Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2019/20 Processi stocastici e analisi di serie temporali

PROVA DI ESONERO SUI PROCESSI DI MARKOV DEL 29 Novembre 2019

Punteggi: 1: 2+4+1+1+1+1; 2: 2×5 ; 3: 6×1.66 ; totale = 30.

Esercizio 1. Sia

$$P = \begin{pmatrix} 1/3 & 2/3 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix},$$

e si consideri la CM omogenea X_n su $E=\{1,2,3\}$ con matrice delle probabilità di transizione P.

(i) Classificare gli stati della CM e trovare eventuali stati periodici, specificandone il periodo.

Si consideri il s.i. degli stati $A = \{1, 3\}$; calcolare $P(X_n \in A \text{ per qualche } n | X_0 = 2)$.

- (ii) Scrivere esplicitamente la matrice delle probabilità di transizione in n passi, P^n , per ogni intero positivo n.
- (iii) Trovare la/e distribuzione/i invariante/i e quella stazionaria, se esiste.
- (iv) Trovare il minimo valore di n per cui

$$\left| p_{12}^{(n)} - \frac{1}{3} \right| < 10^{-6}.$$

- (v) Dire, giustificando la risposta, se il tempo di primo ritorno, T_i , nello stato $i \in E$ è ben definito ed ha media finita e, in caso affermativo, calcolare $[E(T_2 T_1)]^3$.
- (vi) Stimare per k grande $P(X_{5^k} = 1, X_{5^k+2} = 3)$. Si tratta di una probabilità inferiore o maggiore al 15%?

Esercizio 2. Si consideri una coda M/M/2 ove gli arrivi avvengono in accordo con un processo di Poisson N_t con intensità λ e il tempo di servizio ha distribuzione esponenziale di parametro μ . Sia X(t) il numero di clienti presenti nel sistema al tempo $t \geq 0$.

Si supponga che $\lambda=\mu$ e inoltre il tempo medio che un cliente trascorre nel sistema in condizioni stazionarie sia W=2/3 .

- (i) Discutere l'esistenza della distribuzione stazionaria $\pi = (\pi_1, \pi_2, ...)$ tale che $\pi_i = P(X(\infty) = i)$ e trovarne esplicitamente la legge.
- (ii) Calcolare $P(|X(\infty) 4.5| \le 1/2)$.
- (iii) Calcolare il numero medio L dei clienti nel sistema, il numero medio L_c dei clienti in coda, il tempo medio di attesa in coda W_c , in regime stazionario; il numero medio L dei clienti nel sistema è superiore o inferiore a 1?
- (iv) Si consideri una coda M/M/1, con parametro μ' uguale al parametro μ della coda M/M/2 e λ' da trovare, e denotiamo con Y(t) il numero di clienti presenti nel sistema al tempo $t \geq 0$. Sia T il tempo che un cliente trascorre nel sistema in regime stazionario; sapendo che $E(T^2) = 2$, trovare, se esiste, la distribuzione stazionaria della coda M/M/1 e calcolare $P(2 \leq Y(\infty) < 4)$.

(v) Si consideri un processo di Poisson omogeneo Z(t) con Z(0)=0. Sapendo che $P(Z(1)=1)=2e^{-2}$, trovare la distribuzione del primo istante, τ_3 , in cui Z(t)=3, e calcolare $E(\tau_3)/E[(\tau_3)^2]$.

Esercizio 3. Si consideri la CM a tempo continuo, omogenea, con spazio degli stati $E = \{1, 2, 3\}$ e avente per generatore la matrice:

$$Q = \begin{pmatrix} -a & 0 & a \\ a & -b & 1 \\ a & a & -2a \end{pmatrix}$$

con $a, b \ge 0$.

(i) Trovare a e b, sapendo che, detto R_i il tempo residuo di permanenza nello stato i, risulta

$$\begin{cases} P(R_1 > 3) = e^{-3} \\ E(R_3) - 1/E(R_1) + 2E(R_2) = 1/2 \end{cases}$$

- (ii) Trovare la/e distribuzione/i invariante/i per la CM e, se esiste, quella stazionaria π .
- (iii) Calcolare approssimativamente le probabilità di transizione $p_{ij}(t)$ al tempo t = 0.01.
- (iv) Posto $U = R_2 + R_3$, calcolare E(U) e $E(U^2)$.
- (v) Calcolare le probabilità di transizione \widehat{p}_{ij} della CM a tempo discreto "accelerata", ottenuta trascurando il tempo di permanenza nei vari stati e trovare la distribuzione stazionaria $\widehat{\pi}$ associata a questa CM. C'è differenza tra $\widehat{\pi}$ e π ? In caso affermativo, spiegarne il motivo.
- (vi) Trovare il minimo intero n per cui risulta $|\hat{p}_{ij}^{(n)} \hat{\pi}_j| \leq 10^{-5}$.

