the sense that, MC and SMC appear to be as the BDP accelerated. Obviously, from
a practical point of view, the simulation obtained with the BDP is more convenient,
since at every step, the number of coupled particles can change only by +1; on the
other hand, if one is interested in the behavior of the process at equilibrium (that is
after an infinite time), the accelerated description in terms of MC is more convenient,
since it saves a lot of computer time.

7.3. Fractal dimension

Now, we report the results concerning the fractal nature of simulated trajectories.

First, let us consider the dependence of the state of the system at time k + 1
from the state at time k, for several values of the parameters p and Ap, in the
case of the MC. We obtain some nice figures in which X, is plotted as a func-
tion of Xj; for p = 0.5 and Ap = Apy (see above for the definition of Apy),
the curve appears to fill up a flattened shell around the bisecting line (see Figs. 9
and 10).

In Fig. 11 a plot of the fractal dimension D of the trajectories versus Ap, for p
fixed, is reported. Precisely, for p = 0.5 fixed, we have let Ap vary from 0 to 0.5; for
small values of Ap, the process is persisting, that is very localized around the mean
value. Then the complerity of the system should be small, and in fact D is small.
When Ap increases, the process become more erratic and the fractal dimension D
also increases, until it reaches a maximum for Ap = Apy (the critical value for
which the states of the system are almost uniformly distributed, at equilibrium).
This is because the system spends almost equally the same time in each state; so
the trajectory has many loops. For Ap > Apy the fractal dimension decreases, until
for Ap — (%) the trajectory starting from a middle state is almost linear, with
few loops, and D assumes very small values.



Xi+1

30—

20—

1 L L 1 | 1 1 1 i
O 1 1 1 1 1 L ] i
0 10 20 30 X

Fig. 9. Graph of the state Xj41 vs X} in the case of the MC, for p =04, Ap small, N = 50 and
Xo = 0. Note that a shell around the most probable value X = 20 is filled up. Note the completely
different qualitative behavior of the same plot, with different parameters, given by Fig. 10.
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Fig. 10. Graph of the state X341 vs X in the case of the MC, for p = 0.5, N = 100, and Ap
equal to the critical value for which the almost uniform stationary distribution is observed. Since
the system wvisits all the states with almost the same frequency, a flattened shell appears to be
filled up, around the bisecting line.
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Fig. 11. Graph of the fractal dimension D of the trajectory starting from state 0 vs Ap, in the
case of the MC, for p = 0.5 fixed. When Ap = App, D is maximum. It shows that, although the
process is a discrete state, nevertheless the fractal dimension (cf. Sec. 5 after definition (5.1)) of
its trajectories contains some qualitative informations.
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Fig. 12. Graph of the likelihood function L(p, Ap) vs Ap for p fixed (= 0.5). Here, the input data
were Ap = 0.49505, p = 0.5, N = 100. The curve clearly shows a maximum for a value Ap close
to 0.49505.
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Fig. 13. Graph of the time (ps) evolution of the normalized percentage of secondary structure
present in the B-sheet and in the C-terminal a-helix of BPTI at temperature of 498 K (data
reported from Fig. 13 (i) of Ref. 9. The superimposed curve represents the time evolution of an
averaged process (drift) (cf. the discussion at the end of Sec. 7). The estimated values of p = 0.4956
and Ap = 0.4575 of our model, have been recovered by means of the maximum likelihood method.
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Fig. 14. Graph of the time evolution of a stochastic simulation of the process, based on our model
and relative to the values of p and Ap of Fig. 13. The time evolution of the averaged process is
also superimposed. The horizontal and vertical scales are as in Fig. 13.



7.4. Estimation of parameters

Here, we consider the numerical results relative to Sec. 6. By simulating the time
evolution of the system (carried by the MC), with specific input data Ap = 0.3
and p = 0.5, for instance, we have recovered the estimates Ap = 0.285.. and p =
0.499 - - -, by using an IMSL routine for global minimization with constraints. In
Fig. 12, we show a plot of the function £(p, Ap) computed by (6.1), as a function
of Ap, for p fixed (= 0.5). Here the input data of the simulated trajectory were
Ap = 0.49505,p = 0.5 and N = 100. The curve clearly shows a maximum for a
value Ap close to 0.49505.

As reported in Sec. 1, we have analyzed the data of Fig. 13 (i) of Ref. 9 with
our model. Figure 13 (i) refers to the time evolution of the percentage of secondary
structure present in the S-sheet and in the C-terminal a-helix of BPTI at a temper-
ature of 498 K. The starting point is the native state of the BPTI known by X-ray
crystallography. The high temperature value has been chosen by the authors to ac-
celerate the unfolding process and to render the time scale accessible by computer
simulation.

