Scheda di lavoro n. 3

Calcolo della radice quadrata con l'algoritmo di Erone (Excel)

Proposta di lavoro - 1

Dopo aver iterato la funzione $f(x) = \frac{x^2 + 5}{2x}$ con il metodo della proiezione sulla bisettrice del 1° e 3° quadrante, osservare che i punti del grafico convergono ai due vertici dell'iperbole, di coordinate $\left(\sqrt{5}, \frac{\sqrt{5}}{2}\right)$ e $\left(-\sqrt{5}, -\frac{\sqrt{5}}{2}\right)$.

La funzione assegnata nell'esercizio precedente è un caso particolare della funzione $x \to \frac{1}{2} \bigg(x + \frac{k}{x} \bigg) \text{ che, reiterata, tende al valore } \sqrt{k} \text{ . La seguente tabella sintetizza i diversi passi della procedura ricorsiva del metodo di Erone. Nel caso } x_0 > \sqrt{k} \text{ .}$

Passo	Valori approssimati per eccesso	Valori approssimati per difetto
0	x_0	$\frac{k}{x_0}$
1	$x_1 = \frac{x_0 + \frac{k}{x_0}}{2}$	$\frac{k}{x_1}$
2	$x_2 = \frac{x_1 + \frac{k}{x_1}}{2}$	$\frac{k}{x_2}$
n	$x_{n} = \frac{1}{2} \left(x_{n-1} + \frac{k}{x_{n-1}} \right)$	$\frac{k}{x_n}$

<u>Proposta di lavoro</u> – 2

Usando un foglio elettronico e l'algoritmo di Erone, calcolare $\sqrt{26}$.