Processi stocastici e analisi di serie temporali a.a. 2019/20 Soluzioni della prova di esonero del 29-11-19

1. (i) Come si vede facilmente, gli stati sono tutti ricorrenti e formano un'unica classe; non vi sono stati periodici poichè sia P^2 che P^3 sono strettamente positive, ed essendo 2 e 3 primi tra loro, segue che nessun stato è periodico.

Ovviamente, risulta $P(X_n \in A \text{ per qualche } n | X_0 = 2) = 1.$

(ii) Gli autovalori di P sono: $\lambda_1=1,\ \lambda_2=-1/3,\ \lambda_3=0.$

Dunque, $\forall (i, j) \in \{1, 2, 3\}^2$ si ha:

$$p_{ij}^{(n)} = A_{ij} + B_{ij} \cdot (-1/3)^n + C_{ij} \cdot 0^n = A_{ij} + B_{ij} \cdot (-1/3)^n, \ n = 0, 1, \dots$$
 (1)

Per ogni valore di $i \in j$, sostituendo in (1) n = 1 e n = 2, servendosi del fatto che

$$P^2 = \begin{pmatrix} 1/3 & 2/9 & 4/9 \\ 1/3 & 4/9 & 2/9 \\ 1/3 & 1/3 & 1/3 \end{pmatrix},$$

si ottengono nove sistemi lineari di due equazioni nelle incognite A_{ij} e B_{ij} , le cui soluzioni forniscono i valori di A_{ij} e B_{ij} , $i, j \in \{1, 2, 3\}$. Si trova pertanto:

$$P^{n} = \begin{pmatrix} 1/3 & 1/3 + (-1)^{n+1}(1/3)^{n} & 1/3 + (-1)^{n}(1/3)^{n} \\ 1/3 & 1/3 + (-1)^{n}(1/3)^{n} & 1/3 + (-1)^{n+1}(1/3)^{n} \\ 1/3 & 1/3 & 1/3 \end{pmatrix}.$$

(iii) La matrice P è regolare e bistocastica, per cui esiste la distribuzione stazionaria ed è quella uniforme sull' insieme degli stati, ovvero $\pi = (1/3, 1/3, 1/3)$.

(iv) Si ha:

$$\left| p_{12}^{(n)} - \frac{1}{3} \right| = \left(\frac{1}{3} \right)^n$$

e, affinché tale quantità sia minore di 10^{-6} deve essere $-n \ln 3 < -6 \ln 10$, ovvero $n > 6 \ln 10 / \ln 3 = 12.57542$, da cui segue $n \ge 13$.

(v) Siccome la CM è ergodica, il tempo T_i di primo ritorno nello stato $i \in \{1, 2, 3\}$ è ben definito ed ha media finita; inoltre, risulta $E(T_i) = 1/\pi_i = 3$, per ogni $i \in \{1, 2, 3\}$. Dunque $[E(T_2 - T_1)]^3 = [E(T_2) - E(T_1)]^3 = 0$.

(vi) Si ha:

$$P(X_{5^k} = 1, X_{5^{k+2}} = 3) = P(X_{5^{k+2}} = 3 | X_{5^k} = 1) P(X_{5^k} = 1)$$

e, per l'omogeneità tale quantità è uguale a:

$$p_{13}^{(2)} \cdot P(X_{5^k} = 1) = \frac{4}{9} \cdot P(X_{5^k} = 1)$$

che, per k grande, vale approssimativamente $\frac{4}{9} \cdot \pi_1 = \frac{4}{9} \cdot \frac{1}{3} = \frac{4}{27} = 0.148 < 0.15$. Dunque, si tratta di una probabilità di poco inferiore al 15%.