In Fig. 13 the original data of Ref. 9 are reported. From these data we have
estimated the values of p = 0.4956 and Ap = 0.4872 with the maximum likelihood
method (cf. Sec. 6). )

In Fig. 14 a stochastic simulation of the process, based on our model and relative
to the above p and Ap values is reported. In both figures the superimposed smooth
line represents the dynamical evolution of a deterministic process (drift) which
drives, up to fluctuations, the dynamics of the process. This fact suggests the
possibility (investigated elsewhere®!?) to apply diffusion limit techniques to the
present model. As the simulation is stochastic, the time evolution of the process
of Fig. 14 is not identical to that of Fig. 13, but the main features (i.e. the decay
time and the extent of fluctuations) are very similar. This illustrates the main idea
of our model of the folding/unfolding process of a protein: the two parameters, p
and Ap, (where Ap is related to the cooperativity of the phenomenon) are deduced
from some experimental data; given that, the samples of the corresponding process
describe, up to fluctuation, the main qualitative features.

8. Concluding Remarks

We have described a mathematical model for the cooperative interactions in pro-
teins which is based on the theory of Markov processes and BDPs. This model is
very simple and depends only on two parameters: the mean probability p and the
coupling capacity Ap. As we have shown by both theoretical analysis and numeri-
cal simulation, the model renders well enough the intuitive picture one has of the
protein folding.

The main mathematical assumption is that, when the polypeptidic chain is
collapsing to establish the native protein, the greater the number of the chemical



bonds already formed among amino acidic residues, the greater the probability that
additional bonds are formed. In this sense we can say that the folding of a protein
is a cooperative phenomenon.

Although the model does not take into account the spatial structure of the
system, it presents a surprising wealth of qualitative behaviors, when the two pa-
rameters are varied. In fact, the behavior of the system is characterized by the
degree of cooperativity which is measured by the coupling capacity Ap.

The evolution of the system can be described both by a suitable Markov chain
and by a BDP, but the behaviors are qualitatively the same. If N is the total
number of permitted coupling among particles, the state of the system at time ¢
is defined by the number n < N of bonds which are formed, at time ¢{. When
p = Ap, but p and Ap # %, the system will ultimately end up in state 0, that
is the state in which no chemical bond is formed (full uncoupling), irrespective of
the initial state: so state 0 is absorbing. When p + Ap = 1, but p and Ap # 3,
the system will ultimately finish in state N, irrespective of the initial state, that is
the state of full coupling is absorbing. When p = Ap = 3, the two extreme states
(0 and N) are both absorbing, and the system will ultimately end up in one or
the other, with a probability depending on the initial state of the system. Finally,
when p > Ap > 0 and p + Ap < 1, the Markov chain is irreducible, so the ergodic
stationary probability m; exists, that is the probability that the system stays at
state i at equilibrium (i.e. after an infinite time), irrespective of the initial state.
When the degree of cooperativity Ap is relatively small, and p is fixed, the extreme
states are rarely visited by the system, at equilibrium, and the middle states are
priviliged in the sense that, with a large probability, the fraction of bonds (over
the total) which are formed among particles is close to p. When Ap increases, the
extreme states are visited more frequently leading to large fluctuations of the system
state (see also Fig. 7). Similar results, based on experimental data, are reported in
Ref. 17.

The main result is that, for p fixed, a critical value of Ap exists, say App, such
that, when Ap increases to Apy, the shape of the curve representing the stationary
probability versus the state appears to be more and more flat, until for Ap = Apy,
the stationary probabilities are almost the same for all the states. This means that
the states of the system are almost uniformly distributed at equilibrium, that is,
ultimately, each state may occur with almost the same probability. For Ap > Apo,
an inversion of concavity of the curve above is observed.

When Ap = Apy, the system is very erratic and each state is visited with almost
the same frequency, then, after an infinite time, the system does not stabilize around
any particular state; on the contrary, it appears to pulsate between the two extreme
states, that is from the situation of full uncoupling to the one of full coupling, and
vice versa, assuming all the intermediate states. Moreover, for Ap = Apg, the
fractal dimension of the simulated trajectories reaches its maximum.



We have heavily used computer simulation for the examination of the qualitative
behavior of the system. All indications are that the parameter Ap is very important,
and that it can be taken as a measure of the degree of cooperativity, and also of
the complexity of the system.

As an example, the proposed model has been applied to a realistic case of protein
unfolding reported in literature and relative to a molecular dynamic simulation of
bovine pancreatic trypsin inhibitor (BPTI).? As reported in Sec. 7.4 and in Figs. 13
and 14, the agreement between the literature data and the data obtained using our
model is very satisfactorily. In a forthcoming paper? the present model is generalized
in order to take into account different types of chemical bonds.