2. (i) Ricordiamo le formule valevoli per una coda M/M/n, con $\rho = \lambda/\mu < n$:

$$\pi_k = \begin{cases} \frac{\pi_0}{k!} \rho^k, & k \le n \\ \frac{\pi_0 \rho^k}{n! n^{k-n}}, & k \ge n+1 \end{cases}$$

$$\pi_0 = \left[\sum_{k=0}^n \frac{\rho^k}{k!} + \frac{\rho^{n+1}}{n!(n-\rho)} \right]^{-1}$$

$$W = \frac{1}{\mu} + \frac{1}{\lambda} \left[\frac{\pi_0 \rho^{n+1}}{(n-1)!(n-\rho)^2} \right].$$

Nel nostro caso, risulta $n=2,\ \lambda=\mu,$ ovvero $\rho=\lambda/\mu=1,$ quindi, effettuando il calcolo si trova $\pi_0=1/3$. Utilizzando la relazione per W, si trova $W=\frac{1}{\lambda}(1+1/3)$ e imponendo che W=2/3, si trova infine $\lambda=2$.

(ii) Si ha:

$$P(|X(\infty) - 4.5| \le 1/2) = \pi_4 + \pi_5 = \frac{\pi_0}{2} \left(\frac{1}{2^2} + \frac{1}{2^3} \right) = \frac{1}{16}$$
.

(iii) Si ha, utilizzando anche le relazioni di Little:

$$L = \lambda W = 2 \cdot 2/3 = 4/3 > 1, \ W_c = W - 1/\mu = 2/3 - 1/2 = 1/6,$$

$$L_c = \lambda W_c = 2 \cdot 1/6 = 1/3$$
.

(iv) Per la coda M/M/1, il tempo T che un cliente trascorre nel sistema in regime stazionario ha distribuzione esponenziale di parametro $\mu' - \lambda' = 2 - \lambda'$, quindi $E(T) = 1/(2 - \lambda')$ e $E(T^2) = 2/(2 - \lambda')^2$; imponendo che $E(T^2) = 1$, si trova $\lambda' = 1$, oppure $\lambda' = 3$.

La distribuzione stazionaria non esiste se $\lambda'=3$, poiché in tal caso $\rho=\lambda'/\mu'=3/2>1$, mentre invece esiste se $\lambda'=1$, avendosi $\rho=\lambda'/\mu'=1/2<1$, ed è geometrica di parametro $1-\rho=1/2$. Pertanto, $\pi_k=(\frac{1}{2})^{k+1}$, e si ha:

$$P(2 \le Y(\infty) < 4) = \pi_2 + \pi_3 = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^4 = \frac{3}{16}.$$

(v) Si ha, per k = 0, 1, ...:

$$P(Z(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!} ,$$

dove $\lambda > 0$ è l'intensità del processo Z(t). Risulta $P(Z(1) = 1) = \lambda \cdot e^{-\lambda}$; uguagliando a $2 \cdot e^{-2}$, si trova $\lambda = 2$.

Si ha che τ_3 , ovvero l'istante del terzo salto per Z(t), ha distribuzione $\Gamma(3,2)$. Pertanto, ricordando che per una v.a. U con distribuzione $\Gamma(\alpha,\lambda)$ risulta $E(U)=\alpha/\lambda$ e $Var(U)=\alpha/\lambda^2$, si ottiene $E(\tau_3)=3/2$ e $Var(\tau_3)=3/4$, da cui $E[(\tau_3)^2]=Var(\tau_3)+E^2(\tau_3)=\frac{12}{4}=3$. Quindi $E(\tau_3)/E[(\tau_3)^2]=1/2$.

3. (i) I tempi residui R_i di permanenza negli stati sono v.a. esponenziali indipendenti, di parametro $-q_{ii}$; precisamente R_1 ha densità esponenziale di parametro a, R_2 ha densità esponenziale di parametro b, mentre R_3 ha densità esponenziale di parametro 2a. Quindi, $P(R_1 > 3) = e^{-3a}$ e, uguagliando a e^{-3} , si ottiene a = 1.

Inoltre $E(R_3) - 1/E(R_1) + 2E(R_2) = 1/2 - 1 + 2/b = -1/2 + 2/b$; uguagliando a 1/2, si ottiene b = 2. Si noti che una delle relazioni riguardanti i tempi residui è ridondante, poiché deve essere b = a + 1, dovendo essere nulla la somma degli elementi della seconda riga di Q.

Pertanto la matrice Q è:

$$Q = \begin{pmatrix} -1 & 0 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}$$

(ii) La distribuzione invariante π è soluzione dell'equazione $\pi Q = 0$, con la condizione $\pi_1 + \pi_2 + \pi_3 = 1$, da cui si ottiene:

$$\pi = \left(\frac{1}{2}, \ \frac{1}{6}, \ \frac{1}{3}\right),$$

La distribuzione trovata è anche stazionaria; infatti, dal successivo punto (iii), si ottiene che P(0.01) non è positiva, ma lo è $(P(0.01))^2$. Quindi P(t) è regolare. Alternativamente, per verificarlo si può utilizzare il fatto che gli autovalori di Q non nulli sono $\gamma_2 = -2$ e $\gamma_3 = -3$ (quindi distinti e tutti negativi) per concludere che gli autovalori $\lambda_i = e^{\gamma_i t}$ di P(t), escluso $\lambda_1 = 1$, sono distinti ed hanno modulo strettamente minore di 1. (iii) Si ha:

$$P(h) = Id + hQ + o(h)$$
 per $h \to 0$

Pertanto:

$$P(0.01) \approx \begin{pmatrix} 0.99 & 0 & 0.01 \\ 0.01 & 0.98 & 0.01 \\ 0.01 & 0.01 & 0.98 \end{pmatrix}$$

(iv) R_2 ed R_3 sono v.a. esponenziali indipendenti di parametro 2; ricordando che la somma di due v.a. esponenziali indipendenti di parametro 2 ha distribuzione $\Gamma(2,2)$, e che la media di una $\Gamma(\alpha,\lambda)$ è α/λ , mentre la varianza è α/λ^2 , si ottiene che E(U)=1 e $E(U^2)=Var(U)+E^2(U)=1/2+1=3/2$.

(v) La CM discreta "accellerata" ha probabilità di transizione $\hat{p}_{ij} = q_{ij}/(-q_{ii})$, per $i \neq j$, e $\hat{p}_{ij} = 0$ per i = j; pertanto:

$$\widehat{P} = \begin{pmatrix} 0 & 0 & 1\\ 1/2 & 0 & 1/2\\ 1/2 & 1/2 & 0 \end{pmatrix}$$

che è regolare, essendo $\widehat{P}^4>0$, e quindi esiste la distribuzione stazionaria $\widehat{\pi}$. Inoltre, il minimo elemento di \widehat{P}^4 è $\alpha=1/8$. La distribuzione stazionaria $\widehat{\pi}$ si ottiene risolvendo l'equazione $\widehat{\pi}\widehat{P}=\widehat{\pi}$, da cui si ricava:

$$\widehat{\pi} = \left(\frac{1}{3}, \frac{2}{9}, \frac{4}{9}\right) \neq \pi.$$

In realtà, la CM a tempo continuo originaria e quella "accelerata" non hanno lo stesso comportamento, in quanto i tempi medi di permanenza nei tre stati non sono tutti uguali tra loro (sono rispettivamente 1, 1/2 e 1/2) e quindi la CM spende diverse frazioni di tempo soggiornando nei diversi stati. Se tali tempi medi fossero stati uguali, le due catene avrebbero evidenziato lo stesso comportamento all'equilibrio; comunque, si può osservare che per entrambe le CM la probabilità di trovarsi nello stato 3 ad un tempo infinito è il doppio di quella di trovarsi nello stato 2.

(vi) Dal Teorema ergodico risulta

$$|\widehat{p}_{ij}^{(n)} - \widehat{\pi}_j| \le 2\beta^{n-s}$$

dove $\beta=(1-\alpha)^{1/s}$ e s=4. Per $\alpha=1/8$, si ottiene $\beta=(7/8)^{1/4}$. Dunque, occorre imporre che $2\cdot (7/8)^{(n-4)/4} \leq 10^{-5}$. Passando ai logaritmi, dopo semplici calcoli si ottiene n>369.63, ovvero deve essere $n\geq 370$. La convergenza all'equilibrio è piuttosto lenta; ciò si deduce anche dall' esame del secondo autovalore $\widehat{\lambda}_2=-1/2$, il cui modulo è abbastanza discosto da 0.